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Abstract
This paper deals with the construction of convergent discrete nu-
merical solutions of strongly coupled parabolic partial differential
systems. The proposed method is based on the application of a dis-
crete separation of variables technique to the discretized problem and
its further exact solution which avoids the solution of large algebraic
systems.
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1 Introduction

Coupled partial differential systems with coupled boundary value condi-
tions are frequent in quantum mechanical scattering problems [2, 14], che-
mical physics, thermoelastoplastic modelling, diffusion problems [8], nerve
conduction problems [13], mechanics [16] and other fields. This paper deals
with coupled parabolic systems of the form

ug(x,t) — Augy(z,t) — Bu(x,t) = 0, O<z<l, t>0, (1)
A1 u(0,t) + Byu,(0,t) = 0, t>0, (2)
Asu(1,t) + Boug(l,t) = 0, t>0, (3)

u(z,0) = F(z), 0<a<1, (4)

*This work has been partially supported by the Spanish D.G.I.C.Y.T. grant BMF
2000-0206-C04-04.



where u = (uy,...,us)T y F = (f1,...,fs)T are s-dimensional vectors, e-
lements of C?, and A;, B;, for i = 1,2 are s X s complex matrices, elements
of C5*s,

We assume that

A= [ ﬁl gl } and A; are invertible matrices. (5)
2 D2

Strongly coupled partial differential systems of the type (1)—(4) appear

in Geomechanics [18], the study of the Hodgkin-Huxley nerve conduction

equation [7, 13], in ignition of a single component nonreacting gas in a

closed cylindrical vessel with with conservation of mass [12], or in the study

of sudden cardiac death as a consequence of ventricular fibrillation [20].

Analytic-numerical solutions of problem (1)—(4) have been given in [9] for
the case where B = 0, and in [17] for the case where Bo = B; = 0 and As is
invertible. In this paper convergent discrete numerical solutions of problem
(1)—=(5) are constructed using difference schemes, a discrete separation of
variables method and solving explicitely the mixed partial difference dis-
cretized problem. Particular cases of the above problem have been recently
treated in [8, 11]. It is important to point out that method proposed here
avoids the solution of large algebraic systems as it occurs using standard
difference methods.

This paper is organized as follows. Section 2 deals with the study of the
boundary partial difference problem resulting from the discretization of
problem (1)—(3) using forward difference schemes under hypothesis (5).
Section 3 deals with the construction of convergent discrete solutions of
problem (1)—(5) using a discrete separation of variables method and results
of section 2. Finally section 4 includes an illustrative example.

Throughout this paper, the set of all eigenvalues of a matrix D in C***
is denoted by o(D). The spectral radius of D denoted by p(D) is the
maximum of the set {|z|; 2 € o(D)}. We denote by DY the conjugate
transpose of D and by D' the Moore-Penrose pseudoinverse of D. The
kernel of D, denoted by ker D coincides with the image of the matrix I —
D'D denoted by Im (I — D'D), see [4]. We say that a subspace E of
C* is invariant by the matrix A of C**¢ si A(E) C E. Hence, property
A(ker G) C ker G is equivalent to the condition G A (I — GTG) = 0. The
2-norm of D will be denoted by

D
1D]| = sup 1241z
w0 V]2



where for a vector v in C*, [jv[]z = (vHv) "2 is the Euclidean norm of v,

see [6]. If D = D is an Hermitian matrix.

2 The discretized partial difference boundary
problem

Let us divide the domain [0, 1] x [0, co[ into equal rectangles of sides Az = h
and At = k, introduce coordinates of a typical mesh point (mh,nk) and let

us represent U(m,n) = u(mh,nk). Approximating the partial derivatives
appearing in (1) by the forward difference approximations

ut(mh,nk) = %—U(m»");

(6)
um(mh, nk) ~ U(m+1,n)72U(hn2”L,n)+U(m,n71)
substituting (6) into (1)-(4) and denoting
k 1
r= ﬁ ) h = M i (7)
one gets the partial difference system:
U(m,n+1)
=rAUm+1,n)+U(m—1,n)]+ (I+E -2rA)U(m,n) |, (8)
1<m<M-1,n2>0,
AU0,n)+ MB,[U(1l,n) —U(0,n)] =0, n>0 (9)
A U(M,n)+ MBo [UM,n) —U(M —1,n)] =0, n>0 (10)
U(m,0) = F(mh) = f(m) , 0<m< M. (11)

