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Abstract 

he general aim of this thesis has been to evaluate the productive 

performance of four maternal lines of rabbits as well as their 

corresponding crossbreds, and in addition to estimate the crossbreeding 

genetic parameters, from a complete diallel cross.The lines were A, V, H and 

LP,founded on different criteria but all of them selected for litter size at 

weaning since their foundation until present, for 41, 37, 20 and 7 generations, 

respectively.  

In chapter 3, comparison between lines was made at the foundation time of 

the lines, using mixed animal models including additive and permanent 

random effects. In this analysis all the process of selectionwas considered by 

including the complete data set (recorded from June 1980 to February 2009) 

and the full pedigree. A second comparison was made at fixed times when does 

from different lines were bred in the same farm and under the same feeding 

and management conditions: i) from March 1997 to August 1998, for lines A, V 

and H, and ii) from September 2007 to February 2009 for lines A, V and LP. 

The models used for these second analyses did not include the additive genetic 

effects and only consider the records of each period; therefore line 

comparisons were not dependent on the genetic model.The raw means for 

47,132 parities produced from 12,639 does were 9.80, 9.07, 7.79 and 6.95 

rabbits for total born, number born alive, number weaned and number 

marketed per litter, respectively, and 49.80 days for kindling interval, 

demonstrating high levels of productivity of these lines. At their respective 

times of foundation, line A showed the lowest litter size, being important the 

difference between this line and the average of the other lines: 1.39 rabbits per 

litter for total born, 1.20 for number born alive, 0.84 for number weaned and 

T 
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1.06 for number marketed. Lines V and H did not show significant differences 

for litter size traits, but for kindling interval the contrast was 3.30±0.72d, 

which was significant and favourable to line H. LP line exceeded V line by 

approximately one rabbit for all litter size traits. The differences between 

these lines for kindling interval were negligible. Some interactions between 

lines and farm-year-seasons were important. Regarding the comparison of 

lines A, V and H from March 1997 to August 1998, the pattern of the 

differences between the line A and the others was similar to those observed at 

the origin, and the only significant difference between lines V and H was found 

for the kindling interval (4.62 d in favour of line V) . The comparison between 

the lines A, V and LP from September 2007 to February 2009 indicates that 

differences in reproductive performance between lines were lower than at the 

origin. In general, good agreement was observed between the comparisons of 

lines for litter size traits at fixed times, using a model without genetic effects 

and data recorded during the comparison periods, and the predictions derived 

from the model with genetic effects and the complete data set.. Another point 

is the importance of the criteria used in each line to select the founders in 

determining the initial performance levels.  

The aim of chapter 4 was to use demographic and litter size data of the 

previous lines, as a case study, in order to: i) estimate their effective 

population size, in order to monitor the rate of increase of inbreeding with 

selection and ii) study whether the inbreeding effect on litter size traits 

depends on the pattern of its accumulation over time. The lines were kept 

closed at the same nucleus of selection under the same program of selection 

and management. Some practices in mating and selection management, such 

as avoiding matings between animals sharing grandparents and making that 

each sire contributed with a son to the next generation,allowed an increase of 

the inbreeding coefficient lower than 0.01 per generation in these lines of 

around 25 males and 125 females. The effective population size (Ne) for them 

was around 57.3, showing that the effect of selection on increasing inbreeding, 

has been counterbalanced by the management practices which try to reduce 
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increase of inbreeding. The inbreeding of each individual was partitioned in 

three components: old inbreeding (inbreeding accumulated between the 

foundation of the line and generation 15th for animals born after generation 

30th), intermediate (inbreeding accumulated between generations 15th to 30th 

for animals born after generation 30th or the inbreeding accumulated in the 

first 15generation for animals born before generation 30th) and new (the rest 

of situations). The coefficients of regression of the old, intermediate and new 

inbreeding on total born (TB), number born alive (NBA) and number weaned 

(NW) per litter, showed a decreasing trend from positive to negative values. 

Regression coefficients significantly different from zero were those for the old 

inbreeding on TB (6.79±2.37) and BA (5.92±2.37). The contrast between the 

regression coefficients associated to old and new inbreeding were significant 

for the three litter size traits: 7.57±1.72 for TB; 6.66±1.73 for BA and 

5.13±1.67 for NW. These results have been interpreted as the combined action 

of purging of unfavourable aleles and artificial selection against these aleles 

which was favoured by inbreeding along generations of selection through the 

increase of homozygotes frequency.  

The previous maternal rabbit lines were used in a complete diallel cross to 

produce sixteen genetic groups (four maternal lines and twelve single 

crosses). The objective of this experiment was to evaluate reproductive traits 

and functional longevity of crossbred and purebred does. The sixteen genetic 

groups were distributed in four Spanish farms but only one genetic group (V 

line) was present in all farms to connect records among these farms and to be 

used as the reference genetic group. The records of these traits were obtained 

from January 2009 to October 2011. The differences between all genetic 

groups and V line were estimated. Then, direct and maternal genetic effects of 

the lines, and direct heterosis between the lines were estimated according to 

Dickerson’s model.  

Chapter 5, aimed to study ovulation rate (OR), number of implanted 

embryos (IE), total born (TB), embryo survival (ES), fetal survival (FS) and 

prenatal survival (PS). An animal model was used.The means for all traits 
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were higher than the ones obtained in previous studies in these lines. 

Differences in OR and IE between lines were not significant despite A line 

showed relevant lower OR than the other lines, whereas the differences were 

significant and relevant for TB. Regarding the differences between the 

crossbred groups and V line, only significant differences were observed in 

favour of HxV. In general, the positive effect of crossbreeding on IE is primarily 

due to the lower pre-implantation loss and the observed differences were not 

significant. Regarding TB, the obtained differences were important in two 

cases: favourable in the case of AxH and unfavourable in the case of LPxV. In 

general, relevant but no always significant differences between lines in direct 

genetic effects were found although the magnitude of the differences was high 

for some traits. Line LP presented larger direct genetic effects than any other 

line, being significantly different to line A.Differences in maternal effects were 

not significant, except those between the LP and V lines. High and positive 

heterosis effect was found between lines A and H. The cross between lines LP 

and V had a negative heterosis for all traits with a highly negative effect on TB 

(16% of the mean). 

In Chapter 6, litter size (total born (TB), number born alive (NBA) and 

number weaned (NW)) and kindling interval (KI) were analyzed with the aim 

to get estimates of crossbreding genetic parameters. Only, LP line presented a 

higher direct genetic effect than V line being significant the effect on NBA. 

Between the other lines no significant differences in direct and maternal 

genetic effects for TB, NBA and NW were found but there were significant 

differences for KI. A relevant and large heterosis effect was found for TB in the 

cross HxV, this parameter for the crosses AxH, AxV and LPxH was lower. For 

NBA, significant heterosis was found in HxV and AxV and for NW in AxV, LPxH 

and LPxV. Favourable and significant heterosis for KI was found in AxV and 

LPxV, whereas in AxLP and LPxH the heterosis was unfavourable and 

significant. Crossbred does, generally, showed a higher reproductive level than 

V females and the differences between the average of all crosses andline V 

were important, being 0.45 for TB, 0.57 for NBA, 0.75 for NW and -2.22 d for 
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KI.The contrast between every two lines showed a similar performance of the 

lines and we did not find significant differences among them for litter size. For 

KI, significant differences with relevant values were found between lines and it 

reflected the significant differences between direct and maternal genetic 

effects. 

Last chapter of this thesis has aimed to study the functional longevity, 

defined as the number of days between the first positive palpation and the 

death or culling of the doe for reasons other than production; it represents the 

ability to delay involuntary culling. Records from 7,211 does were analysed 

with the Survival kit 6.0 using a Cox proportional hazard model of fixed effects. 

The model incorporated time-dependent factors, such as group-farm-year-

season (GFYS), number born alive (NBA), group-order of positive palpation 

(GPPO) and physiological status of the female (PS).Lines A, H and V had a 

similar ability to avoid culling or death and they show higher risk of being 

culled of dead than LP line. Line LP had the lowest associated hazard with 

important differences at later ages and the probabilities to be replaced were 

0.39, 0.49 and 0.53 times the replacement rate of lines A, H and V, respectively. 

We did not find significant differences between all crossbred groups and line V 

except for the cross between A and H lines in favour of line V.The difference 

between a cross and its reciprocal, generally, was not significant except 

between VxH and HxV, favourable to HxV and between LPxH and HxLP, in 

favour of HxLP. Line V had the highest associated risk due to the direct genetic 

effects and these differences were significant with respect to those for lines H 

and LP. The differences in maternal genetic effects were small and not 

significant except between lines H and V, favouring V line. The estimated 

heterotic effects do not follow the same direction but they showed, in some 

cases, the importance of the crosses between specialized lines to produce 

crossbred does for intensive meat rabbit production. Thus, it was shown that 

at the early productive cycles, the risk associated to purebreds was higher than 

the risk of crossbreds, when the cost of the does has not been recovered yet. 
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The contrary happened at late productive cycles (fifth cycle or more), when 

the cost of the does was already recovered. 

There are some crosses that could be specially recommended to be used in 

commercial production like HxLP, HxV and AxV or VxA. Some of these 

recommendations took into account the fact that in commercial production the 

fostering after birth is a common practice. This fact gives an added value to 

crosses with high average TB or NBA but having lower performances for NW. 

The AxH cross could be recommended for farms where the longevity is not a 

problem.  

 



 

Resumen 

l objetivo principal de esta tesis ha sido evaluar el rendimiento 

reproductivo de cuatro líneas maternales de conejos, de sus 

correspondientes cruces y la estima de los parámetros genéticos del 

cruzamiento, a partir de un cruce dialélico completo. Las líneas involucradas 

fueron la A, V, H y LP, fundadas bajo diferentes criterios pero, todas ellas, 

seleccionadas desde su origen hasta la actualidad por tamaño de camada al 

destete. Estas líneas se encuentran actualmente en la generación 41, 37, 20 y 7, 

respectivamente. 

En el tercer capítulo, la comparación entre las líneas se hizo en la fundación 

de las mismas, usando un modelo animal mixto que incluía los efectos aleatorios 

aditivos y permanentes. Para realizar este análisis se consideró el proceso de 

selección, ya que se incluyó el conjunto completo de datos (recogidos desde 

junio de 1980 hasta febrero de 2009) y el pedigrí integro. La segunda 

comparación se realizó en un tiempo fijo, los últimos dieciocho meses en los las 

hembras de tres líneas diferentes compartieron la misma granja y estuvieron 

bajo las mismas condiciones de manejo y alimentación. Estos periodos 

correspondieron a los intervalos que van: i) Desde marzo de 1997 hasta agosto 

de 1998 para las líneas A, V y H, y ii) Desde septiembre de 2007 hasta febrero de 

2009 para las líneas A, V y LP. Los modelos utilizados para estos análisis no 

incluyeron el efecto genético aditivo y solo se consideraron los datos 

provenientes de dichos periodos, por consiguiente, las comparaciones entre las 

líneas no dependieron del modelo genético. Las medias por camada, de los 

47,132 partos producidos por las 12,639 conejas involucradas en este estudio, 

fueron de 9.8, 9.07, 7.79 y 6.95 para número total de gazapos nacidos, número 

de nacidos vivos, número de destetados y número de sacrificados, 

E 
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respectivamente, y un intervalo entre partos de 49.80 días. Se puede observar 

como estas líneas tienen altos niveles productivos. En los respectivos momentos 

de fundación, la línea A mostró el menor tamaño de camada, siendo importante 

las diferencias con las medias combinadas de las otras líneas: 1.39 

gazapos/camada para el total de nacidos, 1.2 para el número de nacidos vivos, 

0.84 para el número de destetados y 1.06 para el número de sacrificados. Las 

líneas V y H no mostraron diferencias significativas para los caracteres de 

tamaño de camada, pero para el intervalo entre partos, el contraste fue 

3.30±0.72días, que resultó significativo a favor de la línea H. La línea LP superó 

a la V en aproximadamente un gazapo para todos los caracteres de tamaño de 

camada estudiados. Las diferencias entre estas líneas para el intervalo entre 

partos fueron despreciables. Algunas interacciones, como la interacción entre 

línea y granja-año-estación resultaron importantes. Con respecto a la 

comparación entre las líneas A, V y H en el periodo que va desde marzo de 1997 

hasta agosto de 1998, el patrón de las diferencias entre la línea A y las demás 

fue similar al observado en la fundación, y sólo se encontraron diferencias 

significativas entre las líneas V y H para el intervalo entre partos (4.62 días a 

favor de la línea V). La comparación entre las líneas A, V y LP, desde septiembre 

de 2007 hasta febrero de 2009 mostró una aproximación en sus rendimientos 

reproductivos, si son comparados con las diferencias que existían en el origen. 

De forma general, en la comparación de las líneas para los caracteres de tamaño 

de camada se observó una gran similitud en los periodos de tiempo fijo, usando 

un modelo sin efectos genético y datos recogidos durante los periodos de 

comparación, y las predicciones derivadas de los modelos con efectos genéticos. 

Otro punto a tener en cuenta, es la importancia del criterio utilizado para 

seleccionar los animales fundadores de cada línea, ya que determinarán los 

niveles iniciales de estos rendimientos reproductivos.  

El objetivo principal del capítulo 4 fue usar los datos genealógicos y de 

tamaño de camada de las líneas anteriormente mencionadas para: i) estimar sus 

tamaños de población efectiva, como una medida del incremento de la tasa 

consanguinidad y ii) estudiar si el efecto de la consanguinidad en los caracteres 
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de tamaño de camada dependen del patrón de acumulación en el tiempo. Las 

líneas se han mantenido cerradas, en el mismo núcleo de selección, siguiendo el 

mismo manejo y programa de selección. Algunas prácticas, en lo 

correspondiente al apareamiento yla selección de los animales, como pueda ser 

evitar apareamientos entre animales con abuelos comunes y hacer que cada 

macho contribuya con un hijo a la siguiente generación, han permitido un 

incremento del coeficiente de consanguinidad menor de 0.01 por generación en 

estas líneas, cuyo tamaño, por generación, es alrededor de 25 machos y 125 

hembras cada una. El tamaño efectivo de la población (Ne) para estas líneas 

estuvo entorno a 57.3, mostrando que el efecto de la selección, que produce un 

incremento de laconsanguinidad, ha sido en parte contrarrestado por el manejo 

empleado. La consanguinidad de cada individuo fue dividida en tres 

componentes: consanguinidad vieja (consanguinidad acumulada entre la 

fundación de la línea y la generación 15ª para los animales nacidos después de 

la generación 30ª), intermedia (consanguinidad acumulada entre las 

generaciones 15ª a la 30ª para animales nacidos después de la generación 30ª o 

la consanguinidad acumulada en las primeras 15 generaciones para los 

animales nacidos antes de la generación 30ª) y nueva (las demás situaciones). 

Los coeficientes de regresión de la consanguinidad vieja, intermedia y nueva, 

por camada, en el número total de nacidos (TB), número de nacidos vivos (NBA) 

y número de destetados (NW), mostraron una tendencia decreciente desde 

valores positivos hasta valores negativos. Los coeficientes de regresión 

significativamente diferentes de cero fueron los de la consanguinidad vieja en 

TB (6.79±2.37) y NBA (5.92±2.37). El contraste de los coeficientes de regresión 

entre la consanguinidad vieja y la nueva fue significativo para los tres caracteres 

de tamaño de camada: 7.57±1.72 para TB; 6.66±1.73 paraNBA y 5.13±1.67 para 

NW. Estos resultados se han interpretado como la acción combinada de la purga 

de genes desfavorables y de la selección artificial, favorecida por la 

consanguinidad a lo largo de generaciones de selección a través del incremento 

de homocigotos.  
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Las líneas maternales de conejo utilizadas en esta tesis, fueron utilizadas para 

generar un cruzamiento dialélico completo. Así, se generaron dieciséis grupos 

genéticos (cuatro líneas maternales y doce cruces simples). El objetivo de este 

experimento fue evaluar los caracteres reproductivos y la longevidad funcional 

de las hembras cruzadas y de las líneas puras. Los dieciséis grupos genéticos 

fueron distribuidos en cuatro granjas españolas, pero solo un grupo genético 

(línea V) estuvo presente en todas las granjas para conectar los datos entre 

estas y ser utilizada como grupo genético de referencia. Los datos de los 

caracteres reproductivos se obtuvieron desde septiembre de 2008 hasta el final 

de septiembre de 2011. Se estimaron las diferencias entre todos los grupos 

genéticos y la línea V. Así, las diferencias entre líneas para los efectos genéticos 

directos y maternos, y  para el heterosis directa, se estimaron de acuerdo con el 

modelo de Dickerson. 

En lo concerniente a los componentes de tamaño de camada, en conejoy en 

otras especies ganaderas, se han realizado pocos estudios previos que 

pretendiesen estudiar los efectos del cruzamiento. El capítulo 5, se dedicó a 

estudiar la tasa de ovulación (OR), número de embriones implantados (EI), 

número total de nacidos (TB), número de nacidos vivos (NBA), supervivencia 

embrionaria (ES), supervivencia fetal (FS) y supervivencia prenatal (PS). Se 

utilizó un modelo animal. Las medias para todos los caracteres fueron mayores 

que las que se habían obtenido en estudios previos de estas mismas líneas. Las 

diferencias encontradas en OR y IE entre las líneas no resultaron significativas, a 

pesar que para la línea A los valores de OR resultaron menores y relevantes en 

comparación con las otras líneas. Por otra parte, las diferencias fueron 

significativas y relevantes para TB y NBA. En lo referente a las diferencias entre 

los diferentes cruces y la línea V, sólo se hallaron diferencias significativas a 

favor del cruce HxV. De forma general, el efecto positivo del cruzamiento en IE 

es debido principalmente a las menores pérdidas pre-implantacionales y las 

diferencias observadas no fueron suficientes para resultar significativas. En 

cuanto a TB y NBA, las diferencias obtenidas fueron importantes en dos casos: 

favorable en el caso de AxH y desfavorable para el caso de LPxV. En general, se 
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encontraron diferencias relevantes, pero no siempre significativas, entre las 

líneas en los efectos genéticos directos. La línea LP presentó los mayores efectos 

genéticos directos con respecto a las otras líneas, siendo significativamente 

diferente en relación con la línea A. Las diferencias en los efectos maternos 

fueron no significativas, exceptuando las encontradas entre las líneas LP y V. 

Entre las líneas A y Hse encontró un efecto de heterosis grande y positivo. El 

cruce entre las líneas LP y V tuvo una heterosis negativa para todos los 

caracteres, con un efecto muy negativo en TB y NBA (16% y 11% de media 

respectivamente). 

En el capítulo 6, el objetivo fue analizar el tamaño de camada (nacidos totales 

(TB), número de nacidos vivos (NBA), número de destetados (NW) e intervalo 

entre partos (KI)). Solo la línea LP presentó un mayor efecto genético directo 

que la línea V, con un resultado significativo para NBA. Las otras líneas no 

mostraron diferencias significativas en los efectos genéticos directos y maternos 

para TB, NBA y NW pero hubo diferencias significativas para KI. Se estimó una 

heterosis grande y relevante para TB en el cruce HxV, seguido por los cruces 

AxH, AxV y LPxV. También se encontró una heterosis favorable y significativa 

para KI en los cruces AxV y LPxV, mientras que para los cruces AxLP y LPxH la 

heterosis fue significativa y desfavorable. Las conejas cruzadas, generalmente, 

mostraron un mayor nivel reproductivo en comparación con la línea V. Las 

diferencia entre la media conjunta de los cruces comparada con la línea V 

resultó importante, siendo 0.45 para TB, 0.57 para NBA, 0.75 para NW y -2.22 

díaspara KI. El contraste entre cada dos líneas mostró un rendimiento similar y 

no encontramos diferencias significativas entre los efectos genéticos directos y 

maternos. 

El último capítulo de esta tesis tuvo como objetivo estudiar la longevidad 

funcional, definida como el número de días entre la primera palpación positiva y 

la muerte o eliminación de la coneja por razones ajenas a la producción. De este 

modo, la longevidad funcional representa la capacidad del animal para retrasar 

su eliminación involuntaria. Se analizaron los datos de 7,211 conejas mediante 

el Survival Kit 6.0, utilizando un modelo de Cox de efectos fijos y riesgos 
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proporcionales. El modelo incorporó factores dependientes del tiempo, como el 

grupo-granja-año-estación (GFYS), el número de nacidos vivos (NBA), grupo-

orden de palpación positiva (GPPO) y estado fisiológico de la hembra (PS). Las 

líneas A, H y V tuvieron una capacidad similar para evitar la eliminación, siendo 

más sensibles que la línea LP. La línea LP tuvo el menor riesgo asociado, con 

diferencias importantes a edades tardías y una probabilidad de ser reemplazada 

de 0.39, 0.49 y 0.53 veces latasa desustituciónde las líneas A, H, y V. No 

encontramos diferencias significativas entre los diferentes cruces y la línea V, 

excepto con el cruce entre AxH a favor de línea V. Las diferencias entre un cruce 

y su reciproco, generalmente, no fue significativa, excepto entre los cruces VxH y 

HxV, favorable a la HxV, y para los cruces LPxH y HxLP, a favor del HxLP. La 

línea V tuvo el mayor riesgo asociado debido a los efectos genéticos directos y 

estas diferencias fueron significativas con respecto a las líneas H y LP. Por otra 

parte, las diferencias en los efectos genéticos maternos fueron pequeños y no 

significativos, excepto en las líneas H y V, siendo favorables a la línea V. La 

estima de los efectos de heterosis no sigue la misma dirección pero mostraron, 

en algunos casos, la importancia de los cruces entre líneas especializadas para 

producir conejas cruzadas para la producción intensiva de conejos de carne. Así, 

se observó que en ciclos productivos tempranos, el riesgo asociado a las líneas 

puras es mayor que el riesgo asociado a los diferentes cruces, siendo este el 

periodo en el quetodavía no se ha amortizado el coste de la coneja. Justamente 

lo contrario ocurre en ciclos productivos tardíos (5º ciclo o más), cuando el 

coste de la hembra ya ha sido amortizado. 

Algunos cruces como HxLP, HxV, AxV o VxA pueden ser especialmente 

recomendados para su uso en granjas comerciales. Parte de estas 

recomendaciones tienen en cuenta el hecho de que la adopción de gazapos 

después del nacimiento, hecho que valoriza los cruzamientos en que es alto el 

número de nacidos totales o nacidos vivos, pero no lo estanto el número de 

destetados. También, el cruce AxH puede ser recomendado en granjas en las que 

los problemas de longevidad sean pequeños. 



 

Resum 

'objectiu principal d'aquesta tesi ha sigut avaluar el rendiment 

reproductiu de quatre línies maternals de conills, dels seus 

corresponents creuaments i l'estima dels paràmetres genètics del creuament, a 

partir d'un encreuament dialelic complet. Les línies involucrades foren la A, V, H 

i LP, fundades baix diferents criteris però, totes elles, seleccionades des del seu 

origen fins a l'actualitat per tamany de ventrada al deslletament. Estes línies es 

troben actualment en la generació 41, 37, 20 i 7 respectivament. 

Al tercer capítol, la comparació entre les línies es va fer a la fundació de les 

mateixes, utilitzant un model animal mixt que incloïa els efectes aleatoris aditius 

i permanents. Per a realitzar aquest anàlisi es va considerar el procés de 

selecció, ja que es va incloure el conjunt complet de dades (arreplegats des de 

juny del 1980 fins a febrer del 2009) i el pedigrí íntegre. La segona comparació 

es va realitzar a temps fix, quan les femelles de les diferents línies van compartir 

la mateixa granja i van estar davall les mateixes condicions de maneig i 

alimentació. Aquestos períodes corresponen als intervals que van: i) Des de 

març de 1997 fins agost de 1998 per a les línies A, V i H, i ii) Des de setembre del 

2007 fins a febrer del 2009 per a les línies A, V i LP. Els models utilitzats per 

aquest anàlisis no van incloure l'efecte genètic aditiu i només es van considerar 

les dades provinents dels períodes, per tant, les comparacions entre les línies no 

van dependre del model genètic. Les mitjanes, per ventrada dels 47,132 parts 

produïts per les 12,639 conilles involucrades en aquest estudi, foren de 9.8, 

9.07, 7.79 i 6.95 per a nombre de catxaps nascuts, nombre de nascuts vius, 

nombre de deslletats i nombre de sacrificats, respectivament, i un interval entre 

parts de 49.80 dies. Es pot observar com estes línies tenen alts nivells 

productius. Als respectius moments de fundació, la línia A va mostrar el menor 
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tamany de ventrada, sent important les diferències amb les mitjanes 

combinades de les altres línies: 1.39 catxaps/ventrada per al total de nascuts, 

1.2 per alnombre de nascuts vius, 0.84 per al nombre de deslletats i 1.06 per al 

nombre de sacrificats. Les línies V i H no van mostrar diferencies significatives 

per als caràcters de tamany de ventrada, però per a l’ interval entre parts, el 

contrast va ser 3.30±0.72 dies, que va resultar significatiu a favor de la línia H. 

La línia LP va superar a la V en aproximadament un catxap per a tots els 

caràcters de tamany de ventrada estudiats. Les diferències entre estes línies per 

a l’ interval entre parts van ser menyspreables. Algunes interaccions, com entre 

línies i granja-any-estació van resultar importants. Respecte a la comparació 

entre les línies A, V i H al període que va des de març de 1997 fins agost de 

1998, el patró de les diferències entre la línia A i les altres va ser semblant a 

l'observat en la fundació, i només es van trobar diferències significatives entre 

les línies V i H per a l'interval entre parts (4.62 dies a favor de la línia V). La 

comparació entre les línies A, V i LP, des de setembre del 2007 fins a febrer del 

2009 va mostrar una aproximació als seus rendiments reproductius, si es 

comparen amb les diferències que existien a l'origen. De forma general, a la 

comparació de les línies per als caràcters de tamany de ventrada es va observar 

una gran similitud als períodes de temps fix, usant un model sense efectes 

genètics i dades arreplegades durant els períodes de comparació, i les 

prediccions derivades dels models amb efectes genètics. Un altre punt a tindre 

en compte, és la importància del criteri utilitzat per a seleccionar els animals 

fundadors de cada línia, ja que determinen els nivells inicials d'aquestos 

rendiments reproductius.  

L'objectiu principal del capítol 4va ser usar les dades demogràfiques i de 

tamany de ventrada de les línies anteriorment mencionades per a: i) estimar els 

seus tamanys de població efectiva, com una mesura de l'increment de la taxa 

consanguinitat i ii) estudiar si l'efecte de la consanguinitat en els caràcters de 

tamany de ventrada depenen del model d'acumulació en el temps. Les línies 

s'han mantingut tancades, en el mateix nucli de selecció, seguint el mateix 

maneig i programa de selecció. Algunes pràctiques, en lo corresponent a 
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l'aparellament i la selecció dels animals, com puga ser evitar aparellaments 

entre animals amb iaios comuns i fer que cada mascle contribuïsca amb un fill a 

la següent generació, han permés un increment del coeficient de consanguinitat 

menor de 0.01 per generació en estes línies, que compten amb uns 25 mascles i 

125 femelles cada una. El tamany efectiu de la població (NE) per a estes línies va 

estar entorn a 57.3, mostrant que l'efecte de la selecció, que produïx un 

increment de la  consanguinitat, ha sigut contrarestat pel maneig emprat, que ha 

intentat reduir d'increment de la dita taxa. La consanguinitat de cada individu 

va ser dividida en tres components: consanguinitat vella (consanguinitat 

acumulada entre la fundació de la línia i la generació 15a per animals nascuts 

després de la generació 30a), intermèdia (consanguinitat acumulada entre les 

generacions 15a a la 30a per animals nascuts després de la generació 30a o la 

consanguinitat acumulada en les primeres 15 generacions per animals nascuts 

després de la generació 30a) i nova (les altres situacions). Els coeficients de 

regressió de la consanguinitat vella, intermèdia i nova, per ventrada, en el 

nombre total de nascuts (TB), nombre de nascuts vius (NBA) i nombre de 

deslletats (NW), van mostrar una tendència decreixent des de valors positius 

fins valors negatius. Els coeficients de regressió significativament diferents de 

zero van ser els de la consanguinitat vella en TB (6.79±2.37) i NBA (5.92±2.37). 

El contrast dels coeficients de regressió entre la consanguinitat vella i la nova va 

ser significatiu per als tres caràcters de tamany de ventrada: 7.57±1.72 per a 

TB; 6.66±1.73 per a NBA i 5.13±1.67 per a NW. Estos resultats s'han interpretat 

com l'acció combinada de la porga de gens desfavorables i de la selecció 

artificial, afavorida per la consanguinitat al llarg de generacions de selecció a 

través de l'increment d'homocigotos.  

Les línies maternals de conill citades anteriorment, van ser utilitzades per a 

generar creuaments dialelics complets. Així, es van generar setze grups genètics 

(quatre línies maternals i dotze encreuaments simples). L'objectiu d'aquest 

experiment va ser avaluar els caràcters reproductius i la longevitat funcional de 

les femelles creuades i de les línies pures. Els setze grups genètics van ser 

distribuïts en quatre granges espanyoles, però només un grup genètic (línia V) 
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va estar present en totes les granges per a connectar les dades entre estes i ser 

utilitzada com a grup genètic de referència. Les dades dels caràcters 

reproductius es van obtindre des de setembre del 2008 fins al final de setembre 

del 2011. Es van estimar les diferències entre tots els grups genètics i la línia V. 

Així, les diferències entre línies, els efectes genètics directes i materns, i 

heterosis directa entre les línies, es van estimar d'acord amb el model de 

Dickerson. 

