
 

Title:  

Real-time signal detection and 
classification algorithms for body-
centered systems 

Author:  

Lara Traver Sebastià 

Directors: 

Narcís Cardona Marcet 

Cristina Tarín Sauer 

May 2012 



 



 

Preface 

The work of this thesis was mainly preformed at the Telecommunications 

and Multimedia Applications Technical Institude of the Technical University of 

Valencia.  

I wish to thank Dr. Narcís Cardona and Dr. Cristina Tarín for their advice and 

continous support throughout the process I am also thankful to Dr. Juan Carlos 

Guerri, Dr. Leonardo Betancourt and Paula Martí for their collaboration. I also 

express my gratitude to all the members of the Telecommunications and 

Multimedia Applications Technical Institude with whom I had the pleasure to 

work. 

This work is dedicated to my family and specially to my mother that always 

encouraged me to improve my education. 

  

Lara Traver Sebastià         1/247 





Real-time detection and classification algorithms for body-centered systems 

 

Abstract 

The main objective for which body centered systems are being developed is 

to obtain and process biological signals in order to monitor and, in some cases 

even treat, a physical condition, either a disease or the athletic performance in 

the case of sports. Since the core of body-centered systems is sensing and 

processing, signal processing algorithms play a central role in the system’s 

functioning. This thesis is focussed on those real-time algorithms that are 

needed to obtain the relevant information from the sensed signals. In the initial 

part, the types of sensors and algorithms are reviewed, after that, the thesis 

deals with two different applications and the related real-time signal processing 

algorithms are designed and implemented.  

The first study case (Chapter 3) is glucose monitoring in diabetes patients. 

The objective was to detect therapeutically wrong measurements of 

Medtronic’s Minimed CGMS using learning algorithms for pattern classification. 

The methodology used was the following: Patients were monitored using 

CGMS and simultaneously blood samples were taken in a clinical study. 

Gaussian SVM classifiers were tuned to detect wrong glucose estimations 

making use of monitor’s electrical signal, the CGMS glucose estimation and the 
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real blood-glucose measure obtained from the blood samples. The results 

showed that the classifiers were indeed able to learn the data structure and an 

overall good detection of wrong measures was obtained in spite of the 

somewhat low sensitivity of the detector. The classifiers were able to detect the 

time intervals where the monitor’s glucose profile shouldn’t be trusted because 

of wrong measurements. This was illustrated with the detection of 

hypoglycaemic episodes missed by the CGMS. From this analysis it was 

concluded that detection of therapeutically wrong measurements given by the 

continuous glucose monitor Minimed CGMS is feasible through the use of SVM 

classifiers. For all patients, missed hypoglycaemic states were detected, as 

well as other therapeutically wrong measurements. The presence of False 

Positives did not alter the conclusions drawn out from the analysis of time 

profiles. This tool could thus support the clinician in the interpretation of 

continuous glucose monitor readings.  

The second application of body centered systems, included in Chapter 4 is 

neural signal monitoring. Recent medical advances have demonstrated the 

benefits that such monitoring can bring to medicine and even to other areas as 

entertainment. That is why, nowadays, there are many research groups 

dedicated to develop wireless implantable brain monitors. In this work neural 

spike detection classification and compression algorithms have been 

implemented and evaluated together with wireless transmission techniques. 

Such combination will enable the implementation of the wireless brain 

monitors. A new method for adaptive threshold spike detection was applied 
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that successfully adapts to different input SNRs eliminating the need for 

manual threshold setting. For the classification algorithm, PCA pattern 

recognition techniques were used and a performance of 92% of correctly 

classified spikes was accomplished. Detection and classification were used 

together with a compression and resource management algorithm for efficient 

wireless transmission of neural signals. The frame-based algorithm was 

capable of adapting the compression of the 60 input channels according to: the 

neural activity present, the priority set to each channel and the bandwidth 

available at each processing frame. As a result, signals were compressed and 

multiplexed in a single transmission frame that fits in the available transmission 

bandwidth. The reconstruction algorithm at the receiving side was able to 

demultiplex and decode the received frame to reconstruct the neural spiking 

patterns. The conjunction of detection, sorting and compression algorithms 

produced a scheme for neural monitoring system that self-adapts to the signal 

conditions (adaptive threshold detector) and to the transmission bandwidth. 

Finally, although the main topic of the thesis is signal processing, a chapter 

(Chapter 5) has been dedicated to wireless transmission technologies and 

more precisely to on-body UWB transmission. UWB was selected in this thesis 

as the most promising transmission technology for body-centered systems 

because of the combination of low-power, short-range and high data rates that 

characterize such technology. There are some additional considerations to be 

regarded. UWB allows only short distance communications with these high 

transmission rates, which is perfectly assumable for body area networks but 
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therefore it raises the need of a bridge between the close body field and the 

remote monitoring stations. In this work, the objective was to evaluate UWB for 

the particular application of real-time neural signal monitoring. As for the 

methodology, a channel measuring campaign was designed and performed in 

order to characterize the head-to-body channel. From such measures, model 

parameters were extracted. Additionally, and for performance evaluation, 

neural signals were transmitted through a UWB evaluation kit and the spiking 

characteristics of the received signals were compared to those of the 

transmitted signals for different experimental set-ups. The study concluded that 

for real-time neural signal monitoring, UWB seems to offer best transmission 

conditions in a near-body environment up to 2m. It allows high-fidelity signal 

transmission at extremely high data rates with low power consumption.  
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Resumen 

El objetivo principal para el que se están desarrollando los sistemas de 

comunicaciones corporales es obtener y procesar señales biológicas que 

sirvan para monitorizar e incluso para tratar un determinada condición física, 

tanto si se trata de una enfermedad como si se trata del rendimiento de un 

deportista. Dado que el foco de estos sistemas está en la sensorización y en el 

procesado, los algoritmos de procesado de señal juegan un papel central en 

su funcionamiento. Esta tesis se centra en los algoritmos de procesado que se 

usan para obtener la información relevante a partir de las señales recogidas. 

En una primera parte, se revisan los tipos de sensores y algoritmos utilizados 

en este campo, para después centrarse en dos aplicaciones concretas para 

las cuales varios algoritmos de procesado son diseñados e implementados. 

La primera de estas aplicaciones es la monitorización continua de pacientes 

con diabetes. En este caso, el objetivo era utilizar algoritmos de 

reconocimiento de patrones, en concreto “Support Vector Machines (SVM)” 

para detectar las medidas del monitor Minimed CGMS de Medtronic que 

resultan terapéuticamente erróneas. En el ensayo, un conjunto de pacientes 

fue monitorizado mediante el citado monitor mientras simultáneamente se 
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extrajeron muestras sanguíneas de las que se midió la glucosa en sangre. Los 

algoritmos de reconocimiento fueron entrenados para detectar los errores en la 

medida del Minimed CGMS con respecto a los valores correctos obtenidos 

mediante medidas en sangre. Los resultados mostraron que los clasificadores 

son realmente capaces de aprender la estructura de los datos y producir 

resultados de detección aceptables. Por tanto, son capaces de detectar los 

intervalos de tiempo en los que las medidas del CGMS no resultan fiables, 

especialmente esto se ilustró en la detección de los episodios de hipoglicemia 

que habían sido ignorados por el monitor continuo. En todos los pacientes 

monitorizados, el algoritmo de SVM fue capaz de detectar los estados de 

hipoglicemia ignorados por el monitor continuo. Aunque hay que señalar que 

esto fue a costa de algunos falsos positivos, los cuales no afectaron a las 

conclusiones que se pueden extraer de la serie temporal ya que ocurren de 

manera aislada. Esta herramienta permitiría pues apoyar la interpretación 

clínica de las medidas realizadas con este tipo de monitores en pacientes con 

diabetes. 

La segunda aplicación que se incluye es la de la monitorización inalámbrica 

de señales neuronales. Avances recientes en este campo médico han 

demostrado que la monitorización neuronal puede traer avances muy 

importantes en el estudio del cerebro, en el tratamiento de algunas 

condiciones médicas como la tetraplegia e incluso en el campo del 

entretenimiento. Por este motivo, en la actualidad hay numerosos equipos de 

investigación que trabajan en desarrollar monitores neuronales inalámbricos. 
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En esta tesis, el objetivo fue implementar y evaluar algoritmos de detección, 

clasificación y compresión de señales neuronales junto con técnicas de 

transmisión inalámbricas para la monitorización inalámbrica de señales 

neuronales dado que esta combinación de técnicas es la que permitirá en un 

futuro que los monitores cerebrales inalámbricos sean una realidad. En 

concreto se ha desarrollado un detector de impulsos neuronales con umbral 

adaptativo a la relación señal a ruido, de modo que se elimina la necesidad de 

situar el umbral de forma manual. En cuanto a la clasificación se ha obtenido 

una tasa 92% en la clasificación correcta de los impulsos neuronales mediante 

clasificadores basados en PCA (“Principal Component Analysis”). Los citados 

algoritmos de detección y clasificación se han usado junto con un algoritmo de 

compresión y de gestión de recursos para la transmisión eficiente de las 

señales neuronales. El conjunto es capaz de adaptar la compresión de 60 

canales de señales neuronales a la actividad que presentan las neuronas en 

cada momento de modo que el máximo de información pueda ser transmitido 

con el ancho de banda disponible. Como resultado se comprimen y 

multiplexan los 60 canales neuronales para acomodarlos al ancho de banda 

del canal disponible. En el extremo del receptor, el algoritmo de reconstrucción 

es capaz de reconstruir los patrones de impulsos neuronales de modo que las 

señales sigan siendo interpretables. El sistema completo se adapta 

automáticamente tanto a las señales entrantes como al ancho de banda 

proporcionado por el canal de comunicación. 
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Finalmente, aunque el tema principal de este trabajo es el procesado de 

señal, se ha incluido un capítulo dedicado a la transmisión inalámbrica, en 

concreto con la tecnología “Ultra-wide-band (UWB)” en el entorno del cuerpo 

humano. UWB fue seleccionada por permitir altas tasas de transmisión en el 

corto alcance, que es el caso de los sistemas que nos ocupan. En este trabajo 

se evalúa el uso de UWB en aplicaciones en el entorno del cuerpo humano 

(“BAN”, En concreto para la monitorización de señales neuronales). En cuanto 

a la metodología, se realizo una campaña de medidas para caracterizar el 

canal desde la cabeza a diferentes partes a lo largo del cuerpo humano. A 

partir de estas medidas se han obtenido los parámetros del modelo de canal. 

Adicionalmente, se realizó un experimento de transmisión de señales 

neuronales mediante un kit UWB y se evaluaron los efectos de la dicha 

transmisión mediante la comparación de los patrones de disparo de las 

señales antes y después de la transmisión. Los resultados muestran que UWB 

proporciona buenos resultados de transmisión a altas tasas de transmisión en 

distancias de hasta 2 metros. 
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Resum 

L’objectiu fonamental per al qual actualment es desenvolupen sistemes de 

comunicacions corporals o BAN (del anglès “Body Area Networks”) és per 

obtenir y processar senyals biomètrics i d'aquesta manera poder monitoritzar o 

inclús tractar una determinada condició física o mèdica. Donat que el focus en 

aquestos sistemes es troba en la sensorització i el processat, el algoritmes 

utilitzats en aquest processat tenen un paper central en el funcionament del 

sistema. Es per això que aquesta tesi es centra precísament en els algoritmes 

que permeten obtenir la informació rellevant a partir del senyals recollits. En 

una primera part, es revisen els tipus de sensors i algoritmes utilitzats en el 

camp de la tele-monitorització mèdica per a després centrar l’estudi en dues 

aplicacions concretes y en els algoritmes relacionats.  

La primera d’aquestes aplicacions és la monitorització continua de pacients 

amb diabetis. L’objectiu fixat és la utilització de algoritmes de reconeixement 

de patrons i més concretament Màquines de Suport Vectorial o SVM (de 

l’anglès “Support Vector Machines”), per detectar les mesures realitzades per 

el monitor Minimed CGMS de Medtronic que resulten terapèuticament 

errònies. Metodològicament, es va monitoritzar amb el monitor CGMS Minimed 

un conjunt de pacients amb diapentes, dels quals, simultàniament es van 
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extraure mostres sanguínies de manera periòdica per a mesurar la glucosa en 

sang. Amb el conjunt de mesures del Minimed i les de glucosa en sang, es van 

realitzar el entrenament i el test dels algoritmes de reconeixement o 

classificadors. Els resultats mostraren que els classificadors tenen la capacitat 

de aprendre la estructura de les dades i produir resultats de detecció d’errors 

acceptables. Per tant, poden detectar els intervals de temps en els quals les 

mesures del CGMS Minimed no són fiables. Especialment açò es va mostrar 

en la capacitat de detecció dels episodis de hipoglucèmia que havien segut 

ignorats per el monitor continu. Cal assenyalar que aquesta capacitat de 

detecció es a costa de alguns falsos positius que globalment no afecten a la 

detecció dels períodes de hipoglucèmia ja que es produeixen de manera 

aïllada en el temps. Per tant aquesta ferramenta pot donar suport a la 

interpretació clínica de les mesures realitzades amb aquest tipus de monitors 

continus.  

Per un altra banda, la segona aplicació considerada en aquest treball es la 

monitorització inalàmbrica de senyals neuronals. El recents estudis en aquest 

camp mèdic han demostrat que la monitorització neuronal pot propiciar 

avanços molt importants en l’estudi del cervell i també en el tractament de 

algunes condicions mèdiques com la tetraplegia o inclús en el camp de 

l’entreteniment. És per això que actualment hi ha nombrosos equips 

d’investigació que hi treballen en el desenvolupament de monitors neuronals 

inalàmbrics.  En aquesta tesi, l’objectiu és implementar i avaluar algoritmes de 

detecció, classificació i compressió de senyals neuronals junt am tècniques de 
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transmissió per a la monitorització inalàmbrica i en temps reial de aquests 

senyals. Més concretament, s’ha desenvolupat, per una banda, un detector de 

impulsos neuronals amb llindar adaptatiu a la qualitat del senyal d’entrada, de 

manera que resulta innecessari situar el llindar de detecció de manera manual. 

Per un altra banda, s’han utilitzat classificadors basats en PCA (de l’anglès 

“Principal Component Anàlisi”) per a la classificació de impulsos neuronals 

obtenint una taxa del 92% de classificacions correctes. Juntament amb la 

detecció i classificació del impulsos neuronals s’ha aplicat un esquema de 

compressió y gestió de recursos que permet la transmissió eficient dels 

patrons de impulsos per a la seua interpretació en el receptor. Aquest conjunt 

és capaç de adaptar la compressió de 60 canals d’entrada a, per una banda, la 

activitat neuronal del conjunt de canals, per altra banda a la prioritat assignada 

a cadascun dels canals i finalment també al ample de banda disponible en 

cada moment. Així, es comprimeixen i multiplexen 60 canals neuronals i 

s’acomoden al ample de banda del canal disponible. En l’extrem del receptor, 

el procés de reconstrucció, interpreta les dades rebudes de manera que es 

possible obtindre els patrons de impulsos i poder-los interpretar. El sistema 

s’adapta automàticament als senyals entrants i a les condicions de transmissió 

del canal de comunicació.  

Finalment, tot i que el tema principal de la tesi és el processat de senyals, 

s’ha inclòs un capítol dedicat a la transmissió inalàmbrica, concretament a la 

tecnologia UWB (de l’anglès “Ultra-wide-band”) per a la comunicació al voltant 

del cos humà. UWB es va seleccionar per què permet altes tasses de 
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transmissió en curtes distàncies. L’objectiu en aquest treball és avaluar l’ús 

d’UWB en sistemes “BAN” (comunicacions al voltant del cos humà), i més 

concretament en la monitorització de senyals neuronals. Pel que fa a la 

metodologia, s’ha realitzat una campanya de mesures del canal de UWB 

mesurat des de el cap a diverses posicions al llarg del cos. A partir d’aquestes 

mesures s’han obtingut els paràmetres que caracteritzen el canal. 

