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Abstract
This paper deals with the construction of convergent discrete nu-

merical solutions of strongly coupled parabolic partial differential
systems. The proposed method is based on the application of a dis-
crete separation of variables technique to the discretized problem and
its further exact solution which avoids the solution of large algebraic
systems.

Keywords: Difference schemes, strongly coupled system.

1 Introduction

Coupled partial differential systems with coupled boundary value condi-
tions are frequent in quantum mechanical scattering problems [2, 14], che-
mical physics, thermoelastoplastic modelling, diffusion problems [8], nerve
conduction problems [13], mechanics [16] and other fields. This paper deals
with coupled parabolic systems of the form

ut(x, t)−Auxx(x, t)−Bu(x, t) = 0, 0 < x < 1, t > 0, (1)
A1 u(0, t) + B1 ux(0, t) = 0, t > 0, (2)
A2 u(1, t) + B2 ux(1, t) = 0, t > 0, (3)

u(x, 0) = F (x), 0 6 x ≤ 1, (4)
∗This work has been partially supported by the Spanish D.G.I.C.Y.T. grant BMF
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where u = (u1, . . . , us)T y F = (f1, . . . , fs)T are s-dimensional vectors, e-
lements of Cs, and Ai, Bi, for i = 1, 2 are s× s complex matrices, elements
of Cs×s.

We assume that

A =
[

A1 B1

A2 B2

]
and A1 are invertible matrices . (5)

Strongly coupled partial differential systems of the type (1)–(4) appear
in Geomechanics [18], the study of the Hodgkin-Huxley nerve conduction
equation [7, 13], in ignition of a single component nonreacting gas in a
closed cylindrical vessel with with conservation of mass [12], or in the study
of sudden cardiac death as a consequence of ventricular fibrillation [20].

Analytic-numerical solutions of problem (1)–(4) have been given in [9] for
the case where B = 0, and in [17] for the case where B2 = B1 = 0 and A2 is
invertible. In this paper convergent discrete numerical solutions of problem
(1)–(5) are constructed using difference schemes, a discrete separation of
variables method and solving explicitely the mixed partial difference dis-
cretized problem. Particular cases of the above problem have been recently
treated in [8, 11]. It is important to point out that method proposed here
avoids the solution of large algebraic systems as it occurs using standard
difference methods.

This paper is organized as follows. Section 2 deals with the study of the
boundary partial difference problem resulting from the discretization of
problem (1)–(3) using forward difference schemes under hypothesis (5).
Section 3 deals with the construction of convergent discrete solutions of
problem (1)–(5) using a discrete separation of variables method and results
of section 2. Finally section 4 includes an illustrative example.

Throughout this paper, the set of all eigenvalues of a matrix D in Cs×s

is denoted by σ(D). The spectral radius of D denoted by ρ(D) is the
maximum of the set {|z|; z ∈ σ(D)}. We denote by DH the conjugate
transpose of D and by D† the Moore-Penrose pseudoinverse of D. The
kernel of D, denoted by ker D coincides with the image of the matrix I −
D†D denoted by Im

(
I −D†D

)
, see [4]. We say that a subspace E of

Cs is invariant by the matrix A of Cs×s si A(E) ⊂ E. Hence, property
A (ker G) ⊂ ker G is equivalent to the condition G A

(
I −G†G

)
= 0. The

2-norm of D will be denoted by

‖D‖ = sup
v 6=0

‖Dv‖2
‖v‖2

,
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where for a vector v in Cs, ‖v‖2 =
(
vHv

)1/2 is the Euclidean norm of v,
see [6]. If D = DH is an Hermitian matrix.

2 The discretized partial difference boundary
problem

Let us divide the domain [0, 1]×[0,∞[ into equal rectangles of sides ∆x = h
and ∆t = k, introduce coordinates of a typical mesh point (mh, nk) and let
us represent U(m,n) = u(mh, nk). Approximating the partial derivatives
appearing in (1) by the forward difference approximations

ut(mh, nk) ≈ U(m,n+1)−U(m,n)
k ;

uxx(mh, nk) ≈ U(m+1,n)−2U(m,n)+U(m,n−1)
h2

 , (6)

substituting (6) into (1)-(4) and denoting

r =
k

h2
, h =

1
M

, (7)

one gets the partial difference system:

U(m,n + 1)

= rA [U(m + 1, n) + U(m− 1, n)] +
(
I + rB

M2 − 2rA
)
U(m,n)

1 ≤ m ≤ M − 1, n ≥ 0,

 , (8)

A1U(0, n) + MB1 [U(1, n)− U(0, n)] = 0 , n ≥ 0 (9)
A2U(M,n) + MB2 [U(M,n)− U(M − 1, n)] = 0 , n ≥ 0 (10)