Pel que fa als components de tamany de ventrada en conill, s'han realitzat 

pocs estudis previs i en altres espècies ramaderes es van fer a fi d'estudiar els 

efectes del encreuament. El capítol 5, es va dedicar a estudiar la taxa d'ovulació 

(OR), nombre d'embrions implantats (EI), nombre total de nascuts (TB), 

nombre de nascuts vius (NBA), supervivència embrionària (ÉS), supervivència 

fetal (FS) i supervivència prenatal (PS). Es va utilitzar un model animal. Les 

mitjanes per a tots els caràcters van ser majors que les que s'havien obtingut en 

estudis previs d'aquestes mateixes línies. Les diferències trobades en OR i IE 

entre les línies no van resultar significatives, a pesar que per a la línia A els 

valors de OR van resultar menors i rellevants en comparació amb les altres 

línies. D'altra banda, les diferències van ser significatives i rellevants per a TB i 

NBA. Pel que fa a les diferències entre els diferents encreuaments i la línia V, 

només es van trobar diferències significatives a favor de l'encreuament HxV. De 

forma general, l'efecte positiu del encreuament als IE és degut principalment a 

les menors pèrdues pre-implantacionals i les diferències observades no van ser 

suficients per a resultar significatives. En quant a TB i NBA, les diferències 

obtingudes van ser importants en dos casos: favorable en el cas de AxH i 

desfavorable per al cas de LPxV. En general, es van trobar diferències rellevants, 

però no sempre significatives, entre les línies als efectes genètics directes, 

encara que la magnitud de les diferències va ser gran per a alguns dels 

caràcters. La línia LP va presentar els majors efectes genètics directes respecte a 

les altres línies, sent significativament diferent en relació amb la línia A. Les 

diferències en les efectes materns van ser no significatives, exceptuant les 

trobades entre les línies LP i V. Un efecte d'heterosis, gran i positiu, es va trobar 
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entre les línies A i H. L'encreuament entre les línies LP i V va tindre una 

heterosis negativa per a tots els caràcters amb un efecte gran i negatiu a TB i 

NBA (16% i 11% de mitjana respectivament). 

En el capítol 6, l'objectiu va ser analitzar el tamany de ventrada (nascuts 

totals (TB), nombre de nascuts vius (NBA), nombre de deslletats (NW) i interval 

entre parts (KI)). Només la línia LP va presentar un major efecte genètic directe 

que la línia V, amb un resultat significatiu per a NBA. Les altres línies no van 

mostrar diferències significatives en els efectes genètics directes i materns per a 

TB, NBA i NW però va haver-hi diferencies significatives per a KI. Es va obtindre 

una heterosis gran i rellevant per a TB en l'encreuament HxV, seguit pels 

encreuamentsAxH, AxV i LPxV. També es va trobar una heterosis favorable i 

significativa per a KI als encreuaments AxV i LPxV, mentres que per als 

encreuaments AxLP i LPxH l'heterosis va ser significativa i desfavorable. Les 

conilles creuades, generalment, van mostrar un major nivell reproductiu en 

comparació amb la línia V. Les diferències entre la mitjana conjunta dels 

encreuaments comparada amb la línia V varen resultar important, sent 0.45 per 

a TB, 0.57 per a NBA, 0.75 per a NW i -2.22 dies per a KI. El contrast entre cada 

dos línies va mostrar un rendiment semblant i no trobàrem diferències 

significatives entre els efectes genètics directes i materns. 

L'últim capítol d'aquesta tesi té com a objectiu estudiar la longevitat 

funcional, definida com el nombre de dies entre la primera palpació positiva i la 

mort o eliminació de la conilla per raons alienes a la producció. D'aquesta 

manera, la longevitat funcional representa l'habilitat de l'animal per a retardar 

la seua eliminació involuntària. Es van analitzar les dades de 7,211 conilles 

mitjançant el Survival Kit 6.0, utilitzant un model de Cox d'efectes fixos i riscos 

proporcionals. El model va incorporar factors dependents del temps, com el 

grup-granja-any-estació (GFYS), el nombre de nascuts vius (NBA), grup-orde de 

palpació positiva (GPPO) i estat fisiològic de la femella (PS). Les línies A, H i V 

van tindre una habilitat semblant per a evitar l'eliminació, sent més sensibles 

que la línia LP. La línia LP va tindre el menor risc associat, amb diferències 

importants a edats tardanes i una probabilitat de ser reemplaçada de 0.39, 0.49 
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i 0.53 vegades la taxa de substitució de les línies A, H, i V. No trobàrem 

diferències significatives entre els diferents encreuaments i la línia V, excepte 

amb l'encreuament entre AxH a favor de línia V. Les diferències entre un 

encreuament i el seu reciproc, generalment, no va ser significativa, excepte 

entre als creuaments VxH i HxV, favorable a la HxV, i per als encreuaments  

LPxH i HxLP, a favor de la HxLP. La línia V va tindre el major risc associat a 

causa dels efectes genètics directes i aquestes diferències van ser significatives 

respecte a les línies H i LP. D'altra banda, les diferències als efectes genètics 

materns van ser xicotets i no significatius, excepte en les línies H i V, sent 

favorables a la línia V. L'estima dels efectes d'heterosis no segueix la mateixa 

direcció però van mostrar, en alguns casos, la importància dels encreuaments 

entre línies especialitzades per a produir conilles encreuades per a la producció 

intensiva de conills de carn. Així, es va observar que en cicles productius 

primerencs, el risc associat a les línies pures és major que el risc associat als 

diferents encreuaments, sent aquest període quan encara no s'ha amortitzat el 

cost de la conilla. Justament el contrari ocorre en cicles productius tardans (5 

cicle o més), quan el cost de la femella ja ha sigut amortitzat. 

 



 

Chapter 1  

Literature review 

he importance of meat production shows up nowadays because of the 

animal protein insufficiency, especially in the less developed countries. 

A minimum level of animal protein is needed to maintain public health. So, 

meat production must receive attention and, in particular, rabbit meat 

production because of some peculiarities of this species that will be detailed 

later. So, during this review, we will deal with rabbit production in the world, 

its importance and features. Actually, genetic improvement programs must be 

followed to achieve high levels of productivity and bring out the genetic 

materials which will be explicated later with details. 

In general, specialized rabbit lines are needed for the genetic improvement, 

so we will present a short summary about why we have to select maternal and 

paternal lines, and which are the criterions that should be used for the 

foundation and selection of these lines. The obtained direct and correlated 

responses to selection will be commented. 

The long-term selection in finite populations generates inbreeding which 

offers mechanisms favouring the diminution of frequency of unfavourable 

alleles,-genetic purging-, and the consequent increase of the frequency of the 

favourable alleles. This aspect will be also considered. The use of crossbred 

does allows to crosses between lines use the profit of the effects ofheterosis 

and complementarity between the lines, break the inbreeding accumulated 

within the lines and distribute the cost of their development into more 

animals. Thus, some previous crossbreeding experiments will be presented 

which were carried out in Spain and other countries. 

T 
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In order to make wider the scope of the genetic improvement of meat 

rabbits, a review will be done of the genetic determinism of the traits of 

economic importance that are related to doe productivity, like litter size 

components, litter size, kindling interval or longevity . The review will present 

their genetic parameters (heritability, repeatability, genetic correlation with 

other traits, and the inbreeding and heterosis effects). Concerning to longevity, 

it is important, also, to clarify its economic importance and to indicate what 

problems there are for its study.  

Finally, a list of some specialized lines, widely distributed at commercial 

level, will be presented; but we will discuss in detail the Spanish lines, which 

will be used in this study. 

1.1 Rabbit production 

Now most of the rabbit meat production is concentred in countries of the 

Mediterranean area (Europe and North Africa). In 2010 the world rabbit meat 

production was 1,668,400 tonnes, with China being the largest producer with 

663,000 tonnes, followed by European Union with 472,648 (within this region 

Italy is the first with 247,500 tonnes, followed by Spain with 70,000 tonnes), 

(FAO-STAT, 2010).  

Rabbit could be considered to be very efficient producing meat. It can turn 

20 per cent of the proteins it eats into edible meat. Comparable figures for 

other species are 22 to 23 per cent for broiler chickens, 16 to 18 per cent for 

pigs and 8 to 12 per cent for beef, so that with its fast production cycle might 

be an effective part of the solution for animal protein crisis, especially in the 

less developed countries (Lebas et al., 1997). 

Also, a similar calculation for the energy cost of these proteins is even more 

unfavourable to ruminants. When cattle or sheep are raised for meat 

production, most of the energy consumed by the herd or flock is used to 

maintain breeding females which have a low prolificacy, a maximum of 0.8 to 

1.4 young per year against 40-60 for female rabbits because the female has a 
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short period of pregnancy and a great ability to reproduce. So, the female 

rabbit can produce up to 80 kilograms of meat per year. 

Even with the theoretical lower energy cost per unit of output when cattle 

are raised for both milk and beef, rabbit meat is still more economical in terms 

of feed energy than this dual purpose cattle production system. Rabbit meat 

production is therefore an attractive proposition, especially when the aim is to 

produce animal protein of good quality. Rabbits can also easily convert the 

available proteins from cellulose-rich plants, whereas it is not economical to 

feed these to chickens and turkeys - the only animals with higher energy and 

protein efficiency. For countries with no cereal surpluses, rabbit meat 

production is thus highly recommended. 

1.2 Genetic improvement in rabbits 

The objective of a genetic improvement program is the development and 

diffusion of genetic material to the farmers (Baselga, 2004). The scheme of the 

diffusion of the genetic improvement in rabbit is of pyramid type, similar to 

other prolific species like pigs or poultry. The peak of the pyramid is 

represented by the selection of lines (maternal, paternal or multipurpose) 

which takes place in the selection nucleus. In this context, maternal lines are 

commonly selected for prolificacy traits, as litter size at birth or at weaning, 

following within line selection methods. One nucleus of selection with around 

120 females can be enough for the replacement of 80 farms with an average of 

400 does per farm (Ramón et al., 1996), taking into account a replacement rate 

of 120% (Ramón and Rafel, 2002).  

The genetic improvement achieved in the selection nucleus is generally 

distributed down to the commercial population throughout a three way 

crossbreeding scheme (Matheron and Rouvier, 1977; Rochambeau, 1988; 

Blasco, 1996; Baselga 2004).  

In this crossbreeding scheme, a first cross involves two maternal lines to 

generate crossbred does, which are used as females for production in 
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commercial farms. Crossbred does are expected to show better reproductive 

performance than the average of purebred does. 

 

Figure I. 1Scheme of the diffusion of genetic progress 

The cross between the maternal lines allows taking advantage of the 

expected positive heterosis in reproductive traits, the eventual 

complementarity among the lines, the reduction in the cost of genetic 

materials and the dissipation of the inbreeding accumulated within the 

selected lines (Baselga et al., 2003). The usual methods for improving the 

maternal lines are based on within-line selection and, generally the selection 

objective is the prolificacy. It is expected that the initial heterosis expressed in 

the cross will be maintained along the generations of selection and that the 

genetic progress obtained selecting the maternal lines will be capitalised on 

top of the heterosis and expressed in the crossbred does (Baselga et al., 2003).  

A second cross consists of mating these crossbred does to males of a 

paternal line in order to produce the rabbits to be slaughtered for meat. The 

paternal lines are selected to improve feed conversion rate. This is the most 

economically important trait in rabbit meat production, but measuring 

individual feed conversion rate is expensive and is not easily implemented on 

N: Nucleus 

M: Multiplication farms 

P: Production farms 

A, B, C: Animals of A, B lines 
(maternal) y C (paternal). 

H: Crossbred does 
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rabbit farms. Indeed, feed conversion rate shows a negative genetic correlation 

with average daily gain (Piles et al., 2004), which is easy to record with 

minimum cost. Therefore, this is generally the selection criteria used in the 

paternal lines that are also selected within line as the maternal lines.  

1.3 Selection of maternal lines 

In a genetic program of rabbit improvement an important point is the 

selection of maternal and paternal lines (see section 1.2).So, the starting point 

is to clearly define the specialization of the desired line. The decision to choose 

a certain trait as a selection goal will depend on its economic weight, its 

heritability, its variability, and its relationships with other characters. 

Reproductive traits are often used to select maternal lines, as it has been 

mentioned.  

The selection methods in maternal lines are more complicated than in 

paternal lines (Baselga, 2004), because males do not express litter size traits 

by themselves and because the heritability of reproduction traits is much 

lower. Thus, it is necessary to consider as many own and relatives’ records as 

possible during the genetic evaluation of both does and bucks; however, the 

accumulation of records has the consequence of increasing the generation 

interval and could decrease the intensity of selection because some does and 

bucks will be dead at the moment of selection. Also, for achieving unbiased 

predictions of breeding values some environmental and physiological effects 

are needed to be included into the models of evaluation (Armero et al., 1995).  

1.3.1 Direct selection 

Litter size at birth or at weaning have been the two main selection criteria 

considered in genetic improvement programs of maternal lines (Rouvier, 

1981; Estany et al., 1989; García-Ximenez et al., 1996; Gómez et al., 1996; Brun 

et al., 1998 and El-Raffa,2000). There are some advantages in considering litter 

size at weaning compared to using the number of kits born alive; with the first 

one an indirect consideration of milk production and maternal ability of the 
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does is also taken into account. Also, litter size at weaning has a positive and 

high genetic correlation with litter size at marketing. The disadvantage in 

using litter size at weaning as selection criteria is its lower heritability, 

compared to number of kits born alive. Litter size at 63 days has economic 

relevance for the farmer but at this age the mortality of kits is mainly 

determined by environmental factors and not by genetic effects (Garcia et al., 

1982). So, it has been preferred to select for litter size at birth or at weaning. 

In some selection programs of maternal lines other criteria have been 

considered, all of them with the objective of improving either maternal ability, 

the prolificacy or both. Such a criteria are the number of teats (Rochambeau, 

1988), the weight at weaning (Garreau and Rochambeau, 2003), the litter 

weight at weaning or the total milk production (Khalil et al., 2002; Garreau et 

al., 2004; Al-Saef et al., 2008 and Youssef et al., 2008).  

In France, Garreau et al.(2008) used the functional longevity as a criterion 

of selection in a divergent selection experiment based on genetic merit 

estimated through survival analysis techniques. It was carried out in the INRA 

1077 rabbit line.  

Finally, another direct selection procedure for improving the efficiency of 

selection programs is the so called selection for hyperprolificacy. It has been 

shown to be a successful way to improve litter size at the foundation of lines 

(Cifre et al., 1998). Recently longevity of females has been introduced as 

another foundation objective in maternal lines of rabbits (Sánchez et al., 2004, 

2008). These two methods will be described with more details in the last 

section (section 1.10). 

1.3.2 Indirect selection 

As it will be indicated in section 1.7, many authors tried to improve litter 

size by indirect selection for uterine capacity or components of litter size, i.e. 

prenatal survival and ovulation rate (Ibáñez-Escriche et al., 2004, 2006; Blasco 

et al., 2005; Mocé et al., 2005; Santacreu et al., 2005; Laborda et al., 2011).  
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1.3.3 Direct response for litter size 

As it can be seen, most of the selection programs and experiments focus on 

prolificacy. Therefore, in this section a review of the estimated genetic 

response achieved in those experiments is presented. 

In general, the response to direct selection, using litter size as the criterion 

of selection (see section 1.3.1), has been lower than expected. 

 In mice, Nielsen (1994) reported a significant response and in pigs, the 

experiment reported by Lamberson et al. (1991) or the ones related to 

selection on hyperprolificacy (Bichard and David, 1985; Sorensen and 

Vernensen, 1991; Bidanel et al., 1994 and Noguera et al., 1997) has been 

demonstrated to be effective. However, the genetic progress of litter size at 

birth in pigs has been lower than expected (Southwood and Kennedy, 1991; 

Holl and Robison, 2003).  

In rabbits, response to direct selection for litter size has also been lower 

than expected. The foundation of a maternal line, using hyperprolificacy 

approach, has been a successful way to improve litter size (Cifre et al., 1998). 

Significant genetic trends in litter size have been reported when mixed model 

methodology (Sorensen and Kennedy, 1983) has been used to analyse the long 

and medium term experiments of selection for litter size, but the result of this 

methodology is model and genetic parameter dependent.  

Some responses in litter size traits were estimated exclusively by mixed-

model methods (Estany et al., 1989; Rochambeau et al., 1994 and Gómez et al., 

1996) and the estimates ranged from 0.05 to 0.13 rabbits born alive or weaned 

per litter and generation. With the same method García and Baselga (2002a, b) 

found that the genetic trend was 0.175 weaned per generation in line A and 

0.09 in line V. Analysis of the responses to selection performed by comparing 

with an unselected control population (Rochambeau et al., 1998 and Tudela et 

al., 2003) or with a control population obtained from frozen embryos (García 

and Baselga, 2002a, b), resulted in estimated responses between 0.08 and 0.09 

total born rabbits, born alive or weaned per litter and generation.  
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Baselga (2004) summarized the possible causes of this low response as: 

(1) Lower than expected values of additive genetic variance for litter size at 

weaning.  

(2) Heterogeneity among parities that can be high.  

(3) Negative correlations between direct and maternal effects.  

(4) Lower than presumed selection intensity. 

1.3.4 Correlated responses in litter size 

Research with mice (Bradford, 1969; Land and Falconer, 1969), swine 

(Zimmerman and Cunningham, 1975; Cunningham et al., 1979;Lamberson and 

Day,1986 and Casey et al., 1994) and rabbits (Laborda et al., 2011, 2012) has 

demonstrated that ovulation rate responded to direct selection, but this 

selection was not very effective in changing litter size. Ibáñez-Escriche et al. 

(2004, 2006) reported, after 3 and 6 generations of selection for ovulation 

rate, values of direct response of 0.97and 1.8. The correlated responses for 

total born were 0.32 and 0.49, respectively, but Laborda et al. (2011, 2012a,b) 

showed, in the same population after 10 generation of selection for ovulation 

rate, that direct response to selection for ovulation rate was relevant, but there 

was no correlated response on litter size (−0.15 kits), due to an increase in 

prenatal mortality. 

In other study, after 10 generations of divergent selection for uterine 

capacity, the correlated response obtained by Santacreu et al., (2005) for total 

born between high and low lines was 2.35 rabbits, mainly because of a higher 

correlated response in the low line (1.88 rabbits). But, they reported that, 

although selection for uterine capacity has been proposed as an indirect way 

of improving litter size (Bennett and Leymaster, 1989; Argente et al., 1997, 

2000 and Blasco et al., 2000, 2005), the observed increase in total born caused 

by selection for uterine capacity was not greater than the improvement 

obtained from direct selection and the correlated response in number born 

alive was less than for total born.  
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Garreau et al. (2010) found no significant differences in prolificacy and 

fertility, between the high and low line, in their experiment of divergent 

selection for functional longevity.  

1.4 Long-term selection and inbreeding 

Inbreeding is the result of mating between relatives and implies an increase 

of homozygosis within the population (Falconer and Mackay, 1996). Darwin 

conducted some of the earliest experiments on the effect of selfing and 

outcrossing in over 50 plant taxa, and was one of the first to quantify the costs 

of inbreeding (Darwin 1868, 1876). More recently, inbreeding depression has 

become one of the most important areas of research in evolutionary biology 

and conservation genetics. Most of the early literature regarding inbreeding 

depression focused on measuring its intensity when populations were inbred, 

and the relationship between the level of inbreeding and inbreeding 

depression (Lynch and Walsh 1998). 

Inbreeding negatively affects the means of the traits, particularly for those 

related to fitness i.e. reproduction. It is well known that inbreeding depression 

cannot occur if there are only additive gene effects (Falconer and MacKay, 

1996). Thus, the mean of a trait in a population with an inbreeding coefficient 

F (μF), referred to the mean when the inbreeding is 0 (µ0) and supposing no 

epistasis is, 

        ∑  

 

   

     

where n is the number of loci affecting the trait; pi, qi the allelic frequencies 

of gene i and di the dominance effect of this gene. If dominance is present 

(some di ≠0), mean values will decline linearly with the level of inbreeding if 

the theory of directional dominance is accepted. This theory maintains that the 

values of di tend to be positive. This negative effect, called inbreeding 

depression, is mediated by an increase in the frequency of homozygotes, which 

have an average for those traits lower than the heterozygotes. The inbreeding 



10 Mohamed Ragab 

 

 

 

depression can be important in small closed populations (Sewalem et al., 1999; 

Thompson et al., 2000). Furthermore, an increased rate of inbreeding also 

means an increase in terms of the variance of genetic gain (Meuwissen, 1991), 

and a reduction of the additive genetic variance. The selection in finite 

populations has cumulated effects, increasing inbreeding and reducing genetic 

gain (Verrier et al., 1990; Wray et al., 1990; Wray and Thompson, 1990). It is 

known that the effect of the inbreeding on the mean of traits affected by some 

types of epistasis (that include dominance interactions) is not linear (Crow 

and Kimura, 1970; Charlesworth and Charlesworth, 1999; Walsh, 2006). 

In thier experiments of inbreeding, Darwin had difficulties to explain the 

phenomenon that some plants after enduring successive generations of 

inbreeding, recovered fitness and some of them also exhibited higher fitness 

than the original populations (Darwin, 1876). Since then, researchers have 

coined the phrase ‘‘purging the genetic load’’ in reference to the fitness 

rebound that can occur in intensively inbred populations (Crow, 1970). 

In general, three different but related mechanisms must be operating at any 

finite population subjected to natural and or artificial selection; the first is the 

increase of inbreeding causing inbreeding depression, the second is genetic 

purging and the third is the apparition of new alleles as consequence of 

mutations. The last two lead to a smaller impact of a given inbreeding, because 

new alleles imply extra heterozygosis and genetic purge decreases the 

frequency of unfavourable alleles and can remove deleterious recessive alleles, 

reducing the genetic load (Templeton and Read, 1984; Lacy and Ballou, 1998) 

The nature and degree of purging depends on the genetic basis of 

inbreeding depression. If inbreeding depression is due primarily to strongly 

deleterious alleles, then purging the genetic load is a plausible mechanism by 

which populations could reduce the cost of inbreeding. 

If inbreeding depression results primarily from deleterious or unfavourable 

alleles, another important consideration is the magnitude of the effect on 

fitness components when populations are inbred. With severe inbreeding 

depression, inbred individuals harbouring deleterious or unfavourable alleles 
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may die or not reproduce to the next generation, effectively removing 

deleterious or unfavourable alleles from the population. Therefore, the 

magnitude of purging and the resulting rebound in trait values will be 

sensitive to the degree to which unfavourable alleles are detrimental to fitness 

(Hedrick, 1994; Wang et al., 1999; Willis, 1999). Alleles of large effect, those 

that are lethal or semi-lethal when in homozygous form, will be relatively 

easily purged from the population (Lande and Schemske, 1985; Charlesworth 

et al., 1990; Hedrick, 1994; Schultz and Willis, 1995; Wang et al., 1999). Alleles 

that are only partially deleterious or unfavourable will be more difficult to 

purge as inbred individuals carrying such alleles will have only slightly 

reduced fitness relative to individuals that are outbred (Hedrick, 1994; Wang 

et al., 1999). However, it seems most likely that inbreeding depression is due 

to deleterious alleles of both large and small effect: a mixed model system 

(Charlesworth and Charlesworth, 1999; Wang et al., 1999). In such a case, 

successive generations of inbreeding will purge lethal alleles, while the genetic 

load resulting from mildly deleterious alleles will persist (Hedrick, 1994; Wang 

et al., 1999). 

There are a wide variety of studies that used different experimental and 

statistical methods to test the incidence of purging. The common methods to 

detect the purging of the negative effects of inbreeding were presented by 

Crnokrak and Barrett (2002) and Hinrichs et al. (2007).The first authors 

summarized that the magnitude of purging can be estimated by using: (1) 

changes in inbreeding depression with successive generations of inbreeding, 

(2) relative changes in inbred line fitness components compared to the 

original outbred fitness components, and (3) the ratio of purged population 

trait values as a function of the ancestral outbred population values (formed 

by outcrossing inbred lines). As mentioned above, Hinrichs et al. (2007) 

suggested a new method to detect or investigate the differences between the 

effects of inbreeding in recent generations from that in the more distant past. 

The method was applied in a long-term selection experiment. In the next 

paragraphs we will describe briefly these methods.  
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Also, Crnokrak and Barrett (2002) commented that it is important to 

distinguish between purging and adaptation to growth conditions and this 

distinction rests in part on the use/misuse of an appropriate outbred control 

group for the purpose of comparing fitness components. An appropriate 

control group would be one for which the inadvertent selective regime 

experienced by the inbred lines would also apply. This would require knowing 

what effect acts on the traits of interest for maintaining and choosing 

individuals to propagate the inbred lines. Since this selection is inadvertent, 

knowing its effects and being able to replicate them in the outbred lines is 

impossible.  

1.4.1 Calculate the old and new inbreeding for population 

Another method, to detect if the population had been purged or not, was 

presented by Hinrichs et al. (2007). This method investigated differences 

between the effects of inbreeding in recent (Fnew) generations from that in the 

more distant past (Fold). The method was applied in a long-term selection 

experiment on first-litter size in mice. Hinrichs et al. (2007) tested the hypothesis 

of a differential impact of new and old inbreeding in mice and they found that for 

litter size new inbreeding was estimated to cause greater depression than old 

inbreeding. They tested the hypothesis of a differential impact of 'new' and 'old' 

inbreeding. This method will be explicated in the second paper of this thesis 

with more details. 

In animals, it was observed that inbreeding depression was reduced after long 

time and this reduction was constant, i.e. it depends less on the accumulated 

inbreeding than on the inbreeding generated more recently. The new inbreeding 

could take into account the impact of newly arisen mutations, whereas old 

unfavourable alleles could have diminished their frequency and, sometimes, left the 

population. For example, in Irish Holstein-Friesians appears that part of the genetic 

load for milk production has been purged (Parland et al., 2009). 

Gulisija and Crow (2007) develop a method to estimate genetic purging of 

deleterious recessive alleles, using only genealogical information. They apply the 

method to a population of Jersey cows with pedigrees around six generations and 
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showed that the reduction of the expressed genetic load could have been 12.6 %. 

They also indicated that to estimate non negligible effects of purging from alleles of 

small effects more generations are needed. 

In Spain there are several maternal lines of rabbits, founded between 1980 and 

2004 with a long history of selection for litter size at weaning, that could be, at least 

a priori, a good material for estimating the difference between the effects of the old 

and recent inbreeding using the method of Hinrichs et al. (2007). 

1.5 Crossbreeding 

Crossbreeding is an alternative to improve performance because of 

differences between populations. There are two reasons to consider crosses 

between lines. First, to combine the best features of each line that is called 

complementarity. The second reason is heterosis (hybrid vigour), wherein, the 

F1 is commonly superior for some traits to the average of parental lines. Extra 

benefits can be obtained from heterosis and from the break of the cumulated 

inbreeding during the selection process. The extent of heterosis will depend on 

dominance and is proportional to the square of the difference in gene 

frequency between lines (Falconer and Mackay, 1996). 

In crosses between lines often is distinguished between individual and 

maternal heterosis. Individual heterosis is enhanced performance in a 

crossbred individual, while maternal heterosis is enhanced maternal 

performance because the dam is crossbred. 

The diallel cross has become a common method of analysing genetic 

variability among a set of lines and their crosses. A full diallel cross helps to 

identify superior cross combinations, provides information regarding the 

relative importance of certain kinds of specific combining abilities and 

indicates whether extensive crossing is needed to exploit non-additive genetic 

variation. A diallel analysis that allows the estimation of maternal effects is 

needed to determine whether reciprocal crosses are likely to be equivalent 

between them or not. 
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Numerous experiments, crossing different breeds, lines or strains of 

laboratory animals have been conducted with rabbits, mice, rats and guinea 

pigs. In Spain, the studies of crossbreeding were started in the mid-90's and 

several studies were carried out crossing lines selected or funded on different 

criteria (Cifre et al., 1998; Gómez et al., 1999, Baselga et al., 2003; Orengo et al., 

2003; Piles et al., 2006b), but these studies do not face in a comprehensive way 

the possibilities of crossbreeding of the current maternal lines. Thus, Cifre et 

al. (1998) studied the possible existence of heterosis in the first generations of 

H line which was founded from genetically heterogeneous sources. Recently, 

the crosses between three maternal lines of the Polytechnic University of 

Valencia (UPV) (lines A, V and H) were evaluated (Baselga et al., 2003). The 

experiment was designed as a complete diallel cross involving the three lines 

to analyse the reproductive traits and kindling interval. 

There are other studies between the lines of the Department of Animal 

Science (UPV, Valencia), and the lines of the Rabbit Science Unit (IRTA, 

Barcelona). Orengo et al. (2003) have studied the cross between the lines A, V 

and Prat (IRTA, Spain) to estimate individual heterosis for litter size traits. A 

crossbreeding experiment among 5 selected lines (A, V, and Prat as maternal 

lines and R and C lines as paternal lines providing the terminal sire) was 

carried out to improve knowledge about the genetic determination of growth 

traits during the fattening period (Orengo et al., 2009). Piles et al. (2006b) 

published a study about crossbreeding parameter estimation for functional 

longevity in three maternal lines of rabbits. The lines considered in this study 

were A, V and Prat. To the best of our knowledge, the previous study is one of 

the two studies that were carried out to compare the longevity in pure lines 

and their crosses. The other is the paper by Lukefahr and Hamilton (2000).  

Other studies between the Department of Animal Science (UPV, Valencia) 

and research institutions of other countries were carried out. In Egypt, V line 

was used in cross with the local lines not only to evaluate the crossbred does 

but to produce synthetic lines. It was thought that these synthetic lines could 

be appropriate to produce meat rabbits under industrialized and hot climate 
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conditions in Egypt. All these lines were more fully described by Ragab and Abou 

Khadiga (2010). Three replicates of V-line were maintained as pure lines and 

were also used to produce synthetics: one synthetic line, called Alexandria, 

come from the cross Black Baladi x V and now is selected for post weaning 

daily gain (El-Raffa, 2000); a second one (Sinai Gabali x V), the Moshtohor line 

which is selected for litter weight and live weight at 56 days, and a third one is 

APRI line which was formed from the cross Baladi Red x V. It is selected for 

litter weight at weaning (Youssef et al., 2008). 