Addicionalment es va realitzar un experiment de transmissió reial de senyals 

neuronals a través d’un kit de avaluació d’UWB. A partir d’aquest experiment 

es van avaluar els efectes de la transmissió UWB sobre els senyals neuronals 

mitjançant la comparació dels patrons d’impulsos abans i després de la 

transmissió. Els resultats mostres que UWB proporciona una bona qualitat de 

transmissió a elevades taxes de transmissió fins a 2m de distancia. 
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Chapter  1  

Introduction 

1.1 Motivation 

Body-centered communication systems have many applications in the 

biomedical, telemedicine and entertainment fields [15], [16], [17], [23], [24] and 

[25], where obviously wireless technology presents many advantages. Such 

systems are designed using the so-called Wireless Body Area Networks 

(WBANs), which are made up of a set of mobile and compact 

intercommunicating sensors, either wearable or implanted into the human 

body, which monitor vital body parameters and movements. In medical 

applications, these devices, communicating through wireless technologies, 

transmit data from the body to a central station, from where the data can be 

forwarded to a hospital, clinic or elsewhere [15]. In Figure 1. a basic scheme 

for a WBAN configuration is depicted.  
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Figure 1. Schematic of a Wireless Body Area network for e-health application. 

1.2 State of the art 

WBAN applications in the healthcare domain are awaking interest in the 

medical community. For example in vital signs monitoring, in and outside the 

hospital, of patients suffering from chronic diseases such as diabetes, asthma 

and heart attacks [16]. Those diseases can present life-threatening episodes in 

which quick medical response is crucial. By means of a WBAN, alerts are sent 

to the hospital, even before the acute episode occurs thanks to the early 

detection of changes in vital parameters. Even in a step further from simple 

monitoring, a WBAN network on a diabetic patient could auto inject insulin 

through a pump, as soon as his insulin level declines. WBAN applications are 

of course not limited to the healthcare area but spread also in sports, military, 
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or security areas. However, they are out of the scope of this work which 

focuses in patient monitoring. 

Wireless patient monitoring implies the use of sensors that produce signals 

with are digitized and wirelessly sent to a logging or processing system. 

Today’s improved sensor technology, together with miniaturization of 

transmission and processing devices, allows the use of many sensors and in 

many locations on the body and also inside the body, which, in turn, results in a 

considerable data rate to be transmitted over the wireless link [17], [18], [19].  

A wide range of wireless transmission technologies are used in WBAN for 

communicating such amounts of data: Bluetooth, Zigbee, UWB, IEEE 802.11, 

IEEE 802.15.6, Near-Field Communications, etc. As a consequence WBAN 

systems are heterogeneous and do not use the same technology, they are not 

interoperable and the industry has not yet adopted a standard in this field. This 

has an effect in commercialization of WBAN products since the economy of 

scale has not yet been reached. For this reason, in the future, it would be 

desirable for WBAN systems to ensure seamless data transfer across 

standards, to promote information exchange and to allow plug and play device 

interaction. 

In the present, wireless sensor units are usually composed of the sensor 

itself, connected to a transmission unit by a small cable, as in the example of 

Figure 2. Still further miniaturization and integration of both sensor and 

transmitter in a single unit is expected. Sensors used in WBAN need to be low 
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on complexity, small in form factor, light in weight, power efficient, easy to use 

and reconfigurable. 

 
Figure 2.  EMG sensor integrated in a Telos mote platform for vital sign monitoring. 

Security is also an important issue in WBAN for patient monitoring. WBAN 

transmission has to be secure and accurate to make sure that the patient’s 

data is only derived from each patient’s dedicated WBAN system and is not 

mixed up with other patient’s data. Further, the data generated from WBAN 

should have secure and limited access. People might consider the WBAN 

technology as a potential threat to freedom, if the applications go beyond 

‘secure’ medical usage. Social acceptance would be key to this technology 

finding a wider application. 

Apart from the exposed issues, in order to design practical WBAN systems, 

body interaction in electromagnetic propagation properties impose further study 

and development. The propagation along or through the body must be 

characterized. It becomes fundamental to characterize the body proximity 
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effects on the channel characteristics as path loss, maximum link distance, 

delay spread, etc. ([26] - [29]). 

1.3 Objectives 

The main objective of the proposed thesis is to design and evaluate a 

wireless telemetry system for real-time monitoring of biomedical signals 

and more specifically, neural signals. 

To accomplish that, several minor objectives are implied: 

 Design a compression and reconstruction method for wireless 

transmission of neural signals. 

 A real-time resource management algorithm so that adequate source 

compression is applied to each channel in order to fit them into the 

available bandwidth. 

 Evaluate the performance of the algorithm using dynamically 

changing bandwidth and neural recordings with different neural 

activity characteristics. 

 Obtain a model of the UWB channel for the specific application of 

neural signal monitoring where the propagation occurs from the 

transmitter located on the head to the receiver that can be in different 

parts along the body. 
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 Apart from the main objective, a different medical application will be 

studied consisting in applying pattern recognition techniques in error 

detection in subcutaneous continuous blood-glucose monitors. 

For the design of the neural signal compression, reconstruction and 

resource management methods a set of real recordings have been obtained 

and are be used. The method is designed for real time operation, this is, 

signals are divided in frames and each frame is processed at a time. MatlabTM 

and SimulinkTM are used for the implementation. The results show how 

compression and reconstruction affect to the spike detection and classification 

algorithms which are the basic techniques for neural signal processing. This 

demonstrates the feasibility of a system for wireless transmission of 

compressed signals without affecting their main characteristics. 

A wireless neural signal transmission demonstrator is implemented using 

Bluetooth and 3G. Also real UWB transmission is used for neural signals and 

the effects of transmission distance and power is studied. 

In the on-body statistical channel modellization, frequency measurements 

from 1GHz to 12GHz are made in an anechoic chamber using a vector network 

analyzer (VNA), the S-parameter S21 is measured in the complex frequency 

domain. Two antennas are connected to the VNA by means of suitable low 

attenuation cables. A calibration procedure is implemented so that 

measurements are not affected by cable attenuation and frequency response. 

Measures are taken for male and female subjects and finally channel 

parameters are extracted form the measures to obtain the channel model. 
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In medical applications, also signal processing techniques are necessary in 

the process of sensing, compressing, transmitting and reconstructing the 

signals to be interpreted by the medical community. In this thesis two types of 

medical applications are considered where signal processing is involved: 

 Neural signals telemetry [19], [20], [21], [22]. 

 Blood-glucose monitoring [30], [31], [33]. 

1.4 Main contributions 

The main scientific contributions of this dissertation are: 

 Implementation of neural signal processing algorithms (detection, 

sorting, compression, reconstruction) [2], [3]. 

 Implementation of a neural signal transmission demonstrator using 

Bluetooth and 3G [7]. 

 Simulation of the whole real-time system for neural signal telemetry 

including resource management to adapt compression to different 

transmission capacities [1], [3]. 

 Study on-body UWB propagation properties: [8]-[12].  

 Evaluation of distance and power effects on UWB transmission of 

neural signals [4]. 
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 Evaluation of Support Vector Machines (SVM) techniques in the 

detection of incorrect measurements in existing blood glucose 

monitors [13]. 

1.5 Thesis’ structure 

Chapter 2 contains a review of wireless sensor technologies for body-

centered systems from the types of sensors to the current medical systems 

available in the market. In Chapter 3 SVM is evaluated as a support decision 

tool for error detection in commercial continuous blood glucose monitoring 

devices. Chapter 4 deals with the main real-time signal monitoring applications 

of this thesis consisting on the implementation of the algorithms for neural-

signal monitoring and the implementation of a prototype for detection, 

compression and Bluetooth transmission of a set of pre-recorded neural 

signals. Evaluation of UWB transmission is also included. Continuing with 

UWB, Chapter 5 contains a study of the transmission properties of the on-body 

UWB channel. Finally Chapter 6 draws the main conclusions of this work as a 

whole. 
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Chapter 2  

Body-centered systems 

2.1 Introduction 

Biomedicine, sensor technology and wireless communication are fields the 

combination of which will bring continuous, 24 by 7 human body monitoring in 

the future. However, though the needed innovations are either already 

developed or will be soon, commercial products won’t make it to the market 

until years of testing have proven their safety. That is why in recent years, 

Wireless Body Area Networks (WBAN) have received increased consideration 

due to their widespread applicability the mentioned fields of health monitoring 

and telemedicine. Improved sensor technology together with miniaturization of 

transmission and processing devices have increased the scope of potential 

applications. Chronic patients need to be monitored and, of course, they much 

more prefer to be able to remain away from hospitals and medical centers and, 

therefore, patient parameters, measured by a set of sensors, need to be sent 

to the medical centre over some communication network. In the medical 

centre, data are evaluated by clinicians and eventually added to the patient’s 

historical files. Monitoring of patients in medical centers has been done over 

many decades through cabled systems. Cables are a handicap since they may 
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fall off, tangle up with each other and make mobility difficult for patients and 

clinicians. Furthermore, they are a problem when a patient who needs 

continuous monitoring, moves around or is moved. 

Mobile devices are the key allowing this new way to treat patients since they 

allow ubiquitous access to data, provide Internet connection and serve as 

documentation systems. With the help of mobile devices the health system is 

also more transparent and accessible to patients. In the future doctors might 

call patients before having a heart attack, responding to an alarm sent out by 

monitoring systems. Also real-time monitoring of blood’s chemical 

concentrations could enable tailoring of medicine dosages to patient’s body 

chemistry and metabolism. The huge amounts of data that would be 

accumulated from hundreds of thousands of continuously monitored persons 

would allow further advances in research which are not possible nowadays.  

However, in spite of the many advantages, wireless body monitoring is not  

yet common practice. The reason being that most of the interesting signals to 

be monitored require the sensor to be implanted inside the body, and this is not 

an easy problem to overcome. Extracting blood samples periodically only 

works for periodic monitoring. It does not provide continuous access to bodily 

fluids. The possible infections caused by implants and degradation they suffer 

from moisture, enzymes, and the immune system complicate their use. Future 

advances in biocompatible materials are expected to gradually alleviate this 

scenario allowing safer and longer monitoring through implanted sensors. 
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This chapter is a general introduction to body-centered systems and intends 

to serve as a topic umbrella for the following parts of the thesis. Here we will 

review in a general manner the types of biomedical sensors used in body-

centered systems together with the related signal processing techniques used 

to deal with the obtained signals. Wireless technologies and communications 

topologies for data transmission will also be covered and finally a large but 

obviously non-exhaustive list of existing applications and products will be 

presented.  

2.2 Biomedical sensors 

2.2.1 Physiological Signals 

Many biological processes are subject to be measured. Measuring a process 

produces a physiological signal which gives an idea of what is happening in the 

underlying mechanism. Basically there are six types of signals: mechanical, 

thermal, magnetic, electric, chemical, and radiation. The devices that convert 

one type of signal into another are called transducers and more precisely, 

when signals are converted to electrical signals, the devices are called 

sensors. Most measurement systems use sensors because electric signals 

provide many advantages as signal amplification, availability of a large number 

of signal conditioning circuits and displays and also the fact that electrical 

signals are easily transmitted and converted into digital signals and radio 

signals. A variety of physiological signals are subject to be acquired with the 

available sensor technologies such as: Electrocardiogram signal (ECG), body 

temperature, blood pressure, body acceleration and many others.  
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In a basic classification, sensors can be separated into active or passive 

types. Active sensors are those that obtain power from an external source 

while passive sensors obtain the output power from the input signal. On the 

other hand physiological signals can be classified according to their physical 

nature into: 

 Electrical signals: caused by changes in potential in cells generating 

an electric field which fluctuates and in this process it is to emit 

bioelectric signal.  

 Mechanical Signals: They are related to motion, displacement, 

pressure and flow of the physiological system.  

 Magnetic signals that originate from magnetic fields generated by 

various organs like heart, brain and lungs while functioning.  

 Chemical signals: they are obtained by chemical measurement from 

the living tissues or analysis of the samples obtained from the body.  

 Impedance Signals: measurement of skin impedance helps in finding 

the state of skin and functioning of various physiological systems.  

 Optical Signals: These signals are produced by the optical variations 

by the functioning of the physiological system.  

 Acoustic Signals: These are sounds created by the flow of blood and 

air. 

Nowadays, in telemedicine and health monitoring many types of sensors are 

used. Among the more common are: Electrocardiography (ECG), 
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Electroencephalography (EEG) and Electromyography (EMG) sensors, blood-

glucose meters and pulse-oximeters. Others are only starting to find their 

applications and are mainly used in medical research such as neural multi-

electrode sensors and motion sensors. Miniaturization has not yet reached the 

level of development to allow the majority of sensors to incorporate the 

transmission device in a single-packet. As a consequence, usually in this type 

of systems a small cable connects the sensor with the transceiver unit while 

from this unit to the monitoring device a wireless link is used.  

2.2.2 Electrocardiology (ECG) sensors 

ECG monitors attach up to 10 sensors to the body. Each sensor consists of 

an electrode recording the electrical activity in a different section of the heart. 

An ECG is used to measure the electrical activity of the heart [34]. The cardiac 

signal, typically 5 mV peak to peak, is an AC signal with a bandwidth of 0.05 

Hz to 100. The ECG signal is characterized by six peaks and valleys labeled 

with successive letters of the alphabet P, Q, R, S, T, and U (Figure 3). 

 
Figure 3. Typical ECG waveform 

From an ECG, an expert can extract: the rate and regularity of heartbeats, 

the position of the various chambers, the existence of any damage to the heart 

and the effects of drugs and devices used to regulate the heart. Many types of 
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ECG equipment exist in the market for hospital and portable use. There is an 

effort as well to produce wireless ECGs, however, commercial wireless ECGs 

replace the cables between the patient and the monitoring device, but the ECG 

sensors are still connected to the transmission device through cables.  

Alternative heart activity recording approaches exist such as:  

 Stethoscope function: mechanical work of the heart muscle 

movement conducted through tissue. 

 Impedance cardiography (ICG): impedance change due to blood 

volume and velocity change in aorta  

 Blood saturation: measurement of the amount of oxygen attached to 

the hemoglobin cell in the circulatory system (SPO2) using light 

reflection (this is done with a sensor placed around a finger)  

 Mechanical work of the heart sensed through tissue/body motion 

(e.g. sensors integrated in mattress). 

2.2.3 Electromyography (EMG) sensors 

EMG is the technique to evaluate the recording of electrical activity produced 

by skeletal muscles cells, when electrically or neurologically activated [35]. 

Muscle potentials range 50V to 30mV and the signal spectrum lies in the 7Hz 

to 500Hz band. The device used in electromyography is called 

electromyograph and has applications in diagnose of neuromuscular diseases 

and also the more innovative control of prosthetic devices among others [36]. 
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Wireless EMGs have already started to be available in the market mainly 

using 802.15.4 technology. Examples are listed in section 2.6.2. 

2.2.4 Electroencephalography (EEG) sensors 

It is a non-invasive technique that measures the electrical brain activity by 

placing electrodes on the head at convenient positions to obtain the most 

relevant information from the recorded signals. It measures the electric 

fluctuations resulting from ionic current flows within the neurons of the brain 

[37]. EEG is widely used in epilepsy diagnosis [38], [39]. Examples of wireless 

EEG products are listed in section 2.6.2. 

2.2.5 Electrocorticography (ECoG) sensors 

In ECoG, the electrodes are placed on the motor cortex surface of a spinal 

cord injury patient. Therefore, they measure the electrical activity of the brain 

taken from beneath the skull in a similar way to non-invasive 

electroencephalography, but the electrodes are embedded in a thin plastic pad 

that is placed on the cortex, beneath the dura mater [40]. 

ECoG has been intensively used in epilepsy research, diagnostic and 

treatment [38], [41] and [42]. Today’s research starts to produce wireless 

ECoG prototypes that are hopefully going to be on the market soon [43] and 

[44].  
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2.2.6 Neural Multi Electrode Array (MEA) sensors 

Implanted MEAs are used to obtain in-vivo recordings of neurons activity 

[45]. These implanted sensors are used in the types of applications where a 

very high spatial resolution is needed, i.e. when it is needed to register the 

activity of a single neuron or of a small group of neurons. Because placing a 

MEA in or on the brain requires an invasive technique, other types of neuronal 

activity monitoring unless spatial resolution is strictly needed. 

2.2.7 Magnetoencephalography (MEG) sensors 

MEG is a non-invasive technique to measure the electromagnetic fields 

created by the electrical currents in the brain cells [46]. With MEG it is possible 

to locate the sources of the currents and thus construct maps of brain activity. 

MEG sensors are based on superconducting detectors capable of registering 

the weak magnetic fields created by the neural activity. MEG has the 

advantage of high spatial (millimeter range) and temporal resolution (in the 

order of milliseconds). The single drawback being the huge volume of the 

equipment needed to fight against interference from the environment which 

would otherwise hide the weak magnetic signals. 
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Figure 4. Comparison of existing brain activity recording technologies. 