The difference scheme (8) is consistent with equation (1) in the sense of
[19, p.19], see section 3 of [11]. Let us seek nontrivial solutions {U(m,n)}
of the boundary problem (8)—(10) of the form

U(m,n) =G(n)H(m), G(n)eC***, H(m)eC?. (12)

Substituting (12) into (8) and taking into account section 3 of [11] one gets
that {U(m,n)} given by (12) satisfies (8) if {G(n)}, {H(m)} satisfy

rB

Gn+1) - (I+M2

—i—pA) G(n)=0, n>0, (13)



H(m—l—l)—(%:p) H(m)+H(m—1)=0, 1<m<M-—1, (14)

where p is a real number. Note that the solution of (13) satisfying G(0) = I,
is given by

rB "
G(n)z([+w—|—pA> , n>0. (15)
If p satisfies
—4r<p<0, (16)

then the algebraic equation

22(2T+p>z+1 , (17)

r

has two different solutions zg, z1 given by

L ;
2\ 3 .
=i (1= (352)7) T = e,
1
. 2\ 2 . (1
a =i (1= (5e)) = e, 1
0<d<m, 0059:22#, p:—47°sin2(g), i?=—1 |

Since vector equation (14) has scalar coefficients, its solution can be written
in the form

H(m) = cos(mf) ¢ + sin(mb) d , ¢6deC®, 1<m<M-1. (19)

Under hypothesis (5), premultiplying the boundary condition (2) by A;!
one gets a new condition where matrix appearing in the left upper block
is the identity matrix. Thus we assume that Ay = I. Using (12), the
boundary condition (9) takes the form

G(n) H(0) + M By G(n) [H(1) — HO)| =0, n>0.  (20)
By (19) one gets H(0) = ¢ and considering (20) for n = 0, it follows that
[I—(1—cosf) M By] c=—(M sinf) By d. (21)

Premultiplying (19) by [I — (1 — cos@) M B;] and taking into account (21)
one gets



[I — (1 —cos®) M By] H(m)
= —M Bj cos(m8)sin@d + sin(m@) [I — (1 — cos0) M Bq] d

= [sin(m0)I — 2M By sin (£) cos ((22%-L) 0)] d

1<m<M-1.

By the spectral mapping theorem [5, p.569] the eigenvalues of matrix I —
(1—cosf) M By are {1 — (1 —cosf) M w; w € o(By)} and the real part of
these eigenvalues are

1—(1—cosf) Mw; w=w +iws € 0(By).
If wy <0 then 1—(1—cosf)Mw; #0. If w; >0, taking

1

M>_ -
” (1 —cosf)w; ’

one gets 1 — (1 —cos@) M w; < 0. Thus, taking M large enough so that

1
M 2
" T =cosf)7(B1) (23)
where
min {wy; w = wy +iws € o(By) , wy >0} , if
Jw € 0(By) , Re(w) >0
v(B1) = (24)

(1 —cos®)~! | if Re(w) <0 Vw € o(By),

one gets that
I—(1—cosf)M B, is invertible, (25)

and then for 1 <m <M -1

H(m) = |sin(m8) I — 2M sin (g) cos <<2m2 1) 9) Bl} d, (26

is also a solution set of equation (14) for every vector d € C*. Taking into
account (14) for m =1, (26) for m = 1,2, that cosf = QT;Trp together with
(20), one gets

H(0) = —(Msin) Byd. (27)



Substituting (15), (26) and (27) into (20), for n > 0 one gets

B " B "
—Msin0[<l+;42+pz4) B, — B; <I+T+pA> ]d:O, n > 0.

M2
(28)
Since sin 6 # 0 because 6 € 10, 7[, by (18) we have
-1
w= — £0, (29)

M2p - M?2 sin? (g)
and (28) can be written in the form

(I+p(A+wB))"Bi—Bi(I+p(A+wB))"|d=0, deC®, n>0.
(30)
Considering (14) for m = M — 1, one gets

H(M) = {sin(Me) I —2M sin (g) cos (<2M2_ 1) 9) Bl] d, de <(c;.)