In Saudi Arabia, V line rabbits were imported in 2000 and were crossed with one 

desert Saudi breed (Saudi Gabali) to produce two synthetics, maintaining, also, a 

replicate of the line V. There were some evidences that V line rabbits and their 

crosses could produce efficiently under hot climatic conditions (Khalil et al., 2002). 

The lines are selected for litter weight at weaning and individual weight at 74 d. 

In France (the INRA, SAGA, Toulouse), Brun et al. (1998) and Brun and Baselga 

(2005) evaluated some reproductive traits and body weight of does pertaining to 

the line 2666. This line was formed by crossing the INRA 2066 line and the V line 

from the UPV. 

Khalil et al. (1995) performed a crossbreeding experiment in Egypt involving a 

local breed (Baladi Red) and New Zealand White to estimate direct heterosis, 

maternal additive effects and direct additive effects on some litter traits and 

reproductive intervals in rabbits. Other study was carried out to estimate 

crossbreeding parameters involving Egyptian Gabali and New Zealand White 

rabbits (Iraqi et al., 2006).In France, the lines named A2066 and A1077 were 

crossed to obtain the crossbred doe 1067. In 1994, Brun and Saleil (1994) gave 

estimates of the heterosis for the cross of these lines for total born, born alive and 

number weaned, the experiment being carried out in farm conditions. Nofal et al. 

(1996), in Hungary, gave values of heterosis for the same traits previously cited for 

the cross between New Zealand White and Californian. Many works were carried 

about the crossing between New Zealand White and Californian lines by Lukefahr 

et al. (1983), Lukefahr and Hamilton (2000) and Ouyed and Brun (2008). 
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1.5.1 Analysis of crossbreeding experiments 

Several models have been developed to analyze crossbreeding experiment, 

differing between them in the number and type of parameters considered that 

rely more or less directly on thedifferent ways of gene action; additivity, 

dominance and the types of epistasis (Griffing, 1956; Dickerson, 1969; 

Kinghorn, 1982; Hill, 1982). The experiments of crossbreeding commonly allow 

the estimation of a reduced number of parameters which oblige to a 

simplification of the models and the subsequent reparametrization (Wolf et al., 

1995). One of the most used models is the Dickerson´s model that is based in 

parameters associated to the populations involved (breeds, lines and 

interactions between them) in the crosses, referred to their eventual 

participation in the crossbreds themselves, in the dam or in the sire, etc. Thus, if 

a model with direct and maternal effects is assumed without recombinational 

losses, the expected performance    of the crossbred c can be written, following 

the Dickerson´s model as:  





pr

M

rprp

ml
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lmlm
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where, n is the number of lines;    
  is the direct genetic effectof the line  , 

being    the gene proportion which   contributes to c, so  j  1 ;   
  is the 

maternal genetic effect of the line  , being    the gene proportion which  

contributes to the dams of c, so k  1 ; 
I

lmh  is the direct heterosis between 

lines   and  , being  lm
 thecontribution of the lines  ,   to the heterosis of c, so 

  lm 1; M

rph  is the maternal heterosis between the lines   and  , being rp  

the contribution of the lines  ,   to the heterosis of c dams, so  1rp . 

According to the previous model, the expected performances of the does of 

a complete diallel cross of four lines (A, V, H and L), is given in Table I. 1. 

From the previous example, the expected performance for Aline is 

      
    

 , while the expected performance of a cross with line A as a sire 
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and V as a dam is    
  

    
 

 
   

     
 . Conversely, the expected performance 

of the reciprocal cross is     
  

    
 

 
   

     
 .  

The analysis of the data of an experiment of crossbreeding allows the 

computation of estimable functions of the performances of the different genetic 

groups involved and the corresponding variance-covariance matrix of their 

errors. The previous estimable functions can be expressed as linear 

combinations of some functions of the Dickerson parameters. The latter 

functions could be estimated using a generalized least square approach (Baselga 

et al., 2003).  

Table I. 1Coefficients of expected contribution for genetic effects in different 
genetic component groups of purebreds and crossbreds 

 ´s ´s ´s 

C I

Ag  
I

Vg  I

Hg  
I

Lg  
M

Ag  
M

Vg  M

Hg  
M

Lg  
I

AHh  
I

AVh  I

ALh  
I

HLh  
I

HVh  
I

LVh  

AxA 1 0 0 0 1 0 0 0 0 0 0 0 0 0 

AxV 0.5 0.5 0 0 0 1 0 0 1 0 0 0 0 0 

AxH 0.5 0 0.5 0 0 0 1 0 0 1 0 0 0 0 

AxL 0.5 0 0 0.5 0 0 0 1 0 0 1 0 0 0 

VxA 0.5 0.5 0 0 1 0 0 0 1 0 0 0 0 0 

VxV 0 1 0 0 0 1 0 0 0 0 0 0 0 0 

VxH 0 0.5 0.5 0 0 0 1 0 0 0 0 1 0 0 

VxL 0 0.5 0 0.5 0 0 0 1 0 0 0 0 1 0 

HxA 0.5 0 0.5 0 1 0 0 0 0 1 0 0 0 0 

HxV 0 0.5 0.5 0 0 1 0 0 0 0 0 1 0 0 

HxH 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

HxL 0 0 0.5 0.5 0 0 0 1 0 0 0 0 0 1 

LxA 0.5 0 0 0.5 1 0 0 0 0 0 1 0 0 0 

LxV 0 0.5 0 0.5 0 1 0 0 0 0 0 0 1 0 

LxH 0 0 0.5 0.5 0 0 1 0 0 0 0 0 0 1 

LxL 0 0 0 1 0 0 0 1 0 0 0 0 0 0 

  
 : direct genetic effect of line i;   

 : maternal genetic effect of line i;   
 : direct heterosis 

effect between lines i and j;   : the gene proportion which   contributes to c;   : the gene 

proportion which  contributes to the dams of c;  lm
 thecontribution of the lines  ,   to the 

heterosis of c.  
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Next, I will present a revision on genetic parameters for litter size traits, the 

most important traits considered in the aforementioned selection programs of 

maternal lines, which are the traits to be analysed in this thesis.  

1.6 Genetic parameters of litter size 

Litter size, as it has been said before, has been the objective of selection in 

several programs involving rabbit populations. The litter size as a character 

for genetic analysis is complicated by having two components: one attributed 

to the fertility of the mother of the litter and the other attributed to the 

paternal viability of the young in the litter (Bowman and Falconer, 1960). The 

knowledge of variance components and genetic parameters of litter size traits 

is important to establish the breeding program, to predict how much we can 

improve these traits and for monitoring the process of selection along the 

time. The models used for the genetic analysis and evaluation of these traits in 

animals are, commonly, animal models of repeatability. 

1.6.1 Heritability and repeatability 

Reviewed estimates of heritability and repeatability for litter size traits are 

presented in Tables I. 2, I. 3 and I. 4, where it can be seen that the estimates 

use to be lower than 0.15 for the heritability and lower than 0.25 for the 

repeatability. The average of the estimates for total born (TB) and number 

born alive (NBA) are a little higher than for number weaned (NW) or number 

marketed (NM). 

Permanent environmental effects 

Generally, the ratio between the variance of permanent environmental 

effects and phenotypic variance (p2) is between 10 and 20% (Gómez et al., 

1996; Lukefahr and Hamilton, 2000; Rochambeau, 1997; Rastogi et al., 2000; 

García and Baselga, 2002a, b). Lower estimates of p2 have been reported by 

Ferraz et al. (1992), Baselga et al. (2003) and Costa et al. (2004). Higher 

estimates were obtained by Al-Saef et al. (2008). 
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Table I. 2Reviewed estimates of heritability (h2) and repeatability (r) 
estimated by animal models for total born (TB) in rabbits. 

Traits h2 r Breeds/Lines References 

 
TB 

 

0.07 
0.03 

0.19 
0.17 

A 
V 

Baselga et al. (1992) 

- 0.10 NZW, CAL Ferraz et al. (1992) 

0.08 
0.08 

- 
CAL 
NZW 

Ferraz and Eler (1994) 

0.13 0.21 NZW, CAL Lukefahr and Hamilton (1997) 

0.08 015 H Cifre et al. (1998) 

0.06 - WP Garreau et al. (2000) 

0.10 - Caldes Gómez et al. (2000) 

0.09 0.30 NZW Rastogi et al. (2000) 

0.19 0.19 Danish white Sorensen et al. (2001) 

0.10 0.22 V García and Baselga (2002a) 

0.15 0.24 A García and Baselga (2002b) 

0.14 - A 

Piles et al. (2006c) 0.11  Prat 

0.10  V 

0.04 0.22 V, SG Al-Saef et al. (2008) 

0.08 0.13 CPC-Italy Mantovani et al. (2008) 

0.01 0.34 APRI, V Youssef et al. (2008) 

CAL: California; NZW: New Zealand White; WP: White Pannon; SG: Saudi Gabali. 

1.6.2 Genetic correlation with other traits 

It is important in a selection program to know the genetic correlations 

between the criterion of selection and other important traits (growth traits, 

kindling interval, longevity…etc.). The genetic correlation between litter size 

traits are positive and high, showing the closeness of the genetic determinism 

of these traits (Sorensen et al., 2001; García and Baselga, 2002a; Nofal et al., 

2008). 

García and Baselga (2002a) reported that the permanent correlation of total 

born and number born alive with litter size at weaning and marketing was 

positive. This correlation between litter size at weaning and at slaughter was 

equal to 1.00.  

Regarding the relationship to growth traits, Khalil et al. (1987) and Nofal et 

al. (2008) found high positive genetic correlations between litter size traits 

and body weight traits. In other study, Camacho and Baselga (1990) estimated 

the genetic correlations between litter size at weaning and several growth 
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traits in lines A and V, maternal lines selected for litter size at weaning. They 

obtained estimates of -0.02 and -0.30 for weaning weight, 0.00 and -0.28 and 

for slaughter weight and 0.04 and -0.23 for growth rate during the fattening 

period in lines A and V, respectively. García and Baselga (2002b) also 

estimated the genetic correlations between litter size at weaning and growth 

traits in the V line. They found estimates which did not significantly differ from 

zero, being of 0.049, 0.077 and -0025, for weaning weight, slaughter weight 

and average daily gain respectively. Moreover, they did not find any significant 

correlated response for these traits. 

Table I. 3Reviewed estimates of heritability (h2) and repeatability (r) 
estimated by animal models for number born alive (NBA) in 
rabbits. 

Traits h2 r Breeds / Lines References 

NBA 

0.06 - NZW, CAL Ferraz et al. (1992) 

0.07 0.19 A 
Baselga et al.(1992) 

0.03 0.17 V 

0.08 
0.11 

- 
NZW 
CAL 

Afifi and Khalil (1992) 

0.27 
0.12 

- 
NZW 

HL 
Krogmeier et al. (1994) 

0.07 
0.06 

- 
A1077 
A2066 

Rochambeau et al. (1994) 

0.09 
0.03 

- 
CAL 
NZW 

Ferraz and Eler (1996) 

0.08 0.15 H Cifre et al. (1998) 

0.07 - Caldes Gómez et al. (2000) 

0.12 0.32 NZW Rastogiet al. (2000) 

0.05 - Botucatu Moura et al. (2001) 

0.13 
0.07 

- 
A 
V 

Baselga and García (2002) 

0.07 - A1077 Bolet and Saleil (2002a) 

0.06 - A2066 Bolet and Saleil (2002b) 

0.07 - A9077 Bolet and Saleil (2002c) 

0.07 0.17 V García and Baselga (2002a) 

0.13 0.21 A García and Baselga (2002b) 

0.12 - A 

Piles et al. (2006c) 0.08 - Prat 

0.07 - V 

0.015 - LP Sánchez et al. (2008) 

0.07 
0.11 

0.19 
0.30 

V 
APRI 

Abou Khadiga (2008) 

0.05 0.11 CPC-Italy Mantovani et al. (2008) 

CAL: California; NZW: New Zealand White; HL: HelleGrosilber. 
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Table I. 4Reviewed estimates of heritability (h2) and repeatability (r) 
estimated by animal models for number weaned (NW) and 
number marketed (NM) in rabbits. 

Traits h2 r Breeds / Lines References 

NW 

0.07 
0.02 

0.13 
0.10 

A 
V 

Baselga et al.(1992) 

0.11 - NZW Afifi and Khalil (1992) 

0.10 - NZW-CAL Ferraz and Eler (1994) 

0.23 
0.05 

- 
NZW 

HL 
Krogmeieret al.(1994) 

0.08 0.13 A1077 Rochambeau et al. (1994) 

0.09 0.12 NZW Ayyate et al. (1995) 

0.00 
0.10 

- 
NZW 
CAL 

Ferraz and Eler (1996) 

0.04 - Prat Gómez et al.(1996) 

0.06 - NZW, CAL 
Lukefahr and Hamilton 
(1997) 

0.06 0.12 H Cifre et al. (1998) 

0.04 - A2066 Rochambeau et al. (1998) 

0.03 - Caldes Gómez et al.(2000) 

0.09 0.25 NZW Rastogi et al.(2000) 

0.03 - Botucatu Moura et al. (2001) 

0.08 - Danish white Sorensen et al. (2001) 

0.04 - A1077 Bolet and Saleil (2002a) 

0.04 - A2066 Bolet and Saleil (2002b) 

0.04 - A9077 Bolet and Saleil (2002c) 

0.05 0.13 V García and Baselga (2002a) 

0.11 0.17 A García and Baselga (2002b) 

0.11 
0.06 
0.04 

- 
A 

Prat 
V 

Piles et al. (2006c) 

0.08 - LP Sánchez et al. (2008) 

0.05 0.16 V, SG Al-Saef et al.(2008) 

0.01 0.20 APRI, V Youssef et al.(2008) 

NM 

0.07 0.12 A 
Baselga et al.(1992) 

0.01 0.08 V 

0.06 0.11 H Cifre et al. (1998) 

0.05 0.12 V García and Baselga (2002a) 

0.12 0.17 A García and Baselga (2002b) 

CAL: California; NZW: New Zealand White; HL: HelleGrosilber; SG: Saudi Gabali  

Garreau et al. (2000) estimated a low, although positive, genetic correlation 

between litter size at birth and the weight at week 10 and the daily gain in the 

fattening period. Their study was performed in a population selected for 

growth rate and they did not find any significant genetic trend on litter size. 
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Low estimates of genetic correlation between litter size at birth and litter 

weight at weaning have been obtained by several authors (-0.06 by Gomez et 

al., 2000 and 0.13 by Nofal et al., 2008).  

Rinaldo and Bolet (1988) showed that after seven generations of selection 

for litter size at weaning, neither the number of litters per doe nor the length 

of the productive life was affected. While, Pannu et al. (2005) found that the 

genetic correlation between litter size at birth and kindling interval was 

negative.  

1.6.3 Inbreeding depression 

The selection in finite populations has cumulated effects, increasing 

inbreeding and reducing the genetic gain (Verrier et al., 1990; Wray et al, 

1990; Wray and Thompson, 1990). Consequently, the average of many traits, 

particularly the ones related with reproduction, is negatively affected. In 

rabbits, Moura et al. (2000) have estimated the magnitude of the depression 

caused by a 10% of inbreeding of the doe and it resulted to be 0.81 and 0.59 

young per litter on litter size at birth and at weaning, respectively. In the same 

context, Chai (1969), Ferraz et al. (1991) and Park et al. (1991) also noted a 

consistent reduction in litter size at birth and at weaning as a consequence of 

inbreeding.  

The inbreeding depression of litter size in mice was demonstrated long time 

ago by Bowman and Falconer (1960) who found that the decline of litter size 

was linear with respect to the inbreeding coefficient. The rate of decline was 

0.56 young per 10% increase of inbreeding. More recently Hinrichs et al. (2007) 

showed an inbreeding depression of -4.24 pups per unit of inbreeding. 

In swine, Bereskin Benet al. (1968) observed that the inbreeding of the sire 

of the litter had little or no effect on litter size at farrowing. The inbreeding of 

the dam, significantly, depressed litter size at birth but had no effect on the 

number of weaned kits. The inbreeding of the litter showed, practically, no 

influence on litter size at birth but evidenced a significant effect on number 

weaned. 
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1.6.4 Heterosis effect 

Crossbreeding exploits the effects of heterosis and complementarity 

between lines and it could be successfully employed in rabbit breeding for 

increasing productivity. Heterosis is the difference in performance between 

crossbred animals and the average performance of their parents. It is 

attributed to genes with dominant and epistatic effects. The heterosis can be 

seen as the counterpart of the inbreeding depression. Traits most affected by 

heterosis are those pertaining to fitness (litter size, longevity, reproduction 

rate, etc.). Estimates of direct heterosis for litter size traits, obtained in 

different crossbreeding experiments, are presented in Table I. 5.  

Table I. 5Reviewed estimates of direct heterosis (as percentage) estimated for 
total born (TB), number born alive (NBA) and number weaned 
(NW). 

Crossed does TB NBA NW Reference 

CAL x NZW 10.5  12.0 Lukefahr et al. (1983) 

A1077 x A2066 
(1067) 

15.2 20.1 6.7 Brun and Saleil (1994) 

NZW x CAL 12.5 10.0 5.5 Nofal et al. (1996) 

NZW x Baladi Red -2.0 -3.8 6.9 Khalil et al. (1995) 

V x A2066 13.6 20.7  Brun et al. (1998) 

G x NZW 18.3  18.8 Khalil and Afifi (2000) 

Altex x NZW   0.0 Medellin and Lukefahr (2001) 

CAL x NZW 
F x NZW 

5.4 
12.0 

3.0 
11.3 

41.9 
25.5 

Prayaga and Eady (2002) 

A x V 
A x H 
V x H 

4.8 
6.9 
1.7 

5.5 
9.8 
1.2 

 Baselga et al. (2003) 

A x V 
A x Prat 
V x Prat 

2.26 
13.0 
10.0 

3.7 
16.0 
8.0 

0.0 
16.0 
7.0 

Orengo et al. (2003) 

V x A2066 (2666) 18.3 24.4 21.0 Brun and Baselga (2005) 

V x Baladi Black 1.6 2.5 5.9 Nofal et al. (2005) 

V x Saudi Gabali 8.5  2.0 Khalil et al. (2005) 

G x NZW -4.03  7.4 Iraqi et al. (2006) 

Different lines 2.4  8.95 Abdel-Azeem et al. (2007) 

V x Saudi Gabali 5.3  9.1 Al-Saef et al. (2008) 

V x Baladi Red 23.9  27.7 Youssef et al. (2008) 

 CAL: Californian, NZW: New Zealand White, G: Egyptian Gabali, F: Flemish 

The direct heterosis, in most studies, had a positive effect on total born and 

number born alive and it was always positive for litter size at weaning. 

Negative values were obtained in few studies for total born and number born 

alive (Khalil et al., 1995; Iraqi et al., 2006). These heterotic effects may come 
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partly from the genetic distance between the lines or breeds and from the 

dominance and epitasis gene action modes; but also partly from the inbreeding 

accumulated in the parental lines, reproductively closed for many generations, 

which at crossing get disappeared (Brun and Baselga, 2005; Xu, 2003). 

1.7 Litter size components 

After reviewing litter size in the previous section, it is important to study its 

components in order have a better understanding of the nature of their genetic 

control. Litter size is limited by the number of ova produced and depends on 

fertilization rate, and pre- and post-implantation embryonic mortality. So, in 

this section, we will review the previous genetic studies about litter size 

components, its importance, summary of how to measure these traits and its 

genetic parameters.  

The knowledge of components of litter size in lines and breeds provides 

useful pointers for better utilization strategies due to the higher heritability of 

some of them. There are several selection experiments, indirect methods of 

selection to increase the litter size, for components of litter size like uterine 

capacity (maximum number of foetuses a dam can support until birth when 

the number of ova shed is not a limiting factor), ovulation rate and ovulation 

rate jointly with litter size. These experiments were carried out in pigs 

(Cunningham et al., 1979; Neal et al., 1989 and Rosendo et al., 2007), mice 

(Land and Falconer, 1969 and Bradford, 1969) and rabbits (Argente et al., 

1997 and Laborda et al., 2011, 2012).  

Ovulation rate is the total number of ova shed by the ovaries at ovulation. In 

rabbits, ovulation is induced by the coitus stimulus. The procedure to record 

the components of litter size usually implies observing the reproductive 

tractus after embryo implantation by laparoscopy or other techniques, and 

counting the number of corpus luteum to assess the rate of ovulation. The 

number of implantation sites and the number of living and dead embryos are 
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then counted to determine embryo viability. Litter size at birth is the last 

record that would be needed to take for obtaining foetal viability. 

 

 

Figure I. 2Description of The laparoscopy procedure to record the components 
of litter size: A) prepare and anesthetizing the doe, B) ready doe to do 
laparoscopy and starting to count, C) count the number of corpus luteum, D) 
count the number of implanted embryos, E) count the number of total born 
and born alive at parity. 

In rabbits, both ovulation rate as well as the other components of litter size 

is commonly recorded by laparoscopy, after dissection of the reproductive 

tract. The measurements in vivo and post mortem of ovulation rate and, also, of 

implanted embryos, have shown to have a very high correlation coefficient 

(Santacreu et al., 1990). This indicates that laparoscopy is a very accurate 

technique to measure ovulation rate and the number of implanted embryos at 

day 12 of gestation. So, the technique of choice today is the laparoscopy. The 

effect on the doe is considerably reduced by the use of an endoscope which 



26 Mohamed Ragab 

 

 

 

allows a normal productive life after the operation, and several successive 

observations on the same female. 

Prenatal mortality is around 30% in rabbits (Santacreu et al., 2000; García 

and Baselga, 2002b; Mocéet al., 2010), about 10-14% corresponding to the 

embryonic period (pre-implantation), and 20-22% to the foetal period (post-

implantation). It is called embryonic period to the period from ovulation to 

implantation, and foetal period to the period from implantation to birth. There 

are two mortality peaks in the foetal period, the first between the 8th and the 

17th day of gestation and it supposes 66% of the total foetal mortality, the 

second, between the 18th and 23rd day, and it supposes 27%of the total foetal 

mortality. In rabbits the prenatal mortality is higher than in mice (20%) and 

lower than in pigs (40-60%). 

1.7.1 Heritability 

Heritability estimates for ovulation rate varied from low to high values in 

rabbits. It was estimated to be 0.16 by Laborda et al. (2011), 0.44 by Ibáñez-

Escriche et al. (2006), 0.20 by Argente et al. (2000), 0.24 by Bolet et al. (1994) 

and 0.21 by Blasco et al. (1993) whereas in swine, it has been found to be 0.17 

by Neal et al. (1989), 0.33 by Rosendo et al. (2007) and 0.42 by Bolet et al. 

(2001) and Ruiz-Flores and Johnson (2001).  

The number of implanted embryos had an intermediate heritability (0.32) 

as in Blasco et al. (1993), Bolet et al. (1994) and Ibáñez-Escriche et al. (2006). 

Few experiments have estimated the genetic parameters for prenatal survival 

but, in general, heritability estimates of this trait were low (0.09 by Laborda et 

al., 2012 and 0.14 by Ibáñez-Escriche et al., 2006) except the one reported by 

Blasco et al. (1993) that was moderate (0.21). In mice, Clutter et al. (1990) 

found that it was 0.15 whereas in pigs, Bidanel et al., (1996), Johnson et al., 

(1999) and Rosendo et al., (2007) reported estimates between 0.08 and 0.14 

Regarding heritabilities of both embryo and foetal survival, in rabbits, Blasco 

et al. (1993) found that it was 0.18 for both traits and in other study, the 

obtained values for them were 0.26 and 0.35, respectively, (Ibáñez-Escriche et 

al., 2006).  
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1.7.2 Genetic correlation with other traits 

Ibáñez-Escriche et al. (2006) reported the genetic correlations between 

litter size components and, also, between these traits and litter size. They 

found high values between ovulation rate and litter size (0.57) and number of 

implanted embryos (0.69), moderate values with foetal survival (-0.46) and 

prenatal survival (-0.27), and a low value with embryo survival (0.02). The 

numbers of implanted embryos, embryo survival and prenatal survival had 

positive genetic correlations with litter size: 0.94, 0.69 and 0.64, respectively. 

However, a low value was obtained with foetal survival (0.09). Laborda et al. 

(2011) presented the genetic correlations of ovulation rate with litter size (-

0.20) and number born alive (-0.29). Other estimates of genetic correlations 

between ovulation rate and litter size were greater and positive (in rabbits: 

Blasco et al., 1993 (0.36); in pigs: Johnson et al., 1999 (0.24), and Rosendo et 

al., 2007(0.41); in mice: Clutter et al., 1990 (0.81), and Long et al., 1991(0.62), 

although the estimates were very imprecise. In mice, Falconer and Roberts 

(1960) estimated a positive correlation between ovulation rate and weight at 6 

weeks. 

1.7.3 Inbreeding depression 

In rabbits, there are no studies about the inbreeding effect on litter size 

components. Ovulation rate was not affected by inbreeding, in mice. Thus 

Falconer and Roberts (1960) did not find differences between inbred and non-

inbred females in ovulation rate and foetal mortality, but they found that the 

inbred females had a high number of embryos lost before implantation which 

was enough to account for the smaller number of kits born alive per litter. 

McCarthy (1967), also in mice, showed evidence of gene dominance 

affecting ovulation rate and reported that inbreeding had a negative effect on 

litter size and it was attributable to: 1) a reduction in the ovulation rate of the 

inbred dams, 2) an increased incidence of embryo mortality which resulted, 

also, from the dam´s inbreeding. So, it is expected that line crossing will 

improve ovulation rate and prenatal survival. 
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1.7.4 Heterosis effect 

Few studies have being conducted to assess crossbreeding parameters for 

litter size components. Bradford and Nott (1969), working with mice, 

summarized that the observed heterosis on litter size is mainly due to a 

superior embryo survival of the crossbred, as they shown lower foetal 

mortality. Also, they confirmed that ovulation rate and embryo survival are 

controlled by independent genetic systems. They suggest two additional 

conclusions: 1) pre- and post-implantation survival were, also, controlled by 

different genes; 2) genes affecting pre-implantation survival exhibit a high 

degree of dominance, whereas those affecting the other components are more 

nearly additive. 

In rabbits, Hulot and Matheron (1979) and Brun et al. (1992) detected 

positive and significant heterosis for ovulation rate and prenatal survival. In 

pigs, Bidanel et al. (1990) and Galvin et al. (1993) did not find heterosis for 

ovulation rate while, on the other hand, Squiers et al. (1952) and King and 

Young (1957) suggested a considerable degree of dominance for genes 

affecting ovulation rate. The heterosis of crossbred sows for litter size traits 

was explained by a high prenatal survival and not by a high ovulation rate 

(Bidanel et al., 1990; Blasco et al., 1992). 

1.8 Functional longevity 

The longevity in animal production has received attention in livestock 

species and there is a wide literature dealing with this trait. In this section, 

some considerations about its economic importance and the difficulties of its 

study will be given. In addition, it will be reviewed the estimates of its genetic 

parameters, its variability, among breeds or lines, and its heterosis. 

The longevity of reproductive rabbit females has been defined in many 

different ways: number of litters or length of life (Youssef et al., 2000), number 

of matings or age at culling or death (Lukefahr and Hamilton, 2000), or culling 

rate (Tudela et al., 2003), or measured as the number of inseminations that a 
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doe has during its whole life (Garreau et al., 2001). Sánchez et al. (2004) 

defined the functional longevity in rabbits as the time in days between the first 

positive palpation and death or culling for reasons different to animal 

production. Each one of these definitions implies different characteristic in the 

distribution of the records to study; thus, different statistical methods should 

be used. 

1.8.1 Economic importance of longevity 

In general the main culling reasons in animal production include diseases, 

low fertility and low production (Vollema, 1998; Sánchez et al., 2004). In 

animal production the main focus on longevity has been on the productive 

period from the beginning of reproduction until disposal. Culling for low 

production is usually referred to as voluntary culling and culling for disease 

and low fertility as involuntary culling.  

Improvement of productive life of does could be interesting because the 

replacement rate is very high (120%), (Ramón and Rafel, 2002). Rosell (2003) 

reported that the percentage of does which die or are culled during the first 

three parities is about 50% or more. The main causes of the end of the 

productive life of does are death and sickness during the first production 

cycles, when the cost of the does has not been yet recovered. Due to the high 

annual replacement rate, the proportion of young does in production is high, 

and these does are more difficult to handle than the older ones. Consequently, 

the production is based on immature animals that are significantly less 

productive. Moreover, the production of animals in the periods of illness 

before death or culling is significantly limited. All these factors show the 

importance of enhancing functional longevity in rabbits. 

Armero and Blasco (1992) presented a work about the economic weights of 

several traits in rabbits and commented that a 1% decline in the annual 

replacement rate is an increase in year profits of 0.34 Euros per doe. In this 

work, the three most economically important characters were the number of 

births per year, litter size and average daily gain during the fattening period. 

The replacement rate stood in eighth place after feed intake in lactation. 
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So, longevity in rabbits is of economic importance because (1) the higher 

the number of litters produced by a doe, the greater the opportunity to spread 

doe costs over a longer period of time;(2) increased longevity tends to extend 

the parity distribution at the expense of lower parity orders, increasing the 

number of kits per doe per year through an increased litter size and a reduced 

replacement rate; and (3) the high replacement rate, when the new animals 

are bought outside, implies a higher risk of health problems. 

1.8.2 Difficulties of longevity study 

Longevity records can be considered as difficult to dealt with basically due 

to two types of reasons: 1) The definition of the trait implies that records are 

taken late in the animal’s life in fact when it is dead- which enlarge the 

generation interval. This implies that selection candidates must be evaluated 

essentially by information from relatives. However, as it will be shown later, 

the heritability of this trait seems to be low. 2) The need of special statistical 

methods of analysis which allow taking into account the peculiarities of these 

records. First, survival times are usually a mixture of discrete and continuous 

data that lend themselves to a different type of analysis than those in the 

traditional discrete or continuous case. The mixture is the result of censoring 

that has an important effect on data analysis. Censoring is present when we 

have some information about a subject’s event time, but we don’t know the 

exact event time (right censoring). Thus, for the censored data, if these data 

are not included in the analysis, or included as complete data, to estimate the 

average population survival, biased estimates will be obtained. So, a correct 

consideration of the censored and uncensored data is needed to have unbiased 

estimates for longevity.  