2.2.8 Blood-glucose sensors 

They measure glucose concentration in a person’s blood. Implantable and 

non-invasive sensors for continuous blood glucose monitoring have been 

researched for over a decade, however diabetic patients can not yet rely solely 

on these types of monitors but need to calibrate them periodically (several 

times during one day). The research activity in glucose sensors is quite high 

nowadays mainly focused on implantable biosensors [47], [48]  although also 

researchers in Japan [49] and others [50], [51], are developing non-invasive 

optical glucose sensors. 

2.2.9 Pulse oximeters  

Pulse oximeters or saturation monitors measure the oxygen saturation in the 

arterial blood (SpO2) and the pulse by analyzing the absorption of light from a 

couple of Light Emitting Diodes (LEDs) after it has passed through or been 
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reflected from the skin [52]. For many years the measurement location was 

small parts of the body where light could be passed through as fingers, ear 

lobes or toes, however with the development of sensors capable of measuring 

oxygen saturation from reflected light, measures can be made from any part of 

the body.  

2.2.10 Optoelectronic plethysmography (OEP) 

This type of sensors measure respiration parameters using external optical 

sensors that can follow the chest wall surface motion. In OEP, a number of 

small reflectors are placed on the thorax surface while infrared cameras follow 

the displacement of the reflectors during respiration. In this way it is possible to 

follow thorax volume changes in the process [53]. 

2.2.11 Biosensors 

A biosensor is a sensor which combines a physical or chemical part with a 

biological part, i.e., enzymes, antibodies, biological molecules, such as DNA 

single strand, proteins or a biological system, such as membrane, a tissue, a 

cellular or microorganism culture, etc. The biosensor is thus constituted by the 

molecular recognition element and the transducer material and it takes 

advantage of the natural sensitivity and specificity of the biological processes. 

Research interest in biosensors is considerable nowadays because of the large 

amount of applications in medical diagnostic health care and environmental 

sciences [54]. 
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2.2.12 Implantable sensor Technologies 

Revolutionary changes in Micro and Nano–Electro-Mechanical Systems 

(MEMSs and NEMSs) enable embedded and implanted biomedical sensors. 

MEMSs or NEMSs are very small, micro or nano scale respectively, 

mechanical devices driven by electricity. They usually consist of a central unit 

that processes data, and one or several micro/nano sensors. Latest 

generations of MEMS include the sensor, analog amplification, analog-to-digital 

converter and digital intelligence with memory cells for calibration and 

temperature compensation. 

In some medical applications the sensor needs to be implanted in the body 

[55] as for example probes that measure blood flow [56], Microelectrode Arrays 

to measure neural signals [57] (This application is covered in detail the chapter 

4 of this thesis). 

The challenges in the design of those devices are biocompatibility, and 

energy supply for the implanted device. Biocompatibility is not in the scope of 

this work. Neither is battery design for energy supply, however, when 

discussing processing and transmission technologies, the power consumption 

is taken into account as one of the main restrictions. 

2.3 Signal processing in body-centered systems 

2.3.1 General signal processing techniques 

Physical sensors detect and convert natural physical quantities into analog 

signals. Medical signal processing techniques can sometimes be performed on 
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raw, analog signals, however, advanced, frequency-domain methods are 

performed in the digital domain. Also, digital signals are much more efficient 

when it comes to storing and transmitting them over networks or utilizing 

automated feature-extraction and recognition. The first step in signal 

processing is sampling the signal to convert it into a time series, since 

computers cannot handle or store continuous data. Sampling is followed by 

quantization through Analog to Digital Conversion (ADC), signal conditioning, 

which may itself include level adjustment, frequency filtering, feature extraction 

and data compression. In the case of real-time monitoring, buffering and finally 

wireless transmission are needed. Current trends are toward integration of all 

these functions into a single-chip solution. These chips are usually called 

motes [58]. 

It needs to be noted that in the sampling process original signal 

reconstruction can be achieved as far as the sampling frequency is at least 

double the signal bandwidth; this requirement is known as the Shannon 

theorem [59] and, in theory, it is the decisive requirement for the sampling 

process. On the other hand in the quantization process, the range of values 

should be both compact and efficient. 

When the application requires real-time sensing, the samples of the 

monitored process are taken and processed at the time they are produced and 

therefore delay and latency issues must be considered. In real time operation, 

there is no data storing for later processing but data are obtained and 

processed in a continuous stream. Monitoring systems are usually real-time 
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systems since they require immediate reaction at the events being monitored 

and the requirement that the average processing time per sample is no greater 

than the sampling period has to be met. Real time processing usually requires 

that the data are divided in frames. A frame is a set of one or multiple channel 

samples that are first stored in a memory buffer and then processed. The 

duration of the frame processing needs to be always smaller than the frame 

acquisition time to avoid buffer overload and it also defines the processing 

delay of the application, the longer the frame the longer the delay. Real-time 

requirements, minimum and maximum sampling rates, minimum and maximum 

resolution and number of channels are the main characteristics to be taken into 

account when defining the processing and storage requirements.  

As a summary, Table 1 (partly taken from [60] and further extended) 

presents the characteristics of common physiological signals. 
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Physiological 
parameter 

Type of sensing 
device 

location 
Sampling 
rate (Hz) 

(min–max) 

Precision 
(bits) 

(min–max)

Channels 
(min–max)

Data rate 

(kbps) 

ECG  

(per channel) 
Electrodes Chest (100–1000) (12–24) (1–3) 1.2 – 72 

EMG Electrodes Muscles (125–1000) (12–24) (1–8) 1.5 – 192 

EEG Electrodes Head (125–1000) (12–24) (1–8) 1.5 – 192 

MEA Electrodes Head 
(15000 - 
50000) 

(10-12) (1-128) 
150 – 
76800 

PPG Photodiode 
Ear or 
finger 

(100–1000) (12–16) 1 1.2 – 16 

Blood pressure Pressure cuff 
Arm or 
finger 

(100–1000) (12–24) 1 1.2 – 24 

Respiration 
Elastic chest 

belt/electrodes 
Chest (25–100) (8–16) 1 0.2 – 1.6 

Blood glucose Chemical Skin <0.01 (8–16) 1 <0.00016 

GSR Electrodes Fingers (50–250) (8–16) 1 0.4 – 4 

Skin temperature Thermistor probe Wrist/arm < 1/60 (16–24) 1 < 0.0004 

Localization GPS receiver 
Personal 

server (PS) 
(0.01–10) (80–120) 1 

0.0008 – 
1.2 

Gait Inertial gyroscope Chest (25–100) (16–32) (1–3) 0.4 – 9.6 

Activity Accelerometers 
Chest, 

extremities 
(25–100) (12–24) 3 0.9 – 7.2 

Steps 
Mechanical foot 

switch 
Shoe insole (2–100) (1–16) (1–8) 

0.002 – 
12.8 

Humidity — 
Attached to 

PS 
< 1/60 (12–16) 1 < 0.0003 

Light — 
Attached to 

PS 
< 1/60 (12–16) 1 < 0.0003 

Ambient 
temperature 

— 
Attached to 

PS 
< 1/60 (12–16) 1 < 0.0003 

Atmospheric 
pressure 

— 
Attached to 

PS 
< 1/60 (12–16) 1 < 0.0003 

Ambient noise  
Attached to 

PS 
< 1/60 (12–24) 1 < 0.0003 

Table 1  Physiological signals: sampling rates, precision typical for wearable 
health monitoring applications, and likely locations of deployment 

After basic sampling, digital conversion and conditioning, typically signals 

are sent as data to a processing remote server, where, in order to obtain 

relevant information several signal processing techniques can be used. As it is 
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known, sensors provide with a readout signal which is related to the underlying 

physical or chemical process. One of the main goals of signal processing in 

biomedicine is to compensate for the possible effects of measuring devices 

and noise on the measured signal. Additionally signal processing often aims at 

identifying and separating desired and unwanted components of a signal and 

finally also uncover the nature of underlying process responsible for generating 

the signal. 

Signals derived from biological processes are often not well represented by 

simple deterministic signals. Real-world biomedical signals usually include 

large stochastic components; they also may be fractal or chaotic. Often we 

ignore the properties of their sources and are unable to know a priori what the 

character of the signal will be. Therefore we must first recognize the range of 

possible signal types and be able to determine the most appropriate type of 

analysis for the signal of interest. Unfortunately, this choice is not always clear. 

It is of special importance also being able to recognize whether the selected 

analysis method is appropriate and to determine the best way to process the 

signal depending on the objectives. 

The main issues to take into account in signal processing for body-centered 

systems are: 

 choosing a class of signal model 

 selecting a specific form of the model, i.e., statistical versus 

deterministic etc. 

 evaluating indicators of adequacy of the model 
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A general review of signal processing for biomedical signals is way too wide 

to be covered here. Signal enhancement techniques are well covered in many 

signal processing books. Here we will have a limited review of the decision 

support techniques that will be used in the following chapters. As a general 

fact, signal processing techniques can be separated in two steps, first signal 

enhancement or pre-processing that separates the captured information from 

noise and prepares it for the second step consisting of specialized processing, 

classification, and recognition algorithms.  

Signal enhancement may include: 

 Sampling 

 Analog to Digital Conversion (ADC) 

 Level adjustment 

 Frequency filtering 

 Noise reduction 

After signal enhancement specialized algorithms which are tailored to the 

type of signal and type of application are used and may include: 

 Feature extraction 

 Computing features as variance, mean or range 

 Data compression 

 Buffering  

 Wireless transmission. This is the topic covered in section 2.4. 
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 Decision support techniques:  

o Detection. The earliest efforts to formalize medical decision 

making involved the application of statistical decision 

methods (ROC, Receiver Operating Curves) in radiographic 

interpretation. Since then, detection algorithms have been 

applied in many fields. 

o Pattern recognition: Automatic diagnosis is possible in many 

cases through pattern recognition algorithms that sort 

symptoms into diagnostic categories. Pattern recognition 

develops and applies algorithms that recognize patterns in 

data. Those algorithms involve techniques as Principal 

Component Analysis (PCA), Partial Least Squares (PLS) and 

Multivariate Linear Regression (MLR), Support Vector 

Machines (SVM), neural networks, etc. 

Signal enhancement techniques are well covered in many signal processing 

books [60], [61], [62] and [63]. Here we will have a limited review of the 

decision support techniques that will be used in the following chapters. 

A pattern is any item whose important characteristics form a set of 

descriptors (usually numerical) that characterize the object. Each pattern 

(object) has associated with it a property value. A property is an attribute of a 

pattern that is difficult, expensive, or time-consuming to measure, or not even 

directly measurable. The descriptors capture some important characteristics of 

the pattern, and then a mathematical function (e.g., machine learning 
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algorithm) can generate a mapping between the descriptor space and the 

property, classifying therefore the patterns according to the resulting property. 

Lets see the pattern recognition problem in mathematical notation: An n-

dimensional pattern (object) x has n coordinates, x=(x1, x2,…, xn), where each 

xi is a real number, xi for i = 1, 2, …, n. Each pattern xj belongs to a class 

yj{-1, +1}. T is a training set of m patterns together with their classes, T={(x1, 

y1), (x2, y2), …, (xm, ym)}. S is the dot product space in which the patterns x 

are embedded, x1, x2, …, xmS. Any hyperplane in the space S can be written 

as 

 0 , ,x S w x b w S b R       (2-1) 

The dot product w•x is defined by: 

1

n

i i
i

w x w x


    (2-2) 

A training set of patterns is linearly separable if there exists at least one 

linear classifier defined by the pair (w, b) which correctly classifies all training 

patterns (Figure 5). This linear classifier is represented by the hyperplane H 

(w•x+b=0) and defines a region for class +1 patterns (w•x+b>0) and another 

region for class -1 patterns (w•x+b<0).  

 
Figure 5. Linear classifier defined by the hyperplane H (w•x+b=0). 
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After training, the classifier is ready to predict the class membership for new 

patterns, different from those used in training. The class of a pattern xk is 

determined with the equation: 

  1 if 0

1 if 0
k

k k
k

w x b
class x y

w x b

   
       

(2-3) 

equivalent to: 

  1 0k ky w x b     (2-4) 

Therefore, the classification of new patterns depends only on the sign of the 

expression w•x+b. 

In general, for each linearly separable training set, one can find an infinite 

number of hyperplanes that discriminate the two classes of patterns. An 

optimum hyperplane is obtained that has a maximum margin (separation 

between the two classes), and with the separation hyperplane being 

equidistant from the two classes. 

2.3.2 Support Vector Machines (SVM) 

Support vector machines (SVM) are a group of supervised learning methods 

that can be applied to classification or regression. SVM models were originally 

defined for the classification of linearly separable classes of objects and later 

extended for the non-linearly separable case. For any particular set of two-

class objects, an SVM finds the unique hyperplane having the maximum 

margin ( 2
w , see Figure 6).  
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Figure 6. Separating hyperplane H. 

In Figure 6, the hyperplane H1 defines the border with class +1 objects, 

whereas the hyperplane H2 defines the border with class -1 objects. Two 

objects from class +1 define the hyperplane H1, and three objects from class -1 

define the hyperplane H2. These objects, represented inside circles, are called 

support vectors. A special characteristic of SVM is that the solution to a 

classification problem is represented by the support vectors that determine the 

maximum margin hyperplane. Given that the margin equals 2 w , maximizing 

the margins is equivalent as minimizing 
2

2w , thus the problem of finding the 

optimum H can be described by equation (2-5).  

 

   

2

minimize  with the constraints:
2

1 0, 1, ,i i i

w
f x

g x y w x b i m



      
 (2-5) 

Based on the use of a Lagrangian function, equation (2-6) is transformed 

into its dual formulation showed in equation (2-7).  
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     

      

P
1

P
1

L w,b, =

max maxmin min
L w,b,

w,b w,b

m

i i
i

m

i i
ii i

f x g x

f x g x




 





 

 
   

 




 (2-6) 

 1 2= , , , m    

0i 

is the set of Lagrange multipliers of the training (calibration) 

patterns, .  

        

  

2
P

1 1

2

1 0

2

0 1 1

1
L w,b, = - 1

2

1
= - 

2

1
= - 

2

m m

i i i i i
i i

m m

i i i i
i i

m m m

i i i i i i
i i i

f x g x w y w x b

w y w x b

w y w x y b

 

 

  

 

 

  

    

  

  

 

 

  



 (2-7) 

The Lagrangian function LP must be minimized with respect to w and b, and 

maximized with respect to i , subject to the constraints  (equation 0i  (2-8)).  

2

0 0 0

min max 1
- , 0

, 2

m m m

i i i i i i i
i i i

w y w x y b
w b

  
  

 
     

     (2-8) 

This is equivalent to maximize LP subject to the constraints that the gradient 

of LP with respect to w and b is zero, and subject to the constraints . By 

the Karush-Kuhn-Tucker (KKT) conditions 

0i 

[64], [65], we obtain: 

 

 
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
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
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


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
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 
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
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(2-9) 

 ( ) 1 0, 1, ,i i i i ig x y w x b i m            (2-10) 

  1 0, 1, ,i iy w x b i m       (2-11) 
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 When we introduced the Lagrange function we assigned a Lagrange 

multiplier i  to each training pattern via the constraints  ig x

i

0

 (see equation 

(2-5)). The training patterns from the SVM solution that have  represent 

the support vectors. The training patterns that have 

0

i   are not important in 

obtaining the SVM model, and they can be removed from training without any 

effect on the SVM solution. As we will see below, any SVM model is completely 

defined by the set of support vectors and the corresponding Lagrange 

multipliers. The vector w that defines the optimum separating hyperplane 

(OSH) is obtained from the first condition in equation (2-9). 

1

m

i i i
i

w y


  x  (2-12) 

From equation (2-10) and equation (2-12) and given that  for the 

support vectors, b can be obtained by averaging the b values obtained for all 

support vector patterns: 

0j 

1 1

m m

i i i j j j i i i j
i i

y x x b y b y y x x 
 

         (2-13) 

Once w and b are determined any new pattern can be classified as:  

  1  if  0

1  if  0
k

k
k

w x b
class x

w x b

   
    

 (2-14) 

However, equation (2-12) offers the possibility to predict new patterns 

without computing the vector w explicitly. In this case, we will use for 

classification the support vectors from the training set and the corresponding 

values of the Lagrange multipliers i : 
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 
1

m

k i i i k
i

class x sign y x x b


 
   

 
  (2-15) 

Patterns that are not support vectors ( 0i  ) do not influence the 

classification of new patterns. 

Extension to nonlinear case 

In the case that the sampled vectors can not be linearly separated, a non-

linear transformation can be used to map the set of input vectors into a new 

space of higher dimensionality. If the function performing the mapping is 

nonlinear and the target space dimension is high enough, probably the 

transformed set of vectors will be linearly separable in the new hyperspace. 

