El alto nivel de potencia de cálculo requerida por algunas aplicaciones sólo puede ser alcanzado por sistemas multiprocesador. Estos sistemas consisten en varios procesadores que se comunican mediante una red de interconexión. El enorme aumento tanto en el tamaño como la complejidad de los sistemas multiprocesador ha disparado su consumo de energía. Las técnicas de reducción de consumo de potencia se están aplicando a todos los niveles en los computadores y la red de interconexión no puede ser una excepción. En este entorno, las redes de interconexión más ampliamente utilizadas están basadas en topologías regulares: directas, como los toros, e indirectas, como los fat-tree. En ambos casos el consumo de potencia de la circuitería de la red de interconexión contribuye significativamente al total del sistema. En esta tesis, proponemos una estrategia para reducir el consumo de potencia en las redes de interconexión, tanto directas como indirectas. Dicha estrategia se materializa en forma de un mecanismo que combina dos técnicas alternativas: (i) la conexión y desconexión dinámica de los enlaces de la red en función del tráfico (cualquier enlace puede ser desconectado, con tal de que la conectividad de red esté garantizada), (ii) el ajuste dinámico del ancho de banda de los enlaces en función del tráfico. En ambos casos, la topología de la red no se ve modificada. Por lo tanto, el mismo algoritmo de encaminamiento puede ser usado independientemente de las acciones de ahorro en el consumo llevadas a cabo, simplificando así el diseño del router. Nuestros resultados muestran que el consumo de potencia de la red se puede reducir muy significativamente, a costa de algún incremento en la latencia. Sin embargo, la reducción de potencia alcanzada es siempre mayor que la penalización en la latencia.