Second, to analyse longevity data is needed to use time dependent factors in 

the model. On the other hand, the dependent variable (the time to the event of 

interest) is very asymmetric and generally has an unknown distribution, and 

consequently the standard methods of analyses relying on the normal 

distribution are not adequate. The more suitable approach to study longevity 

is survival methodology, which is based on analysing the hazard, which could 
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have a known parametric distribution or which could be fitted by semi-

parametric or nonparametric models. This method also allows the use of 

factors that change with time and the censored data are included naturally in 

the analysis. Usually, as the population under study is changing, we only 

consider the individual risk to die for those who are still alive, but this means 

that many standard statistical approaches cannot be applied. 

1.8.3 Variability and heritability within lines 

Recently, longevity has been considered as a selection objective of maternal 

lines and few estimates of its heritability have been reported (Sánchez et al., 

2004, Garreau et al., 2001). Many authors tried to estimate the heritability of 

longevity from the information coming from the selection programs for litter 

size. The magnitudes of heritability estimates vary between populations and 

also depend on the trait’s definition and method of analysis, but in general, 

they are low to moderate. Using linear models and REML methodology, 

Youssef et al. (2000) estimated heritabilities of 0.08 and 0.13 for number of 

litters and length of productive life, respectively, in rabbits. In another work, 

Sánchez et al. (2004) using a sire-maternal grand sire model and the estimated 

mode of the sire variance computed a heritability of 0.053, that expressed as 

effective heritability (Yazdi et al., 2002) corresponds to a value of 0.086. Low 

values of heritability of longevity (0.05, 0.10 or 0.24), depending on the model, 

were also obtained by Garreau et al. (2001) 

Piles et al. (2006b) analysed functional longevity of 2 selected lines of 

rabbits (Prat line, selected in Spain, and the A1077 French line). The estimated 

heritabilities from this work were around 0.16 for both lines, with a model 

including a physiological status × cycle combined effect, and 0.24 and 0.19 in 

the Prat and A1077 lines, respectively, with the model without the previous 

effect. This is an indication in the Prat line of a putative significant genetic 

correlation between longevity and fertility as the physiological status depends 

on the female ability to get pregnant back after parturition. Yazdi et al. (2000) 

reported estimates of heritabilities of longevity in Swedish Landrace sows 

ranging from 0.05 to 0.27, depending on the model used. Gou et al. (2001) 
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reported a heritability of 0.25 for length of productive life in Landrace sows. 

Serenius and Stadler (2004) reported estimates of heritability of longevity of 

0.16 and 0.17 for Landrace and 0.17 and 0.19 for Large White populations 

using a survival analysis, but lower estimates of 0.05 and 0.10, respectively, 

using a linear model. 

1.8.4 Relationship with other traits 

Estimates of the correlation between longevity (log of hazard) and litter size 

traits in rabbits were found in only one study (Sánchez et al., 2008). They 

reported an estimated genetic correlation of –0.17, not significantly different 

from zero. Regarding the environmental correlations, it only could be 

considered as significantly different from zero (-0.11±0.016) between number 

born alive and longevity. 

In Landrace and Large White, Serenius and Stalder (2004) reported that 

length of productive life and lifetime prolificacy (number of piglets born alive 

during sow’s length of productive life) had a genetic correlation higher than 

0.95. Thus, genetic gain in length of productive life through selection will 

result in direct genetic gain in lifetime prolificacy and vice versa. The genetic 

correlation with the number of weaned piglets was 0.30 and 0.39. Also, a 

moderate negative genetic correlation (−0.40 and −0.43) was found between 

farrowing interval and length of productive life. Furthermore, they reported 

both zero and unfavourable genetic correlation between the length of 

productive life and average daily gain. 

1.8.5 Heterosis 

Few studies were carried out to estimate the heterosis effect on longevity in 

rabbits. In a crossbreeding experiment between Californian (CAL) and New 

Zealand White (NZW) rabbits, Lukefahr et al. (1983) found that longevity had 

an unfavourable heterosis (10%) for the cross between the two breeds. In 

other work, concerning the same breeds, Lukefahr and Hamilton (2000) 

reported the superiority of the NZW and crossbred does with respect to the 

CAL does. Piles et al. (2006b) indicated that the estimated value for the 
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individual heterosis for longevity depended on the lines involved in the cross. 

Thus, for the cross between lines A and Prat, the estimated favourable 

heterosis effect was −0.349, which was significantly different from zero. For 

the cross between lines V and Prat, the estimated heterosis was −0.244, while 

it was not significant for the V × A cross. 

In other species, differences in survival also have been observed between 

breeds, lines, and crossbred animals (in pigs: Hall et al., 2002; Rodríguez-Zas et 

al., 2003; in goats: Pérez-Razo et al., 2004; in beef cattle: Núñez-Dominguez et 

al., 1991; Arthur et al., 1993). 

1.8.6 Variability between breeds or lines and heterosis 

A divergent selection experiment for functional longevity, based on genetic 

merit estimated through survival analysis techniques, was carried out in the 

INRA 1077 rabbit line (Garreau et al., 2008). The difference of longevity 

between the two lines was 0.92 artificial inseminations i.e. 39 days. Also, the 

proportion of mortality and culling were higher in the low line than in the high 

line in two farms. 

To our knowledge, very few works have been carried out to study genetic 

variability of rabbit longevity among breeds, lines and crossbred does. In a 

study by Piles et al. (2006a), a complete diallel cross involving three maternal 

lines of rabbits (A, V, Prat), was performed to estimate cross-breeding 

parameters for functional longevity. A Cox model (Cox, 1972) that 

incorporated time-dependent and time-independent factors was used. In this 

study no maternal genetic effects were detected as significant and its 

magnitude was generally low. Significant and relevant differences between 

direct genetic effects were only found for line Prat with respect to line A. 

Heterosis was found to be significant and favourable between lines A and Prat, 

and between the lines V and Prat. 

Lukefahr and Hamilton (2000) compared Californian (CAL), New Zealand 

White (NZW) and CAL x NZW does for longevity and accumulated production. 

Data were analysed, using linear models by ANOVA procedures (Harvey, 
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1990). The analysis was based on the normal distribution and did not take into 

account the time-dependent factors and censored data. The NZW had high 

longevity than the CAL and the crossbred does behaved similarly to New 

Zealanders. Coudert and Brun (1988) carried out a complete diallel cross 

between NZW and CAL, and they analyse mortality rate, elimination rate and 

causes of elimination or death. They did not get differences between direct 

genetic effects and maternal genetic effects for mortality and elimination rates. 

The heterosis was significant for both traits, favourable for mortality rate and 

unfavourable for elimination rate. 

Sánchez et al. (2008) showed that, in a study to compare the LP line and V 

line, the probability that a V female left the herd was between 2.40 and 1.72 

times higher than that of a LP doe, depending on the farm. 

1.9 Genetic parameters of kindling interval 

1.9.1 Genetic variability 

This trait is defined as the number of days between two consecutives 

parities. Kindling interval is economically important and is a direct indicator of 

the fertility of the does for a given mating management. 

Significant differences in direct genetic effects between lines were found for 

kindling interval by Baselga et al., (2003). These authors also found that the 

heritability and ratio of variance of permanent environmental effects to 

phenotypic variance for this trait were 0.078 and 0.008, respectively. Khalil 

and Soliman (1989) and Moura et al. (2001) estimated the heritability of the 

interval between parities and obtained values that were close to zero.  

Regarding the kindling interval, few studies were carried out in rabbits. 

Favourable and low heterosis were found (-5.4%) in the cross NZW x Baladi 

Red (Khalil et al., 1995) and in the crosses AxV (-1.5%), AxPrat (-4%) and 

VxPrat (-0.47%) (Orengo et al., 2003). In a diallelic cros experiment between 

A, H and V line, Baselga et al. (2003) observed direct heterosis for AxV (-

2.73%), AxH (4.15%) and VxH (2.84%). Prayaga and Eady (2002) presented 
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unfavorable heterosis for kindling interval, being 5.3 %, for CALxNZW does 

and 3.4 %, for the cross between Flemish and New Zealand White. 

1.10 Commercial maternal lines 

Many programs have been carried out to create new lines following the 

previous selection criteria (see section 1.3.1 and 1.3.2). The beginning of those 

breeding programs was in France followed by Spain, and then in many 

countries all over the world. We will pay more attention to the French and 

Spanish programs because the two programs have a long time selection 

history and both are still running. We mention the involvement of the INRA in 

France, and the Department of Animal Science of the UPV and the Rabbit 

Science Unit (IRTA, Barcelona) in Spain, developing lines to be used in crosses. 

In France, since the seventies of the twenty century, the INRA (SAGA, 

Toulouse) has been selecting two maternal lines for litter size traits 

(INRA1077 and INRA2066). Later, two lines more have been developed. The 

lines were INRA2666 (from an initial cross between line V and line INRA2066) 

and INRA1777. Concerning maternal lines in Spain, there are four maternal 

lines (A, V, H and LP) in UPV and one in IRTA (Prat) (Baselga, 2004).  

A brief list of the lines, which are used in commercial farms to produce 

crossbred does, is presented in Table I.5.  

We will give more details of the Spanish program, specially the program of 

Universidad Politécnica de Valencia (UPV) for development of new specialized 

lines, because of the large number of maternal lines developed, the different 

approaches used for their foundation and because these lines will be used in 

this work. The UPV program was started in 1976 and now there are four 

maternal and one paternal line, which are under selection.  

Line A was initiated in 1976 sampling NZW rabbits, reared by farmers near 

Valencia (Spain). After three generations without selection, the line has been 

selected by a family index, since 1980 (Estany et al., 1989) to increase litter 
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size at weaning. The line is kept closed since its foundation and currently it has 

reached the 41st generation.  

Table I. 6Some commercial maternal lines selected in different countries. 
Line Origin1 Criteria2 Reference Country 

INRA1077 NZW, B LSW Rouvier, 1981 France 

INRA2066 CAL, GH LSB Brun, 1993 France 

INRA2666 INRA2066, V LSW Brun et al., 1998 France 

A NZW LSW Estany et al., 1989 Spain 

V 
4 specialized 

lines maternal 
lines 

LSW Estany et al., 1989 Spain 

H 
Commercial 

farms 
(Hyperprolificacy), 

LSW 
Cifre et al., 1998 Spain 

LP 
Commercial 

farms 
(Hyperlongevity), 

LSW 
Sánchez, 2005 Spain 

Prat crossbreds LSW Gómez et al., 1996 Spain 

APRI BR, V LWW Youssef et al., 2008 Egypt 

Moshtohor Sinai Gabali, V LWW Youssef et al., 2008 Egypt 

Saudi-1 Saudi Gabali, V LWW, BW84 Youssef et al., 2008 
Saudi 

Arabia 

Saudi-3 Saudi Gabali, V LWW, BW84 Khalil et al., 2002 
Saudi 

Arabia 

Uruguay-V V LSW Capra et al., 2000 Uruguay 

1. The breed or the line of origin. NZW: New Zealand White; BR: Baladi Red; 2. The criteria of 
selection (foundation) of the line. LSW: litter size at weaning; LSB: litter size at birth; LWW: 
litter weight at weaning. 

Line V was founded in 1981 as a synthetic line of four specialised maternal 

lines. After three generations without selection, the line has been selected 

(Estany et al., 1989) to increase litter size at weaning. The method of 

evaluating the animals is a BLUP under an animal-repeatability model. Like 

line A, this line is kept closed since its foundation and it is currently in its 37th 

generation. 

Line H was founded applying hyperprolific selection and embryo 

cryopreservation techniques (García-Ximénez et al., 1996). The hyperprolific 

does were assembled from a large commercial population, spread over 

different Spanish farms. The hyperprolific does were required to satisfy one or 

both of the following criteria: to have 20 or more kits born alive in one litter or 

to have a cumulative number of kits born alive in all recorded parities equal or 
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higher than the threshold corresponding to the best 1% of the set of does with 

the same number of recorded parities. It was assumed that the does pertained 

to a population with a mean of 9 rabbits born alive per litter, a standard 

deviation of 2.65 rabbits per litter and a repeatability of 0.2. A first step was 

carried out in 1,993 to obtain male progeny (VH males) by hysterectomy from 

20 hyperprolific does mated to nine bucks of the different nuclei of line V, line 

showing a high prolificacy (Baselga et al., 1992). In a second step, a new and 

larger set of hyperprolific does (87 does) was mated to 47 VH males to obtain 

progeny (464 animals of 63 days) which constituted generation 0 of line H. 

After its foundation, the selection criterion has been litter size at 

weaning.Now, this line has reached the 17th generation. 

The line LP was founded selecting does at commercial farms excelling 

because of their high longevity but being above the mean in prolificacy 

(Sánchez, 2005 and Sánchez et al., 2008). It was intended to apply a very high 

intensity of selection for longevity, in a similar way as it was done in rabbits 

(Cifre et al., 1998) or pigs (Bichard and David, 1985; Sorensen and Vernersen, 

1991; Herment and Runavot, 1994; Noguera et al., 1997) for prolificacy. 

The foundation of the LP line took place in three steps and started in April 

2002. The first step tried to get sons from 15 high longevity does, found in 8 

commercial farms. The does were inseminated with semen from bucks of the 

current generation (27) of the V line. 

The second step tried to get sons of a new batch of 15 high longevity does, 

mated to the males got from the first step. The third step was the constitution 

of the line LP with the progeny of 32 new high longevity does, detected in 25 

farms of Spain and Portugal, mated to 17 bucks obtained in the previous step. 

Like line H, after the foundation LP line is being selected for litter size at 

weaning (Sánchez et al., 2008) and currently is has reached the 7th generation 

of selection.  
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Chapter 2 

Objectives 

he objective of this thesis was to evaluate four maternal lines of 

rabbits and their crosses and estimate the crossbreeding parameters 

in a diallel cross experiment. This general objective was translated into the 

following specific objectives: 

1. To compare four maternal lines of rabbits in terms of reproduction traits, at 

their foundation and at fixed times, using historical data of their selection 

programs. 

2. Using the same data set , to study several items related to inbreeding: i) 

estimate the effective population size of the lines, as a measure of the rate of 

increase of inbreeding and ii) study if the inbreeding effect on litter size traits 

depends on the pattern of its accumulation over time. 

3. To compare the genetic groups of a diallel cross between the four maternal 

lines and estimate the crossbreeding parameters for the following traits: 

 Litter size traits (total born, number born alive, number weaned). 

 Kindling interval, used as a direct indicator of the fertility of the does.  

 Litter size components (ovulation rate, implanted embryos, embryo survival, 

fetal survival, prenatal survival).  

 Functional longevity. 
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Chapter 3 

A Comparison of reproductive traits of four maternal 

lines of rabbits selected for litter size at weaning and 

founded on different criteria 

3.1 Abstract 

he objective of this study was to compare four Spanish maternal lines 

of rabbits (A, V, H and LP) founded on different criteria but selected for 

litter size at weaning, since their foundation until present for 41, 37, 20 and 7 

generations, respectively. The comparisons among the lines were performed 

for litter size traits and kindling interval. The first comparison made was at the 

foundation time of the lines, using mixed animal models (additive and non-

additive permanent effects) and using the complete data set (from June 1980 

to February 2009) and the full pedigree to take into account the process of 

selection. A second comparison was made at fixed times and location (during 

the six year-seasons shared at the same farm and similar conditions for lines A, 

V and H involving data from March 1997 to August 1998, and A, V and LP lines 

from September 2007 to February 2009. The models used in the second 

comparison did not include the complete data set nor the additive genetic 

effects; therefore, that line comparisons were not dependent on the genetic 

model. 

 

This paper has been published in the journal “Livestock Science” with the following reference: 
Ragab, M., M. Baselga. 2011. A comparison of reproductive traits of four maternal lines of rabbits 
selected for litter size at weaning and founded on different criteria, Livest. Sci., 136:201–206. 
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The raw means for total born, number of kits bon alive, number of weaned kits 

and number of marketed kits per litter obtained from 47,132 parities 

produced by 12,639 does were 9.80, 9.07, 7.79 and 6.95 rabbits respectively, 

demonstrating the high level of prolificacy of the lines. The kindling interval 

raw mean was 49.80 days. 

At their respective times of foundation, line A showed the lowest litter size 

with mean differences of this line over the mean of the other lines of 1.39, 1.20, 

0.84 and 1.06 for number of total born, born alive, weaned and marketed kits 

per litter, respectively. Lines V and H did not show significant differences for 

litter size traits, but for kindling interval the contrast was 3.30±0.72d, which 

was significant and favourable to line H. LP exceeded V by approximately one 

rabbit for all litter size traits. The differences between the lines for kindling 

interval were negligible. Some interactions between lines and farm-year-

seasons were important.  

In the comparison of lines A, V and H, performed with data corresponding to 

the period comprised from March 1997 to August 1998, the pattern of the 

differences between the line A and the others was similar to the one observed 

at the origin, and the only significant difference was found between lines V and 

H for the kindling interval (4.62 d in favour of line V). The comparison 

between the lines A, V and LP,performed with data of the period comprised 

from September 2007 to February 2009, showed an approximation in their 

reproductive performance compared to the differences found at the origin. 

Overall, good agreement was observed between the comparisons of lines for 

litter size traits at fixed times, using a model without genetic effects and data 

recorded during the time of comparisons, and the predictions derived from the 

model with genetic effects. Another point is the importance of the criteria in 

the sample of founders of lines that were used to determine the initial or 

starting performance levels. Therefore, it is recommended that commercial 

rabbit producers utilize line populations selected for the traits of economic 

interest rather than on a popular breed. 
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size, kindling interval. 

3.2 Introduction 

The organization of genetic improvement programmes for rabbits is a 

pyramid type with the peak of the pyramid representing the selection of 

specialized lines (maternal and paternal lines) in nucleus 

populations.Developing maternal lines is a crucial activity for companies and 

public institutions that are devoted to the genetic improvement of meat rabbit 

production. These lines need to be established on the basis of direct or indirect 

selection for litter size at birth or at weaning (Estany et al., 1989; Garreau et 

al., 2004).  

In this context, an important issue is the performance of the lines at their 

foundation (Baselga, 2004), which defines the starting point from which 

responses to selection will accumulate. Also, when several nucleus lines share 

the same farm environment for long periods of time it is possible, using animal 

models and the complete data set, to define estimable contrasts for comparing 

the performance of the lines at foundation, regardless of the time of foundation 

for each line. It is also feasible, without relying on animal models and using 

only the data recorded in a short period of time, to compare the performance 

of all lines. In addition, the same comparison made at defined periods of time 

canbe done to compute genetic trends derived from animal models involving 

the complete data set. Thus, the agreement of both comparisons could be 

considered as evidence in favour of the appropriateness of animal models used 

for data analysis. To our knowledge, this type of analysis has not been done in 

rabbits, probably because it is not common that several lines share the same 

nucleus farm in which selection is carried out for many generations. This is the 

case of four Spanish maternal lines, founded between 1980 and 2004 with a 

history of selection for litter size at weaning since their foundation. Thus, the 

main objective of this study is to compare four maternal lines of rabbits in 

terms of reproduction traits, at their foundation and at fixed times, taking into 
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account the concept that these lines were founded on different criteria but that 

all lines were selected for litter size at weaning. 

3.3 Material and methods 

3.3.1 Animals 

The present study was conducted involving four Spanish maternal lines of 

rabbits, A, V, H and LP. These lines, after their foundation, have been selected 

to increase litter size at weaning. The analysis included all the data recorded 

from the 1st generation to the current 38th, 34th, 15th and 4th generations for 

lines A, V, H, and LP, respectively. 

The animals of A, V and LP lines were maintained as closed nucleus 

populations since the beginning of the selection process until present and 

were housed on the same farm of the Animal Science Department, Universidad 

Politécnica de Valencia. The H line was housed at the same farm until its 10th 

generation of selection (May 2004) when it was moved to another farm 180 

km north of Valencia (San Carlos de la Rápita, Tarragona). 

Line A originated in 1980 from New Zealand White (NZW) rabbits reared by 

farmers near Valencia, Spain. The NZW breed has been commonly accepted as 

one of the main breeds of rabbits used for meat production. The criteria used 

to form line A were that the founders were healthy and they fulfilled the 

standards of the NZW breed. Since 1980, the line has been selected by use of a 

family index (Estany et al., 1989). Line V was established from four specialised 

maternal lines in 1984 into a composite synthetic line. The method of 

evaluating the animals (Estany et al., 1989) is by BLUP under a repeatability 

animal model, as for lines H and LP. Line H was founded by applying 

hyperprolific selection and embryo cryopreservation techniques (Cifre et al., 

1998). The hyperprolific does, used in founding this line, were assembled from 

several large commercial populations. The LP line is a maternal line and it was 

founded by selecting females from commercial farms that showed an 

extremely long productive life (measured as a function of the number of 
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parities) associated with prolificacy (measured as the mean number born alive 

per parity) near or above the average of the Spanish commercial rabbit 

population (Sánchez et al., 2008) 

Selection was in non-overlapping generations for all lines and does for the 

next generation were selected from the best evaluated matings. The bucks 

were selected within sire from the best mating of the sire to contribute a son to 

the next generation. 

Does were first mated around 17 weeks of age. The does were serviced 10-

12 days post-kindling and a pregnancytest was carried out by abdominal 

palpation on day 12 after mating. There was an exception to this mating 

management for lines V and LP from December 2003 to November 2005 when 

does were mated 25 days after kindling.The does that did notaccept the buck 

were presented to the male one week later and does that were not pregnant 

were also returned then for a repeat mating. Matings between close relatives 

were avoided by ensuring that mates did not have common grandparents. The 

equipment used in the nucleus farm was the same for all lines, except that the 

feeders used from September 1998 to November 2003 were different for the H 

line. 

Litters were reared by their dams, without fostering, for about 28 days. At 

weaning, rabbits were individually identified by a number tattooed on the ear 

and placed in collective cages of about nine rabbits until marketing at 63 days. 

Animals were housed at the experimental farm of the Universidad Politécnica 

de Valencia in individual cages. They were kept under controlled 16-h light: 8-

h dark photoperiods. Rabbits were fed a standard commercial pelleted diet, 

offered ad libitum. 

3.3.2 Traits 

The prolificacy traits studied were: total born(TB),number born alive 

(NBA), litter size at weaning (NW, 28 d), litter size at marketing (NM, 63 d) 

and a fertility trait defined by the kindling interval (number of days between 

two consecutives parities).  
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3.3.3 Statistical analysis 

 Data were analysed usingtwo-trait repeatability animal models to 

estimate the variance-covariance components and to compare the lines at 

their foundation. As selection was applied for litter size at weaning, this trait 

was included in the analysis for other traits in order to obtain unbiased 

estimates due to selectionThe model used for litter size traits was as follows: 

                                                          

          (Model 1) 

Where          is the   record of the   trait of litter size of the   doe nested 

to   line, obtained at physiological state  , year season   and   inbreeding 

class;       is the fixed effect of farm-year-season of the parity (one year 

season every three months: 132 levels for all traits and 115 levels for NM); 

     is the fixed effect of the physiological state of the doe (5 levels depending 

on the parity order and present lactation state of positive insemination where 

1 for nulliparous does, 2 (4) for primiparous lactating (non-lactating), and 3 

(5) for multiparous lactating (non-lactating));     is the fixed line effect (4 

levels);        is the fixed effect of interaction between farm-year-season and 

line (291 levels for TB, NBA and NW, and 265 levels for NM), that was included 

in the models to limit the comparisons between any two lines to the farm-year 

seasons shared at the same conditions by both lines;     is the fixed effect of 

inbreeding effect (7 levels depending on the inbreeding of the doe, where 1 

from 0 to 0.05, 2 from 0.05 to 0.10, 3 from 0.10 to 0.15, 4 from 0.15 to 0.20, 5 

from 0.20 to 0.25, 6 from 0.25 to 0.30, 7 from 0.30 to 0.35;     is the random 

effect of the additive value of the doe n, nested in line   and related through 

the numerator relationship matrix,   (14609 animals);      is the random 

effect of permanent environmental plus non-additive genetic effects of the doe 

n (uncorrelated between them and with the other random effects within the 

same trait but correlated for different traits within individual);         is the 

random residual effect of the model (uncorrelated between them and with the 



Comparison between maternal lines 61 

 

 

 

other random effects effects within the same trait but correlated for different 

traits within individual).  

Inbreeding was used as a fixed effect after classifying it into categories, as 

previously explained, in order to reduce the problem of its co-linearity with 

farm-year-seasons. 

The comparison among lines for kindling interval was carried out by a two-

trait repeatability animal model with litter size at weaning being the second 

trait. The model used for kindling interval was as follows: 

                                                     (Model 

2) 

where        is the record lof kindling interval measured in   farm-year-

season (131 levels) and   parity (   ; 14 levels) of the doe n belonging 

to line (4 levels), and having an inbreeding coefficient in class m; other 

components of the model were defined above in Model 1. 

The first step of the analysis was to obtain REML estimates of the variance-

covariance components of the mixed models used from the data for all 

generations and lines. A total of 47,132 parities from 12,639 does were 

included (15,878, 19,280, 8,570 and 3,404 parities for A, V, H and LP, 

respectively). The pedigree file included 14,609 animals and version 6.0 of the 

VCE software was used for this analysis (Groeneveld et al., 2008). The second 

step was to solve the mixed model equations using REML variance-covariance 

components as estimated in the first step to compute the contrasts used to 

compare lines at their foundation (different times for each line) and at fixed 

locations and generation times. The PEST package was used to solve these 

equations (Groeneveld, 1990). 

3.3.4 Comparison of lines at their foundation. 

This comparison was performed after solving the mixed models given 

above on the whole data set and computing the corresponding contrasts. The 

contrast between any two lines for a given trait was an estimable function 
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involving the estimates of the line effects and the estimates of the interactions 

(farm-year-season x line), corresponding to the farm-year-seasons shared by 

the two lines under the same environmental conditions. Because the effect of 

selection is considered in the models by the additive effects, the line effect was 

represented at the time of foundation of the lines. A value was computed for 

each line and trait as the sum of the line effect and the average of the 

interactions of farm-year-season x line corresponding to the line and farm-

year-seasons considered. The contrast was the difference between the values 

computed for each line. Common farm-year-seasons between lines at the UPV 

farm were from June 1982 to February 2009 for A and V lines, excepting the 

period between December 2003 and November 2005; from June 1996 to June 

2004, for lines A and H, excepting the period between September 1998 and 

November 2003 and from December 2005 to February 2009 for the lines A 

and LP. The common farm-year-seasons for lines V and H were between June 

1996 and August 1998; and from December 2003 to February 2009 for the 

lines V and LP. Significance levels were detected as first class error at α=0.05. 

3.3.5 Comparison of lines at fixed times and locations (observed and 

expected differences) 

The times chosen for the comparison of lines were the last six farm-year-

seasons shared at the same farm and conditions by three lines: from March 

1997 to August 1998 for lines A, V and H, and from September 2007 to 

February 2009 for lines A, V and LP. For these comparisons, the additive 

genetic effects were excluded from the models and only the data recorded 

during the shared times of comparison were used. This way, the line effects 

refer to the real genetic merit of the lines at the time of comparison as a 

consequence of selection and genetic drift, but not being dependent on the 

genetic model.Thus, the statistical models used in these analyses were the 

same as described in the previous section, but the additive genetic effects were 

not considered.  

Concerning variance components used for solving the models, the 

permanent variance was the sum of the additive genetic variance and the 
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permanent variance of the previous analysis. The residual variance was the 

same in both analyses. The estimable functions used to obtain contrasts 

(referred to as observed differences), were computed as explained in the 

previous section, but here all the farm-year-seasons were shared by the three 

lines. The first class error was set at α=0.05. Using results of the analysis 

obtained using models 1 and 2 and involving the whole data set (section 2.3.2), 

the expected differences between the lines at fixed times can be computed as 

the contrast between lines during the six farm-year-seasons shared, plus the 

difference between the averages of the additive genetic values of the animals 

of each line having litters in the period, weighted by the number of litters. 

These expected estimates depend on the genetic model and the selection data 

and their comparison to the observed differences provide evidence of the 

appropriateness of the genetic models used for selection data. 

3.4 Results and discussion 

3.4.1 Descriptive statistics 

Raw means and standard deviations of traits are shown in Table 3. 1 

involving the entire data. Present results are similar to production levels 

reported in Spain for commercial farms and different maternal lines (Ramon 

and Rafel, 2002). 

Table 3. 1Descriptive statistics (Mean, standard deviation (SD) and extreme 
values)for litter size traits (kids) and kindling interval (days). 

Trait N Mean SD Minimum Maximum 

Total born 47132 9.80 3.07 1.00 26.00 

Number born alive 47132 9.07 3.36 0.00 22.00 

Number weaned 47097 7.79 3.05 0.00 18.00 

Number marketed 43265 6.95 3.25 0.00 16.00 

Kindling interval 34356 49.80 11.48 37.00 99.00 

N: number of records 

Genetic parameters 

Heritability estimates for litter size traits in A, V, H and LP lines were rather 

low and tended to decrease from birth to slaughter (Table 3. 2). The estimates 
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were 0.14 for total born, 0.10 for number born alive, 0.08 for number weaned 

and 0.08 for number marketed. Heritability estimates for litter size traits vary 

considerably in the literature.Generally, the estimates are low to moderate. 

Some authors have reported estimates similar to ours (Rochambeau et al., 

1994; Sorensen et al., 2001; García and Baselga, 2002a; Piles et al., 2006). In 

contrast, other reports obtained lower estimates (Baselga et al., 1992; Ferraz 

and Eler, 1996; Youssef et al., 2008), while higher estimates have been 

reported for number born alive, number weaned and number marketed by 

García and Baselga (2002b) and for number born alive by Sánchez et al. 