Once in the new hyperspace SVM can be used to obtain the optimum 

hyperplane that separates the training set. 

In mathematical notation, vectors are mapped in the  space using a 

function: 

                    n
1 2 3: , , , , , Lx x x x x x

 (2-16) 

where are chosen functions. Because of the high dimension of the 

hyperspace , the separation algorithm becomes computationally complex. In 

order to reduce the complexity, a kernel function K is selected such that, the 

dot product: 

i

   i jx x   is directly computed as      ,i j i jK x x x x   . In 

this way the nonlinear function   does not need to be used in the learning 

process. 
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There is no theoretical tool to predict which kernel will give the best results 

for a given dataset, experimenting with different kernels is the only way to 

identify the best function. Like all other multivariate algorithms, SVM can over 

fit the data used in training, a problem that is more likely to happen when 

complex kernels are used to generate the SVM model. Minimum complexity 

should guide the selection of the kernel function.  

In Chapter 3, SVM are evaluated in predicting the accurateness of the 

measures and clinical security of continuous blood glucose meters. 

2.3.3 Principal Component Analysis (PCA) 

PCA is applied in the analysis of multivariate data, and the main idea behind 

this technique is that of reducing the complexity of the analysis by lowering the 

dimensionality, i.e., the number of variables of the signal while keeping as 

much as possible the variation (variability usually holds information) in the data 

set. It is a way for optimizing a trade-off between information and complexity for 

a given problem. Dimension reduction is accomplished by linearly transforming 

the data set into a hyper-space, the basis of which is a new set of uncorrelated 

variables, the principal components (PCs), and which are ordered so that the 

first few retain most of the variation present in all of the original variables. At 

that point by selecting only the first part of the variables, the dimensionality is 

reduced while keeping much of the variation in the original data. 

Given a vector x of p random variables, if p is rather large, identifying 

patterns by looking at the p variances and all of the 1
2 p(p -1) correlations or 
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covariances can become complex. An alternative approach is to look for a few 

k<<p derived variables that preserve most of the information given by these 

variances and correlations or covariances. 

The covariance matrix   is the matrix whose (i, j)th element is the 

covariance between the ith and jth elements of vector x when , and the 

variance of the jth element of x when i = j. In practical applications   is 

unknown, and we only have a set of observations of the real process, in this 

case, an approximation is taken by replacing 

i j

  by a sample covariance matrix 

S. 

It turns out that for , the kth PC is given by where k =1, 2, ..., p  k kz  = x 

k is an eigenvector of   corresponding to its kth largest eigenvaluek . 

Furthermore, if k  is chosen to have unit length ( 1   k k ), then va k kr(z ) =  , 

where denotes the variance of . var( )kz kz

To derive the form of the PCs, consider first 1 1 z x ; the vector 

1  maximizes 1 1 1var( x) =      

1

. It is clear that, as it stands, the maximum 

will not be achieved for finite   so a normalization constraint must be 

imposed. The constraint used in the derivation is 1 1  1   , 

To maximize 1 1     subject to 1 1 1    , the standard approach is to use 

the technique of Lagrange multipliers. Maximize  

           1 1 11 1 , (2-17) 

where   is a Lagrange multiplier. Differentiation with respect to 1   gives 
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              ( )0 I 0 , (2-11 1 p 1 8) 

where 
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pI  is the (pxp) identity matrix. Thus,   is an eigenvalue of   and 1   

is the corresponding eigenvector. To decide which of the p eigenvec rs giv  

1

to es

x   with maximum variance, note that the quantity to be maximized is 

1 11 1 11                 , so λ must be as large as possible. Thus,   

1  

var

is the eigenvector corresponding to the largest eigenvalue of  , and 

1 1 11( x) =         , the largest eigenvalue. In general, the kth PC of x is 

k x   and kr( x) = va k k k        , where k  is the kth largest eigenvalue of 

d k , an   is the nvector. 

As stated above, it can be shown that for th

corresponding eige

e third, fourth, . . . , pth PCs, the 

vectors of coefficients 1 2 3, , , ..., p     are the eigenvectors of  corresponding 

to 1 2 3, , , ..., p    , the first, second, and third largest, . . . , and the smallest 

eig ctively. Furthermore, k kvarenvalue, respe ( x) =    for k =1, 2, ..., p . 

As a conclusion to this process, the PCs are defined by an orthonormal 

linear transformation of x, 

z A x  , (2-19) 

where z is the vector whose kth element, , is the kth PC

th

, A is kz k =1, 2, ..., p

e orthogonal matrix whose kth column, k , is vector of  .  

Once the PCs are obtained from the da  set, depending on the ap lica

the kth eigen

ta p tion, 

a subset of the first of those PCs is to be selected to simplify the problem. With 
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th

ion in body-centered systems 

Wireless biomedical sensing is important in telemedicine and in medical 

bilize for a 

be

works (WBSN) 

When sensors are located around or in the body, the requirements and 

 environments, to signify 

su

e reduced subset of PCs pattern recognition techniques can more easily be 

applied. Because of this capacity in simplifying problems PCA is widely used in 

signal analysis. In this thesis, in chapter 4, a PCA application to neural signal 

spikes sorting is presented.  

2.4 Wireless transmiss

research. For the first field, it is often beneficial for patients to mo

tter recovering; moreover it is very uncomfortable to remain wired to a bed 

for a long time. Additionally attaching, releasing and re-attaching cables for 

patient transportation can be very time-consuming [66]. Secondly, in the 

research field, experiments may also need a freely moving subject which is 

impossible with the use of cables. Actually, not only in the health monitoring 

domain but in general, applications in which wireless devices have to run on 

battery power for very long periods and still be able to participate in ad-hoc 

wireless networks, have given birth to a new class of networks, known as 

Wireless Sensor Networks (WSNs). 

2.4.1 Wireless Body Sensor Net

characteristics become different to the ones in general

ch particularities, those networks are called Wireless Body Sensor Networks, 
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(WBSNs)1 and are emerging as promising enabling technologies to implement 

mobile health (m-health). A WBSN is a self-organizing network at the human 

body scale, which consists of multiple small, self-powered and hardware-

constrained sensors placed on, or eventually implanted into, the human body. 

In fact, a patient’s health parameters can be collected by a WBSN, thus 

monitoring vital body physiological states and movements.  

In  a basic scheme for a WBSN configuration is depicted. In WBSN,Figure 7  

the information is transmitted through wireless technologies from the body to a 

central station, from where it can be forwarded to a hospital, clinic or 

elsewhere. The sensors in/on the body are usually referred to as nodes and 

the central device is called bridge, hub or coordinator. 

                                                      
1 WBSNs are also called WBANs and we treat both indistinctive. 
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Figure 7. Schematic of a Wireless Body Area network for e-health application. 

A WBSN for health monitoring may also feature active devices for control of 

the user’s physiological state. For example, some WBSN nodes may be 

responsible for drug delivery. These sensor nodes are strategically placed on 

the human body. The exact location and attachment of the sensor nodes on 

the human body depend on the sensor type, size, and weight. Sensors can be 

worn as stand-alone devices or can be built into jewelry, applied as tiny 

patches on the skin, hidden in the user’s clothes or shoes, or even implanted in 

the user’s body. Each node in the WBSN is typically capable of sensing, 

sampling, processing, and wirelessly communicating one or more physiological 

signals. The exact number and type of physiological signals to be measured, 

processed, and reported depends on end-user application and may include a 

subset of the following physiological sensors: 
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 An ECG sensor for monitoring heart activity 

 An EMG sensor for monitoring muscle activity 

 An EEG or ECoG sensor for monitoring brain electrical activity 

 A PPG sensor for monitoring pulse and blood oxygen saturation 

 A cuff-based pressure sensor for monitoring blood pressure 

 A resistive or piezoelectric chest belt sensor for monitoring 

respiration 

 A galvanic skin response (GSR) sensor for monitoring autonomous 

nervous system arousal 

 A blood glucose level sensor  

 A thermistor for monitoring body temperature  

In addition to these sensors, a WBSN for health monitoring may include 

sensors that can help determine the user’s location, position or even activity 

level using sensors as:  

 A localization (GPS) sensor. 

 A tilt sensor for monitoring trunk position 

 A gyroscope-based sensor for gait-phase detection. 

 Accelerometer-based motion sensors on extremities to estimate 

activity level 
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 A sensor to count steps and/or delineate phases and distribution of 

forces during individual steps 

Also ambient conditions can have an effect on the user’s physiological state 

or even on the accuracy of the sensors. For that reason, WSNs can integrate 

ambient sensors that help in the interpretation of the body parameters.  

Challenges or limiting factors in biomedical sensors are: 

 Power consumption or battery life 

 Latency of the measures. Constant delay between measures is 

required in many real-time monitoring applications. WBSN nodes 

must have enough storage resources for temporary data buffers to 

accommodate for lost messages and intermittent communication. 

The size of these buffers is determined by allowed event latency and 

available memory capacity. Event latency requirements define the 

maximum propagation delay from the moment an event has been 

detected on a WBSN node until the moment the personal server 

application has received that event. 

 Capacity of the wireless link. 

2.4.2 System architecture 

The most common system architecture for a WBSN has three blocks:  

 The data acquisition block: responsible for sensing and collecting 

information concerning health conditions, i.e. set of sensors.  
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 The data distribution block is responsible for distributing relevant 

data for analysis, i.e., the coordinator or bridge. 

 The processing and control block is responsible for processing, 

interpreting summarized data, and making appropriate controls or 

responses. Usually this task is performed by a processor unit 

connected to the network through the coordinator of by a remote 

server connected through the coordinator and an access point and 

some kind of LAN. 

In reality, the functions of a block are usually carried out by groups of 

components simultaneously at different topological levels.  

Figure 7 shows a typical and practical architecture for a health monitoring 

system. At the lowest level topologically, a group of sensors operate within a 

confined area (e.g., over the body of a person) and form a wireless body area 

network (BAN so that they can rely on one another to relay sensed information 

to a more powerful sensor, which then relays the information to a local server. 

One of the main problems for telemonitoring systems to become more 

widespread is the lack of interoperability among the different solutions. As 

exposed in the general system architecture, medical devices at home or in 

other non-clinical Environments are connected with some kind of gateway, 

possibly a smartphone or home PC application to a remote monitoring service, 

which in turn needs to interact with other systems containing patient 

information like electronic health records systems, chronic disease 

management systems, etc. Thus, it is essential for these systems to 
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interoperate with existing healthcare IT. In this direction, several interoperability 

and standardization efforts are being made as the ISO/IEEE 11073 or the 

Continua Alliance. 

ISO/IEEE 11073 standard [67] defines a common framework for real-time 

plug-and-play interoperability for citizen-related medical, healthcare and 

wellness devices that facilitates efficient exchange of data, acquired at the 

point-of-care, in all care environments. The standard aims at: creating an 

abstract transport-independent model of personal health data, defining the 

transfer syntax required to establish logical connections between systems and 

providing presentation capabilities and services needed to perform 

communication tasks. It is targeted at personal health and fitness devices 

(such as glucose monitors, pulse oximeters, weighing scales, medication 

dispensers and activity monitors) and at continuing and acute care devices 

(such as pulse oximeters, ventilators and infusion pumps). They comprise a 

family of standards that can be layered together to provide connectivity 

optimized for the specific devices being interfaced. The standard is:  

 “Real-time”, meaning that data from multiple devices can be 

retrieved, time correlated, and displayed or processed in fractions of 

a second. 

 “Plug-and-play” meaning that all a user has to do is make the 

connection – the systems automatically detect, configure, and 

communicate without any other human interaction. 
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 “Efficient exchange of care device data” meaning that information 

that is captured at the point-of-care (e.g., personal vital signs data) 

can be archived, retrieved, and processed by many different types of 

applications without extensive software and equipment support, and 

without needless loss of information. 

Continua [68] is an industry alliance of over 230 organizations with a mission 

of establishing a system of interoperable personal health solutions. For doing 

that, Continua Alliance designs guidelines for building interoperable sensors 

and telemonitoring platforms. As other interoperability alliances, Continua’s 

objective is for the general public to identify its logo with interoperability across 

telehealth products. Thus Continua works with several standardization bodies, 

including ISO, ETSI, European AAL Association and HL7.  

2.4.3 Transmission technologies 

Although wireless telemetry has been available for a few decades, wireless 

intelligent sensors capable of real-time signal processing have been developed 

only recently. Apart from other difficulties as biocompatibility and 

miniaturization, also the interaction of the body in terms of network and 

electromagnetic propagation properties shall be studied. The propagation 

along (external) or through (implants) the body must be characterized and will 

be decisive in selecting the physical (PHY) and medium access control (MAC) 

layers to be used. According to this, there are two possible types of links in a 

WBSN, the through body and along body links for implants and on-body 
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devices respectively. Any general WBSN has to take into account these two 

types of electromagnetic propagation.  

For the human body, the most relevant transmission characteristics are 

transmission power and transmission frequency. It becomes fundamental to 

know the absorption of energy within the body and to study the effects through 

the Specific Absorption Rate (SAR). Besides, other determining WBAN 

characteristics are: maximum link distance, interferences with other 

equipments, path loss, delay spread, and other dispersion related 

characteristics.  

In the case of implanted devices, the radio frequency (RF) module must 

consume very little power so that it can last on battery power for years.  

The general link budget formula for an implant’s and for the on-body device 

wireless links are equation (2-20) and (2-21) respectively: 

RX TX TX FS B RXP P G L L G      (2-20) 

RX TX TX OB RXP P G L G     (2-21) 

where PRX is received power (dBm); PTX, transmitter output power (dBm); 

GTX, transmitter antenna gain (dBi); LFS, free space loss or path loss. (dBm); 

LB, losses within body tissues (dBm); LOB, losses of the on-body link and GRX, 

receiver antenna gain (dBi). A sensitive receiver permits communication over a 

longer range. However, it may consume more power and hence decrease 

battery lifetime. Therefore, an optimal wireless medical system design should 
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balance the need for a longer communication range against the desired 

longevity of the implanted device. 

Different transmission techniques can be chosen to implement WBAN. Many 

external devices use the band in 2.45-GHz as Bluetooth, ZigBee or 802.11. 

Also UltraWideBand (UWB) has been proposed. For the implants case, non-RF 

transmission technologies are more suitable. Here is a summary list of both RF 

and non-RF technologies: 

1. ZigBee technology [69] should be considered if sensors are to be very 

small and need to communicate over a very short distance, batteries have to 

last for a long time (a few months), and low data transmission rates are 

adequate. ZigBee operates in the industrial, scientific and medical (ISM) 

radio bands, builds upon the physical layer and medium access control 

defined in IEEE standard 802.15.4 [70] and data transmission rates vary 

from 20 to 250 kbps. IEEE 802.15.4 was not designed to support WBANs 

but for general WSN. The ZigBee network layer natively supports both star 

and tree typical networks, and generic mesh networks. Every network must 

have one coordinator device, tasked with its creation, the control of its 

parameters and basic maintenance. Evaluation of the standard for WBSN 

conducted in [71] points out that although it can provide QoS, the technology 

is not scalable in terms of power consumption and although it acts as a quick 

(and easy) implementation it can not be used as a single solution for all 

WBAN applications. 

http://en.wikipedia.org/wiki/ISM_band
http://en.wikipedia.org/wiki/Physical_layer
http://en.wikipedia.org/wiki/Medium_access_control
http://en.wikipedia.org/wiki/IEEE_802.15.4
http://en.wikipedia.org/wiki/Star_network
http://en.wikipedia.org/wiki/Tree_network
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2. UWB technology is applicable at high data rates over extremely short 

distances via small sensors. UWB operates at very low radiated power 

density by employing very large bandwidths. Two technologies competed for 

reaching the IEEE UWB standard: Direct Sequence UWB and Multi-Band 

Orthogonal Frequency Division multiplexing (OFDM) UWB. However, after 

several years of deadlock, the IEEE 802.15.3a task group was dissolved in 

2006 due to lack of agreement. Direct Sequence UWB, which was promoted 

by the ZigBee Alliance, has been approved by the IEEE 802.15.4a 

standardization body as a suitable radio technology to enable low-cost and 

low-power devices for low data rate (LDR) applications within ad hoc sensor 

networks, while Multi-Band OFDM UWB was adopted by the WiMedia 

Alliance which published ECMA-368 [72].  