By imposing to U(m,n), given by (12), the boundary condition (10) for
n > 0 and using (15), (26) and (31) one gets

{As (I + p(A +wB))" sin(M8)

—ontsin (2 cos (=LY g Ay (I+ p(A+wB))" By
(3)=((*57)7)

+2M sin (Z) cos (<2M2_ 1) 9) By (I +p(A+wB))"

+ 4M? sin® (Z) sin((M —1)0)Bs (I 4+ p(A+ wB))" Bl} d=0, n>0.

(32)
Substituting (30) into (32) for n > 0 and using (32) for n = 0, it follows
that for n > 0

{A2 sin(M@) — 2M sin (g) cos ((2M2_ 1) 9) AyBy
+2M sin (g) cos ((2M2_ 1) 9) B,

+4M? sin® <g) sin((M — 1)0)3231} (I+ p(A+wB))"d=0.(33)

Let p be the degree of the minimal polynomial of the matrix A+ w B, then
by Cayley-Hamilton theorem, see [15, p. 206], for n > p the powers (A +



w B)™ are expressed in terms of I, A+w B, (A+w B)?,...,(A+wB)P~!
Since w # 0, condition (33) holds if:

{2M sin (g) cos (<2M2_ 1) 9) (B — AyBy) + Ay sin(M6)

+4M?sin® (§) sin((M —1)0)BaB1 } (A+wB)"d =0, 0<n<p.(34)

In order to guarantee that {U(m,n)} is a nontrivial solution, vectors d
appearing in (34) must be nonzero. By (34), there are nonzero vectors d
satisfying (34) if

2M —1
L(6) = 2M sin (g) cos <( 5 ) 9) (By — AaBy) + Ao sin(M6)

+4M? sin® (g) sin((M — 1)0) BB, is singular, 0 <8 < . (35)
Note that L(f) can be written in the form:

- (B (252)0) - 1

+sin((M — 1)6) {AQ + 4M? sin® (g) BgBl] : (36)

By the properties of the Schur complement of a matrix, see [3], together
with hypothesis (5) with A; = I, it follows that

By — A3 B;  is invertible. (37)

By (37) and the Banach lemma, see [6], it follows that
(32—A231)+% is invertible if M > || Ay H(32 —AQBl)“H . (38)
If M satisfies (38) and 0 < 6 < 7 makes that L(#) defined by (36) is

singular, then we obtain that sin((M — 1)0) # 0. Thus L(9) is singular if
and only if

Ao + 4M? sin? < )BgBlJr
0
2

cos ((24=1 2| . .
( ()(M ((1)9) )6) {(32 — AyBy) + AM is singular, (39)

or the equivalent condition



sin(M @)
sin((M — 1)0)
2 s (8) cos ((24)8) |
sin ((M — 1)0) ’

Let us introduce the matrices

_ 0 _
(By — A3By) ™" Ay + 4M? sin® <2> (By — AyBy) ' ByBi+

is singular, 0 < 6 < 7. (40)

Ay = (A3By — By) YAy, By =(AyBy — By) "By =A;B, —I. (41)

Using matrices A\g, Eg defined in (41) and the spectral mapping theorem
condition (39) means that

sin(M6) . . .
_— —1 1 f th
(sin (M —1)0) ) 1s an eigenvalue of the matrix
(42)
sin(M6)  ~ 9 2.0\ [ Do
mAQ + 4M < sin (5) (AQBl — Bl) y O<f<m
Let us assume that
There exist a € o (A}) NR; Beo(B1)NR and v € C* ~ {0} (43)
such that (Eg—@[)qj:(Bl—ﬂI)vzo .
By (43) it follows that
sin(M0)  ~ o . o0\ /~ o
— Ay +4M — ) (AsB7 — B =
Lin((M—l)&) 2 AMTsm 5 ( 221 1) Y
B sin(M6) 5 . of0 9
_Lill((]\41)0)a+4M sin 3 (aﬁ B) v, 0<O<m,
or
v is an eigenvector of the matrix !
sin(M6@)  ~ . 0\ /~
— A 4M?sin® ( = ) (A,B%2 — B
sin (M — 1)g) 2 s <2)( 221 1)
(44)

associated to the real eigenvalue

sin(M6) 9 . 0 9
ma+4M bln2 <2> (O[ﬂ - ﬁ)



Taking M large enough so that
M > «,

condition (42) and (44) makes possible to find solutions of the scalar equa-
tion

sin(M¢9) M . 0\ (af?-p)
S = e e (5) S 0o

or

cot (M —1)0) = —cot 6 + MA{a [sulle +2M (Otﬁ2 —m tan (g)} (45)
0<f<m.