(2006). 

The estimates of the ratio of the permanent environmental variance to the 

phenotypic variance (p2) for litter size traits in A, V, H and LP lines were low to 

moderate (Table 3. 2), but were very similar to estimates of heritability, which 

tended to decrease from birth and market time. Similar results were obtained 

by other authors (García and Baselga, 2002a, b; Al-Saef et al., 2008). 

Table 3. 2Genetic parameters of litter size traits and kindling interval. 
Trait h2 p2

 rg rp re 

Total born 0.14±0.01 0.10±0.01 0.80±0.03 0.71±0.03 0.60±0.00 

Number born alive 0.10±0.01 0.10±0.02 0.90± 0.01 0.83±0.02 0.81±0.00 

Number weaned 0.08±0.01 0.08±0.01 - - - 

Number marketed 0.08±0.01 0.07±0.01 0.96±0.01 0.94±0.01 0.91±0.00 

Kindling interval 0.05±0.01 0.05±0.01 -0.24±0.09 0.54±0.07 -0.03±0.01 

h2: heritability, p2: ratio of the permanent environmental variance to the phenotypic variance, 
rg, rp andre : genetic, permanent and residual correlations between number weaned and trait, 

respectively. 

Repeatabilities estimates (the sum of h2 and p2) were 0.24 for total born, 

0.20 for number born alive, 0.16 for number weaned, and 0.15 for number 

marketed. Lukefahr and Hamilton (1997) and Sorensen et al. (2001) observed 

small p2 values (not significantly different from zero) for litter size traits, 

except for litter size at weaning. Similarly, Ayyat et al. (1995) showed 

differences between heritability and repeatability estimates to be very small, 

reflecting the low importance of the permanent environmental and (or) non-

additive genetic effects. 
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Genetic correlations between number weaned and other litter size traits 

were positive and high (0.80 to 0.96; Table 3. 2). The permanent 

environmental correlations between litter size at weaning and total born, 

number born alive and number at marketing were positive and high (0.71, 

0.83, and 0.94, respectively; Table 3. 2). The same pattern was observed for 

the residual correlations. The present estimates of genetic correlations are in 

agreement with previous reports (Sorensen et al., 2001; García and Baselga 

2002a, b). 

Kindling interval had low heritability (0.05), low p2 (0.05) and low 

repeatability (0.10) as shown in Table 3. 2 Similar results were obtained by 

Baselga et al. (2003) for heritability, but the value of p2 was 0.01. Khalil and 

Soliman (1989), Khalil (1993), and Moura et al. (2001) reported similar values 

of heritability. Low and negative genetic and residual correlations were 

obtained between kindling interval and litter size at weaning (-0.24 and -0.03, 

respectively; Table 3. 2), but the environmental permanent correlation was 

positive and moderate (0.54). 

3.4.2 Contrasts between lines at their foundation 

Table 3. 3 shows the contrasts employed between A, V, H and LP lines for 

litter size traits and kindling interval. Line V, at its foundation, was superior to 

line A for total born, number born alive, litter size at weaning and litter size at 

marketing (differences of 1.35, 1.24, 0.90 and 1.51 rabbits, respectively 

(α=0.05)). The contrasts of lines H and LP relative to line A were significant 

and in favour of line H and line LP for litter size traits. Line LP had superior 

litter size trait values compared to line V. However, the results showed in 

Table 3. 3 have some apparent inconsistencies. For example, the contrast 

between lines A and Vfor total born was -1.35 rabbits and -1.07 between A and 

LP, but between V and LP was not 0.28 (1.35-1.07), it was -0.96. The 

explanation of these non-real inconsistencies is attributable to the different 

sets of farm-year-seasons and their interactions with the lines involved in the 

different contrasts. 
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Concerning interactions, certain situations occurred across the years at the 

UPV farm that could explain some of the farm-year-season x line interactions. 

Firstly, the spread of the enterocolitis disease affected a large period in the 

comparison between the lines A and H. The consequence of this disease was an 

increase in the post-weaning mortality, reducing the number of rabbits 

marketed. However, the sensitivity of the lines to enterocolitis was different, 

line A being the line most affected. Consequently, this event penalized line A in 

all line comparisons for number marketed. Secondly, there was a change in 

mating management that affected the lines V and LP from December 2003 to 

November 2005, which increased the period of restricted feeding by 2 weeks 

between weaning and the next parity. This restriction affected line V more 

than line LP (Theilgaard et al., 2007; Sánchez et al., 2008) because the line LP 

showed a better management in the body reserves, being consequently less 

affected by the temporal restriction of feeding (Theilgaard et al., 2007). 

Table 3. 3Contrasts between the lines A, V, H and LP for litter size traits 
(rabbits/litter) and kindling interval (days). 

Trait A - V A - H A - LP V - H V - LP 

Total born -1.35±0.04* -1.76±0.16* -1.07±0.08* -0.09±0.19 -0.96±0.08* 

Number born alive -1.24±0.04* -1.25±0.17* -1.11±0.09* -0.02±0.19 -1.32±0.08* 

Number weaned -0.90±0.04* -0.75±0.17* -0.87±0.11* -0.32±0.19 -0.96±0.10* 

Number marketed -1.51±0.05* -0.93±0.16* -0.73±0.13* -0.29±0.17 -0.97±0.11* 

Kindling interval 0.36±0.21 1.44±0.44* 2.92±0.38* 3.30±0.72* 0.83±0.19* 

The contrast between lines H and LP was not possible because they did not share any farm-
year-season;*: Significant difference at α = 0.05 

At foundation, lines V, H and LP showed superiority over line A (Table 3. 3), 

which could be simply explained by the criteria used for their foundations. 

Lines V, H and LP were created by mating does and bucks of different origins 

from populations that had been subjected previously to selection for 

prolificacy. Line A was created by mating does and bucks of the New Zealand 

White breed (obtained from several commercial populations) that primarily 

maintained the standards of the breed more than selective improvement for 

productivity. In crossbreeding experiments in which direct genetic effects 

oflines were estimated for litter size traits, Orengo et al. (2003) showed 
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superiority of line V over line A, and Baselga et al. (2003) also confirmed this 

superiority; however, the last authors did not find significant differences 

between line H and lines V and A.  

Significant differences between lines for kindling interval were observed in 

all line comparisons, except between line A and V. The largest difference was 

3.30 d for the comparison between line V and H, in favour of line H. More 

important differences were reported by Baselga et al. (2003) of 7.4 d in the 

comparison between the line A and V, and 6.5 d between line A and H, in 

favour of lines V and H, although the difference between line H and V was not 

significant (0.81 d). Cifre et al. (1998) did not finda significant difference in 

kindling interval between V line and H line of 1.02 d. 

3.4.3 Contrasts between lines at fixed locations and times 

Table 3. 4 presents the comparisons between the A, V and H lines for litter 

size traits and kindling interval from March 1997 to August 1998. Table 3. 5 

shows the same contrasts between the A, V and LP lines, but from September 

2007 to February 2009. 

Table 3. 4The observed (Obs) and expected (Exp) contrasts between the lines 
A, V and H in terms of litter size traits (rabbits/litter) and kindling 
interval (days) from March 1997 to August 1998. 

*: Significant difference at α = 0.05 

For the first period, the observed differences for litter size traits showed a 

clear pattern. Lines V and H showed superiority over line A, but did not show 

significant differences between them, which is contrary to results obtained by 

Cifre et al. (1998) who found a higher litter size for line H. Observed contrasts 

of lines V and H to line A were all significant over the average of line A with 

differences of 1.56 total born, 1.36 born alive, 0.61 weaned, and 1.15 

Trait Obs A - V 
Exp  
A - V 

Obs A - H 
Exp 

 A - H 
Obs V - H 

Exp  
V - H 

Total born -1.64±0.20* -1.51 -1.49±0.18* -1.49 0.15±0.21 0.02 

Number born alive -1.47±0.20* -1.45 -1.26±0.18* -1.27 0.20±0.21 0.18 

Number weaned -0.54±0.18* -0.51 -0.68±0.16* -0.59 -0.14±0.18 -0.08 

Number marketed -1.07±0.19* -0.90 -1.23±0.17* -1.02 -0.27±0.19 -0.12 

Kindling interval -3.32±0.63* -2.55 1.30±0.74 0.82 4.62±0.70* 3.37 
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marketed, which were consistently less than the other two lines. For kindling 

interval, the highest value was for the line V, being significantly different from 

lines A and H. The observed contrast between the latter two lines was non-

significant and the average difference of these lines to the line V was 3.97 d, 

which is 8.1% higher of the normal kindling interval of 49 d. 

The expected differences between A, V and H lines from March 1997 to 

August 1998 also appear in Table 3. 4, which shows values that are similar to 

the observed differences. This similarity possibly indicates the 

appropriateness of the models used to analyse the traits. 

The observed differences from September 2007 to February 2009 (Table 3. 

5), between lines A, V and LP show a very different picture than between lines 

A and V to the period from March 1997 to August 1998(Table 3. 4). The 

superiority exhibited by line V compared to line A was severely reduced for all 

litter size traits. The difference of 1.64 total born rabbits was reduced to 0.48, 

which was still significant, but the differences for number born alive, number 

marketed and kindling interval were very low. 

The contrasts, between the line LP and the lines V and A, were not 

significant for any trait. Overall, it appears that lines A, V and LP showed 

similar present performances levels for reproduction traits. If the absolute 

values of the analysed traits were taken into account, the more important 

result would be the major improvement achieved in line A.  

Table 3. 5The observed (Obs) and expected (Exp) contrasts between lines A, V 
and LP in terms of litter size traits (rabbits/litter) and kindling 
interval (days) from September 2007 to February 2009. 

*: significant difference at α = 0.05 

Trait Obs A - V 
Exp 
A - V 

Obs A - LP 
Exp 

A - LP 
Obs V - LP 

Exp 
V - LP 

Total born -0.48±0.17* -0.49 -0.21±0.16 -0.20 0.27±0.16 0.29 

Number born alive -0.15±0.18 -0.10 -0.24±0.17 -0.15 -0.10±0.17 -0.05 

Number weaned -0.04±0.15 -0.03 -0.03±0.13 0.02 0.01±0.13 0.04 

Number marketed -0.22±0.15 -0.20 -0.24±0.13 -0.21 -0.02±0.13 -0.01 

Kindling interval 0.56±0.71 0.79 0.69±0.70 2.34 0.13±0.65 1.55 
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Comparing the observed and expected differences (Table 3. 5) for this 

period, the same similarity, between both types of comparisons, was again 

observed. This similarity was strong for litter size traits, but for kindling 

interval was less, particularly between lines A and LP and between lines V and 

LP. 

3.5 Conclusions 

The current differences between the performances of the lines were lower 

than the differences at their origin. Reproductive performances of the four 

maternal lines (A, V, H and LP) were high and they appeared to be a priori as 

competitive lines to produce commercial crossbred does. 

Important differences were detected between the lines at their origin, 

which can be explained based on the selection criteria used at the time of their 

foundation. Differences were also affected by interactions between farm-year-

season and lines. 

Strong agreement has been observed between the observed differences of 

the lines at fixed times and the expected differences that account for selection 

and the models used, especially for litter size traits, which served as an 

indicator of the appropriateness of these models. 
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Chapter 4 

Effective population size and inbreeding depression on 

litter size in rabbits. A case study 

4.1 Abstract 

he purpose of this study is to use demographic and litter size data of 

four Spanish maternal lines of rabbits (A, V, H and LP), as a case study, 

in order to: i) estimate the effective population size of the lines, as a measure 

of the rate of increase of inbreeding and ii) study if the inbreeding effect on 

litter size traits depends on the pattern of its accumulation over time. The lines 

are being selected for litter size at weaning, kept closed at the same nucleus of 

selection under the same program of selection and management. The study 

considered 41, 36, 10 and 6 generations of the respective lines, 47,794 litters 

and a pedigree of 14,622 animals. 

Some practices in mating and selection management, such as avoiding the 

matings between animals sharing grandparents and making that each sire 

contributed with a son to the next generation,allow an increase of the 

inbreeding coefficient lower than 0.01 per generation in these lines of around 

25 males and 125 females. The effective population size (Ne) for them was 

around 57.3, showing that the effect of selection, increasing the inbreeding has 

been counterbalanced by the management practices, trying to reduce the rate 

of inbreeding increase. 

The inbreeding of each individual was partitioned in three components: old 

inbreeding (inbreeding accumulated between the foundation of the line and 

generation 15th for animals born after generation 30th), intermediate 

T 
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(inbreeding accumulated between generations 15th to 30th for animals born 

after generation 30th or the inbreeding accumulated in the first 15generation 

for animals born before generation 30th) and new (the rest of situations).  

The coefficients of regression of the old, intermediate and new inbreeding 

on total born (TB), number born alive (NBA) and number weaned (NW) per 

litter, showed a decreasing trend from positive to negative values. Regression 

coefficients significantly different from zero were the ones for the old 

inbreeding on TB (6.79±2.37) and NBA (5.92±2.37). The contrast between the 

coefficients of regression between the old and new inbreeding were significant 

for the three litter size traits: 7.57±1.72 for TB; 6.66±1.73 for NBA and 

5.13±1.67 for NW. These results have been interpreted as the combined action 

of the purging of unfavourable genes and artificial selection favoured by the 

inbreeding along the generations of selection through the increase 

thefrequency of homozygotes.  

Key words: inbreeding,litter size, new inbreeding, old inbreeding, purging, 

selection.  

4.2 Introduction 

The rabbit lines used in crossbreeding schemes for meat production are 

small and closed populations submitted to within line selection for generations 

(Garreau et al., 2004; Baselga, 2004). Due to their finite population size and 

selection, the inbreeding accumulates along the generations and it is common 

to take measures to reduce its rate of increase. Inbreeding is the result of 

mating between relatives and implies an increase of expected homozygosis 

within the populations (Falconer and Mackay, 1996). Inbreeding negatively 

affects the means of the traits and an increased risk to a breeding program in 

terms of the variance of genetic gain (Meuwissen, 1991).  

It is known that time and selection, natural or artificial, can diminish the 

depressive effect of the inbreeding, due to a reduction of the frequency of 
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unfavorable alleles, genetic purging, and the consequent reduction of the 

genetic load (Templeton and Read, 1984; Lacy and Ballou, 1998).   

In previous studies, estimating the rate of genetic purging, it was observed 

that inbreeding depression was reduced after long time and this reduction was 

constant, i.e. it depends more on inbreeding recently generated than on old 

accumulated inbreeding (Parland et al., 2009; Gulisija and Crow, 2007; Hinrichs 

et al., 2007). The new inbreeding could take into account the impact of newly 

arisen mutations, whereas old unfavorable alleles could have diminished their 

frequency and, sometimes, left the population.  

In Spain there are several maternal lines of rabbits (Ragab and Baselga, 

2011), founded between 1980 and 2004, some of them with a long history of 

selection for litter size at weaning, housed together in the same nucleus and 

submitted to the same program of selection and management. They are 

material of interest to analyze, as a case study, the effect of the measures that 

intend to control the inbreeding increase rate and the different effect of the 

inbreeding on the litter size traits, depending on the time of its production, old 

or recent. Consequently, the purpose of this article is to use pedigree and litter 

size data of those lines in order to study several items related to inbreeding: i) 

estimate the effective population size of the lines, as a measure of the rate of 

increase of inbreeding and ii) study if the inbreeding effect on litter size traits 

depends on the pattern of its accumulation over time.  

4.3 Materials and Methods 

4.3.1 Animals and traits 

The animals in the present study were from four maternal lines of rabbits 

(A, V, H and LP) selected for litter size at weaning. The analysis included data 

from the 1st generation of selection to the generation 41st in A line, 37th in V 

line, 10th in H line and 6th in LP line. All lines were kept closed since its 

foundation.  
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Line A was founded in 1980 sampling New Zealand White (NZW) rabbits 

and has been selected using a family index (Estany et al., 1989). Line V was 

founded in 1982 as a synthetic line of four specialised maternal lines. This line 

has been selected using BLUP under an animal-repeatability model (Estany et 

al., 1989), as the lines H and LP. Line H was founded applying a hyperprolific 

selection scheme (Cifre et al., 1998). The LP line was founded by selecting 

females from commercial farms that showed extremely high productive lives 

with prolificacy near or above the average of the Spanish commercial rabbit 

population (Sánchez et al., 2008). Selection was done in non-overlapping 

generations and the does for the next generation were selected from the best 

evaluated matings. It was tried to avoid the mating between close relatives, i.e. 

mates could not have common grandparents. The bucks were selected within 

sire from its best mating, trying that each sire contributed with a son to the 

next generation.  

The litter traits studied were: total born (TB), number born alive (NBA) and 

number at weaning (NW, 28 d).  

4.3.2 Inbreeding computation 

Inbreeding (
t

uF ) for an animal born in generation u, taking as base 

generation the generation t (t<u), was computed using a modified version of 

the recursive algorithm proposed by Aguilar and Misztal (2008). The 

modification consists in saving those relationship coefficients that are 

computed when obtaining each inbreeding coefficient, thus no recalculation 

are needed and the method can be better applied to deep pedigrees. When t=0 

the inbreeding computed is the total inbreeding accumulated in the animal 

from the foundation of the line (F). 

4.3.3 Partition of inbreeding (old, intermediate and new) 

First we define 
t

uF as the inbreeding of an animal pertaining to generation u, 

when the generation t is considered as the base generation (t<u).For an animal 

pertaining to generation u and given two generations, t1 and t2, such that 
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0<t1<t2<u, we are going to decompose
0

uF into three components: the inbreeding 

accumulated until generation t1 ( 0

1,0 tF ), the inbreeding accumulated from t1 to t2 (

0

2,1 ttF ) and the inbreeding accumulated from t2 to u ( 0

,2 utF ). These components can 

be computed using the equation for inbreeding in hierarchically structured 

populations (Wright, 1922), for i=1, 2: 
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The last formula shows how 
ti

uF  is scaled by the factor )1( 0

,0 tiF  to give 0

,utiF  

 Correspondingly, the part of 
0

uF accumulated between generations t1 and 

t2, will be, 

0

1,0

0

2,0

0

,2

0
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0

2,1 ttututtt FFFFF   

For an animal born after generation t2, 0

1,0 tF , 0

2,1 ttF  and 0

,2 utF  were computed. 

To simplify notation they will be named, oldF , intF and newF , respectively. For an 

animal born between generations t1 and t2 only intF  and newF can be computed, 

as 0

1,0 tF  and 0

,1 utF , and oldF  is set to 0. For an animal born before generation 

t1only newF  was computed, as
0

uF
, and oldF , intF set to 0.The analysis shown in 

this article, corresponds to t1=15 and t2=30. 

4.3.4 Effective population size 

Naming 



F uthe average of inbreeding of the individuals of the last generation 

of a line, and 
eN  the effective population size of the line from foundation to the 

current generation (u), the formula that relates both is, 

u

e

u
N

F 









2

1
11 , this formula can be used to compute

eN , (Crow and 

Kimura, 1970). 
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Along generations, the number of males (
miN , for generation i) and females 

( fiN , for generation i) effectively contributing progeny to the next generation 

was known and we could compute an equivalent population size, as if this 

number would be constant and no selection, random mating and equal 

probability of giving progeny to the next generation had performed. This 

equivalent population size was named
ecN , this number was computed for the 

period from the foundation of each line to the last generation considered, as 

follows: 





u

i eiec NuN 1

111
 , being

fimiei NNN 4

1

4

11
 , (Crow and Kimura, 1970) 

A comparison between
eN  (computed from the observed inbreeding 

coefficients) and 
ecN (computed from the number of sires and dams) was 

made to discuss the importance of the hypothesis assumed when computing

ecN .  

4.3.5 The effect of old, intermediate and new inbreeding on litter traits. 

The model used for the trait t (t= TB, NBA, NW) was: 

                                                                 

                

where,         is the  record of the trait   corresponding to the doe  , nested 

within the line  , obtained at physiological state  , year season   ;      is the 

fixed effect of the physiological state of the doe (5 levels, depending on the 

parity order and lactation state at the moment of positive insemination: 1 for 

nulliparous, 2 (4) for primiparous lactating (no lactating), 3 (5) for 

multiparous lactating (no lactating) does,);     is the fixed effect of the line (4 

levels);       is the fixed effect of the year-season-line combination;   , 

  and  are regression coefficients of old (    ), intermediate (    ) and new 

inbreeding coefficients (    ),respectively;      (    ) is a random effect of the 

additive genetic value (permanent environmental effect) of the doe and         

is the residual. In order to take into account the effect of selection for NW and 

avoid biased estimates (Sorensen and Johansson, 1992), two-trait models, 
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including NW, were used for the analysis of TB and NBA. The models were 

solved using variance components obtained by Ragab and Baselga (2011) for 

the same set of data. Contrast between the coefficients of regression of the old, 

intermediate and new inbreeding were performed and significance was 

claimed at a first type error,  =0.05. 

A total of 47,794 parities were analysed (16,979, 21,640, 4,143 and 5,032 

parities for A, V, H and LP, respectively). The pedigree file included 14,622 

individuals. All analyses were undertaken using blupf90 family program (Misztal 

et al., 2002). 

4.4 Results and discussion 

4.4.1 The effective population size. 

The last generation considered for A,V, H and LP lines was, respectively, 

the41st, 36th, 10th and 6th, and the average inbreeding reached in these 

generations was 0.31, 0.26, 0.08 and 0.04. Figure 1 shows the pattern of 

inbreeding accumulation along generations. The computations of effective 

population size have been done, exclusively for the first three lines, because 

the number of generations of line LP is too small. It must be taken into account 

that the effect of avoiding the mating between animals sharing grandparents is 

that the inbreeding is 0 for all animals of the first four generations, and in line 

LP the last generation is the sixth. 

The resulting values of 
eN  were: 53 animals for line A, 58 animals for line V 

and 54 animals for line H. The corresponding values for 
ecN were: 59 animals 

for line A, 60 animals for line V and 58 animals for line H. Figure 2 presents the 

values of 
eiN , computed from the number of sires and dams which 

contributed progeny to the next generation for each line, that were used for 

computing
ecN . 
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Figure 4. 1The pattern of inbreeding accumulation (F) along generations for 
each line. 

 

 

Figure 4. 2The value of 
eiN , computed from the number of sires and dams 

with contributed progeny, for line and generation. 
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eN  values, because 

the assumptions made to compute 
ecN are, actually, not met. However, they 
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values, due to the effect of selection, equal probability contribution and 

random mating compensate between them. Thus, no considering selection 

when computing 
ecN  would mean that the expected value of 

ecN  should be 

higher than eN because the selection effect leads to increase the inbreeding, 

reducing the effective population size (Wray and Thompson, 1990). However, 

the animals actually contributing to the progeny of the next generation have a 

contribution more similar than if the assumption of equal probability would be 

met, particularly in the via sire to son where is forced that each sire contribute 

with a son to the next generation. The consequence is that 
ecN should be lower 

than eN  (Caballero, 1994). Finally, the mating management for avoiding 

mating of animals sharing grandparents would have the effect of reducing the 

increase of inbreeding compared to random mating and consequently it would 

be expected an 
ecN lower than eN . The summary is that the selection effects to 

increase inbreeding are counterbalanced by the opposite effects of avoiding 

matings between close relatives and the similarity of contributions to the next 

generation of the animals that actually contribute. 

4.4.2 The effect of the old, intermediate and new inbreeding. 

In this section the interest is to differentiate the effects of the old (Fold), 

intermediate (Fint) and new (Fnew) inbreeding on litter size traits. A colinearity 

between them will prevent this differentiation, but the correlations computed 

between them are negligible between new and intermediate inbreeding (0.08) 

and between old and intermediate inbreeding (0.13) and weak between new 

and old inbreeding (0.29) in absolute value. It means that the effects estimated 

for each type of inbreeding will have low error covariances between them and 

could be really attributed to the corresponding type.Table 4. 1 shows the 

estimated regression coefficients for Fold, Fint and Fnewas well as their contrasts. 

Both old and intermediate inbreeding had positive estimates on all litter size 

traits, being only significant the effect of old inbreeding on the total born and 

number born alive. A decreasing trend, from positive to negative values, can be 

noted in the regression coefficients from the old to the new inbreeding. The 
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effect of new inbreeding was always negative, but it has not been possible to 

prove that is significantly different of zero due to the high standard errors of 

the estimates. 

In general, the contrasts between old and the other types of inbreeding 

were positive and significant favouring old inbreeding, while the contrasts 

between intermediate and new inbreeding were positive but non-significant. 

Table 4. 1Regression coefficients of old (Fold), intermediate (Fint) and new (Fnew) 
inbreeding on litter size traits (kids) and their contrasts. 

Inbreeding type Total born Number born alive Number weaned 

Fold 6.79±2.37* 5.92±2.37* 3.70±2.25 

Fint 1.51±2.45 0.92±2.45 2.17±2.37 

Fnew -0.78±1.85 -0.73±1.85 -1.43±1.75 

Foldvs Fint 5.28±1.79* 4.99±1.79* 1.53±1.73 

Foldvs Fnew 7.57±1.72* 6.66±1.73* 5.13±1.67* 

Fintvs Fnew 2.28±2.03 1.66±2.03 3.60±2.02 

*: Significant difference at α = 0.05 

Similar results were found in mice by Hinrichs et al. (2007) and in Irish 

Holstein-Friesians by Parland et al. (2009). They found that new inbreeding is 

the major responsible of inbreeding depression. 

The positive estimates obtained for the regression coefficients of the old 

inbreeding and its evolution to negative values for the corresponding 

estimates of the new inbreeding can be explained invoking the purging of the 

worst alleles affecting the litter size traits potentiated by the artificial selection 

for litter size at weaning.Under directional dominance, but non over-

dominance, the genetic values of the heterozygotes are between the values of 

the homozygotes and over their mean.The process of accumulating inbreeding 

for a long number of generations increases the frequency of homozygotes. If 

they correspond to undesirable alleles it gives opportunities for purging 

(Gulisija and Crow, 2007), while if the homozygotes are of favourable alleles, 

natural and artificial selection will favour their transmission to the next 

generation, increasing the averages of the traits in both cases. Thus this 

process could convert the old inbreeding in beneficial, explaining the positive 
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values of the coefficient of regression on old inbreeding, the negative values 

for the new inbreeding and the intermediate values for the intermediate 

inbreeding. In the analysis of Hinrichs et al. (2007) in mice, the regression 

coefficients on new inbreeding were always negative but for old inbreeding 

became positive when the number of generations associated to old inbreeding 

were the generations before the last 20. 

Ferraz et al. (1991) and Moura et al. (2000) in rabbits have previously 

estimated negative effects of inbreeding on prolificacy traits that could be 

compared to the regressions coefficients for new inbreeding obtained in this 

study. Moura et al. (2000) estimated a reduction of 0.81 and 0.59 rabbits per 

litter at birth and at weaning, respectively, caused by an increase of 0.1 in the 

inbreeding of the doe, and Ferraz et al. (1991) found a drop of 1.4 weaned 

rabbits per litter when the inbreeding coefficient increases the same 

magnitude; this effect was 26% of the mean of the trait. These effects are 

considerably higher than the ones reported in this study. Values of inbreeding 

depression of this magnitude had masked the response to selection estimated 

in the lines V and A, response that had proved (García and Baselga, 2002a, b). 

Similarly, when crossbred does between different generations of line A and V 

were compared (Costa et al., 2004; Quevedo et al., 2005), the differences were, 

only, a little higher than expected from the intra-line response to selection. 

This result was explained by the recovery of the inbreeding depression in the 

crossbred does. All these results seem to show that in the lines studied here 

the depressing effect of the new inbreeding is lower than in the populations 

studied by Ferraz et al. (1991) and Moura et al. (2000). 

4.5 Conclusions 

The effects of selection to increase inbreeding can be counterbalanced by 

the opposite effects of avoiding matings between close relatives and the 

similarity of contributions to the next generation of the animals that actually 

contribute.  
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The effects of old, intermediate and new inbreeding on litter size traits 

change from positive, for old inbreeding, to negative for new inbreeding and 

values in between them for intermediate inbreeding, due to a combined result 

of the purging of unfavourable genes and artificial selection. 
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Chapter 5 

Litter size components in a diallel cross of four 

maternal lines of rabbits 

5.1 Abstract 

crossbreeding experiment between four maternal lines of rabbits was 

carried out to estimate crossbreeding effects on litter size 

components. The experiment was designed as a complete diallel cross 

involving four lines selected for litter size at weaning (A, V, H and LP) and their 

twelve simple crosses. Does from these sixteen genetic groups were 

distributed in four Spanish farms but only V line was present in all farms 

allowing the connectivity of the data. A total of 2,025 does in the third, fourth 

or fifth gestations, were subjected to laparoscopy. The recorded traits were 

ovulation rate (OR), number of implanted embryos (IE), total born (TB), 

embryo survival (ES), foetal survival (FS) and prenatal survival (PS). 

Components of variance were estimated using an animal model with a REML 

procedure. The differences in direct genetic effects, maternal genetic effects 

and individual heterosis between the lines were estimated according to 

Dickerson model after solving the appropriate animal model conditioned on 

the REML variance components. 

It should be noted the high values obtained for the mean of all traits 

compared to the ones obtained in previous studies. The differences between 

the performances of the line groups were important. Although line A showed 

lower OR than the other lines, differences in OR and IE between genotypes 

were not significant. Differences between A line and the other lines were 

relevant for TB, (more than 1 kid).  

A 
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Regarding differences between crossbred groups and V line, only significant 

differences were observed in favour of HV with respect to V line for OR (1.03 

ova) and in favour of AH for IE (1.07 embryos). 

Regarding TB, the obtained differences were important in two cases: 

favourable in the case of AH and unfavourable in the case of LV (-1.33 rabbits). 