3. Bluetooth technology [73] is used as a wire replacement and a bridge 

between sensor devices and more powerful control. Bluetooth devices can 

often serve as local servers to coordinate and control wireless sensors, as 

shown in Figure 7, where the mobile device is collecting the information from 

the body sensors and forwarding it to a remote server. However it does not 

support (or only very limited) multi-hop communication. It has a complex 

protocol stack and high energy consumption compared to IEEE 802.15.4.  

4. IEEE 802.11 [74] technology is normally deployed as a bridge between 

sensors and the wired and wireless Internet. It requires more power and is 

not often used in mobile wireless sensors.  
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5. IEEE 802.15.6 [75]. The standardization group is currently actively 

working towards providing an international standard for a short range (i.e. 

about human body range), low power and highly reliable wireless 

communication for use in close proximity to, or inside, a human body. The 

current IEEE 802.15.6 standard defines three PHY layers, i.e., Narrowband 

(NB), Ultra wideband (UWB), and Human Body Communications (HBC) 

layers. The selection of each PHY depends on the application requirements. 

On the top of it, the standard defines a sophisticated MAC protocol that 

controls access to the channel. 

6. Non-RF communication: it has been shown possible to use Body-

Coupled Communication (BCC) to transfer data from an implant to an 

external link [76]. The advantage of BCC is that it requires less power than 

traditional radio for providing the same BER (Bit Error Rate). Additionally, as 

no power is radiated away from the body, it does not create interference and 

also it is more secure since it can not be intercepted. These radios work at 

low frequencies (ranging from 10 kHz to 10 MHz). High variations of the 

transmission attenuation have been observed at different locations of the 

body. As a BCC is restricted to a person’s body, the BCC can be used to 

discover and identify sensor nodes on the same body and for waking up RF 

radios from low-power sleep mode. 

7. Mobile cellular technologies (GSM, GPRS, CDMA2000, and WCDMA) 

are needed to connect devices over WANs. They are often used to connect 
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local servers to global servers that oversee the overall aspects of an 

application over the mobile Internet. 

Chapter 5 of this thesis includes a study of on-body UWB transmission and 

also an evaluation of the performance of an UWB system for the application 

presented in Chapter 4, i.e., real-time neural signal monitoring. On the other 

hand, a section in Chapter 4 describes a prototype for the compression-

transmission-reconstruction of neural signals using Bluetooth and 3G. 

2.4.4 Communication topologies 

Star, tree and mesh are the basic topologies for WSN which can be seen in 

Figure 9 [77]. The single-hop star topology is the most straightforward and 

most commonly proposed topology for WBSN. However, studies of on-body 

electromagnetic propagation (see Chapter 5) show that it is not always 

possible to assume single-hop communication along the body. In a one-hop 

star, frame exchanges may occur directly only between nodes and the hub. In 

a two-hop extended star, the hub and a node may optionally exchange frames 

via a relay capable node. Mesh topologies are more complex to design an 

optimized and have not been widely used in WBSNs. 
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Figure 8. WSN basic topologies. 

Energy consumption can be divided into three domains: sensing, (wireless) 

communication and data processing. The wireless communication is likely to 

be the most power consuming. As the design of effective network architectures 

is a key issue to achieve energy-efficient, low-latency WBSNs, the 2-hop 

extended star architecture has recently been promoted by the IEEE 802.15.6 

task group (TG6) as ideal candidates for WBSNs (see ).  Figure 9
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Figure 9. 802.15.6 topologies. 

2.5 Applications of body-centered systems 

WBANs can be used from fitness/exercise monitoring to control of patients 

with chronic or impeding medical conditions in hospitals and ambulatory 

settings and to early detection of disease, or emergency care. Although this 

thesis covers health applications only, here are the most common areas of 

WBSN applicability: 

 Remote health/fitness monitoring and telemedicine: health and 

motion information are monitored in real-time, and delivered to 

nearby diagnosis or storage devices, through which data can be 

forwarded to off-site doctors for further processing.  

 Localization in Emergency. 

 Military, sports training and rehabilitation: For example, motion 

sensors can be worn at both hands and elbows, for accurate feature 

extraction of sports players’ movements.  
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 Interactive gaming: Body sensors enable game players to perform 

actual body movements, such as boxing and shooting, that can be 

fed back to the corresponding gaming console, thereby enhancing 

their entertainment experiences. 

 Personal information sharing: Private or business information can be 

stored in body sensors for many daily life applications such as 

shopping and information exchange. 

 Secure authentication: This application involves resorting to both 

physiological and behavioral biometrics schemes, such as facial 

patterns, finger prints and iris recognition.  

Two specific applications are considered in detail in this thesis, first Chapter 

3 deals with blood-glucose monitoring and secondly in Chapter 4 covers neural 

signal processing is covered.  

2.6 Commercial products 

In this section a list of commercially available products has been included. 

The list is not exhaustive since it would be too long and also because new 

products appear everyday so any attempt to keep an updated list would be 

unattainable, however from the following one can have an idea of the vast 

number of opportunities in the WBSNs field. 

2.6.1 Diabetes Control 

1. The company Echo Therapeutics, Inc. is developing a  non-invasive, 

wireless, transdermal continuous glucose monitoring system called 
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Symphony™ tCGM and at the same time the Prelude™ SkinPrep 

System for trans-dermal drug delivery [78]. 

2. DexCom [79] and Medtronic [80], among others, currently offer systems 

based on subcutaneous sensors that can be worn for up to 72 hours 

before replacement is needed. DexCom also has reported results for 

patients with surgically implanted long-term glucose level sensors.. 

3. Medtronic MiniMed is an example of efforts to develop an artificial 

pancreas for diabetes patients. Medtronic offers two products [81], first, 

the Guardian® REAL-Time Continuous Glucose Monitoring System that 

uses the wireless MiniLink REAL-Time Transmitter for monitoring and, 

second, the MiniMed Paradigm® Revel™ System which includes 

glucose monitoring and insulin delivery.  

4. SMSI® Glucose Sensor [82] is another example of an implantable 

sensor that is currently under development. 

5. GlucoTrack® [83], by Integrity Applications, uses three independent 

technologies that are operated simultaneously: ultrasonic, 

electromagnetic and thermal to non-invasively measure glucose levels in 

the blood. It is in clinical trials phase so not yet available for 

commercialization.  

6. Abbot’s FreeStyle Navigator® CGM [84] is yet another continuous 

monitor using wireless non-invasive sensors. 
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2.6.2 Brain and Muscle Activity 

In the field of brain and muscle activity sensors, some commercial wireless 

products have started to appear: 

1. Enobio Wireless Brain Monitoring from Starlab [85] which allows wireless 

recording of EEG, ECG and EOG (Electrooculogram – Eye movement). 

 
Figure 10.  Enobio’s image taken from the product’s site [85]. 

2. Also the company NeuroFocus has announced, in March 2011, a dry (no 

need to use any conductive product) wireless EEG system called 

MyndTM [86].  

3. Advanced Brain Monitoring Inc with the b-alert range of products [87] 

offer ECG, EOG, EMG or respiration wireless real-time monitoring up to 

10-meters. Additionally an on-board accelerometer quantifies head 

movement & position. 

4. Brain Products also has a range of EEG and EMG products [88] to 

perform monitoring and Brain Computer Interface applications. 

5. Neurosky [89] is yet another company developing wearable EEG 

recording devices as MindSet and MindWave for education 

entertainment and research applications. 
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6. Medtronic has developed the Activa Therapy Deep Brain Stimulator [90], 

an implantable, multi-programmable system that delivers electrical 

stimulation to selected areas of the brain. Such stimulation can block the 

brain signals associated with dystonia, Parkinson’s disease, and 

essential tremor. 

7. Brainfingers [91] hardware and software by Brain Actuated Technologies 

Inc. allows a person to control a computer totally hands-free.  

8. Bio.Switch MCTOS WX from Technos Japan, Ltd [92] is described as a 

simple switch that is controlled by bioelectrical activity measured at the 

forehead. This hardware can be operated by muscle twitch, eye 

movement (EOG), eye blink (EMG), and mental activity (EEG). The 

Bio.Switch combines these systems in a single input system, or switch. It 

can be used to enhance communication between patients and 

caregivers by relaying the needs and intentions of severely disabled 

individuals, providing vital support to people with special needs. 

9. The IBVA (Interactive Brainwave Visual Analyzer) from IBVA 

Technologies, Inc. [93] – measures EEG from the anterior of the frontal 

lobes called the pre frontal cortex. The EEG is translated into 3D 

coordinates using its amplitude and frequency, grouped into the standard 

bandwidths known as Delta, Theta, Alpha, Beta, Gamma and Eye 

movement. IBVA simultaneously displays left and right sides of the 

prefrontal cortex. It reads real time data and provides wireless 
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transmission to the receiver plugged into the computer of choice were 

the IBVA software plots the corresponding diagram. 

10. BTS Bioengineering [94] offers wireless EMG products: BTS FREEEMG 

300 (16 miniaturized probes with active electrodes), BTS POCKETEMG 

(for 16 electromyograph channels acquisition, visualization, and a first 

level of processing), BTS EMG-Analyzer (software solution for EMG 

signal analysis), BTS EMGenius (software to acquire, elaborate and 

report electromyography and footswitch signals).  

11. Brainquiry PET EEG 2.0 Neurofeedback equipment [95] measures EEG 

or EMG or ECG with active electrodes and sends data to a PC, laptop or 

PDA remotely through a Bluetooth link.  

12. BrainGate™ Neural Interface System [96] is a prototype used in 

research for computer cursor control. BrainGate’s technology is used in 

the Neuroport (Blackrock Microsystems) [97], which is a sophisticated 

multichannel system for recording and analyzing human brain and 

peripheral-nerve electrical activity from up to 256 electrodes. The system 

captures, processes, and analyzes (in real time) action potentials 

(spikes), field potentials, and other physiological signals as well as 

experiment state events. The front-end is compatible with individual stiff-

wire electrodes, microelectrode and microwire arrays, planar silicon 

probes, subdural ECoG grids, and epidural and scalp EEG electrodes.  

13. Ripple LCC offers two products, the Grapevine Neural Interface and the 

Epoch Wireless EEG [98]. The Grapevine Neural Interface records and 

http://www.btsbioengineering.com/BTSBioengineering/Surfaceemg/BTSFREEEMG300/BTS_FREEEMG300.html
http://www.btsbioengineering.com/BTSBioengineering/Surfaceemg/BTSFREEEMG300/BTS_FREEEMG300.html
http://www.btsbioengineering.com/BTSBioengineering/Surfaceemg/BTSPOCKETEMG/BTS_POCKETEMG.html
http://www.btsbioengineering.com/BTSBioengineering/Surfaceemg/BTSEMGAnalyzer/BTS_EMGANALYZER.html
http://www.btsbioengineering.com/BTSBioengineering/Surfaceemg/BTSEMGENIUS/BTS_EMGenius.html
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processes up to 512 channels of microelectrode, LFP, ECoG, EEG, and 

EMG signals for real-time experiments. On the other hand, the Epoch 

collects long-term wireless EEG continuously for up to one year from 

behaving laboratory animals.  

 
Figure 11.  Ripple’s wireless ECoG recording system 

14. Emotiv [99] is an EEG acquisition and processing wireless headset.  It 

uses a set of 14 saline sensors to detect EEG signals and wirelessly 

send them to a PC. A gyroscope generates optimal positional 

information for cursor and camera controls. It can be used for disabled 

patients (controlling a wheelchair, mind keyboard) or in gaming. 

Besides the exposed commercial products, also a set of prototypes are 

currently under research and will probably bring future products as for example 

the Neurophone [100] that uses EEG to mentally control and dial a number in a 

mobile phone.  
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2.6.3 Cardiopulmonary Monitoring 

1. CardioNet MCOT™ [101] (MCOT stands for Mobile Cardiac Outpatient 

Telemetry). It monitors heart activity, non-invasively, during patient’s 

normal daily activities, for up to 21 days, and detects, records, and 

transmits event data automatically to the prescribing physician. The 

system comprises a sensor, a monitor, and a base. Patients wear three 

leads attached to a lightweight sensor worn on a neck strap or belt clip 

that continuously transmit two channels of ECG data to the monitor. The 

monitor analyzes the patient’s ECG in real time. When the monitor 

identifies an abnormal rhythm, the data are automatically sent via cell 

phone or land line to the CardioNet Monitoring Centre for review by a 

certified monitoring technician.  

2. Medtronic Reveal Plus [102] records subcutaneous ECG for up to 14 

months. It can store 42 minutes of data and it is activated either by the 

patient or automatically on heart rate limits surpassing. It is indicated for 

patients with clinical syndromes or situations at increased risk of cardiac 

arrhythmias, patients who experience transient symptoms that may 

suggest a cardiac arrhythmia.  

3. LifeSync Wireless ECG system [103]. It includes a patient transceiver 

(“PT”) and a monitor transceiver (“MT”). The disposable LeadWear® 

product is applied to a patient’s torso with standard ECG electrodes. The 

PT plugs into the LeadWear® product and is worn in an armband or 

placed in a patient’s hospital gown pocket.  The PT transmits ECG and 
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respiration data to the MT.  The MT is connected to lead wires that are 

attached to virtually any patient monitor. The MT receives the signal from 

the PT up to thirty feet or more away.  In 2003 the LifeSync System was 

cleared by the FDA and complied with the FCC Part 15 regulations for 

RF devices. 

4. CardioMEMS EndoSure MEMS [104], an implantable blood pressure 

sensor that uses wireless and MEMS technology. 

5. Avant® 4000 Wireless Tabletop Pulse Oximeter by Nonin [105] provides 

oximetry without the constraints of cables. It uses Bluetooth® wireless 

technology for reliable and secure transfer of patient data. 120 hours of 

battery life and 33 hours of memory. Onyx® II, Model 9560 fingertip 

pulse oximeter is designed for interoperability and is compatible with 

emerging open standards such as Bluetooth's Health Device Profile 

(HDP), IEEE11073 and Continua. 

6. CareCenter MD [106] is a wireless diagnostic workstation with both PC 

ECG and PC stress test modalities. 

2.6.4 Gastrointestinal Monitoring 

1. Several vendors have developed wireless capsule cameras to be 

ingested disposable imaging capsule is swallowed by a patient and 

passes through the gastrointestinal tract while wirelessly transmitting 

images to a receiver that provide images of the gastrointestinal tube. 

Examples of those capsules are: PillCam Platform (from Given Imaging), 
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EndoCapsule (from Olympus), Sayaka (from RF System), MiroCam 

(from IntroMedic), Capsule Endoscopy (From SynMed), [107]-[111]. 

2.6.5 Integrated sensor Systems 

1. TeleMedic Systems has developed telemonitoring system VitalLink 

[112]. The VitalLink receives data from a variety of medical sensors non-

invasive blood pressure, temperature, 6 or 12-lead ECG and SpO2. ECG 

and SpO2 from different manufactures, the resulting real-time 

telemedicine data is sent over the VitalNet (wireless Bluetooth or 

802.11b to 3G/GPRS/GSM or wired connections such as RS-232, USB 

or Ethernet) to medical professionals. The VitalLink system is being used 

in medical emergencies on aircrafts or ships. It provides patient 

screening in medical practices and general health monitoring in 

hyperbaric chambers.  

2. CareTrends developed Med Surg careTrends™ [113], a software system 

to communicate vital signs data from wirelessly enabled, legacy point-of-

care medical devices. This healthcare software automates the transfer of 

clinical data from bedside and mobile devices to EMR or Hospital 

Information System (HIS). 

3. ClevelandMedical Devices Inc. markets CrystalMonitor [114] as a 

lightweight programmable wireless physiological monitor, capable of 

viewing and recording electroencephalography (EEG), ECG, 

electromyography (EMG), electro-oculography (EOG), pulse oximetry 

oxygen saturation (SpO2), and other signals. Collected data are 
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wirelessly transferred to a personal computer (PC) up to 50 feet away, 

using the 2.4 GHz Industry, Science, and Medicine (ISM) band. The 

device can operate continuously for up to 12 hours on two AA batteries.  

4. Equivital Limited has developed the EquivitalTM [115] system for 

continuous monitoring and storage of physiological life signs. The 

system allows real-time or off-line analysis of the data and incorporates 

the sensors for monitoring heart rate, respiratory rate, user’s motion and 

position, temperature, and G shocks caused by falls and heavy impacts. 

It also provides a rudimentary cognitive response from the user to 

assess the user’s consciousness and awareness. The 3G wireless 

cellular data system can be used for direct transmission of all patient 

data (video, medical images, ECG signals, etc.). 

5. GE Healthcare offers a wireless extension to their patient monitoring 

system [116].  

6. Welch Allyn also provides a wireless extension to their telemetry 

systems in their Acuity® system [117].  