For each integer § with 1 < § < M — 1, in the interval Js = ] ((;Zi)lﬂv 1\/?11 [

one satisfies
limy_ 1= cot((M —1)0) = +o0;
M—1
(46)
limy_, sz _ cot((M —1)f) = —oo; cot((M — 1)0) decreases in Js,

because
__M-1
sin?((M —1)6)

Furthermore the function eps(#) describing the right hand side of (45) is
continuous and increasing in ]0, 7| if

d
5 (cot(M = 1)6)) =

o
M —_— 4
>max{1cosa,a}, 0 €10,n[, (47)
and some of the following conditions are satisfied

p=0,
af =1,
G>0and af > 1,
f<0and af <1.

(48)

Then by (46)—(48) there exists only one solution 65 of (45) in the interval
Js, satisfying



cot ((M —1)0s)
M 1 9 0
M — o« |sinfs +2M (ozﬁ B ﬁ) tan (;)} . (49)

1<o<M—-1, 0Os€ s

= —cotfls +

Hence condition (34) can be written in the form

S(a, 3,05) (A+ws B)" ds =0, (50)
0<n<p)—-1, 1<s<M-1,
where
S(a, B,05) = m& + 4M? sin” (%) (EQBf - Bl) +
sin(M95) 2 . 9 95 2

p(9) is the degree of the minimal polynomial of the matrix A+ ws B, being
05 the solution of (49) and

-1

4M?2 sin? (926>

Let us introduce the block matrix defined by

wy = 1<6<M-—1. (52)

Bi(A+wsB) — (A+wsB) B,
Bi(A+wsB)? — (A+wsB)?B;

Bi(A + ws;B)PO) =1 — (A4 wsB)PO 1B,
T(a,B3,05) = S(a, 8, 05) ) (53)
S(a, 3,05)(A + wsB)
S(a, 8,05)(A+ U)gB)2

S(a, 8,05)(A+ wsB)P©®)~1

Then vectors ds satisfy (50) and the corresponding to (30), i.e.,

[(A+ws B)" By — Bi (A+ws B)"]ds =0, 0<n<p(d), (54)

10



if and only if
T(a,B,05)ds =0, 1<6<M-—-1, dseC°~{0}. (55)

Note that if vectors {d(;}f;wzz1 are chosen so that

(Blfﬂl)d(;:(ﬁgfaf)dgzo, ds € C° ~ {0}, 1<5<M—1, (56)

and

{(A4+wsB)"ds; 1 <n<p(d) —1} C ker (A\g—al) Nker (By — BI) (57)
1<§<M—1,

then vectors ds satisfy (50) and (54), or equivalently (55). Replacing 6 by
05 into (15) and (26), by (12) it follows that

Us(m,n) = {I r <4sm2 (925> A- J\iﬂn
s () — 20155in (5 Y cos (257 ) ) [ 4 59

for 1 <m < M — 1, n > 0, define nonzero solutions of problem (8)—(10).

Summarizing the following result has been established:

Theorem 2.1 Let us consider the boundary value problem (8)—(10) under
hypothesis (5) with Ay = I, let Ay = (A2B1 — Bg)_1 Ay and let M > 0 be
a large enough positive integer so that (23) and (38) hold.

(i) Assume condition (43) and take M satisfying (47). Then there exist

solutions 05 of (49), 0s € }(?\2?1”, 1\/([5711[ =Js, 1 <6< M-—1,

making the matriz L(0s) defined by (36) singular.

(i) Under hypothesis of (i), let ds be vectors in C* satisfying (56) and
(57) for 1 < 6 < M — 1, then {Us(m,n)} given by (58) defines
nontrivial solutions of problem (8)—(10).

Remark 2.1 The case where apart from the invertibility of A one has
By = I can be treated in an analogous way taking into account the properties
of the Schur complement, see [3]. Considering the change m — M —m, the
cases where As = I or Bs = I can be transformed into the previous cases.