U(m, 0) = F (mh) = f(m) , 0 ≤ m ≤ M. (11)

The difference scheme (8) is consistent with equation (1) in the sense of
[19, p.19], see section 3 of [11]. Let us seek nontrivial solutions {U(m,n)}
of the boundary problem (8)–(10) of the form

U(m,n) = G(n) H(m) , G(n) ∈ Cs×s , H(m) ∈ Cs . (12)

Substituting (12) into (8) and taking into account section 3 of [11] one gets
that {U(m,n)} given by (12) satisfies (8) if {G(n)}, {H(m)} satisfy

G(n + 1)−
(

I +
r B

M2
+ ρ A

)
G(n) = 0 , n ≥ 0 , (13)
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H(m + 1)−
(

2r + ρ

r

)
H(m) + H(m− 1) = 0 , 1 ≤ m ≤ M − 1 , (14)

where ρ is a real number. Note that the solution of (13) satisfying G(0) = I,
is given by

G(n) =
(

I +
r B

M2
+ ρ A

)n

, n ≥ 0 . (15)

If ρ satisfies
−4r < ρ < 0 , (16)

then the algebraic equation

z2 −
(

2r + ρ

r

)
z + 1 = 0 , (17)

has two different solutions z0, z1 given by

z0 = 2r+ρ
2r + i

(
1−

(
2r+ρ
2r

)2) 1
2

= eiθ ,

z1 = 2r+ρ
2r − i

(
1−

(
2r+ρ
2r

)2) 1
2

= e−iθ ,

0 < θ < π , cos θ = 2r+ρ
2r , ρ = −4r sin2

(
θ
2

)
, i2 = −1


. (18)

Since vector equation (14) has scalar coefficients, its solution can be written
in the form

H(m) = cos(mθ) c + sin(mθ) d , c, d ∈ Cs, 1 ≤ m ≤ M − 1. (19)

Under hypothesis (5), premultiplying the boundary condition (2) by A−1
1

one gets a new condition where matrix appearing in the left upper block
is the identity matrix. Thus we assume that A1 = I. Using (12), the
boundary condition (9) takes the form

G(n) H(0) + M B1 G(n) [H(1)−H(0)] = 0 , n ≥ 0 . (20)

By (19) one gets H(0) = c and considering (20) for n = 0, it follows that

[I − (1− cos θ)M B1] c = −(M sin θ)B1 d . (21)

Premultiplying (19) by [I − (1− cos θ) M B1] and taking into account (21)
one gets
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[I − (1− cos θ) M B1] H(m)

= −M B1 cos(mθ) sin θ d + sin(mθ) [I − (1− cos θ) M B1] d

=
[
sin(mθ)I − 2M B1 sin

(
θ
2

)
cos
((

2m−1
2

)
θ
)]

d

1 ≤ m ≤ M − 1 .


. (22)

By the spectral mapping theorem [5, p.569] the eigenvalues of matrix I −
(1−cos θ)M B1 are {1− (1− cos θ) M w ; w ∈ σ(B1)} and the real part of
these eigenvalues are

1− (1− cos θ)M w1 ; w = w1 + i w2 ∈ σ(B1) .

If w1 ≤ 0 then 1− (1− cos θ)M w1 6= 0. If w1 > 0 , taking

M >
1

(1− cos θ)w1
,

one gets 1− (1− cos θ) M w1 < 0. Thus, taking M large enough so that

M >
1

(1− cos θ) γ(B1)
, (23)

where

γ(B1) =


min {w1;w = w1 + iw2 ∈ σ(B1) , w1 > 0} , if
∃w ∈ σ(B1) , Re(w) > 0

(1− cos θ)−1 , if Re(w) ≤ 0 ∀w ∈ σ(B1) ,

(24)

one gets that
I − (1− cos θ) M B1 is invertible , (25)

and then for 1 ≤ m ≤ M − 1

H(m) =
[
sin(mθ) I − 2M sin

(
θ

2

)
cos
((

2m− 1
2

)
θ

)
B1

]
d , (26)

is also a solution set of equation (14) for every vector d ∈ Cs. Taking into
account (14) for m = 1, (26) for m = 1, 2, that cos θ = 2r+ρ

2r together with
(20), one gets

H(0) = −(M sin θ)B1d . (27)

5



Substituting (15), (26) and (27) into (20), for n > 0 one gets

−M sin θ

[(
I +

rB

M2
+ ρ A

)n

B1 −B1

(
I +

rB

M2
+ ρ A

)n]
d = 0 , n > 0.

(28)
Since sin θ 6= 0 because θ ∈ ]0, π[, by (18) we have

w =
r

M2ρ
=

−1
M2 sin2

(
θ
2

) 6= 0 , (29)

and (28) can be written in the form

[(I + ρ (A + w B))n
B1 −B1 (I + ρ (A + w B))n] d = 0 , d ∈ Cs , n > 0 .