Important and significant reciprocal effects were found in some cases, 

especially for OR in the crosses AL and LA (-2.00 ova) and in the crosses AV 

and VA for TB (-1.75 kids). Regarding direct genetic effects line LP presented 

higher estimates than the other lines, but being only significantly different 

with A line (2.01 ova for OR and 2.13 kits for TB).The maternal effects were 

significant only for some contrasts in OR and revealed that the LP line was 

inferior to the others (1.25 ova respect to the A line, 1.01 respect to the H line 

and 0.91 respect to the V line). High positive values for heterosis effect were 

found between lines A and H (1.16 ova for OR, 1.46 embryos for IE and 1.44 

kids for TB). The cross between lines LP and V had a negative heterosis for all 

traits with a high value for TB (-1.70 kids). 

Key words: crossbreeding components, maternal lines, ovulation rate, litter 

size, rabbits, prenatal survival. 

5.2 Introduction 

Litter size is a very important trait in maternal lines of rabbits (García-

Ximenez et al., 1996; Gómez et al., 1996) and, consequently, the study of its 

components has interest in order have a better understanding of the nature of 

the genetic control of litter size. Litter size is limited by the number of ova 

produced and depends on fertilization rate, and pre- and post-implantation 

embryonic mortality. Prenatal mortality is around 30 % in rabbits (García and 

Baselga, 2002; Mocé et al., 2010). Several studies have been carried out in 

order to interpret the observed heterosis in litter size traits in prolific 

mammals which could be a consequence of the superiority of the crossbreds in 

ovulation rate or in embryo survival, or both (Bradford and Nott, 1969). Some 
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crossbreeding studies have considered litter size, but few of them have dealt 

with its components. 

In rabbits, Hulot and Matheron (1979) detected positive and significant 

heterosis ranged from 6.7 to 13.8% andfrom10.6 to 

19.4%for ovulation rateand prenatal survival, respectively. In another study, 

Brun et al. (1992) observedfrom 4.4 to 7.4%positive andin some cases 

significant heterosis for ovulation rateand 6.3% for prenatal survival,whereas 

this was not foundfor ovulation rate in pigs (Bidanel et al., 1990 and Galvin et 

al., 1993). Additionally, Haley and Lee (1990) concluded that the high level of 

prenatal survival at a given ovulation rate was mainly controlled by maternal 

genes whereas the embryo has little influence. In mice, Falconer and Roberts 

(1960) found directional dominance of genes affecting ovulation rate and pre-

implantation losses when they crossed inbred lines. However, post-

implantation losses were mainly affected by the additive effect of the genes. 

Davis and Lamberson (1991) reported that the genetic group significantly 

affectedthe ovulation rate and the total number of foetuses, but not the total 

number of implantations. 

The main objective of this study was to analyse the litter size components in 

a diallel cross between four maternal lines that allows the comparison 

between the lines and their simple crosses, as well as to estimate the direct 

and maternal effects associated to the lines, and the heterosis associated to the 

crosses. 

5.3 Materials and Methods 

5.3.1 Animals and Management 

 A complete diallel cross involving four maternal lines of rabbits: A, V, H and 

LP, selected for litter size at weaning was carried out. Their current generation 

of selection was 41st, 37th, 20th and 7th, respectively (see details of the lines in 

section 1. 10). Data were collected from January 2009 to October 2011.  

The experimental work was carried out in four Spanish farms with a total of 

2,260 cages available for breeding animals. The farms were located in León 
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(farm 1, 800 does), Castellón (farm 2, 800 does), Tarragona (farm 3, 300 does) 

and finally the farm of Universidad Politécnica de Valencia (UPV) (farm 4, 360 

does). The genetic groups involved in the experiment were the 4 lines (AA, VV, 

HH and LL) and the 12 single crosses (AV, VA, AH, HA, AL, LA, VH, HV, VL, LV, 

HL and LH). Notice that first letter refers to the sire line and the second to the 

dam line and L is used to identify the LP line. All the crossbreds and V line 

animals were raised in farms 1 and 2; females of the groups VV and HH were 

raised in the farm 3 and VV, AA and LL animals were raised in farm 4. The 

group VV was used as the reference line because it was present in all the 

farms, allowing the connectivity of the data among farms, assuming no 

interaction between farm and line. 

 Management of the animals slightly differed across farms. In farm 1 and 2, 

the mating was performed every 42 days, whereas in farms 3 and 4 weekly 

mating was performed. In all farms, the first mating was around 18 weeks of 

age for males and females. Natural mating was used in farm 3 and 4 while 

artificial insemination was conducted in farms 1 and 2. The does were served 

10-12 days post-kindling and a pregnancy test was carried out by abdominal 

palpation on day 12 after mating. In farm 1 and 2, does were inseminated with 

semen coming from a paternal line (10-20x106 spermatozoa per dose) with a 

prior injection of gonadotropin to induce the ovulation (20 U.I.).The semen 

was collected 16 hours before insemination. 

Rabbits fed ad libitum on a standard commercial pelleted diet. Does were 

under a constant photoperiod of 16: 8 h. 

5.3.2 Traits and Statistical analyses 

The studied traits were ovulation rate (OR; estimated as the number of 

corpus luteum in both ovaries), number of implanted embryos (IE; measured 

as the number of implantation sites), total born (TB; measured as the total 

born per litter), embryo survival (ES; estimated as IE / OR), fetal survival (FS; 

estimated as TB / IE), and prenatal survival (PS; estimated as TB / OR). 

Records were obtained from does in their third or fourth or fifth gestations 

that were subjected to a laparoscopy, only once, 11-12 days after mating 
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following the surgical technique described by Santacreu et al. (1990). The 

laparoscopy was done only one time per doe.Laparoscopic surgery is 

minimally invasive, performed after inflating the abdomen with gas, usually 

carbon dioxide, which creates a space between the wall of the abdomen and 

the organs inside. Using short incisions in the skin, narrow tubes are inserted 

into the abdominal wall so that instruments can be passed through them to 

perform the manoeuvres necessary for the operation. All this is viewed 

directly on a video monitor, which receives its picture from a video camera 

attached to the laparoscope (Figure I. 2). 

All traits were analysed using the following mixed model:  

                                      

where       corresponds to the record of the   doe, obtained at the genetic 

group- farm year season  , parity order   and physiological state  ;       is the 

fixed effect resulting from the combination of the genetic group and farm-year-

season (129 levels: for i= 1, …, 129);    isthe parity order (3 levels : for j = 3, 4 

and 5);    is the effect of lactation state of the doe (2 levels: lactating does and 

not lactating does at mating time : for k = 1 and 2);   is the random additive 

genetic value of the doe at which the observation corresponds ( for l = 1, …, 

2025), and        is the residual. In a previous step, the variance components of 

the random effects were estimated by REML, using the remlf90 program 

(Misztal et al., 2002). Given the previously estimated variance components, the 

model was solved by BLUP, using the blupf90 program (Misztal et al., 2002) to 

obtain the model estimates, as well as their (co)variance matrix and the 

differences between all genetic groups and the VV groups. From these 

contrasts and its variance covariance matrix the differences between direct 

genetic effects of the lines, the differences between maternal genetic effects of 

the lines and the individual heterosis of the crosses were estimated according 

to the model of Dickerson (1969). 
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5.4 Results and Discussion 

Means and standard deviations of the considered traits are presented in 

Table 5. 1. The mean of OR is similar to the values obtained by other authors in 

selection experiments for uterine capacity or for OR (Santacreu et al., 

2005;Ibáñez-Escriche et al., 2006; Laborda et al., 2011, 2012) whereas higher 

means were obtained for the other traits.  

Table 5. 1Descriptive statistics of the experimental data. 
Traits1 N Mean Minimum Maximum SD 

OR1 2024 15.30 6.00 30.00 2.79 

IE1 2024 13.28 1.00 27.00 3.11 

TB1 1856 11.03 1.00 22.00 3.32 

ES1 2024 0.87 0.06 1.00 0.16 

FS1 1856 0.84 0.11 1.00 0.18 

PS1 1856 0.73 0.56 1.00 0.21 

1 OR=ovulation rate; IE=implanted embryos; TB=total born; ES = embryo survival; FS = 
fetal survival; PS= prenatal survival.  

Heritability estimates were 0.24, 0.10, 0.12, 0.07, 0.06 and 0.13 for OR, IE, 

TB, ES, FS and SP, respectively. García and Baselga (2002), Bolet et al. (1994), 

Blasco et al. (1993), Piles et al.(2006) and Laborda et al. (2011, 2012)reported 

similar estimates of heritability for OR, EI, TB, ES and SP. In contrastBlasco et 

al. (1993), Ibáñez et al. (2006) and Laborda et al.(2012) reported higher 

estimates for FS. The heritability of PS was in agreement with the estimates in 

pigs (Johnson et al., 1999; Rosendo et al., 2007) and mice (Clutter et al., 1990). 

The differences between the line groups are given in Table 5. 2. These 

figures show that some differences between lines are important from the view 

point of rabbit production. For example, the differences in TB between A line 

and other lines were more than 1.15 rabbits per litter. Differences in OR and IE 

between lines were not significant. Regarding TB, A line had 1.15, 1.68 and 

1.38 less rabbits than V, LP and H lines, respectively. These differences were 

due to an outbreak of colitis that affected farm 4 from the December 2010 to 

the end of the experiment in October 2011. The sensitivity of the lines to the 

colitis was different; being A line the most affected one. This disease provoked 

a decrease in the fetal survival, a reduction of the number of total born and 
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increased the mortality at birth as well. The differences between lines LP, H 

and V regarding OR, IE and TB, were not significant.  

Regarding the embryo, fetal and prenatal survival, the lines did not show 

significant differences.  

Table 5. 2Contrasts (standard errors) between line groups for litter size 
components. 

 
OR1 IE1 TB1 ES1 FS1 PS1 

AA-HH -1.30(0.76) -0.28(0.87) -1.38(0.97) 0.06(0.05) -0.06(0.06) -0.00(0.06) 

AA-LL -0.80(0.64) -0.69(0.78) -1.68(0.83)* 0.01(0.05) -0.08(0.05) -0.05(0.05) 

AA-VV -1.00(0.57) -0.52(0.67) -1.15(0.76) 0.04(0.04) -0.03(0.05) -0.01(0.04) 

HH-VV 0.29(0.50) -0.23(0.56) 0.24(0.60) -0.02(0.03) 0.03(0.04) 0.01(0.03) 

LL-HH -0.49(0.71) 0.41(0.81) 0.30(0.84) 0.05(0.05) 0.02(0.05) 0.04(0.05) 

LL-VV -0.20(0.51) 0.17(0.59) 0.53(0.60) 0.02(0.04) 0.05(0.04) 0.05(0.04) 

1OR=ovulation rate; IE=implanted embryos; TB=total born; ES = embryo survival; FS = 
foetal survival; PS= prenatal survival; L:LP line; * significant difference (α=0.05). 

The differences between crossbred groups and V line are presented in Table 

5. 3. Concerning OR, only HV showed a significant difference with respect to V 

line. The standard errors of the estimates would permit to detect differences of 

around 6% of the OR mean or higher, but in the majority of the cases they have 

been lower than the 5%. The difference estimated for OR between all 

crossbreds and V line was around 2 % of the mean. Referring IE, difference 

around 9 % of the mean or higher could have been detected as significant. Only 

the group AH showed a significant difference with respect to the V line, and the 

corresponding contrast for all the crossbreds was 3% of the mean.  

Table 5. 3Contrasts (standard errors) between crossbred groups1 and V line. 

 
OR2 IE2 TB2 ES2 FS2 PS2 

AH-VV 0.78(0.45) 1.07*(0.51) 0.91(0.49) 0.02(0.05) 0.01(0.03) 0.04(0.03) 

AL-VV -0.30(0.49) 0.40(0.56) -0.57(0.53) 0.03(0.06) -0.05(0.03) -0.01(0.03) 

AV-VV 0.25(0.40) 0.67(0.47) 0.16(0.45) 0.03(0.04) -0.02(0.03) 0.01(0.03) 

HV-VV 1.03(0.43)* 0.86(0.49) 0.54(0.47) -0.02(0.05) 0.00(0.03) -0.00(0.03) 

LH-VV 0.63(0.40) 0.31(0.44) -0.08(0.46) -0.03(0.05) -0.01(0.03) -0.03(0.03) 

LV-VV -0.44(0.38) -0.37(0.46) -1.38(0.39)* -0.02(0.04) -0.05(0.02)* -0.06*(0.02) 

All-VV 0.32(0.30) 0.49(0.33) -0.07(0.33) 0.00(0.03) -0.02(0.02) -0.01(0.02) 

1 One cross and its reciprocal were considered together. 2OR=ovulation rate; IE=implanted 
embryos; TB=total born; ES = embryo survival; FS = foetal survival; PS= prenatal survival; 
All=Average of all crossbred; L:LP line;  *significant difference (α=0.05). 
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The results regarding to TB showed that the obtained differences with line 

V were significantly unfavourable to LV group. The inferiority of LV was due to 

a significantly lower fetal and prenatal survival. When the average of all 

crossbreds was compared with V line, the magnitude of the contrast was 

always lower than the 3% of the corresponding means and no significant 

differences were found for any of the traits. 

The importance of using a particular line either as sire or dam in a cross 

was assessed by checking the differences between a particular cross and their 

reciprocal. Differences between reciprocal crosses reflect differences in gene 

frequencies between lines for the additive maternal and dominance maternal 

effects (Eisen et al., 1983). Some relevant differences between reciprocal 

crosses were observed (Table 5. 4) but due to the large sampling errors of the 

estimates, few significant differences were found. However, some values are 

important in rabbit production, as it has been commented before.  

For the crosses AL and LA it would be preferable to use the A line as the 

dam because a superiority is shown for OR. The cross VA has got significant 

and better results than its reciprocal in TB and PS. These results are indicators 

that A line can have positive maternal effects. The reciprocal crosses between 

A and H lines did not differ from each other in any of the analysed traits. 

Table 5. 4Contrasts (standard errors) between reciprocal crosses for litter 
size components. 

 
OR1 IE1 TB1 ES1 FS1 PS1 

AH-HA 0.79(0.66) 0.42(0.80) 0.72(0.79) -0.02(0.05) 0.03(0.05) 0.01(0.05) 

AL-LA -2.00(0.71)* -1.33(0.89) -0.33(0.84) 0.02(0.06) 0.03(0.05) 0.06(0.05) 

AV-VA -0.62(0.62) -0.46(0.77) -1.75(0.74)* -0.01(0.05) -0.09(0.05) -0.09*(0.04) 

HV-VH 0.98(0.58) 0.83(0.71) 0.78(0.70) 0.00(0.04) 0.00(0.04) -0.00(0.04) 

LH-HL 1.33(0.51)* 0.60(0.60) 0.84(0.72) -0.03(0.04) 0.02(0.05) 0.01(0.04) 

LV-VL -0.09(0.63) 1.04(0.79) -0.73(0.66) 0.07(0.05) -0.08 (0.04)* -0.01(0.04) 

1 OR = ovulation rate; IE = implanted embryos; TB = total born; ES = embryo survival; FS = 
foetal survival; PS= prenatal survival; L:LP line; *significant difference (α=0.05). 

Regarding the crosses involving lines V and LP, significant differences 

showed that when V line was used as a dam the cross had a high embryo 
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survival but the post-implantation losses were high. According to the 

differences obtained, the LH cross would be preferable to the reciprocal 

because of its relevant advantage on OR. Thus, in these crosses the H line 

should be used as dam line. However, in the crosses LV and VL seems better to 

use the V line as the dam line, as we have commented before. The superiority 

of a cross with respect to its reciprocal suggests the existence of maternal 

genetic effects for the traits showing this difference. 

Table 5. 5 shows the differences between direct genetic effects of the 

lines according to the Dickerson model. In general, there were not significant 

differences in direct genetic effects between H, LP and V lines, and the 

differences actually estimated between the three lines were always lower than 

7 % of the respective means.The results were very different for the 

comparison between the A line and the others, and important differences were 

observed, unfavourable for the A line, almost in all traits. For direct genetic 

effects on TB, Baselga et al. (2003) and Orengo et al. (2003) found significant 

differences in favour of the V line. The last authors also found significant 

differences between H and A line, having a favourable effect of the H line in 

this trait.  

Table 5. 5Contrasts (standard errors) for direct genetic effects (D) between 
lines. 

 
OR1 IE1 TB1 ES1 FS1 PS1 

D:A-H -1.38(0.86) -0.71(1.03) -1.45(1.16) 0.04(0.06) -0.06(0.06) -0.02(0.07) 

D:A-L -2.01(0.78)* -1.75(1.18) -2.13(1.06)* 0.01(0.06) -0.07(0.06) -0.05(0.06) 

D:A-V -1.29(0.73) -0.60(1.01) -1.88(0.99) 0.05(0.05) -0.09(0.05) -0.04(0.06) 

D:H-V 0.09(0.64) 0.11(0.97) -0.43(0.82) 0.01(0.05) -0.03(0.04) -0.02(0.04) 

D:L-H 0.64(0.80) 1.03(0.80) 0.68(1.03) 0.03(0.06) 0.02(0.05) 0.03(0.06) 

D:L-V 0.73(0.66) 1.15(1.06) 0.25(0.83) 0.04(0.05) -0.02(0.04) 0.01(0.05) 

1OR = ovulation rate; IE = implanted embryos; TB = total born; ES = embryo survival; FS = 
foetal survival; PS = prenatal survival; L:LP line;  * significant difference (α=0.05). 

Regarding the maternal genetic effects (Table 5. 6), no significant effects 

were observed for any trait except for OR. This was negative for the LP line 

with respect to any of the other lines. The A line had a favourable maternal 

effect compared with the other lines. In crossing experiments, Baselga et al. 
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(2003) and Orengo et al. (2003) did not obtain any significant maternal genetic 

effect between the lines A, V and H for TB. 

Table 5. 6Contrasts (standard errors) for maternal genetic effects (M) 
between lines. 

 
OR1 IE1 TB1 ES1 FS1 PS1 

M:A-H 0.24(0.46) 0.32(0.49) 0.25(0.60) 0.02(0.03) 0.00(0.03) 0.01(0.03) 

M:A-L 1.25*(0.46) 1.07(0.70) 0.47(0.60) 0.01(0.03) -0.01(0.03) -0.00(0.03) 

M:A-V 0.34(0.45) -0.08(0.67) 0.76(0.58) -0.01(0.03) 0.06(0.03) 0.03(0.03) 

M:H-V 0.10(0.42) -0.34(0.64) 0.51(0.55) -0.03(0.03) 0.05(0.03) 0.03(0.03) 

M:L-H -1.01*(0.41) -0.65(0.62) -0.22(0.56) 0.01(0.03) 0.01(0.03) 0.01(0.03) 

M:L-V -0.91*(0.44) -0.99(0.66) 0.29(0.54) -0.02(0.03) 0.07*(0.03) 0.03(0.03) 

1OR=ovulation rate; IE=implanted embryos; TB=total born; ES = embryo survival; FS = 
foetal survival; PS= prenatal survival; L:LP line;  * significant difference (α=0.05). 

The results indicate that the range of variation of the estimated heterosis 

across the different crosses is relatively wide and includes negative values for 

all traits (Table 5. 7). Expressed as % of the means of the lines involved, they 

ranged between 7.6 and -2.42 % for OR, 11 and -3.46 % for IE, 13.06 and -

15.41 % for TB. Great negative values were observed only in the case of the 

cross between LP and V lines. Favourable individual heterosis with significant 

values were observed between A and H lines. Under the theory of dominance, 

the heterosis is a function of the genetic distance (gene frequency differences) 

between the lines involved in the cross and the dominance parameter 

(Falconer and Mackay, 1996). 

The estimates of the direct heterosis for all traits between the lines H and V 

were non significant and must be noted that the H line was created with 

participation of the V line (Cifre et al., 1998). The same happened for the LP 

line; this line also had influence of the V line in its foundation, but the 

individual heterosis between them was negative and significant for some of 

the analysed traits. It is difficult to find a common explanation for these, 

apparently, contradictory results. There are very few estimates of 

crossbreeding parameters for litter size components in the literature. 

Regarding survival traits, the crosses LH and LV for FS and PS showed 



Litter size components in a diallel cross of four maternal lines  97 

 

 

significant estimates. In these cases the estimates were around 7-10% for FS 

and 8-11 % for PS, always significant and negative. 

Table 5. 7Estimates (standard errors) of the heterosis (H) for the crossbred 
groups. 

 
OR1 IE1 TB1 ES1 FS1 PS1 

H:AH 1.16(0.50)* 1.46(0.60) * 1.44(0.62)* 0.03(0.04) 0.01(0.04) 0.03(0.04) 

H:AL 0.27(0.49) 0.58(0.61) -0.29(0.61) 0.03(0.04) -0.06(0.04) -0.03(0.04) 

H:AV 0.70(0.41) 0.92(0.51) 0.74(0.52) 0.03(0.03) -0.01(0.03) 0.01(0.03) 

H:HV 0.88(0.49) 0.98(0.55) 0.43(0.59) 0.02(0.03) -0.01(0.04) -0.00(0.03) 

H:LH 0.58(0.43) 0.36(0.51) -0.54(0.54) -0.01(0.03) -0.06(0.03)* -0.06(0.03)* 

H:LV -0.37(0.38) -0.46(0.47) -1.70(0.40)* -0.01(0.03) -0.08(0.02)* -0.08(0.02)* 

1 OR=ovulation rate; IE=implanted embryos; TB=total born; ES = embryo survival; FS = fetal survival; 

PS= prenatal survival; L:LP line;  * significant difference (α=0.05). 

In rabbits, Hulot and Matheron (1979) and Brun et al. (1992) detected 

positive and significant heterosis for ovulation rate and prenatal survival. 

Baselga et al. (2003) found a significant heterosis in AH and AV but with 

smaller values than the ones obtained in our study whereas the very low 

heterosis values found in HV were not significant. In another study involving a 

cross between the INRA 2066 and the V lines to form the INRA 2666 line, Brun 

and Baselga (2005) found significant heterosis for TB and NBA with similar 

values to the one obtained by the cross between A and H lines. In mice, 

Falconer and Roberts (1960) and Boshier (1968) performed studies to know 

the results of crossing inbred lines. All results supported the conclusion that 

ovulation rate shows little, if any, heterosis. The last author found a 

considerable degree of heterosis for fetal survival. Only the inbreeding 

experiment reported by McCarthy (1967) showed evidence of dominance in 

genes affecting this trait. In swine, King and Young (1957) suggested a 

considerable degree of dominance for genes affecting ovulation rate, whereas 

Galvin et al. (1993) did not observe individual heterosis for ovulation rate and 

embryo survival. But they concluded that crossbred sows had a very high level 

of fetal survival compared with the purebred females. 
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5.5 Conclusions 

Important differences in components of litter size have been observed in 

simple crosses of different maternal lines, some of them between reciprocal 

crosses, especially for ovulation rate.The lines were very similar in direct 

genetic effects with the only exception of one of them that was clearly inferior. 

The maternal genetic effects were mainly important for ovulation rate, in 

agreement with the results for the reciprocal effects. The heterosis was 

positive for ovulation rate and implanted embryos in most of the crossbred 

groups and more commonly negligible for foetal and prenatal survival. All 

these effects seem more important for ovulation rate than for the embryonic, 

foetal or prenatal survival. 
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Chapter 6 

Reproduction traits in a diallel cross of four maternal 

lines of rabbits 

6.1 Abstract 

 complete diallel cross involving four maternal lines of rabbits, that 

produce sixteen genetic groups, was carried out to evaluate the 

genetic groups and to estimate the crossbreeding genetic parameters of litter 

size (total born (TB), number born alive (NBA) and number weaned(NW)) 

and kindling interval (KI). The experiment was designed involving the A, V, H 

and LP lines, all of them selected for litter size at weaning. A total of 34,546 

parities, distributed between the sixteen genetic types, were analysed. The 

pedigree had 7,111 animals. The sixteen genetic groups were distributed in 

four Spanish farms but only one genetic group (V line) was present in all farms 

in order to connect records among these farms and to be used as reference 

group in the comparison with the other genetic groups. An animal model was 

used to estimate components of variance using a REML procedure. Finally, the 

differences between lines, direct and maternal genetic effects, and individual 

heterosis were estimated according to Dickerson model after solving the 

appropriate animal model conditioned on the REML variance components.  

The obtained differences between the performances of the lines were of low 

magnitude and not significant for litter size traits. The LP line showed the 

shortest KI, having relevant differences with respect to the other lines (5.49, 

5.39 and 2.39 days respect to the lines A, V and H). Also, H line had a shorter KI 

than A and V lines, with differences of 3.10 and 2.99 days with respect to these 

A 
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lines that did not show significant differences between them. These differences 

reflected the differences between direct and maternal genetic effects. 

The crossbred does showed a higher reproductive level than the V line 

which is commonly used in many Spanish farms, as a maternal line to produce 

crossbred does. The differences between the average of all crosses and line V 

were found to be significant and seemed to be important, being 0.46 for TB, 

0.56 for NBA, 0.75 for NW and -2.21 days for KI, indicatingthe importance 

ofthecross between lines for obtaining a high litter size with a short KI. 

In this study, the differences between reciprocal crosses for litter size were 

of low magnitude and non-significant. This result is an indication that the 

maternal effects are not important. 

Only, the LP line presented a higher direct genetic effect than the V line that 

was significant for NBA. The other lines did not show significant differences in 

direct and maternal genetic effects for TB, NBA and NW but there were some 

significant differences for KI which ranged from 1.54 to 6.85 d in direct effects 

and from 0.63 to 3.38 d for maternal effects. 

A positive and, in some cases, relevant heterosis was found in this study. 

The largest heterosis was for TB in the HV cross (1.05 rabbits), followed by the 

AH (0.74 rabbits), AV (0.57 rabbits) and BH (0.55 rabbits) crosses. For NBA, 

significant heterosis was found in HV (1.11 rabbits) and AV (0.49 rabbits) and 

for NW in AV (0.90 rabbits), LH (0.70 rabbits) and LV (0.58 rabbits). 

Favourable and significant heterosis for KI was found in AV (-2.54 d) and LV (-

1.03 d) crosses, whereas it was unfavourable in AL (1.91 d) and in LH (3.60 d). 

Key words: diallel cross, heterosis, kindling interval, litter size, maternal 

lines, rabbits.  

6.2 Introduction 

Litter size is important in the selection programs of rabbit maternal lines 

because its improvement allows producing kits to a lower cost (Armero and 

Blasco (1992). In general, the heritability estimates of litter size are lower than 
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0.15 and its repeatability lower than 0.25 (Mantovani et al., 2008; Piles et al., 

2006). Hence, the expected response to direct selection for this trait is low, but 

the estimated responses have been even lower than expected. The genetic 

trends estimated by mixed model methodology ranged from 0.05 to 0.13 kits 

born alive or weaned per litter and generation (Estany et al., 1989; 

Rochambeau et al., 1994 and Gómez et al., 1996). Using the same methodology, 

García and Baselga (2002a, b) found that the genetic trend was 0.175 and 0.09 

weaned kits per generation in lines A and V, respectively.  

It is important to note that selection in finite populations has cumulated 

effects increasing inbreeding (Verrier et al., 1990; Wray et al., 1990; Wray and 

Thompson, 1990), augmenting the variation between lines and changing the 

gene frequency between populations. Therefore, crossbreeding is one of the 

tools for exploiting genetic variation between populations. Its main purpose is 

to produce superior crosses, taking profit of the direct and maternal genetic 

effects of the lines, the heterosis between them (Long, 1980; Johnson, 1981), 

their complementaryand the break of the accumulated inbreeding during the 

selection of the lines (Baselga, 2004). Previous selection and inbreeding can 

have an effect on the degree of heterosis by changing the gene frequency of the 

genes affecting the trait because the heterosis is positively related to the 

genetic distance between the parental lines (Brun and Baselga, 2005;Xu, 

2003).  

In most studies in rabbits direct heterosis had a positive effect on total born 

and number born alive whereas it was always positive for litter size at 

weaning (Khalil et al., 1995; Brun et al., 1998; Baselga et al., 2003; Orengo et 

al., 2003; Youssef et al., 2008). Negative values were obtained in few studies 

for total born and number born alive (Khalil et al., 1995; Iraqi et al., 2006). 

Many studies did not show maternal heterosis for litter size traits (Baselga et 

al., 2003 and Iraqi et al., 2006) whereas other authors have found positive 

values of this parameter (Nofal et al., 2005; Khalil et al., 2005). 

The aims of the present experiment were to evaluate the genetic types in a 

diallel cross among four maternal lines of rabbits that had been selected for 

litter size at weaning, in order to determine which the best ones are, and to 
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provide estimates of the crossbreeding parameters of the traits associated 

with the reproductive performance of the does. 

6.3 Materials and Methods 

6.3.1 Animals and Management 

A diallel cross involving four maternal lines of rabbits (A, V, H, and LP, 

selected for litter size at weaning and described previously by Ragab and 

Baselga, 2011) was carried out. Their current generation of selection is 41st, 

37th, 20th and 7th, respectively. Data were collected from January 2009 to 

October 2011.  

The experimental work was carried out in 4 Spanish farms with a total of 

2,260 cages available for breeding animals. The total number of data set was 

34,546 parities from 7,111 does distributed between the different farms. The 

farms were located in León (farm 1, 8,984 parities), Castellón (farm 2, 7,844 

parties), Tarragona (farm 3, 9,837 parities) and Valencia, Universidad 

Politécnica de Valencia (UPV) (farm 4, 7,881 parities). The genetic groups 

involved in the experiment were the 4 purebred lines (AA, VV, HH and LL) and 

the 12 single crosses: AV, VA. AH, HA, AL, LA, VH, HV, VL, LV, HL and LH. Notice 

that first letter of the cross names corresponds to the sire line name involved 

in the cross whereasthe second one corresponds to the dam line name, and L is 

used to identify the LP line. 