7. Proteus Biomedical’s Raisin system [118] is a platform for body 

monitoring, which measures when and if a patient takes his medication, 

and also measures how various vital signs, such as heart rate, respond 

to the medication. As it is explained in Proteus’ website: Proteus 

ingestible event markers (IEMs) are tiny, digestible sensors made from 

food ingredients, which are activated by stomach fluids after swallowing. 

Once activated, the IEM creates an ultra-low-power, private, digital 
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signal detected by a microelectronic recorder configured as either a 

small bandage style skin-patch or a tiny device inserted under the skin. 

The detector date- and time-stamps, decodes, and records information 

such as type of drug, dose, and place of manufacture, and also 

measures and reports physiologic parameters such as heart rate, 

activity, and respiratory rate. Detector data can be combined at the 

server-level with other telemetered parameters such as blood pressure, 

weight, blood glucose, and patient-generated feedback. The 

development of the Raisin™ System is currently in its clinical trials 

phase.  

8. Toumaz Sensium [119] provides ultra low power monitoring of ECG, 

temperature, blood glucose and oxygen levels. It can also interface to 3 

axis accelerometers, pressure sensors and includes a temperature 

sensor on chip. Data are streamed using a wireless data link over a short 

range (~5m) to a USB adapter or data logger. 

2.6.6 Sensor motes 

1. A sensor mote is a concept defined in the field of WSN. It is a node of 

the WSN that integrates the devices to: take sensor measurements, 

make routing decisions and manage power consumption. The Tiny 

Microthreading Operating System (TinyOS) is a basic framework and 

development environment for WSNs motes developed at UC Berkeley 

that aims at setting a standard for pervasive monitoring.  

http://www.toumaz.com/index.php
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2. Based on the TinyOS "mote" hardware platform, the Harvard Sensor 

Networks Lab, in its CodeBlue project ([120], [58]), has developed a 

range of wireless medical sensors: as for example a wireless pulse 

oximeter and wireless two-lead ECG. These devices collect heart rate 

(HR), oxygen saturation (SpO2), and ECG data and relay it over a short-

range (100m) wireless network to any number of receiving devices, 

including PDAs, laptops, or ambulance-based terminals. The data can 

be displayed in real time and integrated into the developing pre-hospital 

patient care record. The sensor devices themselves can be programmed 

to process the vital sign data, for example, to raise an alert condition 

when vital signs fall outside of normal parameters. Any adverse change 

in patient status can then be signaled to a nearby emergency unit. These 

vital sign sensors consist of a low-power microcontroller (Atmel 

Atmega128L or TI MSP430) and a low-power digital spread-spectrum 

radio (Chipcon CC2420, compliant with IEEE 802.15.4, 2.4 GHz, 

approximate range 100 meters, data rate about 80 Kbps). The devices 

have a small amount of memory (4-10 KB) and can be programmed 

(using the TinyOS operating system) to sample, transmit, filter, or 

process vital sign data. These devices are powered by 2 AA batteries 

with a lifetime of up to several months if programmed appropriately.  

3. Also at the Harvard sensors Lab they are developing the Mercury 

system, which is designed to support high-resolution motion studies of 

patients being treated for neuro-motor conditions such as Parkinson's 

disease, stroke, and epilepsy [121]. 
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Figure 12.  EMG sensor integrated in a Telos mote platform for vital sign monitoring. 

A non-exhaustive list of existing motes is presented here: 

1. TelosB [122] appeared as the result of the research carried out at 

UC Berkeley [123]. It uses an 802.15.4 radio for wireless 

communication to a base station for physical activity and health 

monitoring research.  

2. Shimmer mote [124] is small wireless wearable sensor platform that 

can record and transmit physiological and kinematics’ data in real-

time. Shimmer incorporates wireless ECG, EMG, GSR, 

Accelerometer, Gyro, PIR, Tilt and Vibration sensors. Additionally it 

is an extensible platform: its firmware is open-source, it offers 

compatibility with a wide variety of sensor and system technologies 

(raw data can be sent through Bluetooth, 802.15.4 radio, or stored 

locally to a microSD card) and it can be connected to self designed 

or third party sensors.  

3. MICAz / MICA2 motes [125], [126]. The MICA Mote platform is used 

for enabling low-power, wireless sensor networks available in 

Lara Traver Sebastià         90/247 



Real-time detection and classification algorithms for body-centered systems     

2.4GHz and 868/916 MHz. The MICAz Mote offers a 2.4 GHz, 

IEEE/ZigBee 802.15.4, board and the MICA2 is an 868/916 MHz 

Multi-channel radio transceiver used for low-power wireless sensor 

networks. The MICA Mote platforms are fully compatible with the 

MoteWorks Software Platform, a standards-based platform for the 

development of wireless sensor network [127]. 

4. The IRIS [128] is a 2.4 GHz Mote is an evolution of the MICA motes. 

It provides up to three times improved radio range and twice the 

program memory over previous generations of MICA Motes. 

5. The Cricket Mote (MEMSIC) [129] is a location aware version of the 

MICA2. The Cricket Mote includes all of the standard MICA2 

hardware and an ultrasound transmitter and receiver. This device 

uses the combination of RF and ultrasound technologies to establish 

differential time of arrival and hence linear range estimates. 

6. IntelMote2 (iMote2) has been developed at Intel Research as part of 

Platform X [130]. It is built around the low-power PXA271 XScale 

CPU and also integrates an IEEE 802.15.4 compliant radio. The 

design is modular and stackable with interface connectors for 

expansion boards on both the top and bottom sides, providing a 

standard set of I/O signals as well as additional high-speed 

interfaces for application specific I/O.  

7. The Mulle platform [131] is a sensor node aimed at ad-hoc sensor 

networking and ambient intelligence systems. Both Bluetooth and 
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Zigbee versions of the Mule are available. The Bluetooth-based one 

uses standardized profiles (LAP, SPP and PAN) and TCP/IP to 

communicate. This approach enables users all over the world to 

access sensor data from a Mulle in real time. The newest Mulle, 

version v5.2, comes with a IEEE 802.15.4 (Zigbee) transceiver. 

TinyOS, the world's de-facto operating system for sensor nodes, is 

now also supported on the Mulle. 

8. ZigBits [132] are compact 802.15.4/ZigBee modules by Meshmetrics 

for wireless sensor network solutions.  

9. LOTUS [129], by MEMSIC, is an advanced wireless node platform 

developed around the low power ARM7 Cortex M3 CPU and 

incorporates the best of IRIS, TelosB and Imote2 onto a single 

board. LOTUS is built on a modular and stackable design, 

incorporating connectors for expansion boards. LOTUS is factory 

configured to run RTOS (Real Time Operating System). Several 

other options are also available for LOTUS, including MEMSIC Kiel, 

RTOS, IAR Systems, Free RTOS, MoteRunnerTM and TinyOS. The 

51pin expansion connector supports Analog Inputs, Digital I/O, I2C, 

SPI and UART interfaces enabling ease of connection to a variety of 

external peripherals.  

10. The BTnode [133] is a wireless communication and computing 

platform based on a Bluetooth radio, a second low-power radio and a 

microcontroller. It serves as a demonstration and prototyping 
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platform for research in mobile and ad-hoc connected networks 

(MANETs) and distributed sensor networks (WSNs). The low-power 

radio is the same as used on the Berkeley Mica2 Motes, making the 

BTnode rev3 a twin, both of the Mote and the old BTnode. Both 

radios can be operated simultaneously or be independently powered 

off completely when not in use, considerably reducing the idle power 

consumption of the device. 

11. ANT™ [134] is a proprietary WSN 2.4GHz protocol and embedded 

system solution by ANT Wireless (a division of Dynastream 

Innovations Inc.) for ultra-low power networking applications: Wrist-

mounted instrumentation, Heart Rate Monitoring (HRM), Speed and 

Distance Monitoring (SDM), Bike computers, Medical 

instrumentation, Industrial sensors, Low data-rate communications,  

Active RFID, Location-based services, Utilities wireless Automated 

Meter Reading (AMR), Smart toys, Automotive instruments. ANT™ 

has been designed to simplify network development and optimize 

network operational efficiency and is suited for any kind of low data 

rate sensor network topologies - from peer- to-peer or star, to 

practical mesh. ANT-powered network. The ANT WSN protocol has 

been intentionally engineered for simplicity and efficiency which 

results in an ultra-low power consumption (nodes can operate for 

years on coin cells). Additionally it offers the possibility to trade-off 

data rate against power consumption, and support for broadcast, 

burst and acknowledged transactions up to a net data rate of 20 
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Kbit/s. The protocol also features bi-directional communications and 

adaptive isochronous channels. 

12. MeshScape from Millennial Net utilizes standard IEEE 802.15.4 

unlicensed radio band or other types of radios including 433MHz, 

900MHz and 2.4 GHz ISM bands with data rates up to 250 kbps 

and up to 750 feet range. 

Name OS support Wireless standard 
Data 
rate 

(kbps) 

Outdoor 
range 
(m) 

BTNode TinyOS Bluetooth v1.2 720 – 

iMote TinyOS Bluetooth 720 30 

iMote2 TinyOS or .NET IEEE 802.15.4 250 30 

IRIS TinyOS IEEE 802.15.4 250 300 

MICAz  TinyOS IEEE 802.15.4 250 75–100 

Mica2 TinyOS IEEE 802.15.4 38,4 >100 

Mulle 
TCP/IP or 

TinyOS 

Bluetooth or 

IEEE 802.15.4 
– >10 

Telos TinyOS IEEE 802.15.4 250 75–100 

ZigBit ZDK IEEE 802.15.4 250 3.7 

LOTUS 
RTOS, Kiel, RTOS, IAR 

Systems, Free RTOS, 
MoteRunnerTM and TinyOS 

IEEE 802.15.4 250 100 

Shimmer TinyOS 
Bluetooth, 

IEEE  802.15.4 
– >10 

ANT proprietary proprietary 20  

MeshScape proprietary 
IEEE 802.15.4 and 
others in the ISM 

band 
250 220 

Table 2.  Summary of existing sensor motes (obtained from [135]). 
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Additionally a software framework called SPINE (open-source Signal 

Processing in Node Environment) has been developed to be used with the 

motes. It enables efficient implementations of signal processing algorithms for 

analysis and classification of sensor data through libraries of processing and 

utility functions and protocols. SPINE currently includes: a library of features 

computing parameters of the sensor data such as variance, mean or range of 

the sensor data an over-the-air protocol that allows the coordinator of a WSN 

to dynamically request the computation of specific features to the sensor nodes 

and obtain the result a set of utility functions such as a circular buffer and a 

sorting algorithm The node side of the framework is developed in TinyOS 

environment, while the server side is in Java language. 

Sensor motes based on UWB 802.15.4a are currently under development 

but commercial products are not yet available. Development examples are:  

1. IMEC that made the first UWB transmitter that is compliant to the 

new standard [136], [137] which they plan to use in wireless 

autonomous transducer systems used in healthcare, lifestyle and 

process automation applications.  

2. DecaWave with its 802.15.4a compliant UWB sensor chip called 

ScenSor [138], a single chip Wireless Transceiver using Ultra 

Wideband radio technology, compliant with the IEEE802.15.4a 

standard and implemented using CMOS wafer technology.  

 

http://www.tinyos.net/
http://java.sun.com/
http://www2.imec.be/be_en/home.html
http://www.decawave.com/
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Chapter 3  

Glucose monitoring 

3.1 Introduction 

With more than 284 million affected people worldwide in 2010 [140], 

diabetes mellitus is one of the most widespread diseases and causes 3.8 

million deaths per year, similar to HIV/AIDS. Type 1 diabetes is characterized 

by the autoimmune destruction of the beta cells of the pancreas. Beta cells 

produce insulin, which is essential for the uptake of glucose in the muscles and 

storage in the liver. In practice, the common treatment for type 1 diabetes 

consists of one slow acting insulin analogue injection per day to ensure a basal 

insulin concentration and several single shots (one for each meal) of a fast 

acting insulin analogue. To get a feedback of the glucose control, several daily 

finger stick blood glucose concentration measurements should be made as 

well, and following insulin injections are adjusted according to these 

measurements. 

Since the 1980s, insulin delivery can also be achieved by continuous 

subcutaneous insulin infusion from a portable pump. Most recently, research is 

focused in linking insulin infusion to continuous glucose monitoring systems to 
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get the so-called ”artificial pancreas”. Although great effort has been given to 

this topic in the last years, there is still no wearable commercial system 

allowing closed-loop glucose controlled insulin delivery. One of the limiting 

factors is the fact that up to now, only few continuous measurement devices 

are approved by the FDA (U.S. Food and Drug Administration), and none of 

them is approved as a substitute of standard glucose testing via strip 

measurements. The lack of accuracy of the continuous glucose measurement 

devices, especially in the hypoglycemic range, is being the most limiting factor 

in the clinical use of closed-loop glucose control. 

The ability to detect therapeutically incorrect measurements of a continuous 

glucose monitor, from the information supplied by the monitor itself, is of 

utmost importance in clinical applications, since it allows an adequate 

interpretation of continuous glucose profiles in clinical practice, the detection of 

missed hypoglycemic states by the continuous glucose monitor, and other 

important discrepancies among monitor’s readings and actual glycaemia [30]. 

In [31], the detection of therapeutically incorrect measurements of Minimed 

CGMS Gold (Medtronic, Northridge CA) was addressed by means of Support 

Vector Machines (SVM), a powerful technique for pattern classification used in 

many applications [32]. The readings provided by the monitor were classified 

according to Clarke’s Error Grid Analysis (EGA). In this work, the methodology 

is extended to Consensus EGA and CG-EGA, to classify measurements in 

”therapeutically dangerous” versus ”therapeutically safe” measurements, and 

results are compared. While Clarke and Consensus EGA only take into 
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account the glucose level error, CG-EGA considers additionally the glucose 

trend and it is specifically designed for continuous glucose monitors. 

Furthermore, validation through a permutation technique is introduced, besides 

cross validation.  

3.2 Experimental Setup 

3.2.1 Clinical study 

For the clinical study 22 patients with Type 1 Diabetes were selected. Their 

mean age is 27 years with a standard deviation of 5 years and they have a 

mean body-mass index (BMI) of 24.4 with a standard deviation of 2.9. 40% of 

the patients are female and thus, 60% are male. All of them have had a long 

term diabetes evolution and have not achieved optimum metabolic control 

presenting an HbA1c value larger than 6.5%. In order to obtain the 

experiment’s data set, the patients have been monitored during 3 days using 

Medtronic’s Minimed CGMS Gold monitor. During the first monitoring day, the 

patients stayed at the hospital for 12 hours and for the following 2 days they 

remained at home. On the third day monitor’s data were downloaded to a 

computer. During the stay at the hospital, blood samples were extracted: 

 every 15 minutes during 2 hours after meals 

 every 30 minutes otherwise 

From those blood samples, plasma glucose level was measured in duplicate 

using the glucose oxidase method with a Glucose Analyzer II (Beckman 

Instruments, Brea, CA), which has a variation coefficient below 2%. During the 

Lara Traver Sebastià         99/247 



Chapter 3- Glucose monitoring 

Lara Traver Sebastià         100/247 

whole clinical study, the patients maintained their habitual insulin dosage, 

including amounts and administration sites, and their usual food ingestion. 

Although meals preparation was supervised by nutrition experts in order to gain 

exact information about their exact composition and nutrients content. 

Additionally, in order to assure proper usage of the glucose monitor, especially 

during the home period, the selected patients were trained and instructed in its 

use and their knowledge regarding the functionalities and usage of the monitor 

was asserted by clinicians. 

Patient number 5 met exclusion criteria defined in the protocol (anemic state 

was detected) and was withdrawn. Patient number 6 was also disregarded due 

to the fact that the introduction of an erroneous calibration point was detected. 

As a consequence the valuable data of the clinical study originates from 20 

patients. 

3.2.2 Data conditioning 

For each of the 20 patients that successfully finished the experiment, 40 

plasma glucose readings were obtained. 6 measurements were dismissed due 

to measurement problems, resulting in a total of 794 samples: 

 97 samples in the hypoglycemic range (<=70 mg/dL) 

 352 in hyperglycemic range (>180 mg/dL) 

 345 in euglycemic range 

As for the interpolation and synchronization a cubic method was used, 

obtaining all in all 2281 valid data pairs, e. g. (CGMS, plasma glucose) pairs. 
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As an example, the data conditioning procedure’s results corresponding to 

patient nr. 12 are shown in Figure 13 

 
Figure 13. Synchronization of CGMS and plasma glucose value pairs by cubic 

interpolation for patient nr. 12. Blue circles correspond to CGMS 
measurements every 5 minutes; green circles to plasma measurements 
every 15 minutes during 2 hours after a meal and every 30 minutes 
otherwise; red circles correspond to interpolated plasma glucose values 
synchronized with CGMS measurements. A gap in the data supplied by 
the monitor happened between minutes 1120 and 1175. 