(30)
Considering (14) for m = M − 1, one gets

H(M) =
[
sin(Mθ) I − 2M sin

(
θ

2

)
cos
((

2M − 1
2

)
θ

)
B1

]
d , d ∈ Cs .

(31)
By imposing to U(m,n), given by (12), the boundary condition (10) for
n ≥ 0 and using (15), (26) and (31) one gets

{A2 (I + ρ(A + wB))n sin(Mθ)

−2M sin
(

θ

2

)
cos
((

2M − 1
2

)
θ

)
A2 (I + ρ(A + wB))n

B1

+2M sin
(

θ

2

)
cos
((

2M − 1
2

)
θ

)
B2 (I + ρ(A + wB))n

+ 4M2 sin2

(
θ

2

)
sin((M − 1)θ)B2 (I + ρ(A + wB))n

B1

}
d = 0 , n ≥ 0.

(32)
Substituting (30) into (32) for n > 0 and using (32) for n = 0, it follows
that for n ≥ 0{

A2 sin(Mθ)− 2M sin
(

θ

2

)
cos
((

2M − 1
2

)
θ

)
A2B1

+2M sin
(

θ

2

)
cos
((

2M − 1
2

)
θ

)
B2

+4M2 sin2

(
θ

2

)
sin((M − 1)θ)B2B1

}
(I + ρ(A + wB))n

d = 0. (33)

Let p be the degree of the minimal polynomial of the matrix A+w B, then
by Cayley-Hamilton theorem, see [15, p. 206], for n ≥ p the powers (A +
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w B)n are expressed in terms of I, A+w B, (A+w B)2, . . . , (A+w B)p−1.
Since w 6= 0, condition (33) holds if:

{
2M sin

(
θ

2

)
cos
((

2M − 1
2

)
θ

)
(B2 −A2B1) + A2 sin(Mθ)

+4M2 sin2
(

θ
2

)
sin((M − 1)θ)B2B1

}
(A + wB)n d = 0 , 0 ≤ n < p . (34)

In order to guarantee that {U(m,n)} is a nontrivial solution, vectors d
appearing in (34) must be nonzero. By (34), there are nonzero vectors d
satisfying (34) if

L(θ) = 2M sin
(

θ

2

)
cos
((

2M − 1
2

)
θ

)
(B2 −A2B1) + A2 sin(Mθ)

+4M2 sin2

(
θ

2

)
sin((M − 1)θ) B2B1 is singular, 0 < θ < π. (35)

Note that L(θ) can be written in the form:

L(θ) = 2M sin
(

θ

2

)
cos
((

2M − 1
2

)
θ

)[
(B2 −A2B1) +

A2

M

]
+sin((M − 1)θ)

[
A2 + 4M2 sin2

(
θ

2

)
B2B1

]
. (36)

By the properties of the Schur complement of a matrix, see [3], together
with hypothesis (5) with A1 = I, it follows that

B2 −A2B1 is invertible. (37)

By (37) and the Banach lemma, see [6], it follows that

(B2−A2B1)+
A2

M
is invertible if M > ‖A2‖

∥∥∥(B2 −A2B1)
−1
∥∥∥ . (38)

If M satisfies (38) and 0 < θ < π makes that L(θ) defined by (36) is
singular, then we obtain that sin((M − 1)θ) 6= 0. Thus L(θ) is singular if
and only if

A2 + 4M2 sin2

(
θ

2

)
B2B1+

+
2M sin

(
θ
2

)
cos
((

2M−1
2

)
θ
)

sin ((M − 1)θ)

[
(B2 −A2B1) +

A2

M

]
is singular, (39)

or the equivalent condition
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sin(Mθ)
sin((M − 1)θ)

(B2 −A2B1)
−1

A2 + 4M2 sin2

(
θ

2

)
(B2 −A2B1)

−1
B2B1+

2M sin
(

θ
2

)
cos
((

2M−1
2

)
θ
)

sin ((M − 1)θ)
I , is singular, 0 < θ < π. (40)

Let us introduce the matrices

Â2 = (A2B1 −B2)
−1

A2 , B̂2 = (A2B1 −B2)
−1

B2 = Â2B1 − I . (41)

Using matrices Â2, B̂2 defined in (41) and the spectral mapping theorem
condition (39) means that

M

(
sin(Mθ)

sin ((M − 1)θ)
− 1
)

is an eigenvalue of the matrix

sin(Mθ)
sin ((M − 1)θ)

Â2 + 4M2 sin2
(

θ
2

) (
Â2B

2
1 −B1

)
, 0 < θ < π

 . (42)