11



3 The mixed problem

This section deals with the construction of exact solutions of the mixed dif-
ference problem (8)—(10). Assume the notation and hypotheses of theorem
2.1-(i) and (ii). By superposition of solutions of the boundary problem
(8)—(10) one gets

U(m,n)

S ool (e )

. {(1 S p5> sin(mfs) — BM cos(mbs) sin(@g)] s

0
p5=—4rsin2<;>, 1<é<M-1

By imposing to {U(m,n)} given by (59) that satisfies the initial condition
(11), implies that vectors ds appearing in (59) must verify

M—1
flm) = Z [(1 — eré> sin(m@s) — BM cos(mbs)sin(bs)| ds. (60)

2
6=1

Let fy(m) and dj 4 be the ¢g-th component of vectors f(m) and ds respec-
tively. Consider the scalar Sturm-Liouville problem

—h(m+1) + 2h(m) — h(m — 1) = —gh(m)
hO) = () b 1 <m< 1. o)
h(M) = mh(M —1)

By [1, chap. 11] problem (61) has exactly M — 1 eigenvalues given by

{=£ }(21117 where ps = —4rsin? (%‘5) and 05 satisfies (49). For each eigen-

—P% there exists one eigenfunction sequence

s

value

BMps
2r

thatom)) = { (1= 2525 ) sinGms) — 531 cos(rnts)snt0s) ) . (62)

12



and these eigenfunctions are orthogonal with respect to the weight function
w(m) =1, for 1 <m < M —1. The ¢-th component of equation (60) takes
the form

M—-1

falm) =" {(1 - ﬂgp‘;) sin(mls) — BM cos(mbs) sm(eg)} dsq -

s=1
(63)
By the orthogonality of eigenfunctions {hs(m)} appearing in (60) and the
theory of discrete Fourier series, see [1, chap. 11], it follows that

Ajill { (1 — %) sin(v0s) — BM cos(v05) 8111(95)} fq(v)
8,q — — ’
le {(1 - %ﬁ) sin(v8s) — BM cos(v0s) sin(o%)}2 (64)

v=1

1<6<M-1, 1<q<s,

or in vectorial form

M_—ll {(1 - %) sin(vls) — BM cos(v8s) sin(95)} f(v)

{(1 - %) sin(v8s) — BM cos(v0s) sin(t%)}2 ’ (65)
1<6<M-1.

Expression (65) for vectors ds must be compatible with conditions (56),
(57). This means that {f(m)} must satisfy
(Bi=B1)f(m) = (A —al) fm)=0, 1<m<M-1, (66)

and if ws is given by (52),

{(A+wsB)" f(m), 1 <n <p(d)—1} C ker (A\g - aI) Nker (By — B1) ,
(67)

forl<m<M-1,1<6< M —1.

It {f(m)}:\f:_l1 satisfies (66), (67) then {U(m,n)} defined by (59) where ds

is given by (65) is a solution of problem (8)—(11). Note that conditions (66)

and (67) are satisfied if

13



f(m)eker(flz—az)mker(Bl—ﬁI), l<m<M-1, (68

and

ker (121\2 -« I) Nker (By — ) is an invariant subspace

69
by the matrix A+wsB, 1<§i<M-1. (69)

Using lemma 1 of [9], conditions (68) and (69) can be written in the form

f(m)eImL(e, ), 1<m<M-1, (70)

(I = L(e, B)L(c, B)') (A+ws B) L(e, B) =0, 1<5<M -1, (71)

where

L(@,8) = (1 = PiPa) {1 [Qa (1 = PLP.)] " Qo (1 - PIPA)] .

Po=Ay—al, Q=B —pI,
Note that condition (71) means that Im L(«, ) is an invariant subspace
by the matrix A 4+ ws B, for 1 < § < M — 1. The solution {U(m,n)} of

the mixed problem (8)—(11), defined by (59), (65), is stable, i.e. remains
bounded as n — oo if {f(m)} is bounded and matrices

Ir<4Asin2 (?)52) . 1<6<M-1,

are convergent. By theorem 2.1 of [10] this occurs if

A+ AH

x>0 forall a:EU( +2 ), (73)
B+ BH

y <0 forall yEU(_Z), (74)

L~ H ~ H ~ _AH _ pH .
and1fA1:A+2A , By = B££ ,A2:A2;4 , By = B=B= and 6, is the

unique solution of (49) in }O, T [, r satisfies

14



M? [(2]\4 sin <921>)2 Amin (Zl) ~ Amas (El) |
[4M2>\maz (ﬁl) +p (El)} g [4M2AW (22) +p (Eg)} ’