3.3 Error Grid Analysis. Detection of potentially dangerous 
CGMS measurements.  

As mentioned above, the objective in this work is to find an automated 

mechanism to detect therapeutically dangerous CGMS measurements. The 

ground truth for training and testing the detector being the set of (CGMS, 

plasma glucose) data pairs. Errors in the CGMS measurements with respect to 

the plasma glucose have different significance in terms of therapeutic criteria 

depending the position of the (CGMS, plasma glucose) space [141]. Ideal 

measurements would be in the diagonal. Based on that and in order to 

measure accuracy, several grid-based methods have appeared that go farther 
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than classical methods as correlation or regression. The definition of a grid of 

regions in the (CGMS, plasma glucose) space is called Error Grid Analysis 

(EGA) and several grid definitions have been previously used: Clarke’s EGA, 

Consensus EGA and CGEGA (including measurement and process time lags). 

3.3.1 Clarke’s Error Grid Analysis 

The Clarke EGA [142] was developed to quantify clinical accuracy of patient 

estimates of their current blood glucose as compared to the blood glucose 

value obtained in their meter. Eventually, the EGA became accepted as one of 

the gold standards for determining the accuracy of blood glucose meters. 

The grid breaks down the space defined by reference glucose meter (x-axis) 

and an evaluated glucose meter (y-axis) into five regions. Region A are those 

values within 20% of the reference sensor, Region B contains points that are 

outside of 20% but would not lead to inappropriate treatment, Region C are 

those points leading to unnecessary treatment, Region D are those points 

indicating a potentially dangerous failure to detect hypoglycemia or 

hyperglycemias, and Region E are those points that would confuse treatment 

of hypoglycemia for hyperglycemias and vice-versa. 

3.3.2 Consensus Error Grid Analysis 

The Consensus EGA (also known as the Clarke’s EGA [143]) was 

developed as a new tool for evaluating the accuracy of a blood glucose meter 

and in recent times, it has been used increasingly by blood glucose meter 
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manufacturers in their clinical studies. The new EGA was constructed to reflect 

the opinion of a large number of clinical diabetes experts.  

In Figure 14 the complete data is classified following Clarke EGA (top) and 

Consensus EGA (bottom). As it can be observed, in both cases the number of 

data points located in therapeutically dangerous regions C+D+E is small (less 

than 10%). 
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Figure 14. Classification of complete data set following Clarke EGA (top) and 

Consensus EGA (bottom). Data points located in therapeutically 
dangerous regions C+D+E are marked in red. 

3.3.3 Continuous Glucose Error Grid Analysis 

The Continuous-Glucose-EGA (CG-EGA) [33] was developed as a method 

of evaluating the accuracy of continuous glucose-monitoring sensors in terms 
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of both accurate blood glucose values and accurate detection rate of BG 

fluctuations. Unlike the original EGA, the CG-EGA examines temporal 

characteristics of the data, analyzing pairs of reference and sensor readings as 

a process in time represented by a bidimensional time series and taking into 

account inherent physiological time lags. The estimates of point and rate 

precision are then combined in a single accuracy assessment presented for 

each one of the preset BG ranges. 

3.4 Support Vector Machines 

The Support Vector Machine (SVM) algorithm is well grounded in statistical 

learning theory, offering excellent performance qualities especially for complex 

real-world problems [144], [145], [146]. SVMs are capable of nonlinear 

classification with nonlinear boundaries between the classes because they are 

an extension of linear models. By transforming the input, instance space, into a 

new space using a nonlinear mapping, SVMs use linear models to represent 

nonlinear class boundaries. The use of kernels implements this transformation, 

allowing the classification of complex patterns in an abstract linear 

representation. Following the nonlinear transformation, the decision boundary 

that separates the instances by classes is learned. This decision boundary is a 

Maximum Margin Hyperplane (MMH) in the transformed coordinates. Support 

Vectors are the instances closest to the MMH and thus, a set of support 

vectors defines the decision boundary for a given set of instances. Only the 

Support Vectors represent the decision boundary, thus simplifying its 

representation because all other training instances are disregarded [147]. 
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3.4.1 SVM training 

SVM training involves minimizing a combination of training error (empirical 

risk) and the probability of incorrectly classifying unknown data (structural risk), 

controlled by a single parameter, corresponding to the -value in case of the 

Gaussian kernel function. The tuning of the kernel function and the resultant 

feature space is crucially interesting in theoretical and practical terms because 

it determines the functional form of the support vectors, i. e. the resulting 

decision boundary [146]. In this contribution the features vector representing 

the electrical characteristics of the measured signal and the Minimed CGMS 

Gold estimation algorithm is considered and normalized by its Euclidean norm: 

 , , ,  CGMS

dISIG
X ISIG VCTR G

dt
   
 

 (3-1) 

Where ISIG stands for the sensor current, dISIG/dt its derivative with respect 

to time, VCTR represents the registered voltage and GCGMS denotes the 

glucose estimation given as output by Minimed CGMS. Finally, to avoid over-

parameterization, the projection on the (ISIG; VCTR) dimensions is used as 

input data set. Projections on other 2- feature combinations were also tested 

with poorer results. 

Also 3-features vector (ISIG; VCTR; dISIG/dt) showed no relevant 

improvements with respect to (ISIG; VCTR).  

The data set is first classified regarding three different criteria (Classification 

Scheme 1):  
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 Clarke’s EGA with interpolated plasma glucose values is used as gold 

standard. A ”negative” result means that the data point falls in zone A or 

B (safe areas) while a ”positive” result implies that it falls in zones C, D 

or E, where the error in the monitor measure leads to a wrong treatment 

of the patient. Data classification is shown in Figure 14 (top). From the 

whole data set 6% are positives. Figure 15 shows the classification of 

the whole data set in the VCTR-ISIG space. As it can be observed, both 

positive and negative data points are not linearly separable. However, 

some grouping is observed. Thus, SVM is an ideal candidate to solve the 

complex problem of separating the classes through a nonlinear 

transformation into a higher order dimension where then, finally, the 

classes shall be separable.  

 
Figure 15. Projected normalized data set. Positive class (red) corresponds to C+D+E 

zones and Negative (blue) to A+B zones in the Clarke’s grid.  
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 In this case, Consensus EGA with interpolated plasma glucose values is 

regarded as the gold standard. Similarly to the former case 1, ”negative” 

means data point falling in zone A or B while ”positive” implies zones C, 

D or E. In Figure 14 (bottom) the classification result is shown. Also in 

this case, the number of positive data points is small, i.e. 3%. 

 Following the definition of the CG-EGA, erroneous readings are taken as 

”positive” and both accurate readings and benign errors as ”negative” 

class. Again, using this classification scheme the number of positive data 

is small (5%). 

Due to the fact with the prior classification schemes in all three cases 

positives are scarce, all experiments were driven in parallel considering the 

following classification scheme (Classification Scheme 2): 

 Clarke’s EGA: A is negative vs. B+C+D+E positive 

 Consensus EGA: A is negative vs. B+C+D+E positive 

 Continuous Glucose-EGA: Errors and benign errors are positive vs. 

accurate negative 

In Table 3 the overall percentages of positives and negatives corresponding 

to classification schemes 1 and 2 are presented. Classification results showed 

that although the input data sets differ substantially, the SVM is able to achieve 

similar performance. Due to this fact and for sake of simplicity, only 

experimental results from classification scheme 1 will be exposed here. 
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Classification scheme 1 2 

 positive negative positive negative 

Clarke EGA    6% 94% 21.39% 78.61% 

Consensus EGA   3% 97% 19.25% 80.75% 

CG- EGA   5% 95% 20.32% 79.68% 

Table 3. Data distribution for classification schemes 1 and 2 

3.4.2 Assessment of classifier performance 

SVM classifier is trained using the above mentioned data set, classifier 

parameters are optimized and validation is performed. Kernel parameters in 

the SVM training process, along with feature selection, will significantly impact 

classification accuracy. Experiments are designed and carried out to find the 

best SVM kernel parameters to enhance prediction capabilities. Validation is 

performed using two complimentary methods: 

1. k-fold Cross-validation: 

Cross-validation is a technique for assessing how the results of a statistical 

analysis will generalize to an independent data set. It is mainly used in settings 

where the goal is prediction as it is a means to predict the model fit to a 

hypothetical validation set. One round of cross-validation involves partitioning a 

sample of data into complementary subsets, performing the analysis on the 

training set and validating the analysis on the other subset, i.e., the test set. To 

reduce variability in the overall assessment of generalizability, multiple rounds 

of cross-validation are performed using different partitions, and the validation 

results are averaged over the rounds. 
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2. Permutation: 

Especially in cases where the model significance is questionable, as could 

be argued in the present case, a permutation test [148] adds crucial information 

which can be decisive for the existence of the model. The method is based on 

a repetitive and random reordering of the entries and the response variable. 

The elements in the original response variable are reordered randomly creating 

scrambled response variable vectors. These new response variables should 

have no or very limited association with the predictor variables. Then, the 

scrambled response vectors are modeled using the intact predictor data and 

results are evaluated. 

3.5 Experimental Results 

In the present work, for all the combinations of the three error grid analysis 

presented in section 3.3 and the two different classification categories defined 

in section 3.4, the -value of the Gaussian SVM is adjusted iteratively using 

Bioinformatics Toolbox in MatlabTM release 2006b. After the training process, 

testing of the trained SVM consists of counting the number of detection errors 

in the positive/negative prediction provided by the trained SVM. For 

performance assessment, those results are evaluated using Receiver 

Operation Characteristics (ROC) which plots the true positives rate (TPR) in 

front of the false positives rate (FPR), i.e., sensitivity in front of 1-specificity. 

Results for classification scheme 1 are presented in Figure 16. As it can be 

observed, detection quality saturates to its best value around specificity of 0.9 
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and sensitivity of 0.8 corresponding to 92% detection rate for Clarke and 

Consensus EGA. While in the case of using CG-EGA the saturation point 

presents a slightly poorer detection quality (detection rate of 91%). It is inferred 

that this decrease in overall detection quality is due to the more complicated 

structure of the data when using the dynamic grid. Probably, increasing 

number of training data points (and spreading their statistical distribution) 

would result in detection results similar to those of the Clarke and Consensus 

EGAs. 

 
Figure 16. Receiver Operating Characteristics for classification categories Clarke 

and Consensus EGA: A+B = FALSE and C+D+E = TRUE, CGEGA: white + 
gray = FALSE and black = TRUE, -value: 0.001 - 0.4. 

Experiments have also been repeated with gradually increased -values 

(from 0.001 to 0.4. As -value increases, also computation time for training 

increases considerably such for =0.3 is double as for =0.1. Classification 

results have shown that, indeed, with increasing -value also detection quality 
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increases, with a heavy nonlinear relationship as it can be observed from Fig.4. 

Through iteratively adjusting - value, a compromise between detection rate 

and computation time has been obtained for the three EGAs with both 

classification schemes. 

Table 4 shows the average classification results for all three classification 

schemes and the corresponding optimal -value. 

EGA Scheme  Sensitivity Specificity Correct rate 

1 0.335 83% 95% 91% 
Clarke 

2 0.301 82% 93% 90% 

1 0.362 71% 92% 90% 
Consensus 

2 0.334 70% 93% 89% 

1 0.347 70% 88% 89% 
CG 

2 0.315 71% 87% 87% 

Table 4.  Average classification results 

1. Validation 

As it is indicated in the previous sections, validation is performed using 10 x 

10-fold cross validation and results are presented via ROC-graphs. In this 

work, we present an additional validation technique based on data permutation. 

Resulting data from 25 permutations per classification issue with additional 10 

x 10-fold cross validation are presented in Figure 17 It can be observed that 

detection quality (both sensitivity and specificity) drops dramatically when 

permuting input data. As a consequence, it can be claimed that in fact with 
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presented techniques, the learning machines are able to learn from the 

presented data and thus, that there is some structure contained in the data.  

 
Figure 17.  Sensitivity and specificity for Clarke, Consensus and CG EGA with 

optimal σ in all cases. Classification categories are A+B vs. C+D+E and 
white + gray vs. black. Input data are permuted 25 times. Results are 
compared to classification with no scrambling in the data. Similar results 
are obtained when using classification scheme 2. 

2. Individual patient analysis 

To see to what extent the error detection influences global clinical 

performance, an analysis in terms of patient’s glucose profiles and not as 

individual samples is necessary. It may be considered that a good performance 

is obtained if the system is able to detect the time intervals where the profile 

shouldn’t be trusted because of incorrect measurements inducing, e.g., 

hypoglycemic episodes to be missed. 
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In this section we analyze the overall classification results on the temporal 

sequence of recorded data patient by patient. We compare Clarke EGA, 

Consensus EGA and CG-EGA in some patient cases.  

Figure 18 shows the results for two patients (i.e. patient nr. 11 and nr. 12) 

with classification scheme 1 and all three considered EGAs where 

hypoglycemic episodes appeared. True and false positives are presented and 

the benefits of the proposed work can be clearly inferred. For patient nr. 11 it 

can be observed that there are two hypoglycemic episodes (around minute 

1000 and 1175) that are not measured by the monitor. These two episodes are 

correctly detected by Clarke and CG-EGA classifiers (Figure 18 top and 

bottom, blue circles). In contrast, when using Consensus EGA the first 

hypoglycemic episode is missed. On the other hand, Clarke and CG EGA 

classifiers show some false positives (around minute 1260) while Consensus 

EGA classifier does not present false positives for patient nr. 11. 

It may be observed in Figure 6 that for patient nr. 12, hypoglycemia remains 

unnoticed by the monitor from minute 925 (approximately) onwards. This fact is 

correctly detected by the Clarke, Consensus and CG classifiers (denoted by 

the blue circles). Some false negatives appear (red circles) for Clarke and CG-

EGA. For Consensus EGA the number of false positives increases 

considerably. However, this does not interfere in the general conclusions 

drawn out from the graph. 



Real-time detection and classification algorithms for body-centered systems     

 
Figure 18.  Classification results for patients nr. 11 and nr. 12. The figure features 

Clarke EGA classifier (top), Consensus EGA classifier (middle) and CG-
EGA classifier (bottom). The magenta line represents the gold standard 
and the green line the CGMS measurements. Inside the latter, blue and 
red circles indicate true and false positives respectively.  

The former analysis is performed for the rest of patients where hypoglycemia 

episodes remained undetected by CGMS. In cases Clarke and CG-EGA the 

classifiers are able to detect these episodes from the electrical signal and 

CGMS glucose estimations. Some hypoglycemic episodes where missed when 

using Consensus EGA classifier. Although a significant number of 

misclassifications appeared in some cases, this does not have a significant 

impact on the analysis of the profiles except some overestimation of the 

duration of the episodes. 

3.6 Conclusions And Future Works 

In this work, the detection of therapeutically wrong measurements of 

Medtronic’s Minimed CGMS is addressed by means of Support Vector 

Machines. Patients were monitored using CGMS and simultaneously blood 
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samples were taken in a clinical study. Plasma glucose measurements were 

interpolated for time synchronization with CGMS data, obtaining a total of 2281 

samples. 

Gaussian SVM classifiers making use of monitor’s electrical signal and 

glucose estimation were tuned. Clarke EGA, Consensus EGA and CG-EGA 

were used to define the classes. Moreover, two different classification schemes 

for all of the three EGAs were used. All in all 6 different classification problems 

have been studied, adapting the σ-value of the Gaussian kernel function 

systematically. With optimal σ-values validation is performed: 10-fold cross-

validation for 10 times permutation. The classification results are similar for all 

6 classification problems: average Specificity and Sensitivity result in 92.74% 

and 75.49%, respectively. The average Correct Rate is 91.67%. Additionally, 

the permutation technique shows that both Sensitivity and Specificity drop 

dramatically when scrambling the input data, thus we can conclude that the 

classifiers indeed have been able to learn the data structure. The best 

classification results are obtained for the Clarke’s Error Grid Analysis with a 

90% of correct rate. 