Let us assume that

There exist α ∈ σ
(
Â2

)
∩ R ; β ∈ σ(B1) ∩ R and v ∈ Cs ∼ {0}

such that
(
Â2 − α I

)
v = (B1 − β I) v = 0

 . (43)

By (43) it follows that

[
sin(Mθ)

sin ((M − 1)θ)
Â2 + 4M2 sin2

(
θ

2

)(
Â2B

2
1 −B1

)]
v =

=
[

sin(Mθ)
sin ((M − 1)θ)

α + 4M2 sin2

(
θ

2

)(
αβ2 − β

)]
v , 0 < θ < π ,

or

v is an eigenvector of the matrix

sin(Mθ)
sin ((M − 1)θ)

Â2 + 4M2 sin2

(
θ

2

)(
Â2B

2
1 −B1

)
associated to the real eigenvalue

sin(Mθ)
sin ((M − 1)θ)

α + 4M2 sin2

(
θ

2

)(
αβ2 − β

)


. (44)
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Taking M large enough so that

M > α ,

condition (42) and (44) makes possible to find solutions of the scalar equa-
tion

sin(Mθ)
sin((M − 1)θ)

=
M

M − α
+ 4M2 sin2

(
θ

2

) (
αβ2 − β

)
M − α

, 0 < θ < π ,

or

cot ((M − 1) θ) = − cot θ +
M

M − α

[
1

sin θ
+ 2M

(
αβ2 − β

)
tan

(
θ

2

)]
0 < θ < π.

(45)

For each integer δ with 1 ≤ δ ≤ M − 1, in the interval Jδ =
]

(δ−1)π
M−1 , δπ

M−1

[
one satisfies

lim
θ→ (δ−1)π

M−1 +
cot((M − 1)θ) = +∞ ;

limθ→ δπ
M−1−

cot((M − 1)θ) = −∞ ; cot((M − 1)θ) decreases in Jδ,

 (46)

because
d

dθ
(cot((M − 1)θ)) = − M − 1

sin2((M − 1)θ)
< 0 .

Furthermore the function eM (θ) describing the right hand side of (45) is
continuous and increasing in ]0, π[ if

M > max
{

α

1− cos θ
, α

}
, θ ∈ ]0, π[ , (47)

and some of the following conditions are satisfied

β = 0 ,
αβ = 1 ,
β > 0 and αβ > 1 ,
β < 0 and αβ < 1 .

 . (48)

Then by (46)–(48) there exists only one solution θδ of (45) in the interval
Jδ, satisfying
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cot ((M − 1) θδ)

= − cot θδ +
M

M − α

[
1

sin θδ
+ 2M

(
αβ2 − β

)
tan

(
θδ

2

)]
1 ≤ δ ≤ M − 1 , θδ ∈ Jδ

 . (49)

Hence condition (34) can be written in the form

S(α, β, θδ) (A + wδ B)n
dδ = 0 , (50)

0 ≤ n ≤ p(δ)− 1 , 1 ≤ δ ≤ M − 1 ,

where

S(α, β, θδ) =
sin(Mθδ)

sin ((M − 1)θδ)
Â2 + 4M2 sin2

(
θδ

2

)(
Â2B

2
1 −B1

)
+

−
[

sin(Mθδ)
sin ((M − 1)θδ)

α + 4M2 sin2

(
θδ

2

)(
αβ2 − β

)]
I , (51)

p(δ) is the degree of the minimal polynomial of the matrix A+wδ B, being
θδ the solution of (49) and

wδ =
−1

4M2 sin2

(
θδ

2

) , 1 ≤ δ ≤ M − 1 . (52)

Let us introduce the block matrix defined by

T (α, β, θδ) =



B1(A + wδB)− (A + wδB)B1

B1(A + wδB)2 − (A + wδB)2B1

...
B1(A + wδB)p(δ)−1 − (A + wδB)p(δ)−1B1

S(α, β, θδ)
S(α, β, θδ)(A + wδB)
S(α, β, θδ)(A + wδB)2

...
S(α, β, θδ)(A + wδB)p(δ)−1


, (53)

Then vectors dδ satisfy (50) and the corresponding to (30), i.e.,

[(A + wδ B)n
B1 −B1 (A + wδ B)n] dδ = 0 , 0 < n < p(δ) , (54)
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if and only if

T (α, β, θδ)dδ = 0 , 1 ≤ δ ≤ M − 1 , dδ ∈ Cs ∼ {0} . (55)

Note that if vectors {dδ}M−1
δ=1 are chosen so that

(B1−βI) dδ =
(
Â2 − αI

)
dδ = 0 , dδ ∈ Cs ∼ {0} , 1 ≤ δ ≤ M−1 , (56)

and

{(A + wδB)n dδ ; 1 ≤ n ≤ p(δ)− 1} ⊂ ker
(
Â2 − αI

)
∩ ker (B1 − βI) (57)