Farms 1 and 2 raised all the crossbreds and the purebred V animals; the 

farm 3 raised females of the groups VV and HH, and the farm 4 housed VV, AA 

and LL animals. The line V was present in all the farms to connect data 

between farms and to be used as a common reference line. The number of 

parities in every genetic group was 2,293 for AA, 1,272 for AL, 1,110 for AH, 

1,304 for AV, 963 for HA, 4,610 for HH, 1,418 for HL, 1,332 for HV, 1,114 for 

LA, 1,252 for LH, 2,772 for LL, 1,482 for LV, 1,250 for VA, 1,124 for VH, 1,078 

for VL and 10,172 for VV.  



Reproductive traits in a diallel cross of four maternal lines  105 

 

 

Animal management slightly differed across farms. In farm1 and 2 does 

were grouped into a single batch mated every 42 days, while in farms 3 and 4 

does were grouped into 6 batches and weekly matings were practised. In all 

farms, the first mating was around 18 weeks of age for males and females. 

Natural mating was used in farm 3 and 4 while artificial insemination was 

conducted in farms 1 and 2 by using semen from a paternal line (10-20x106 

spermatozoa per dose) with a prior injection of gonadotropin (20 U.I.) to 

induce the ovulation. The semen was collected 16 hours before insemination. 

The does were served 10-12 days post-kindling and a pregnancy test was 

carried out by abdominal palpation on day 12 after mating. Litters were reared 

by their dams during 28 days and no fostering was practised. 

Does were fed ad libitum on a standard commercial pelleted diet and they 

were under a constant photoperiod of 16:8 h. 

6.3.2 Traits and Statistical analyses 

The considered prolificacy traits were total born (TB), number born alive 

(NBA) and litter size at weaning (NW, 28 days). Additionally, a fertility trait 

was studied, which was defined by the kindling interval (number of days 

between two consecutives parities, KI). 

All the prolificacy traits were analysed using the following univariate mixed 

model:  

                                         (Model 1) 

Where       is the record   of the trait being analysed (TB, BA or NBA), 

corresponding to the   doe which was in the physiological status   and belongs 

to the genetic group-farm-year-season combination  ;       is the fixed effect 

of the genetic group-farm-year-season combination   (317 levels);      is the 

fixed effect of the doe physiological state   (5 levels depending on the parity 

order and lactation state at mating, where 1 is for nulliparous does, 2 (4) for 

primiparous lactating (non-lactating), and 3 (5) for multiparous lactating 

(non-lactating));    is the random effect of the additive value of the doe  , 

related across animals through the numerator relationship matrix, A ( 8,205 
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animals);   is the random permanent environmental plus non-additive genetic 

effects of the doe  ; and       is random the residual of the model. 

The analysis of KI was carried out by using the following univariate model: 

                                        (Model 2) 

Where       is the   record corresponding to the   doe which was in parity 

order   and belongs to the genetic group-farm-year-season combination  , 

   is the parity order and the other components of the model were defined as 

in model 1. 

In a previous step, the variance components for the models were estimated 

using the remlf90 program (Misztal et al., 2002). Given the previously 

estimated variance components, models were solved using the blupf90 

program (Misztal et al., 2002) to get the estimates of the differences between 

all the genetic groups and the VV group, as well as the (co)variance matrix 

between these estimates. From these contrasts and their variance covariance 

structure the differences between direct and maternal genetic effects of the 

lines as well as the individual heterosis were estimated by generalized least 

squares according to the Dickerson’s model (Dickerson, 1969). Chi-squared 

tests, assuming as true the provided residual variances, were conducted, 

setting the type I error at 0.05. 

6.4 Results and Discussions 

Table 6. 1 shows raw means and standard deviations for the traits 

measured in this study. Notice the high prolificacy showed by all the genetic 

groups. The values of TB, NBA and NW traits are in agreement or they are 

slightly higher than other values previously reported by other authors in 

rabbit maternal lines (García and Baselga 2002a, b; Costa et al., 2004; 

Theilgaard et al., 2007; Al-Saef et al., 2008; Sánchez et al., 2008; Ragab and 

Baselga, 2011). 
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Table 6. 1 Descriptive statistics of the experimental data. 

 Number Mean Minimum Maximum SD 

Total born 34,546 10.54 1 24 3.33 

Number born alive 34,546 9.79 0 21 3.43 

Number weaned 34,546 7.97 0 20 3.42 

Kindling interval 27,449 49.91 36 169 13.7 

SD: standard deviation  

The heritability estimates were rather low and tended to decrease from 

birth to weaning. The estimated heritability (repeatability in brackets) was 

0.07 (0.18), 0.06 (0.18), 0.03 (0.12) and 0.03 (0.08) for TB, NBA, NW and KI, 

respectively. There is a wide range of heritability estimates of litter size traits 

reported in previous studies; however, some authors have found similar 

estimates to the ones here presented (Ferraz and Eler, 1996; Baselga et al., 

2003; Piles et al., 2006; Mantovani et al., 2008). It must be noted that in our 

case we deal with purebred and crossbred populations, and these estimated 

heritabilities must be understood as a balance of the additive gene effects in 

different genetic frameworks, such as the genetic types considered in this 

work. 

The differences between the performances of the genetic groups 

corresponding to the purebred does can be observed in Table 6. 2. These 

contrasts involve direct and maternal genetic effects. We did not find 

significant differences between the lines for all the litter size traits, but 

significant differences were found for KI. The LP line had the shortest KI, 

whereas the largest KI were observed in A and V lines. Differences of around 

5.4 days (10.82% of the mean) were observed between these two lines and the 

LP line. The KI differences of A and V with respect to H animals were around 3 

days (6.01%).  

It seems that lines show similar performances in prolificacy traits. This 

could be understood as consequence of a successful selection process for litter 

size at weaning, particularly for the A line. The lack of differences between 

lines agree with previous results reported by Ragab and Baselga (2011) and it 

is contrary to results obtained by Orengo et al. (2003) who showed superiority 

of line V over line A. Baselga et al. (2003) also confirmed this superiority. 
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However, the last authors did not find significant differences between line H 

and lines V and A. Sánchez et al. (2008) found that the average differences 

between LP and V lines for TB, NBA and NW favour the V line but with low 

probabilities (0.20) of these contrasts of being greater than 0.Similar results 

were found by Ragab and Baselga (2011). 

Table 6. 2Contrasts (standard error) between the genetic groups of the lines 
for litter size traits (rabbits) and kindling interval (days). 

 Total born Born alive Number weaned Kindling interval 

AA-LL  -0.37(0.29) -0.38(0.29) -0.21(0.24) 5.49(0.75)* 

AA-HH  -0.16(0.37) -0.20(0.37) -0.06(0.31) 3.10(1.15)* 

AA-VV -0.16(0.27) -0.16(0.27) 0.23(0.22) 0.10(0.75) 

LL-HH  0.21(0.37) 0.19(0.37) 0.15(0.31) -2.39(1.10)* 

LL-VV 0.21(0.26) 0.22(0.26) 0.44(0.22) -5.39(0.66)* 

HH-VV  0.00(0.26) 0.05(0.26) 0.29(0.22) -2.99(0.88)* 

L:LP line; *: significant difference at α = 0.05  

In general, favourable and important differences for all traits were found 

between crossbred does and V line (Table 6. 3)which is the most widely used 

line to produce crossbred does in Spain and many countries (Garrue et al., 

2004). These differences were found to be positive and significant for TB (AH, 

HV and LH), for NBA (AH, HV, AV and LH) and for NW (AH, AL, AV, LH and LV).  

Table 6. 3Contrasts (standard error) between crossbred groups1 and V line 
for litter size traits (rabbits) and kindling interval (days). 

 Total born Born alive Number weaned Kindling interval 

AH-VV 0.65(0.30)* 0.66(0.32)* 0.68(0.28)* -2.83(0.99)* 

AL-VV -0.21(0.30) 0.02(0.31) 0.53(0.27)* -0.88(0.77) 

AV-VV 0.44(0.24) 0.51(0.26)* 0.96(0.23)* -2.31(0.65)* 

HV-VV 1.04(0.31)* 1.10(0.33)* 0.49(0.29) -2.84(0.91)* 

LH-VV 0.65(0.29)* 0.79(0.31)* 1.06(0.27)* -0.66(0.74) 

LV-VV 0.12(0.24) 0.31(0.26) 0.81(0.23)* -3.80(0.61)* 

All-VV 0.46(0.23)* 0.56(0.24)* 0.75(0.21)* -2.21(0.60)* 

1. One cross and its reciprocal are considered together;All-VV: the contrast between all 
crossbred and V line; *: L:LP line; significant difference at α = 0.05.  

The magnitude of the differences was particularly important for the case of 

NW, which is the selection criterion of these lines. This trait has a genetic 

determinism close to the one of litter size at marketing and reflects, indirectly, 

the milk yield and maternal ability of the does (Ragab and Baselga, 2011). The 
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magnitude of the differences for NW between the different crosses and VV 

animals ranged between 6.14 % and 13.30 % of the mean of the trait.  

Regarding KI, most crosses had significantly shorter KI than V line and the 

differences were important. The difference between the average of all 

crossbred groups and the V line was significant and favourable to crossbred 

groups for all traits, indicatingthe importance ofthecrossbreeding for having a 

high litter size with a short KI. 

An indicator of the relevance in using a particular line either as sire or dam 

is got by checking the contrast between a particular cross and it’s reciprocal. 

Reciprocal effects reflect differences in gene frequencies between two lines in 

the presence of additive maternal and (or) dominance maternal effects (Eisen 

et al., 1983). Regarding litter size traits, no reciprocal effects were found 

(Table 6. 4) between all genetic groups. For the case of KI some important 

differences between reciprocal crosses were observed. This was the case for 

the crosses involving the lines A and LP, A and H, LP and V, and V and H lines. 

This indicates that the best performance could be achieved under a particular 

reciprocal cross, being that an indicator of maternal effects, as it will be 

discussed later. 

Table 6. 4Contrasts (standard error) between reciprocal crosses for litter size 
traits (rabbits) and kindling interval (days). 

 Total born Born alive Number weaned Kindling interval 

AL-LA 0.44(0.28) 0.27(0.31) 0.22(0.28) 3.78(0.78)* 

AH-HA 0.02(0.37) -0.15(0.40) 0.01(0.36) 4.25(1.54)* 

AV-VA -0.09(0.26) -0.16(0.28) -0.26(0.26) 0.38(0.76) 

LH-HL 0.10(0.35) 0.25(0.37) 0.10(0.33) 0.62(0.84) 

LV-VL 0.39(0.28) 0.24(0.31) 0.19(0.28) 4.11(0.68)* 

HV-VH 0.18(0.36) 0.32(0.39) 0.57(0.36) 2.99(1.30)* 

L:LP line; *: significant difference at α = 0.05.  

Table 6. 5 shows the estimates of the differences between the lines on direct 

and maternal genetic effects and the heterosis of the crosses. In general, no 

significant differences were found for direct and maternal genetic effects for 

litter size. The only significant difference was observed between LP and V lines 

for NBA in direct genetic effect, favouring the L line. The general absence of 

detected differences is an indicator of the similarity between lines for the 



110 Mohamed Ragab 

 

 

 

direct genetic effects and maternal abilities. The differences between maternal 

genetic effects were lower in magnitude compared to those between direct 

genetic effects. Eisen et al. (1983) discussed two possible explanations for this: 

i) maternal genetic effects on litter size may be small compared to direct 

genetic effects; ii), the covariance between direct and maternal genetic effects 

for litter size may not be large enough to shift gene frequencies at loci 

primarily affecting maternal performance. 

The differences between lines for direct genetic effects on KI were 

significant and favouring LP, H and V lines with respect to the A line. Regarding 

maternal effects, the differences between lines could be also said to be 

significant; particularly the A line showed a favourable effect with respect to H, 

V and LP lines, whereas the differences between LP and V lines on this 

parameter favoured LP line. 

Table 6. 5Contrast (standard error) for direct (D) and maternal (M) genetic 
effects. 

L:LP line; *: significant difference at α = 0.05.  

Baselga et al. (2003) found significant higher differences on direct genetic 

effects for V line on TB, NBA and KI with respect to A line, but non-significant 

differences were found in the contrasts regarding direct genetic effect 

involving the H line. These authors did not find any significant difference 

regarding maternal genetic effects. In other workinvolving A and V lines, it was 

 Total born Born alive Number weaned Kindling interval 

D:AA-HH -0.09(0.42) 0.02(0.43) -0.18(0.37) 5.11(1.35)* 

D:AA-LL -0.30(0.35) -0.52(0.36) -0.25(0.31) 6.85(0.93)* 

D:AA-VV 0.02(0.33) 0.17(0.34) 0.27(0.29) 3.56(0.94)* 

D:HH-VV 0.11(0.33) 0.16(0.35) 0.45(0.31) -1.54(1.11) 

D:LL-HH 0.21(0.41) 0.55(0.42) 0.07(0.37) -1.74(1.22) 

D:LL-VV 0.32(0.32) 0.70(0.34)* 0.51(0.29) -3.28(0.83)* 

M:AA-HH -0.07(0.25) 0.07(0.27) 0.15(0.24) -1.86(0.80)* 

M:AA-LL -0.08(0.21) 0.06(0.23) 0.04(0.20) -1.23(0.59)* 

M:AA-VV -0.19(0.20) -0.05(0.22) -0.03(0.20) -3.38(0.59)* 

M:HH-VV -0.12(0.24) -0.12(0.26) -0.18(0.24) -1.51(0.76) 

M:LL-HH 0.01(0.25) 0.01(0.27) 0.11(0.24) -0.63(0.69) 

M:LL-VV -0.11(0.21) -0.11(0.23) -0.07(0.21) -2.15(0.55)* 



Reproductive traits in a diallel cross of four maternal lines  111 

 

 

found that V line showed a significantly higher direct effect than A line for TB 

and NBA but not for NW and KI (Orengo et al., 2003). 

For some of the analysed traits, some crosses showed significant direct 

heterotic effects, but the magnitude of this parameter widely varied (Table 6. 

6). These favourable effects on litter size traits indicate the importance of the 

use of crossbreeding to take advantage of the heterotic effects on these traits.  

The largest positive response for TB was found for the cross between H and 

V lines followed by those between A and H, A and V and between lines LP and 

H. Regarding NBA, the crosses between H and V and A and V were those 

showing the strongest heterosis. Finally for NW the crosses involving A and V, 

LP and H and LP and V were those showing the significant effects. The 

magnitudes of the heterosis seem to be relevant for all traits, particularly for 

NW. The AV and LV groups had favourable and significant direct heterosis for 

KI while AL and LH had a larger KI than their parental lines. 

Only two works were carried out involving some of the lines presented in 

this study. Orengo et al. (2003) found that heterosis effect was not significantly 

different from 0 between A and V lines for TB, NBA, NW and KI. On the 

contrary, Baselga et al. (2003) found significant heterosis between the same 

lines for TB (0.48) and NBA (0.55) but this effect was not significant for KI (-

1.59). Other authors found positive and important direct heterosis in different 

crosses, some of them involving the V line: V x A2066 (Brun and Baselga, 

2005), V x Baladi Red (Youssef et al., 2008), Egyptian Gabali x NZW (Khalil and 

Afifi, 2000), NZW x CAL (Nofal et al., 1996) and A1077 x A2066 (Brun and 

Saleil 1994). 

AV showed significant differences for litter size traits which could be due to 

the large selection history of the two lines involved in the cross and their 

genetic distance. The heterosis is defined according to the differences in gene 

frequency as well as directional dominance, and selection history or genetic 

drift to which the involved lines might be subject to (Horstgen-Schwark et al. 

1984). The same explanation can be given for the large heterosis values 

presented by the AH group, although we found it was significant only for TB. 
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Table 6. 6Estimates (standard errors) of the heterosis (H) for crossed genetic 
group. 

 Total born Born alive Number weaned Kindling interval 

H:AL -0.19(0.23) -0.29(0.26) 0.22(0.24) 1.91(0.69)* 

H:AH 0.74(0.28)* 0.58(0.31) 0.44(0.27) -0.56(0.92) 

H:AV 0.57(0.21)* 0.49(0.23)* 0.90(0.21)* -2.54(0.61)* 

H:LH 0.55(0.28)* 0.48(0.30) 0.70(0.27)* 3.60(0.77)* 

H:LV 0.00(0.22) 0.01(0.24) 0.58(0.22)* -1.03(0.57)* 

H:HV 1.05(0.33)* 1.11(0.35)* 0.41(0.30) -0.82(0.94) 

L:LP line; *: significant difference at α = 0.05.  

6.5 Conclusions 

Important differences between performances in reproductive traits have 

been observed in simple crosses of different maternal lines. These differences 

can be related to differences between the lines in direct and maternal genetic 

effects, but particularly to the direct heterosis effects of the crosses.  
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Chapter 7  

Functional longevity in a diallel cross of four maternal 

lines of rabbits. 

7.1 Abstract 

he objective of this study was to evaluate four maternal lines of rabbits 

and the corresponding crossbred does from a complete diallel cross 

regarding functional longevity, estimating its crossbreeding parameters. The 

lines involved were the A, V, H and LP that were used to produce sixteen 

genetic groups (the four lines and twelve single crosses). The lines considered 

have been selected for litter size at weaning, some of them for a long time.  

Functional longevity was defined, in this study, as the number of days 

between the first positive palpation and the death or culling of the doe for 

reasons other than production; it represents the ability to delay involuntary 

culling. A total of 7,211 doe longevity records were obtained from January 

2009 to October 2011. The sixteen groups were distributed in four Spanish 

farms but only one group (line V) was present in all farms to connect the data 

among farms and to be used as the reference line in the comparison with the 

other groups. The data were analysed with the Survival kit 6.0 using a Cox 

proportional hazard model (Cox, 1972) of fixed effects. The model 

incorporated time-dependent factors, such as group-farm-year-season, 

number of kits born alive, group-order of positive palpation and physiological 

status of the female. Finally, the differences between groups, direct and 

maternal genetic effects of the lines and individual heterosis were estimated 

according to Dickerson (1969). 

T 
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 Does from lines A, H and V had a similar risk to die or to be culled and they 

were more sensitive than those from line LP. Line LP had the lowest associated 

hazard with important differences at later ages and the risks to be replaced 

were 0.39, 0.49 and 0.53 times the replacement risk of lines A, H and V. We did 

not find significant differences between all crossbred groups and line V except 

when comparing V line tothe cross between A and H lines favouringV line 

(1.30 higher risk of replacement for AxH animals). 

 The difference between a cross and its reciprocal, generally, was not 

significant except between VH and HV, favourable to HV (0.72 of relative risk 

of replacement) and between LH and HL, in favour of HL (0.76 of relative risk). 

Line V had the highest associated risk due to the direct genetic effects and 

these differences were significant with the lines H (1.40 of relative risk) and LP 

(1.43 of relative risk). The differences in maternal genetic effects were small 

and found to be not significant except between lines H and V in favour of V line 

(0.75 of relative risk). 

The estimated heterosis effects do not follow, always, the same direction 

but they showed, in some cases, the importance of the crosses between 

specialized lines to produce crossbred does for intensive meat rabbit 

production. Thus, it was shown that at the early productive cycles, the risk 

associated to purebreds is higher than the risk of crossbreds, when the cost of 

the does has not been recovered yet. The contrary happened at late productive 

cycles (fifth cycle or more), when the cost of the does was recovered. 

Keywords: maternal lines, diallel cross, longevity, survival analysis, 

heterosis. 

7.2 Introduction 

Functional longevity in rabbits has been defined as the time in days 

between the first positive palpation of a doe and death or culling due to non-

productive reasons (Sánchez et al., 2004). Improvement of productive life of 

does is needed because the replacement rate is very high (120%, Ramón et al., 
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1996) being this a consequence of the high rate of death and sickness 

especially during the first production cycle, when the cost of the does has not 

been yet recovered. Other consequence of the high replacement rates is that 

the proportion of young does in production is high and these does are more 

difficult to handle than the older ones and they show significantly less 

production (Sánchez et al., 2004). Another issue related to the high 

replacement rate is the increased risk of health problems as a consequence of 

the higher proportion of animals coming into the farm periodically. Moreover, 

longevity is related to diseases resistance and animal welfare, which both are 

topics of current concern to the public opinion. 

There are a number of issues involves in the genetic improvement of  

longevity: it has low heritability (Piles et al., 2006b; Sánchez et al., 2008) and it 

is recorded late in the animal life when they die or are culled. Sánchez et al. 

(2008) considered, as selection criterion for founding a new line, the number 

of parturitions that a female had, applying very high intensities of selection. 

This founding procedure was proved to be successful (Sánchez et al., 2008) 

because this line had a very similar productive level compared to lines selected 

for a long time for prolificacy (Ragab and Baselga, 2011), butbetter survival. 

Other experiment carried out in France, consisted on performing divergent 

selection for functional longevity in the INRA 1077 rabbit line (Garreau et al., 

2008). The authors found a significant difference in longevity between the two 

lines (0.92 inseminations (39 days)). Culling and mortality rates were lower in 

the line selected for increasing longevity than in that selected to reduce 

longevity. 

Functional longevity has a low heritability, as it has been said before, but 

variation between genetic groups has been observed (Piles et al., 2006b; 

Sánchez et al., 2008). So, it would be possible to exploit the genetic variation 

between the lines to optimize the crosses between them. Crossbreeding has 

been documented in pigs, beef cattle, and sheep to have a substantial impact 

on traits directly related to fertility and health and indirectly to longevity. 

To our knowledge, very few works have been carried out to study genetic 

variability of rabbit longevity among breeds, lines and crossbreds. In a study, 
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conducted by Piles et al. (2006a), a complete diallel cross, involving three 

maternal lines of rabbits (A, V, Prat), was performed to estimate crossbreeding 

parameters for functional longevity. They found favourable and significant 

heterosis between lines A and Prat, and between the lines V and Prat. In a 

different work by Lukefahr and Hamilton (2000) involving Californian (CAL), 

New Zealand White (NZW) and CAL x NZW does, it was observed a higher 

longevity for NZW than for CAL; crossbred does behaved similarly to NZW. 

The objective of this work was to evaluate functional longevity of crossbred 

and purebred does from a complete diallel cross of four maternal lines of 

rabbits and the corresponding crossbreeding parameters. 

7.3 Materials and Methods 

7.3.1 Animals and Management 

Four maternal lines of rabbits were available in this study for conducting a 

diallel cross that produced sixteen genetic groups. The lines were A, V, H and 

LP, all of them selected for litter size at weaning, as described previously by 

Ragab and Baselga (2011). Their current generation of selection was the 41st, 

37th, 20th and 7th, respectively. Data were collected from January 2009 to 

October 2011. 

The animals in this study were allocated to four Spanish farms. The total 

data were 7,211 longevity records, with the following distribution: 1,822 in 

León (farm 1), 1,987 in Castellón (farm 2), 1,612 in Tarragona (farm 3) and 

finally 1,790 in the farm of the Universidad Politécnica de Valencia (UPV) 

(farm 4). The genetic groups involved in the experiment were the 

corresponding to the four lines, AA, VV, HH and LL, and the twelve single 

crosses, AV, VA, AH, HA, AL, LA, VH, HV, VL, LV, HL and LH, where the first 

letter refers to the sire line, and the second to the dam line of the group, and L 

is used to identify the LP line.  

All the crossbreds and VV animals were bred in farms 1 and 2; does from VV 

and HH were bred in the farm 3, and VV, AA and LL animals were bred in farm 
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4. Thus the V line was present in all the farms, which allowed connecting data 

among farms, allowing the correction for environmental effects and the 

comparison of genetic groups between farms. 

Management was slightly different across farms. In farm 1 and 2 (after 

October 2010, in farm 2) does were grouped in a single batch mated every 42 

days, while in farms 2 (before October 2010), 3 and 4 does were grouped into 

6 batches and mating were weekly practiced. In all farms, the first mating of 

was around 18 weeks of age, for males and females. Natural mating was used 

in farms 3 and 4 whereas artificial insemination was conducted in farms 1 and 

2. In farm 1 and 2, does were inseminated with semen from a paternal line 

(10-20x106 spermatozoa per dose). The does were served 10-12 days post-

kindling and a pregnancy test was carried out by abdominal palpation on day 

12 after mating. Litters were reared by their dams for about 28 days. Does 

were fed ad libitum on a standard commercial pelleted diet and they were 

under a constant photoperiod of 16:8 h. As a general management practice, 

does were never culled due to productive reasons, i.e. low prolificacy or 

fertility was never a reason for culling except when there were also signs of 

sickness.  

The complete data set included records of sixteen genetic groups, involving 

7,211 does, 38.61% of them having a censored longevity record because they 

were removed before the end of their productive lives or the experiment 

finished before their death date. Table 7. 1 presents the maximum, minimum 

and average length of productive life for censored and uncensored records. 

Table 7. 1Minimum, maximum and average productive life for censored and 
uncensored records. 

 
Censored records 

2784 (38.61%) 
Uncensored records 

4427 (61.39%) 

Minimum time (d) 5 3 

Maximum time (d) 895 873 

Average time (d) 334.43 196.82 

7.3.2 Statistical analyses 

The Cox model of proportional risk was used to analyse the productive life 

of the does, following the next equation for the hazard: 
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where, the hazard (  ( |     )of the doe   at time t) affected by the 

covariates indicated in the vector       is the product of a base line hazard at 

time t,     , and the exponential effect of the components of      .          is 

the effect of genetic group-farm-year-season combination of the doe mat time 

t; this is a time-dependent factor with 145 levels. The changes of the levels 

occurred at fixed calendar dates, leading to approximately 90 days seasons. 

        is the effect of the number born alive class j at time t. This was also a 

time-dependent effect with 9 classes defined as follows: nulliparous, 0, 1 to 2, 

3 to 4, 5 to 6, 7 to 8, 9 to 10, 11 to 12, and >12 born alive; for this factor levels 

changed at every parity.          is the effect of the combination k between 

the genetic group and positive palpation order at time t; this was also fitted as 

a time-dependent factor with 80 levels. It allows taking into account the 

possible effect of the interaction between the genotype and the parity order. 

      is the time-dependent effect of the physiological status l of the doe at 

time t. This factor reflects the combination between the reproductive status of 

the females (pregnant, non-pregnant, unknown) and its lactational status 

(lactating or non-lactating). 

Data analysis was conducted using the Survival Kit 6.0 (Ducrocq et al., 

2010). The model was solved to get the estimates of the differences between 

all the genetic groups and the VV group, as well as the (co)variance matrix 

between these estimates. From these contrasts and their variance-covariance 

structure the differences between direct and maternal genetic effects of the 

lines, as well as the individual heterosis, were estimated by generalized least 

squares according to the Dickerson’s model (Dickerson, 1969). The 

significance of the estimated contrasts and heterosis were assessed setting the 

first type error at α=0.05. 
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7.4 Results and Discussion 

The contrasts for the log hazard between the four maternal lines, globally 

and for the different productive cycles are presented in Table 7. 2. Line LP 

showed the highest capacity to overcome the risk factors which can lead to 

death or culling. It showed hazard ratios with respect to A, H and V lines of 

0.77 (exp (-0.26)), 0.82 and 0.78 respectively being the log-hazard ratio 

significant for the cases involving A and V lines. These figures mean that the 

risks of death or culling of females from A, H and V lines were 1.29, 1.22 and 

1.28 times the risk of LP does. No overall significant differences were found 

between A, H and V lines. The fact that the differences favoured LP line was 

expected because this line was founded by selecting females from commercial 

farms that showed an extremely long productive life which was measured as a 

function of the number of parities (Sánchez et al., 2008) while for the other 

lines nor the foundation neither the selection process relied on longevity 

criteria (Ragab and Baselga, 2011). In a study comparing LP and V lines for 

longevity, Sánchez et al. (2008) reported that the mean of the relative risk 

between LP and V lines was 0.80 (exp (-0.22)), which indicated that it was 1.24 

times more likely for a V doe to leave the herd than for an LP doe. 

Table 7. 2Contrasts (standard errors) between lines for the global log hazard 
(GR) and for the log hazard associated with the positive palpation 
order (P1, P2, P3, P4, ≥P5). 

 GR P1 P2 P3 P4 ≥P5 

AA-HH 0.06(0.16) 0.61(0.24)* 0.40(0.25) -0.04(0.25) -0.38(0.22) -0.31(0.26) 

AA-LL 0.26(0.11)* 0.29(0.19) 0.05(0.20) 0.18(0.22) -0.07(0.18) 0.83(0.27)* 

AA-VV 0.00( 0.10) 0.20(0.15) 0.21(0.17) -0.10(0.18) -0.38(0.15)* 0.09(0.21) 

HH-VV -0.05(0.13) -0.41(0.20)* -0.19(0.21) -0.06(0.20) 0.00(0.18) 0.40(0.18)* 

LL-HH -0.20(0.16) 0.33(0.25) 0.35(0.25) -0.22(0.26) -0.31(0.23) -1.15(0.26)* 

LL-VV -0.25(0.10)* -0.08(0.17) 0.16(0.17) -0.28(0.19) -0.31(0.15)* -0.75(0.21)* 

L:LP line;  *: significant difference at α = 0.05.  

Performing the same set of contrasts within positive palpation order 

(number of productive cycle), it was observed that at the first cycle A and V 

does had 1.84 and 1.51, respectively, more risk to leave the herd than H line 

does. During the second and third cycle, no significant differences were 

observed between lines. The apparition of global significant differences 
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between A and V lines with respect to LP animals was due to the fact that at 

the latest cycles significant differences between lines were observed. In the 

fourth cycle there was 1.36 times more risk for a V female to be dead or be 

culled than for a LP doe, whereas in the fifth parity this ratio was 2.14. In the 

fifth cycle the risk ratios between A, V and H lines with respect to LP were 

significant, showing the values of 2.3, 2.14 and 3.15, respectively. It makes 

sense that the differences in survival ability between all the lines and the LP 

females are essentially set at late parities since the selection criteria of this line 

during its foundation was based on survival ability until very late ages, i. e. 

more than 28 parities. 