Summarizing the following result has been established:

r<

Theorem 3.1 Consider the mized problem (8)-(11) under hypothesis (43)
and (5) with Ay = 1. Let 22 = (A3B; — BQ)_l Ao and let M > 0 integer
large enough so that (23),(38) and (47) hold. Let 05 be the solution of (49)
and wg be defined by (52) for 1 < § < M —1. Suppose that {f(m)} satisfies
conditions (70) and (71) where L(a, ) is defined by (72). Then {U(m,n)}
defined by (59) where ds is given by (65) is a solution of problem (8)-
(11). Furthermore, if matrices A, B satisfy conditions (73)-(74), {f(m)}
is bounded and r is small enough so that (75) holds, then {U(m,n)} is
stable.

Now we study conditions more general than those considered in theorem
3.1. Let us assume that

A:{au),...,a(t)}cRma(ﬁz), (76)
Q= {B(1),....Bq)} CRNo(By). (77)

By lemma 1 of [9] condition

is equivalent to

ker(Ag—a()I>ﬁker(Bl BN A0, 1<i<t, 1<j<gq. (79)

Consider the set F C A x Q defined by

—~

a(ie), B(je ) eEAXQ satlsfylng some of the conditions of (48),
(Ag a(ig )w Blig)I) vg =0, v, € C°* ~ {0},
L(

a )7ﬂ .7/ 7£ 0
(80)

15



and the block matrix
L= [L(a(ir),B(1)), L(aliz), B(j2)) ;- -, L(alip), B(jp))] € TP (81)
and suppose that f(m) € Im £ for 0 < m < M, or equivalently
(I-L£L) f(m)=0, 0<m<M, (82)
because Im £ = ker (I — LLT). By lemma 1 of 9] one gets

S, =Im L (a(ie), B(j0) = ker (A3 — aie) I) Oker (By = B() 1), (83)
and by (81), (83), the subspace Im £ is the direct sum of the subspaces Sy,

MmL=83Sd -0S,. (84)

N M
Let {fg(m)} . be the projection sequence of {f(m)}n]\f:O on the subspace

Sy, defined b;lzi

fl(m) = [0,...,O,L(Ol(ig),ﬁ(jg)),0,...,0} ‘CT f(m)v (85)
1<l<p,0<m< M.

Since fg(m) lies in Sy, by (82) it follows that:

fe(m) = £LY f(m) = f(m), 0<m< M. (86)

M)~

~
Il

1

Let us suppose that Im L (a(ig),5(j¢)) in an invariant subspace by the
matrix A + w((;é)B, ie.

[1 = Latie). BG) L (atie), 8G)'| (A+w{"B) L(alie), 8(ie) =0,

-1
w) = 1<6<M-—1,

20N
AM? sin? [ 22—
2
(87)

where 0((32) is the solution of (49) associated to the pair (a(i¢), 5(j¢)) in Js.
Consider problem (P;) defined by (8)—(10) together with the initial condi-
tion

U(m,0) = fu(m), 0<m<M, 1<(<p, (88)

16



and note that solution {Uy(m,n)} of problem (P) is defined by (59) where
d((f) is given by

M-—-1

> {(1 B W) sin (Vegl)) — B(je)M cos (y@ff )sm (9“))}1” (v)

d((g[): v=1

M—1 ; Q)

3 {( _ W)sin (yeg“) — B(je)M cos <y0< ) sm 9(6 }
r

v=1

for1<6<M—-1, 1<4<p, 1<j<q.

M-1 (0)
0 B
n) = l] - <4A sin? <‘;> - ]\42>
5=1

. )
. [(1 - W) sin(m@ff)) — BGe) M cos(m@f;e)) sin(@ff))] dge). (90)

n

2

By linearity and (86), (90) it follows that
P
U(m,n):ZUg(mﬂz), 1<m<M-1, n>0, (91)
=1

is a solution of problem (8)—(11). Furthermore (91) is a stable solution if
(73)—(74) hold and the parameter r verifies

O\ _ -
M2 <2Msin (;)) Amin (Al) ~ Aman (Bl>
r < min 3 2
1<¢<p [4M2/\maz (Zl) Ty (§1)} + {4]\/[2)\7,“”c (AVQ) +p (Ez)}

(92)

Summarizing the following result is a consequence of theorem 3.1.