1 ≤ δ ≤ M − 1 ,

then vectors dδ satisfy (50) and (54), or equivalently (55). Replacing θ by
θδ into (15) and (26), by (12) it follows that

Uδ(m,n) =
[
I − r

(
4 sin2

(
θδ

2

)
A− B

M2

)]n

·

·
[
sin (mθδ)− 2Mβ sin

(
θδ

2

)
cos
((

2m− 1
2

)
θδ

)]
dδ, (58)

for 1 ≤ m ≤ M − 1, n ≥ 0, define nonzero solutions of problem (8)–(10).

Summarizing the following result has been established:

Theorem 2.1 Let us consider the boundary value problem (8)–(10) under
hypothesis (5) with A1 = I, let Â2 = (A2B1 −B2)

−1
A2 and let M > 0 be

a large enough positive integer so that (23) and (38) hold.

(i) Assume condition (43) and take M satisfying (47). Then there exist
solutions θδ of (49), θδ ∈

]
(δ−1)π
M−1 , δπ

M−1

[
= Jδ, 1 ≤ δ ≤ M − 1,

making the matrix L(θδ) defined by (36) singular.

(ii) Under hypothesis of (i), let dδ be vectors in Cs satisfying (56) and
(57) for 1 ≤ δ ≤ M − 1, then {Uδ(m,n)} given by (58) defines
nontrivial solutions of problem (8)–(10).

Remark 2.1 The case where apart from the invertibility of A one has
B1 = I can be treated in an analogous way taking into account the properties
of the Schur complement, see [3]. Considering the change m → M−m, the
cases where A2 = I or B2 = I can be transformed into the previous cases.
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3 The mixed problem

This section deals with the construction of exact solutions of the mixed dif-
ference problem (8)–(10). Assume the notation and hypotheses of theorem
2.1-(i) and (ii). By superposition of solutions of the boundary problem
(8)–(10) one gets

U(m,n)

=
M−1∑
δ=1

[
I − r

(
4 sin2

(
θδ

2

)
A− B

M2

)]n

·

·
[(

1− βMρδ

2r

)
sin(mθδ)− βM cos(mθδ) sin(θδ)

]
dδ ,

ρδ = −4r sin2

(
θδ

2

)
, 1 ≤ δ ≤ M − 1


. (59)

By imposing to {U(m,n)} given by (59) that satisfies the initial condition
(11), implies that vectors dδ appearing in (59) must verify

f(m) =
M−1∑
δ=1

[(
1− βMρδ

2r

)
sin(mθδ)− βM cos(mθδ) sin(θδ)

]
dδ . (60)

Let fq(m) and dδ,q be the q-th component of vectors f(m) and dδ respec-
tively. Consider the scalar Sturm-Liouville problem

−h(m + 1) + 2h(m)− h(m− 1) = −ρ

r
h(m)

h(0) =
βM

βM − 1
h(1)

h(M) =
M(αβ − 1)

α + M(αβ − 1)
h(M − 1)


, 1 ≤ m ≤ M − 1 . (61)

By [1, chap. 11] problem (61) has exactly M − 1 eigenvalues given by{−ρδ

r

}M−1

δ=1
, where ρδ = −4r sin2

(
θδ

2

)
and θδ satisfies (49). For each eigen-

value −ρδ

r there exists one eigenfunction sequence

{hδ(m)} =
{(

1− βMρδ

2r

)
sin(mθδ)− βM cos(mθδ) sin(θδ)

}
, (62)
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and these eigenfunctions are orthogonal with respect to the weight function
w(m) = 1, for 1 ≤ m ≤ M − 1. The q-th component of equation (60) takes
the form

fq(m) =
M−1∑
δ=1

{(
1− βMρδ

2r

)
sin(mθδ)− βM cos(mθδ) sin(θδ)

}
dδ,q .

(63)
By the orthogonality of eigenfunctions {hδ(m)} appearing in (60) and the
theory of discrete Fourier series, see [1, chap. 11], it follows that

dδ,q =

M−1∑
ν=1

{(
1− βMρδ

2r

)
sin(νθδ)− βM cos(νθδ) sin(θδ)

}
fq(ν)

M−1∑
ν=1

{(
1− βMρδ

2r

)
sin(νθδ)− βM cos(νθδ) sin(θδ)

}2
,

1 ≤ δ ≤ M − 1 , 1 ≤ q ≤ s ,

(64)

or in vectorial form

dδ =

M−1∑
ν=1

{(
1− βMρδ

2r

)
sin(νθδ)− βM cos(νθδ) sin(θδ)

}
f(ν)

M−1∑
ν=1

{(
1− βMρδ

2r

)
sin(νθδ)− βM cos(νθδ) sin(θδ)

}2
,

1 ≤ δ ≤ M − 1 .