In the fifth cycle, it was also observed a better survival rate for the V line 

than for the H line, compensating the higher risk associated to the V line at 

early cycles. 

With regard to the general differences between crossbred does (considering 

together each cross and its reciprocal, Table 7. 3) and line V, we did not find 

any significant differences between the crossbred groups and line V, except for 

the cross between A and H lines, which was favourable to line V. Analysing the 

same differences by productive cycle, significant differences were found at the 

first cycle and during cycles equal or higher to the 5th. At the first cycle, the 

groups HL and LH, and LV and VL showed favourable and significant 

differences with respect to V line for the associated risk. However the does of 

the group HA and AH had higher risks to leave the herd than does of the V line 

at the first cycle (1.36). Moreover, in general, no significant differences were 

found at third and fourth cycles, except a significant difference in favour of 

crosses LH and HL at the third cycle. At cycle orders ≥ 5, the crossbreds had 

higher associated hazards than V line. The differences were relevant and the 

relative risk ranged from 1.32 to 2.34, this is a clear indication of the fact that 

crossbred doesat the beginning of the reproductive career seemed to show 

some advantages over line V,but they failed to keep this situation at final 

stages of the productive life. 
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Table 7. 3Contrasts (standard errors) between crossbred groups1 and V line 
for the global log hazard (GR) and for the log hazard associated with 
the positive palpation order (P1, P2, P3, P4, ≥P5). 

 GR P1 P2 P3 P4 ≥P5 

AH-VV 0.26(0.08)* 0.31(0.13)* -0.06(0.16) -0.04(0.16) 0.24(0.16) 0.85(0.16)* 

AL-VV 0.03(0.09) 0.04(0.14) -0.15(0.17) -0.16(0.17) 0.00(0.15) 0.42(0.16)* 

AV-VV -0.07(0.09) -0.21(0.14) -0.10(0.15) -0.21(0.17) -0.14(0.15) 0.28(0.16) 

HV-VV 0.01(0.09) -0.07(0.14) -0.12(0.15) -0.33(0.17) -0.02(0.15) 0.60(0.15)* 

LH-VV -0.07(0.08) -0.38(0.14)* -0.08(0.14) -0.34(0.17)* -0.10(0.15) 0.57(0.14)* 

LV-VV -0.04(0.09) -0.45(0.15)* -0.29(0.16) 0.03(0.17) -0.01(0.16) 0.54(0.15)* 

All vs VV 0.02(0.06) -0.13(0.09) -0.13(0.10) -0.18(0.11) 0.00(0.10) 0.54(0.10)* 

1. One cross and its reciprocal are considered together; L:LP line;  *: significant difference at α = 
0.05.  

Sánchez et al. (2004) and Piles et al.(2006b) reported that late productive 

cycles are always associated with high risk and low survival. At the initial 

productive cycles, when the associated risk was still low, purebred does may 

have a lower survival probability than the crossbred does. In the former 

groups, more sick or dead does would leave the flock, but those does 

remaining would show lower risks in the future. However, the crossbred does 

had at the initial cycles a low elimination rate and after some cycles the 

possibility of appearing sick or dead does would increase.Moreover, the 

crossbred does had a high production level which with time must increase the 

risk of culling or death.Anyway, it should be noted that the increased risk 

associated with crossbred does began at the fifth cycle, when the cost of the 

does has been recovered. Moreover, Rosell (2003) reported that around 50 % 

of the dead and culled does are in one of the first three kindlings, so it is 

important to use the crossbred does in commercial production. 

Table 7. 4 shows the differences between the estimates of log hazard 

associated with reciprocal crosses, to give a first indication of the magnitude of 

maternal effects involved in the crosses. The only significant contrasts were 

found between VH and HV and between LH and HL.For the first case, when the 

V line was used as a dam line the hazard ratio associated to VH was reduced to 

0.72, but when the line H was the dam in the cross between H and LP lines, the 

risk of culling or death was 1.31 (exp (0.27)) times higher than in the 

reciprocal cross. The significant differences between HV and VH crosses are 
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consequence of differences between them during the first cycle while for the 

case of LH and HL crosses the differences are established late in the doe’s life. 

For the contrast between AH and HA crosses although not overall 

significant differences were detected, during the first cycle the risk was higher 

for the cross HA (1.95) but at latest cycles the opposite occurred and the 

higher risk was for the reciprocal (1.89). 

Table 7. 4Contrasts (standard errors) between reciprocal crosses for the 
global log hazard (GR) and for the log hazard associated with the 
positive palpation order (P1, P2, P3, P4, ≥P5). 

 GR P1 P2 P3 P4 ≥P5 

AH-HA 0.04(0.13) -0.67(0.22)* 0.14(0.28) -0.29(0.28) 0.34(0.27) 0.64(0.26)* 

AL-LA -0.02(0.14) 0.05(0.23) -0.36(0.29) 0.18(0.29) -0.06(0.26) 0.08(0.26) 

AV-VA -0.05(0.15) 0.31(0.25) -0.02(0.27) -0.21(0.29) -0.42(0.26) 0.11(0.28) 

HV-VH -0.32(0.15)* -1.20(0.23)* -0.13(0.26) -0.31(0.29) -0.01(0.25) 0.03(0.24) 

LH-HL 0.27(0.13)* 0.06(0.23) 0.34(0.24) 0.20(0.29) 0.10(0.26) 0.65(0.23)* 

LV-VL -0.17(0.15) -0.19(0.26) -0.17(0.28) -0.18(0.29) -0.19(0.27) -0.13(0.24) 

L:LP line;  *: significant difference at α = 0.05. 

Differences in direct genetic effects between lines are presented in Table 7. 

5. There are two results that deserve attention. The first one is that line V had 

the highest associated risk and its differences were significant with respect to 

the lines H and LP. In the case of the H line, the difference to the V line are due 

to a high and important risk associated to V line at the first productive cycle, 

but in the case of the LP line, the differences were established during the 

fourth and later productive cycles. The second important result is that the 

direct effect of the LP line had the lowest associated hazard, especially at 

cycles≥ 5. Its risk, at these cycles, was only, 0.39, 0.49 and 0.53 times the risk 

for A, H and V lines, respectively. Also, from Table 7. 5 it can be concluded that 

no significant differences were observed between A and V lines, either globally 

or at any cycle. 

In another study (Piles et al., 2006a) where lines A, V and Prat were 

evaluated, it was not found any significant differences between direct genetic 

effects of A and V lines. However the relative risk between both lines in that 
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study was higher than in our work. In that study significant differences on 

direct genetic effects between A and Prat lines were found. In our study, for 

some cases, differences between direct genetic effects generated at certain 

cycles were compensated with differences of opposite sign generated at other 

cycles, being not possible to observe overall significant differences. This is 

what happened between A and H lines and between LP and H lines. 

Table 7. 5Contrasts (standard error) for direct genetic effects (D) between 
lines for the global log hazard (GR) and for the log hazard 
associated with the positive palpation order (P1, P2, P3, P4, ≥P5). 

L:LP line; *: significant difference at α = 0.05. 

The observed differences in global risk between lines regarding maternal 

genetic effects were small and in general they were not significant, except 

between lines H and V in favour of V line (Table 7. 6). But along the life of the 

animals some significant differences were observed. During the first 

productive cycle the difference in the maternal genetic effect between A, H and 

LP lines and the V line was found to be significant and favourable to the last 

one. Late in the life of the animals, it was observed a negative effect of the 

maternal effect associated to the H line, compared to the maternal effects of 

the lines A and LP. The estimated differences in maternal effects 

approximately match the observed differences between any cross and its 

reciprocal as it is shown in Table 7. 4. Piles et al (2006a) found a similar value 

for the difference of maternal effects between A and V lines, but this difference 

was not significant.  

  

 GR P1 P2 P3 P4 ≥P5 

D:A-H 0.20(0.19) 0.62(0.29)* 0.50(0.31) -0.08(0.32) -0.31(0.29) 0.21(0.32) 

D:A-L 0.21(0.15) 0.22(0.25) -0.14(0.28) 0.14(0.30) -0.10(0.26) 0.94(0.32)* 

D:A-V -0.15(0.14) -0.22(0.23) 0.08(0.25) -0.36(0.27) -0.56(0.24) 0.31(0.28) 

D:H-V -0.34(0.16)* -0.84(0.26)* -0.42(0.28) -0.28(0.29) -0.25(0.26) 0.10(0.25) 

D:L-H -0.02(0.19) 0.40(0.30) 0.64(0.31)* -0.22(0.33) -0.21(0.29) -0.72(0.31)* 

D:L-V -0.36(0.14)* -0.44(0.24) 0.22(0.26) -0.50(0.28) -0.47(0.24)* -0.62(0.27)* 
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Table 7. 6Contrast (standard error) for maternal (M) line effects for the global 
log hazard (GR) and for the log hazard associated with the positive 
palpation order (P1, P2, P3, P4, ≥P5). 

 GR P1 P2 P3 P4 ≥P5 

M:A-H -0.14( 0.10) -0.01(0.16) -0.10(0.19) 0.04(0.20) -0.07(0.18) -0.53(0.18)* 

M:A-L 0.05( 0.10) 0.07(0.16) 0.19(0.20) 0.05(0.20) 0.03(0.18) -0.10(0.18) 

M:A-V 0.15( 0.10) 0.42(0.17)* 0.12(0.19) 0.27(0.20) 0.19(0.18) -0.23(0.18) 

M:H-V 0.29( 0.10)* 0.43(0.16)* 0.23(0.19) 0.22(0.20) 0.25(0.18) 0.30(0.17) 

M:L-H -0.19( 0.10) -0.07(0.16) -0.29(0.18) -0.01(0.20) -0.09(0.18) -0.42(0.17)* 

M:L-V 0.11( 0.10) 0.36(0.17)* -0.06(0.19) 0.22(0.20) 0.16(0.18) -0.13(0.17) 

L:LP line; *: significant difference at α = 0.05. 

The estimated values for the individual heterosis depended on the lines 

involved in the cross (Table 7. 7). In general, the heterosis for the global log 

hazard has not been significant, except for the cross AH, which had an 

unfavourable value (positive risk associated to the cross). However when 

different lifetime periods are considered, it is important to note that, late cycles 

are always associated with significant and relevant, but unfavourable, heterosis 

effects. Contrarily, at early ages some favourable effects were observed. The 

difference in the sign of estimates at early and late ages could be explained 

arguing the higher elimination rate at early cycles in purebred groups and the 

high productive levels of crossbred does. Piles et al. (2006a) found favourable 

heterosis in crosses between A, Prat and V line but it was only significant 

between A and Prat lines. 

Table 7. 7Estimates (standard error) for heterosis (H) for the global log hazard 
(GR) and for the log hazard associated with the positive palpation 
order (P1, P2, P3, P4, ≥P5). 

 GR P1 P2 P3 P4 ≥P5 

H:AH 0.28(0.12)* 0.35(0.17)* -0.06(0.19) 0.03(0.19) 0.45(0.18)* 0.62(0.19)* 

H:AL 0.16(0.12) -0.02(0.17) -0.34(0.19) 0.04(0.20) 0.34(0.18) 0.76( 0.20)* 

H:AV -0.08( 0.10) -0.31(0.15)* -0.21(0.16) -0.16(0.18) 0.05(0.16) 0.23(0.18) 

H:HV 0.04(0.11) 0.14(0.16) -0.02(0.17) -0.30(0.18) 0.00(0.16) 0.42(0.16)* 

H:LH 0.10(0.12) -0.13(0.18) -0.07(0.18) -0.16(0.20) 0.05(0.18) 0.76(0.18)* 

H:LV 0.09( 0.10) -0.41(0.16)* -0.38(0.17)* 0.17(0.18) 0.14(0.16) 0.91(0.17)* 

L:LP line; *: significant difference at α = 0.05. 
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7.5 Conclusions 

The criterion of foundation of LP lines marked its difference with the other 

lines in favour of LP line. It seemed that the heterosis did not have a great 

effect on functional longevity. The differences between genetic groups were 

mainly produced at the beginning and at the end of the productive life. 
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Chapter 8 

General Discussion 

he objective of a genetic improvement program is the development and 

diffusion of genetic material to the farmers at the lowest cost. Rabbit 

meat production follows a pyramidal structure in which the peak of the pyramid 

is represented by animals of the lines selected by maternal and paternal traits 

located in the nucleus of selection. The maternal lines are commonly selected 

within line and used to produce crossbred does from simple crosses between 

them. The Animal Breeding Unit of the Institute for Animal Science and 

Technology (Polytechnic University of Valencia, Spain) started back in 1976 a 

rabbit breeding program aiming at developing and selecting lines of interest for 

rabbit meat production. The program has included the development of four 

maternal lines, the A, V, H and LP lines. The first two were founded early, after 

the beginning of the program, and the other two later, being the LP line the most 

recent one. The criterion of foundation has been different for each line and all of 

them have been selected from their foundation for litter size at weaning. The set 

of the four maternal lines gives the opportunity of studying the consequences of 

the foundation criteria on the performance of the lines and how their selection 

affects the comparison between them along the generations. Finally, it is 

possible and necessary to assess the value of the lines for rabbit meat 

production, analysing the current performance of the lines themselves and their 

crosses. The study of the crosses allows the estimation of the corresponding 

crossbreeding parameters. 

 

T 
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The selection criteria and procedures used for founding the lines are of 

paramount importance because the initial performance and peculiar features of 

the lines can depend on them.The responses obtained by subsequent selection 

will be accumulated over the values achieved at foundation. The results 

obtained in this thesis (Chapter 3) show that V, H and LP lines were superior to 

A line for all litter size traits (Total born, number born alive, litter size at 

weaning and at marketing), between this last line and the other lines there were 

important differences at foundation time. Productive criterions, such as, 

maternal aptitude of crossbred does, hyperprolificacy and length of high 

productive life were used for the foundation of the V, H and LP lines, while A line 

was created by mating does and bucks of the New Zealand White breed that 

primarily maintained the standards of the breed, assuming that if the founders 

pertained to a reputed breed for rabbit meat production they would have 

competitive performances, clearly this was not the case.The LP line had 

advantage in litter size traits over the V line. The former was founded by 

selecting does at commercial farms excelling because of their high longevity but 

being also above the mean in prolificacy (Sánchez et al., 2008). This procedure 

of foundation led to the LP line to have high starting performances and a 

peculiar robustness to face challenging circumstances that sometimes appears, 

as outbreaks of diseases, bad management practices, heat stress and others. The 

robustness of the LP line was proved in one experiment carried out to compare 

the V and the LP lines. In this experiment, a change in the mating management 

for lines LP and V increased the period of restricted feeding by 2 weeks between 

weaning and the next parity. This restriction affected more to the line V than to 

the line LP (Theilgaard et al., 2007; Sánchez et al., 2008) because the line LP 

showed a better management of the body reserves. There were not found 

significant differences between H and V lines for litter size, probably because 

the H line was founded following a criterion of hyperprolificacy with 

contribution of the V line (Cifre et al., 1998).  

The foundation may continue affecting the performance of the lines despite 

of the selection for long time of some of them. This was shown when lines A, H 
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and V were compared during the period from March 1997 to August 1998 (after 

different number of generations of selection). During this period the lines were 

still affected by the foundation criterions, i.e. line A showed the lowest 

performances but the differences to the other lines were reduced. From 

September 2007 to February 2009, after a long period of selection of the A and 

V lines, these lines and the LP line were compared. At this period the differences 

at the foundation between them were highly reduced, being the comparisons, in 

general, non-significant for litter size traits. The A line was recovered from the 

negative effect of its foundation criterion. This study also shows the importance 

of the interaction between line and environment (farm-year-season) to explain 

the differences between the lines and the consequent necessity of including this 

effect into the models used for the analysis of the production traits.The 

importance of this interaction was clearly observed in two cases. Firstly, the 

spread of the enterocolitis affected a long period comprised during the 

comparison between the lines A and H. The consequence of this disease was an 

increase in the post-weaning mortality, reducing the number of rabbits 

marketed. However, the sensitivity to enterocolitis differed among the lines, 

being line A that most strongly affected. Secondly, the change in mating 

management of LP and V lines which was commented above.  

Previous selection and inbreeding as well as genetic drift can have an effect 

on the gene frequency of the genes affecting a trait. Inbreeding is the result of 

mating between relatives and implies an increase of homozygosis within the 

populations (Falconer and Mackay, 1996). Inbreeding negatively affects the 

means of the traits and lead to an increased risk in a breeding program in terms 

of the variance of genetic gain (Meuwissen, 1991). It is known that time and 

selection, natural or artificial, can diminish the depressive effect of the 

inbreeding, due to a reduction of the frequency of unfavorable alleles, genetic 

purging, and the consequent reduction of the genetic load (Templeton and Read, 

1984; Lacy and Ballou, 1998). So, the next objective of the thesis was to study 

the change of the inbreeding and its effects on litter size traits along the 

generations of selection of the lines (Chapter 4). Assessing the change of 

inbreeding over time allows the computation of the effective population size of 

the lines when selection and some management practices, adopted to reduce the 
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rate of inbreeding increase, are applied. The study of the inbreeding effect, using 

the data of A, V and H lines allows differentiate its effects as a function of the 

time of its accumulation. Moreover, it allows showing the special difficulties 

inherent to the data of programs of selectionto analyse the effect of inbreeding. 

It was shown, that the effect of selection, which leads to increase the inbreeding 

by reducing the effective population size (Wray and Thompson, 1990), was 

counterbalanced by the opposite effects of avoiding matings between close 

relatives and the similarity of contributions to the next generation of the 

animals that actually contribute.To study the effects of the inbreeding on litter 

size traits, as a function of the time of its accumulation, the inbreeding of each 

animal was split in three components named old, intermediate and new 

inbreeding. This partition can separate efficiently the effects of each component 

because the correlation between the three is negligible or very low. It was found 

that the old inbreeding had a positive, important and significant effect on all 

litter size traits while the new inbreeding had a negative effect that our data 

cannot prove as significantly different from zero. However, the difference of the 

effect of the old inbreeding to the intermediate and new inbreeding was 

significant for almost all the comparisons. The previous results show how the 

common presence of selection and inbreeding along long periods of time has 

beneficial effects. This situation allows the purging of unfavourable alleles for the 

traits selected or for the traits closely related to them. This action was observed in 

plants by Byers and Waller (1991), in mice by Hinrichs et al. (2007) and in Irish 

Holstein-Friesians byParland et al. (2009). So, to study the inbreeding depression, it 

is better to consider only the last generations of selection, not the accumulated 

inbreeding, especially if the inbreeding is studied in lines with a long history of 

selection. 

The inbreeding depression estimated in most of the previous studies was in 

populations with a short number of generations. Thus, these values should be 

compared with the effects, here estimated, for the new inbreeding. For example 

Ferraz et al. (1991) and Moura et al. (2000), in rabbits, have previously reported 

negative effects of inbreeding on prolificacy traits that are more important than 
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the ones obtained in this study for the new inbreeding. It seems that this effect 

is actually lower in our lines. Effects of the inbreeding of the magnitude 

estimated by Ferraz et al. (1991) and Moura et al. (2000) would had masked the 

response to selection in the lines V and A, response that has been proved (García 

and Baselga, 2002a, b). Similarly, when crossbred does between different 

generations of line A and V were compared (Costa et al., 2004; Quevedo et al., 

2005), the differences were, only, a little higher than expected from the intra-

line response to selection which is an indicator of low inbreeding depression.  

Crossbreeding is a widely accepted and recommended practice in 

commercial rabbit production. It is used to capitalize on heterosis and 

complementarity, the superiority of crossbred individuals over the average of 

their purebred counterparts (Baselga, 2004). The heterosis, in the absence of 

epistasis, is determined by the dominance parameter of the genes affecting the 

traits and by the difference in frequencies of these genes between the lines 

(Falconer and Mackay, 1996). The selection causes changes in the gene 

frequency at loci having direct genetic effects on traits, changes that can also 

occur at random by genetic drift in populations of small size. The results of a 

large diallel cross experiment between the four maternal lines are presented in  

chapters 4, 5 and 6, where litter size components (Chapter 5), litter size 

(Chapter 6) and functional longevity (Chapter 7) of the lines and their simple 

crosses are studied. The experiment was carried out in four farms. The line V 

was present in all the farms to connect the data.  

The differences between performances of the lines were important for total 

born from the point of view of rabbit production (chapter 5). These differences 

were partially due to an outbreak of colitis in one of the farms (where lines A, V 

and LP were raised) that was active during the second part of the period of 

study. The sensitivity to this pathology was different among lines, being the A 

line that most strongly affected. This disease provoked a decrease in the fetal 

survival, a reduction in the number of total born as well as an increase in the 

mortality at birth. These data were part of a large set of data used in the analysis 

of litter size traits (Chapter 6) and, consequently, its importance on the 

comparison of the lines was small.The differences between lines were mainly 
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due to differences in direct effects more than to differences in maternal effects. 

It is speculated that changes in maternal effects due to selection are lower than 

in direct effects. Eisen et al. (1984) discussed this question, they pointed in one 

hand that genes influencing maternal effects on litter size may have smaller 

effects and, in the other that the covariance between direct and maternal 

genetic effects may not be particularly large, so that loci affecting primarily 

maternal influences had not shifted much in gene frequency. However, some 

differences in maternal effects can be due to differences in the original 

background of the lines and to the genetic drift and, in fact, some significant 

differences have been detected between reciprocal crosses, these differences 

are related to different maternal effects across lines.  

In general, there were not significant heterosis for ovulation rate, implanted 

embryos and total born, except for the case of the AH cross which exhibited the 

highest percentage of direct heterosis for all mentioned traits. A and H lines are 

probably the mostgenetically distant populations, because the line V had a 

relevant contribution in the process of foundation of bothH and LP lines H. In 

fact, all crossbred groups showed some degree of positive heterosis except LV 

animals that was unexpectedly negative for all traits and significant for total 

born, fetal and prenatal survival. Falconer and Robert (1960) reported that 

ovulation rate did not show directional dominance and it was not affected by 

inbreeding. Boshier (1968) support the conclusion that ovulation rate shows a 

little, if any, heterosis. However, in rabbits Hulot and Matheron (1979) and Brun 

et al. (1992) detected positive and significant heterosis for ovulation rate and 

prenatal survival.The standard errors in our experiment only allow to accept as 

significant estimated heterosis equal or higher to 6% of the mean of ovulation 

rate and to 9% or higher of the mean of implanted embryos. 

Regarding litter size, chapter 5, not significant differences were observed and 

it matches well the differences observed in chapter 3 from the comparison 

between the lines at the interval from September 2007 to February 2009. 

Regarding kindling interval, the line comparison was favourable for the LP line 

and unfavourable for the lines A and V, result that could be in agreement with 
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the high capability of the LP line to recover from stress and to manage its body 

ressources (Theilgaard et al., 2007). Crossbred does showed a higher 

reproductive level and shorter kindling interval than the V line indicatingthe 

general importance ofcrossbreeding. In this study, the differences between 

reciprocal crosses for litter size were of low magnitude and always non-

significant. This result is an indicator that the maternal effects have 

lowrelevance. The estaimated heterosis effect for litter size traits match to the 

expectations for reproduction traits associated to fitness. The heterosis 

estimated were positive and, in some cases, highly relevant. The largest 

heterosis was observed for total born in the HV cross (1.05 rabbits), followed by 

the AH (0.74 rabbits), AV (0.57 rabbits) and LH (0.55 rabbits) crosses. For 

number born alive significant heterosis was found in HV (1.11 rabbits) and AV 

(0.49 rabbits) and for number weaned in AV (0.90 rabbits), LH (0.70 rabbits) 

and LV (0.58 rabbits). Favourable and significant heterosis for kindling interval 

was found in AV (-2.54 d) and LV (-1.03 d) crosses, whereas it was unfavourable 

for AL, 1.91 d and for LH, 3.60 d. Summarizing the importance of the 

crossbreeding parameters in the determination of differences in performances 

of the crossbreds, we can conclude that for litter size traits the heterosis was the 

most relevantfactor;however for kindling interval all the crossbreeding 

parameters: direct, maternal and heterosis effects,  significantlycontributed to 

explain the differences between lines. 

The replacement rate in rabbit meat production farms is very high (120%), 

(Ramón and Rafel, 2002).Therefore, doe longevity is of great economic 

importance because: (1) the higher the number of litters produced by a doe, the 

greater the opportunity to spread doe costs over a longer period of time;(2) 

increased longevity tends to extend the parity distribution at the expense of 

lower parity orders, increasing rabbit per doe per year through an increased 

litter size and a reduced replacement rate; (3) the high replacement rate, when 

the replacement animals are bought outside, implies a higher risk of health 

problems; (4) it is related with disease resistance and animal welfare, subjects 

of current concern. 
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Functional longevity of the lines and their crossbreds is analysed in Chapter 

7. Lines A, H and V had a similar ability to avoid risks and they were more 

sensitive than line LP. Line LP had the lowest associated hazard with important 

differences at later ages. The superiority of LP line was expected because this 

line was founded by selecting females from commercial farms that showed an 

extremely long productive life, which was measured as a function of the number 

of parities (Sánchez et al., 2008).Comparing the average of all crossbred groups 

to the V line few significant differences were found for the whole reproductive 

career of the does but, at the first reproductive cycles, the crossbreds used to 

have lower risks than the V line and the contrary situation occurred at later 

cycles. Sánchez et al. (2004) and Piles et al. (2006b), working with pure lines, 

reported that late productive cycles are always associated with high risk and 

low survival. At the initial productive cycles, when the associated risk was still 

low, does of the pure lines may have a lower survival probability than crossbred 

does. However, crossbred does that had at the initial cycles a low elimination 

rate, after some cycles of high performance the possibility of appearing sick or 

dead does would increase. The difference between a cross and its reciprocal, 

generally, was not significant except between VH and HV, being favourable to 

HV, and between LH and HL, in favour of HL. That indicates that line H has 

unfavourable maternal effects on functional longevity.  

The differences between lines in direct genetic effects were in the same 

direction that the differences commented between lines, in favour of LP line, 

that had a very similar effect to the H line and significantly superior to the V line. 

This line did not show significant differences with line A in direct genetic 

effects.Piles et al. (2006a) did not find significant differences between direct 

genetic effects between the A and V lines, but significant differences were found 

between the lines A and Prat. In our study, in some cases, differences between 

direct genetic effects generated at certain cycles were compensated with 

differences of opposite sign generated at other cycles, being not possible to 

observe overall significant differences. This is what happened between A and H 

and between LP and H. 
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The pattern of the heterosis effects associated to the crosses is very similar to 

the pattern already commented for the crossbreds respect to the V line. Thus 

the higher values of heterosis were related to the first and late cycles of the 

crossbred does. The crossbred does had high survival ability at the initial cycles, 

when the risk of elimination or death is high and the cost of the does has not 

recovered yet, and at the late cycles the hazard clearly increased.Consequently, 

it should be noted that the increased risk associated with crossbred does began 

at the fifth cycle, when the cost of the does has been recovered. Rosell (2003) 

reported that around 50 % of the dead and culled does are in one of the first 

three kindlings, so it is interesting to use the crossbred does in a commercial 

production to reduce early replacements. 

 A final question, of practical interest, is to analyse if there are some crosses 

that could be specially recommended to be used in commercial production.To 

discuss this question it is necessary to take into account that in our study no 

fostering of kit has been carried out between the does after kindling, but this 

practice is common among the farmers to reduce the losses during the 

lactation.In general, the crosseswith participation of line H are the ones with the 

best reproductive performances. The HL crosswas the best forthe set of 

analysed traits, especially for litter size at weaning which is important due to its 

closed genetic correlation with litter size at marketing. Also, HL had a higher 

survivalthan LH in global survival and especially at the late productive cycles. 

The HV cross can be one of the most interest if fostering is applied. This cross 

had higher ovulation rate, total born and number born alive than the other 

crossbred groups. Moreover, HV is better than VH because the latter had 

higherrisk than the former, especially at the first productive cycles. The cross 

between A and V lines is the most widely used in Spain; this cross did not show 

important differences for total born with respect to V line, whereas it had a 

great number of born alive and weaned kits which reflectsits high maternal 

capacity. Another interesting cross is AH which showed higher reproductive 

performances than most of crossbred groups and V line. However, this cross had 

higher risk of death or culling than the other genetic groups, at early and late 

reproductive cycles, result that precludes its recommendation for farms with 

medium or low management level. 
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Chapter 9 

Final conclusions 

2. Important differences were detected between the lines at their origin, 

which can be explained based on their foundation criteria. 

3.  Strong agreement has been found between the observed differences of the 

lines at fixed times and the expected differences that are computed with the 

models that take into account the selection. This agreement, especially for 

litter size traits, is considered as an indicator of the appropriateness of 

these models. 

4. The effects of selection to increase inbreeding can be counterbalanced by 

the opposite effects of avoiding matings between close relatives and the 

similarity of contributions to the next generation of the animals that 

actually contribute. 

5. The effects of old, intermediate and new inbreeding on litter size traits 

change from positive, for old inbreeding, to negative for new inbreeding and 

values in between them for intermediate inbreeding, due to the fact that the 

purging of unfavourable genes is favoured, along the generations, by the 

inbreeding, natural and artificial selection, acting jointly. 

6. Important differences between performances in litter size and litter size 

components have been observed in simple crosses of different maternal 

lines. 

1. Reproductive performances of the four maternal lines (A, V, H and LP) were 

high and they appeared to be a priori competitive lines to produce 

commercial crossbred does. 
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7. The direct heterosis was positive with relevant values for litter size traits, 

especially litter size at weaning. 

8. The criterion of foundation of LP line marked its differences for functional 

longevity with the other lines in favour of LP line. 

9. It seemed that the heterosis did not have a great effect on functional 

longevity but, in general, the crossbred groups showed a high longevity at 

early reproductive cycles which is important in the field of rabbit 

production. 

10. It seems that HxLP, HxV and AxV or VxA are the crossbred does to be 

specially recommended for commercial production.The cross AxH could be 

recommended for farms where the longevity is not a problem. 

 

 