Theorem 3.2 Consider problem (8)-(11) under hypothesis (5) with A1 =
1, assume (76) and (77) and let M be an integer satisfying (23), (38) and

M > max {a(i[),a(ig)} . (93)

1<¢<p | 1 —cos (9(‘3))
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Let F and L be defined by (80) and (81) respectively, assume that {f(m)}
is bounded, conditions (73)—(74) are satisfied and r is small enough so that

. M
(92) holds. Let {f@( )} _be defined by (85), let w ) be defined by (87)

and assume that condition (8’7) holds. If {Uy(m,n)} is given by (90) then
{U(m,n)} defined by (91) is a stable solution of problem (8)—(11).

4 Example
Consider the problem (1)—(4) with data:
1 -1 0 -3 2 0
A=|l0 20|, B=| 0 -8 0, A4 =1,
0 2 1 0 5 =3
3 1 0 2 1 0 5 3 0
2
L 0 2 0
Bi=|0 -5 0] 4= ., Bo=|0 -2 0 |,
1
1 0 = —1 9 1
0 2 —- 0 —> —=
2 172

Fm) = F(mh) = (f(m), folm). fo(m))"  and h= 2 1<m<M—1.
Hypothesis (5) is satisfied, As = (A2B; — 32)71 Ay = Ay with

o (22) —{-1,2}, o(B)= {—;3} .

Let a(1) = -1, a(2) = 2, 3(1) = —%, B(2) = 3 and note that both pairs
(a(1), B(1)). (a(2), B(2)) satisfy (48) and

w_lcl)] : (XQ—Q(Q)I)w:(Bl—ﬂ(Q)I)w:().

For the pair (a(1),3(1)) = (—1,—1/2) the matrix L(«(1),5(1)) defined by
(72) takes the value

18



L(-1,-1/2) = £0;

o O O
o OO
_ o O

1
I—L(-1,-1/2)L(-1,-1/2) = | 0
0

S = O

0
0
O -

M-1
Let {0((;1) }5 be the solutions of (49) corresponding to the pair (-1, —1/2)
=1
and let

~1
w = . 1<5<M-—1.
9(1)
AM? sin? [ 2~
2
Hence
1-3uwS"?  —1+ 20" 0
0 245wl 11— 3wl

By (94) and (95) it follows that

[I—L(—l,—1/2)L(—1,—1/2)q (A+w§”B)L(—1,—1/2) —0, (96)
1<§<M-1,

Let us consider now the pair («(2), 5(2)) = (2,3). Computing one gets

L(2,3) =

S O =
o O O
o O O

0
#0and I — L(2,3)L(2,3) = | 0
0

O = O

0
0. (o7
1

M-1
Let {9((52) }5 be the solutions of (49) corresponding to the pair (2, 3) and
=1
let




Note that

1-3uw®  —1+ 20 0
A+wPB= 0 2 — 8w 0
0 2+ 5w 1- 3w
Computing the matrix £ = [L («(1),8(1)), L («(2), 5(2))] one gets
0001 0O
L=]10 00 0 0 0.
0010 0O

Condition (82) is satisfied by any vector function {f(m)} of the form

f(m) = (f1(m), 0, fs(m))"
The projections {fl(m)}7 {fg(m)} defined by (85) take the form

0
fi(m) = [L(a(1),6(1)),0] L f(m) = | 0 ; (98)
_f3(m)_
[ fi(m) ]
F2(m) = [0, L (a(2), B2))] £ f(m) = | 0 (99)
0
Note that
1
L =5 0
A+ AR 1 A+ ATN (1079 297 .
2 | -3 21 ’“( 2 )‘{3%’mm’}’
0 11
-3 1 0
B+BY | | g B B+B"\ _f 1211 1729
2 2 ’0( 2 ){132947}
5
0 5 -3

20



and thus the stability conditions (73), (74) are satisfied. Taking small
enough values of r satisfying (92), M verifying (23), (38) and (92) by
theorem 3.2 the vector function

U(m,n) = Uy(m,n),

~
Il o
=

where {Uy(m,n)} are defined by (89), (90) and {ﬁ(m)} by (98)-(99) is a
stable solution of the mixed problem (8)—(11) with the above data.
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