(65)

Expression (65) for vectors dδ must be compatible with conditions (56),
(57). This means that {f(m)} must satisfy

(B1 − β I) f(m) =
(
Â2 − α I

)
f(m) = 0 , 1 ≤ m ≤ M − 1 , (66)

and if wδ is given by (52),

{(A + wδ B)n
f(m) , 1 ≤ n ≤ p(δ)− 1} ⊂ ker

(
Â2 − α I

)
∩ ker (B1 − β I) ,

(67)
for 1 ≤ m ≤ M − 1, 1 ≤ δ ≤ M − 1.

If {f(m)}M−1
m=1 satisfies (66), (67) then {U(m,n)} defined by (59) where dδ

is given by (65) is a solution of problem (8)–(11). Note that conditions (66)
and (67) are satisfied if

13



f(m) ∈ ker
(
Â2 − α I

)
∩ ker (B1 − β I) , 1 ≤ m ≤ M − 1 , (68)

and

ker
(
Â2 − α I

)
∩ ker (B1 − β I) is an invariant subspace

by the matrix A + wδ B , 1 ≤ δ ≤ M − 1 .

]
. (69)

Using lemma 1 of [9], conditions (68) and (69) can be written in the form

f(m) ∈ Im L(α, β) , 1 ≤ m ≤ M − 1 , (70)

(
I − L(α, β)L(α, β)†

)
(A + wδ B) L(α, β) = 0 , 1 ≤ δ ≤ M − 1 , (71)

where

L(α, β) =
(
I − P †αPα

){
I −

[
Qβ

(
I − P †αPα

)]† [
Qβ

(
I − P †αPα

)]}
Pα = Â2 − α I , Qβ = B1 − β I ,

 . (72)

Note that condition (71) means that Im L(α, β) is an invariant subspace
by the matrix A + wδ B, for 1 ≤ δ ≤ M − 1. The solution {U(m,n)} of
the mixed problem (8)–(11), defined by (59), (65), is stable, i.e. remains
bounded as n →∞ if {f(m)} is bounded and matrices

I − r

(
4 A sin2

(
θδ

2

)
− B

M2

)
, 1 ≤ δ ≤ M − 1 ,

are convergent. By theorem 2.1 of [10] this occurs if

x > 0 for all x ∈ σ

(
A + AH

2

)
, (73)

y ≤ 0 for all y ∈ σ

(
B + BH

2

)
, (74)

and if Ã1 = A+AH

2 , B̃1 = B+BH

2 , Ã2 = A−AH

2i , B̃2 = B−BH

2i and θ1 is the

unique solution of (49) in
]
0, π

M−1

[
, r satisfies

14



r <

M2

[(
2M sin

(
θ1

2

))2

λmin

(
Ã1

)
− λmax

(
B̃1

)]
[
4M2λmax

(
Ã1

)
+ ρ

(
B̃1

)]2
+
[
4M2λmax

(
Ã2

)
+ ρ

(
B̃2

)]2 . (75)

Summarizing the following result has been established:

Theorem 3.1 Consider the mixed problem (8)-(11) under hypothesis (43)
and (5) with A1 = I. Let Â2 = (A2B1 −B2)

−1
A2 and let M > 0 integer

large enough so that (23),(38) and (47) hold. Let θδ be the solution of (49)
and wδ be defined by (52) for 1 ≤ δ ≤ M−1. Suppose that {f(m)} satisfies
conditions (70) and (71) where L(α, β) is defined by (72). Then {U(m,n)}
defined by (59) where dδ is given by (65) is a solution of problem (8)–
(11). Furthermore, if matrices A, B satisfy conditions (73)–(74), {f(m)}
is bounded and r is small enough so that (75) holds, then {U(m,n)} is
stable.

Now we study conditions more general than those considered in theorem
3.1. Let us assume that

Λ = {α(1), . . . , α(t)} ⊂ R ∩ σ
(
Â2

)
, (76)

Ω = {β(1), . . . , β(q)} ⊂ R ∩ σ(B1) . (77)

By lemma 1 of [9] condition

L (α(i), β(j)) 6= 0 , 1 ≤ i ≤ t , 1 ≤ j ≤ q , (78)

is equivalent to

ker
(
Â2 − α(i) I

)
∩ ker (B1 − β(j) I) 6= ∅ , 1 ≤ i ≤ t , 1 ≤ j ≤ q . (79)

Consider the set F ⊂ Λ× Ω defined by

F =


(α(i`), β(j`)) ∈ Λ× Ω satisfying some of the conditions of (48) ,(
Â2 − α(i`) I

)
v` = (B1 − β(i`) I) v` = 0 , v` ∈ Cs ∼ {0} ,

L (α(i`), β(j`)) 6= 0


(80)
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and the block matrix

L = [L (α(i1), β(j1)) , L (α(i2), β(j2)) , . . . , L (α(ip), β(jp))] ∈ Cs×ps . (81)

and suppose that f(m) ∈ ImL for 0 ≤ m ≤ M , or equivalently(
I − LL†

)
f(m) = 0 , 0 ≤ m ≤ M , (82)

because ImL = ker
(
I − LL†

)
. By lemma 1 of [9] one gets

S` = Im L (α(i`), β(j`)) = ker
(
Â2 − α(i`) I

)
∩ ker (B1 − β(j`) I) , (83)

and by (81), (83), the subspace ImL is the direct sum of the subspaces S`,

ImL = S1 ⊕ S2 ⊕ · · · ⊕ Sp . (84)

Let
{

f̂`(m)
}M

m=0
be the projection sequence of {f(m)}M

m=0 on the subspace
S`, defined by:

f̂`(m) = [0, . . . , 0, L (α(i`), β(j`)) , 0, . . . , 0]L† f(m) , (85)
1 ≤ ` ≤ p , 0 ≤ m ≤ M .

Since f̂`(m) lies in S`, by (82) it follows that:

p∑
`=1

f̂`(m) = LL† f(m) = f(m) , 0 ≤ m ≤ M . (86)

Let us suppose that ImL (α(i`), β(j`)) in an invariant subspace by the
matrix A + w

(`)
δ B, i.e.:

[
I − L (α(i`), β(j`))L (α(i`), β(j`))

†
] (

A + w
(`)
δ B

)
L (α(i`), β(j`)) = 0 ,

w
(`)
δ =

−1

4M2 sin2

(
θ
(`)
δ

2

) , 1 ≤ δ ≤ M − 1,


(87)

where θ
(`)
δ is the solution of (49) associated to the pair (α(i`), β(j`)) in Jδ.

Consider problem (P`) defined by (8)–(10) together with the initial condi-
tion

U(m, 0) = f̂`(m) , 0 ≤ m ≤ M , 1 ≤ ` ≤ p , (88)
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and note that solution {U`(m,n)} of problem (P`) is defined by (59) where
d
(`)
δ is given by

d
(`)
δ =

M−1P
ν=1

( 
1−

β(j`)Mρ
(`)
δ

2r

!
sin
�
νθ

(`)
δ

�
− β(j`)M cos

�
νθ

(`)
δ

�
sin
�
θ
(`)
δ

�)bf`(ν)

M−1P
ν=1

( 
1−

β(j`)Mρ
(`)
δ

2r

!
sin
�
νθ

(`)
δ

�
− β(j`)M cos

�
νθ

(`)
δ

�
sin
�
θ
(`)
δ

�)2 ,

(89)

for 1 ≤ δ ≤ M − 1 , 1 ≤ ` ≤ p , 1 ≤ j ≤ q.

U`(m,n) =
M−1∑
δ=1

[
I − r

(
4A sin2

(
θ
(`)
δ

2

)
− B

M2

)]n

·

·

[(
1−

β(j`)Mρ
(`)
δ

2r

)
sin(mθ

(`)
δ )− β(j`)M cos(mθ

(`)
δ ) sin(θ(`)

δ )

]
d
(`)
δ .(90)

By linearity and (86), (90) it follows that

U(m,n) =
p∑

`=1

U`(m,n) , 1 ≤ m ≤ M − 1 , n ≥ 0 , (91)

is a solution of problem (8)–(11). Furthermore (91) is a stable solution if
(73)–(74) hold and the parameter r verifies

r < min
1≤`≤p


M2

(2M sin

(
θ
(`)
1

2

))2

λmin

(
Ã1

)
− λmax

(
B̃1

)
[
4M2λmax

(
Ã1

)
+ ρ

(
B̃1

)]2
+
[
4M2λmax

(
Ã2

)
+ ρ

(
B̃2

)]2


.

(92)
Summarizing the following result is a consequence of theorem 3.1.

Theorem 3.2 Consider problem (8)–(11) under hypothesis (5) with A1 =
I, assume (76) and (77) and let M be an integer satisfying (23), (38) and

M > max
1≤`≤p

{
α(i`)

1− cos
(
θ(`)
) , α(i`)

}
. (93)
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Let F and L be defined by (80) and (81) respectively, assume that {f(m)}
is bounded, conditions (73)–(74) are satisfied and r is small enough so that

(92) holds. Let
{

f̂`(m)
}M

m=0
be defined by (85), let w

(`)
δ be defined by (87)

and assume that condition (87) holds. If {U`(m,n)} is given by (90) then
{U(m,n)} defined by (91) is a stable solution of problem (8)–(11).

4 Example

Consider the problem (1)–(4) with data:

A =


1 −1 0

0 2 0

0 2 1

, B =


−3 2 0

0 −8 0

0 5 −3

, A1 = I ,

B1 =



3 1 0

0 −1
2

0

0 2 −1
2

, A2 =


2 1 0

0 2 0

0
1
2

−1

, B2 =


5

3
2

0

0 −2 0

0 −9
4

−1
2

,

f(m) = F (mh) = (f1(m), f2(m), f3(m))T
, and h = 1

M , 1 ≤ m ≤ M − 1 .

Hypothesis (5) is satisfied, Â2 = (A2B1 −B2)
−1

A2 = A2 with

σ
(
Â2

)
= {−1, 2} , σ (B1) =

{
−1

2
, 3
}

.

Let α(1) = −1, α(2) = 2, β(1) = − 1
2 , β(2) = 3 and note that both pairs

(α(1), β(1)), (α(2), β(2)) satisfy (48) and

v =

 0
0
1

 ,
(
Â2 − α(1) I

)
v = (B1 − β(1) I) v = 0 ,

w =

 1
0
0

 ,
(
Â2 − α(2) I

)
w = (B1 − β(2) I)w = 0 .

For the pair (α(1), β(1)) = (−1,−1/2) the matrix L(α(1), β(1)) defined by
(72) takes the value
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L (−1,−1/2) =

 0 0 0
0 0 0
0 0 1

 6= 0 ;

I − L (−1,−1/2) L (−1,−1/2)† =

 1 0 0
0 1 0
0 0 0

 .


(94)

Let
{

θ
(1)
δ

}M−1

δ=1
be the solutions of (49) corresponding to the pair (−1,−1/2)

and let

w
(1)
δ =

−1

4M2 sin2

(
θ
(1)
δ

2

) , 1 ≤ δ ≤ M − 1 .

Hence

A + w
(1)
δ B =


1− 3w

(1)
δ −1 + 2w

(1)
δ 0

0 2− 8w
(1)
δ 0

0 2 + 5w
(1)
δ 1− 3w

(1)
δ

 . (95)

By (94) and (95) it follows that

[
I − L (−1,−1/2) L (−1,−1/2)†

] (
A + w

(1)
δ B

)
L (−1,−1/2) = 0 , (96)

1 ≤ δ ≤ M − 1 ,

Let us consider now the pair (α(2), β(2)) = (2, 3). Computing one gets

L(2, 3) =

 1 0 0
0 0 0
0 0 0

 6= 0 and I − L(2, 3)L(2, 3)† =

 0 0 0
0 1 0
0 0 1

 . (97)

Let
{

θ
(2)
δ

}M−1

δ=1
be the solutions of (49) corresponding to the pair (2, 3) and

let

w
(2)
δ =

−1

4M2 sin2

(
θ
(2)
δ

2

) , 1 ≤ δ ≤ M − 1 .
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Note that

A + w
(2)
δ B =


1− 3w

(2)
δ −1 + 2w

(2)
δ 0

0 2− 8w
(2)
δ 0

0 2 + 5w
(2)
δ 1− 3w

(2)
δ

 .

Computing the matrix L = [L (α(1), β(1)) , L (α(2), β(2))] one gets

L =

 0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0

 .

Condition (82) is satisfied by any vector function {f(m)} of the form

f(m) = (f1(m), 0, f3(m))T
.

The projections
{

f̂1(m)
}

,
{

f̂2(m)
}

defined by (85) take the form

f̂1(m) = [L (α(1), β(1)) , 0]L†f(m) =

 0
0

f3(m)

 , (98)

f̂2(m) = [0, L (α(2), β(2))]L†f(m) =

 f1(m)
0
0

 . (99)

Note that

A + AH

2
=


1 −1

2
0

−1
2

2 1

0 1 1

 , σ

(
A + AH

2

)
=
{

1079
396

,
297
1079

, 1
}

;

B + BH

2
=



−3 1 0

1 −8
5
2

0
5
2

−3

 , σ

(
B + BH

2

)
=
{
−1211

132
,−3,−1729

947

}
,
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and thus the stability conditions (73), (74) are satisfied. Taking small
enough values of r satisfying (92), M verifying (23), (38) and (92) by
theorem 3.2 the vector function

U(m,n) =
2∑

`=1

U`(m,n) ,

where {U`(m,n)} are defined by (89), (90) and
{

f̂`(m)
}

by (98)–(99) is a
stable solution of the mixed problem (8)–(11) with the above data.
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