An overall good performance is obtained in spite of the somewhat low 

sensitivity. The classifiers are able to detect the time intervals where the 

monitor’s glucose profile shouldn’t be trusted because of wrong 

measurements. This is illustrated with the detection of hypoglycemic episodes 

missed by the CGMS. 
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From this analysis it is concluded that detection of therapeutically wrong 

measurements given by the continuous glucose monitor Minimed CGMS is 

feasible through the use of SVM classifiers. For all patients, missed 

hypoglycemic states were detected, as well as other therapeutically wrong 

measurements. The presence of False Positives did not alter the conclusions 

drawn out from the analysis of time profiles. This tool can thus support the 

clinician in the interpretation of continuous glucose monitor readings.  
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Chapter 4  

 

Wireless neural signal monitoring 

4.1 Problem definition 

Studies conducted during the last decade have demonstrated the 

improvements that neural signal decoding will bring to health care, especially 

for patients suffering from paralysis [23], blindness [17] or deafness [149]. 

Recent work indicates that there is a vast universe of possible applications 

[150], especially considering brain-machine interfaces (BMIs), devoted to 

create interfaces between the human brain and artificial devices [18], [151], 

[152], [153]. Scientists from a wide range of disciplines are working on 

technologies that allow patients to use brain activity signals to control 

mechanical or electronic devices that allow the patients to restore lost sensory-

motor functions [149], [151]-[154], [17], [23]. There are still fundamental 

questions to be solved in the neurobiology field, however first results of brain-

actuated technologies, such as neuro-prostheses or neuro-robots, lead to 

optimistic expectations. 
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These promising clinical applications of implantable neuronal sensing 

devices have shown the utmost necessity of wireless communication 

systems that allow real-time monitoring of neural signals. In fact, the 

implementation of a wireless transmission method for such systems brings 

considerable advance especially for in-vivo recordings as the subject wearing 

the measurement device would then be freely moving around and neural 

recordings from normal life-style activities would be possible. Wireless 

implanted neural electrodes that have been characterized and tested in-vivo 

are reported in [157], [21], [158].  

When it comes to the communication systems involved in these BMIs there 

is still much work to be done. The neural signal, the fundamental information 

source, hides significant conceptual complexity and thus, its recordings shall 

be made available to as many researchers as possible [159]. That is why 

world-wide transmission systems are so important particularly in this area. On 

the other hand, a fundamental requirement for any communication system 

aimed towards the development of clinical applications of BMIs, is to be 

wireless in order to allow patients to wander around during neural recording 

and monitoring. Moreover, aspects like low power consumption (especially 

considering implantable devices, not only because of the body proximity but 

also to extent battery life) and small interference with already existing systems 

shall be not neglected. 
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Figure 19.  Wireless multi-channel system for recording neural signals from rats 

developed in [158]. 

The design of a wireless transmission system for this particular application 

shall meet several requirements involving source compression of the high data 

rate neural recording, communication with a standard device as bridge 

between body area and remote server, and high fidelity of the received signal 

to ensure effective brain activity monitoring. Neural signals recorded either 

from in-vitro cultures or from in-vivo subjects, present a high data rate 

information source. Due to the limited bandwidth of wireless transmission 

system, compression becomes mandatory. As we will see in the next sections, 

compression through spike detection becomes extremely attractive when 

aiming at real-time applications and individual neuron spike pattern analysis. 

Neural signal information is mainly carried in the neuron’s spiking patterns. 

That is why, in scientific and clinical applications, it becomes important to 

identify neural action potentials or spikes from the voltage waveform of each 

sensing electrode. Figure 20 shows an example of a neural signal recorded 
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using a microelectrode in the top subplot and the separated firing pattern on 

the bottom subplot.  

 
Figure 20.  Recorded microelectrode signal (top) and detected spiking pattern 

(bottom). 

Action potential waveforms recorded with extracellular cortical electrodes 

present amplitudes ranging from tens to hundreds of microvolts peak to peak; 

pulse widths are typically 1 - 1.5 ms. The noise floor, which includes biological 

noise from far field neurons and electrical noise from the amplifier circuit, is 

around 20µVrms; Signal to Noise Ratios (SNRs) usually range from 0 to 12dB, 

although ratios as high as 20dB are occasionally encountered. Published 

figures for the signal frequency content vary, ranging from 100 to 400Hz for the 

low end range and 3 kHz to 10 kHz for the high end range [19]. Published 

sampling rates also vary, ranging from 15 kHz up to 50 kHz [20]. In general, 

higher sampling rates produce higher fidelity signals but also produce more 
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data, requiring faster and higher-power systems to process them, which may 

become a handicap in a wireless system with limited bandwidth. Analog to 

digital converter (ADC) resolution should be 10 - 12 bits to provide 60 - 72 dB 

of dynamic range. 

In general, the required transmission bandwidth (BW) can be obtained 

as s bits ch BW = f n N  , where  is the sampling frequency in samples per 

second, 

sf

bitsn the number of bits per sample and chN the number of channels to 

be transmitted. According to that, transmission of one single channel with a 

medium sampling rate the required bandwidth is of 180 kbps. When it comes to 

simultaneous transmission of several channels (up-to-date in-vivo and in-vitro 

micro-electrode array recording systems provide up to 128 simultaneous 

channels ), including source compressing algorithms in the 

communication system becomes a must, especially when wireless 

transmission with limited bandwidth availability is aimed at. 

[160]

Neural signal 

compression should allow recovering of the neuron’s spiking patterns and that 

is why compression techniques involve detection and separation of individual 

firing patterns from the underlying neuronal noise. The spiking activity among 

the recorded channels might differ substantially, and therefore, as widely 

discussed in literature [161]; spike detection yields the most suitable 

compression algorithm.  

Given the importance of spike detection, it is interesting to be able to 

quantitatively assess the quality of any implemented detector [20], [179]. 
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However quality assessment requires knowledge of the ground truth, i.e., 

decisions taken by the algorithm on the presence of spikes must be compared 

with the real presence of spikes in the signal. Recordings from micro-electrode 

arrays do not allow intra-cellular recording which means that the ground truth is 

not known. For the present work, in order to overcome this problem, we select 

two different types of source signals: 

1. First, a set of in-vitro neural activity recordings kindly provided by 

Multichannel Systems was used. Recordings were obtained using a 64-

electrode array (60 recording electrodes and 4 electrodes for stimulation) 

and signals where sampled at 25 KHz. Figure 21 shows the Multi 

Channel Systems Multi-Electrode Array (MEA). One channel of the 

recording was selected and spikes were manually detected by several 

experts. Manual detections were used as the ground truth for detection 

algorithms evaluation. 

 
Figure 21. 64-channel Multi-Electrode Array (MEA) from Multi Channel Systems 

(www.multichannelsystems.com) widely used in neuronal signal 
recordings. 
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2. Second, we use a set of synthetic signals from a statistical model 

resembling real signals, where the spike positions are known and can be 

used for evaluation of spike detection algorithms. 

The set of artificial signals contains 10 different signals resulting from adding 

an artificially generated neuronal noise with a principal neuron spike train. We 

started with in-vivo recordings from rat cerebellum’s striatum cells, publicly 

available at [177]. From these recordings we isolated 50 action potentials and 

an additional one was selected and repeated periodically with a frequency of 

50 Hz to construct the principal neuron spike train of 10 s duration. To generate 

a realistic underlying noise, we assumed that each neuron fires according to a 

homogeneous Poisson process. The Poisson model is valid if one assumes 

that each neuronal spike constitutes an independent random variable, which is 

not totally true but it yields to an approximation that suffices for the generation 

of additive noise, where the importance is not on the exact spiking times but on 

the fact that the resulting noise resembles the real neuronal noise present in 

micro-electrode recordings. The number of noise neurons taken for noise 

generation is an approximation based on the assumptions that: only neurons 

within 140μm of the electrode are detectable and that the density of the motor 

cortex is 30.000 neurons/mm as stated in [17]. A scheme of the procedure is 

shown in Figure 22. First, the firing rate for each neuron is obtained randomly 

in the range [50, 90] Hz, then, a firing pattern for each neuron is obtained using 

the Poisson process model, and finally, the resulting noise is the sum of the 

individual firing patterns. The principal neuron spike train is added to the 
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adequately attenuated noise to obtain 10 different signals with SNRs in the 

range [1, 4.6] dB. 

1r
f 2r

f
50rf

 
Figure 22.  Artificial noise generation process. 

4.2 Real time spike detection 

As we have seen in previous paragraphs, spike processing techniques and, 

in particular, spike detection and classification are fundamental in analyzing 

and interpreting both in-vivo and in-vitro recordings of neural activit . Spike 

detection is, in fact, a fundamental technique for separating neurons’ firing 

patterns from the captured microelectrodes’ signals [155], [156].  

Basic spike detection algorithms apply threshold-based detection to identify 

spikes and, although simple thresholding is attractive for real-time 

implementations because of its computational simplicity, it is thought to be 

sensitive to noise and requires user input to set effective threshold levels, as it 

is exposed in [4]. In neuronal recordings, Signal to Noise Ratios (SNR) vary 
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with electrode geometry, size and position with respect to the target neuron [5]. 

That is why it is necessary to individually set the threshold to the appropriate 

value and automatic and adaptive threshold setting becomes useful.  

We have evaluated the adaptive threshold technique with 2 types of pre-

processing. First, by applying the absolute value operator, Simple Threshold 

detector (STH) and second by a Nonlinear-Energy-Operator (NEO), which pre-

processes input signal s[n] with the energy operator in (4-1), emphasizing 

signal energy concentrations. 

  2[ ] [ ] - [ -1] [ 1]s n s n s n s n     (4-1) 

Where n is the sample number.  

After pre-processing, spikes are detected comparing the pre-processed 

signal with an adaptive threshold. Real-time adaptation is done by obtaining a 

noise-envelope estimate via a frame-based noise-envelope tracking method 

and, then, setting the threshold (  th k ) to a certain level which is relative to the 

estimated noise envelope (  n̂ k ), where k  is the frame number. 

   n̂th k A k 
 

(4-2) 

The process for noise-envelope estimation is preformed in 50 ms-long 

frames. Frame processing reduces computational cost since estimation 

performed only once per frame. The steps for each processing frame are: 

1. Calculate the maximum absolute value of the signal amplitude (
max

[ ]s k ). 



Chapter 4 - Wireless neural signal monitoring 

2. Compare it with the previous noise-envelope estimation: ( ˆ[ 1]n k  ). 

3. If the maximum is bigger than A  times the previous noise envelope, 

assume that there is a spike present in the frame do not update noise 

estimation. 

Otherwise, update the noise estimate according to:  

max max

max max

ˆ ˆ ˆ[ ] [ -1] , [ ] [ ] (1- ) [ -1]

ˆ ˆ ˆ[ ] [ -1] , [ ] [ ] (1- ) [ -1]

up up

dw dw

s k n k n k s k n k

s k n k n k s k n k

 

 

    


      

(4-3) 

Time constants up  and dw  have been experimentally adjusted to 

 and . 0.02up  0.5dw 

4.3 Real time spike sorting 

Typically, Micro-Electrode Arrays (MEAs) are situated such that for each one 

of them, there is a number of surrounding neural cells [164]. Therefore, each 

single electrode records signals originating from several neural cells, thus, 

obtaining multi-spike trains for each MEA electrode. The exact waveform 

captured for each neuron depends on the neural cell itself and the geometry of 

the extracellular space as described in [179]. Moreover, the waveform 

characteristics of the captured signal are constant over time for each neuron 

and that can be used to identify the corresponding neuron in a single electrode 

recording, that is, to classify the detected multi-spike train.  

In Figure 23 (top) the detections and spiking frequency obtained for a typical 

multi-spike train are depicted. Considering that this multi-spike train includes 
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contributions of three different neural cells, detection and spiking frequency 

(depicted in Figure 23 (bottom)) are computed for each of the individual 

neurons, thus implying prior classification. From Figure 23 it becomes apparent 

that classification is a must when dealing with multi-spike trains. As we have 

seen, for each MEA electrode recording, the individual contributions of the 

surrounding neural cells can be distinguished using signal processing 

algorithms that take advantage of the similar wave form characteristics of the 

spikes originated by one neural cell. This implies that prior to classification a 

detection process shall be performed. That is the reason why compression 

through detection allows neural signal post-processing with similar quality 

parameters as those yielded for the original recorded signal. However, 

simultaneous firing of two or more neural cells surrounding one MEA electrode 

can cause overlapping of the associated wave forms deforming the resulting 

signal and thus, increasing the difficulty of the spike sorting task. 
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Figure 23.  The need of spike sorting in multi-spike trains: Overall spiking pattern 

differs substantially from individual neural spiking patterns, also spiking 
frequency are not similar. 

Any automatic classification process is based on two consecutive steps: 

1. Extraction of the most relevant signal characteristics. 

2. Based on the extracted characteristics, determination of the classes 

and the membership of each of the signals to the classes. 

  When it comes to the multi-spike train sorting problem, several algorithms 

for characteristic’s extraction are suitable [164], [164]. Here, Principal 

Components Analysis (PCA) was selected for its demonstrated excellent 

performance [182]. PCA consists in, for each of the spike sets; a set of sorted 

vectors that forms an orthogonal base capable of representing the spikes’ 

subspace is obtained. These base vectors indicate the directions of maximum 

data variation and each spike can be represented as a scaled sum of them. 
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Base vectors are sorted with respect to their relative contribution in 

representing the set of analyzed signals. Instead of using the whole set of base 

vectors to represent the spikes, the complexity can be decreased by selecting 

a subset constituted by the N base vectors with higher scores and represent 

the spikes by their projection on the selected base vectors. The N projections 

or N Principal Components are then used as characteristics in the sorting 

process. 

Once the characteristics (N base vectors or Principal Components) have 

been extracted, the class membership algorithm k-means is applied to the 

multi-spike train. This algorithm basically consists in associating to each spike 

the class with the closest weight centre using the Euclidean distance. The 

weight centre of the associated class is recalculated after the inclusion of each 

sorted spike.  

4.4 Neural signal compression 

As discussed in the previous sections, neural signals recorded either from 

in-vitro cultures or from in-vivo subjects present a high data rate information 

source per unit electrode or channel. Moreover, up-to-date in-vivo and in-vitro 

microelectrode array recordings involve over a hundred of simultaneous 

channels ([153]). Therefore, when it comes to the simultaneous wireless 

transmission, inclusion of source compressing algorithms in the communication 

system becomes a must.  
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As we have also seen, neural signals contain trains of action potentials or 

spikes that form particular spiking patterns. For this thesis the interest is in the 

spiking patters extracted from the trains of action potentials or spikes. The 

relationship between action potential and local field potentials (LFP) is not well 

understood and still under investigation ([165], [172]). During the intervals of 

the signal without spikes, the content of the signal is considered to be 

exclusively noise for the spiking pattern computation. Therefore regarding 

spike pattern analysis, it is possible to compress neural signals by coding the 

impulse trains leaving the noise-only parts away. For doing this, it is necessary 

to: first detect the occurrence of the spikes, and then code the time, the 

channel (in the case of a multi-channel recording system) and the spike 

waveform. In this way, it is feasible to compress and multiplex an arbitrary 

number of channels into one single stream of data.  

In the present thesis, I have considered the Multi Channel Systems MEA 

case described at the beginning of this chapter, where the recording system 

has 60 recording electrodes, with the sampling frequency being 25 kHz and the 

sampling precision 12 bits. The system is then producing a 12 × 25 × 60 = 

18000 kbps raw data stream.  

The compression algorithm applied works in a frame-based manner. It takes 

input data in frames containing 1250 samples, i.e., 50ms. For each frame-

based step, the algorithm performs spike detection at each channel using the 

NEO algorithm described in section 4.2 and, when a spike is detected, the 

time, channel, and the waveform of the spike are coded and sent to the output.  
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In some cases, coding of all the channels using this scheme may not give 

sufficient compression and it may result in an excessive amount of data to be 

fit in the available bandwidth. In such situation, the alternative is to leave out 

spike waveforms and send timing and channel information only for each 

occurring spike. As a consequence, total reconstruction of the signal is not 

possible; nevertheless, considering that individual neurons repeat the spiking 

waveform over time, previously recorded waveforms can be used and placed in 

the time of the current spikes, thus obtaining a reconstructed signal. Moreover, 

timing patterns of the neural signals are of capital importance in neural signal 

decoding and those patterns can still be obtained when using the described 

compression scheme.  

On the other hand, in multiunit recordings additional difficulties appear. 

Given that each electrode captures the activity of several neighboring neurons, 

transmitting only the spiking times and not the waveforms does not provide 

sufficient information at the receiver side to apply spike sorting techniques. 

Because of that, spike sorting needs to be performed before transmission, with 

the subsequent rise in processing complexity. In the end, the choice in the 

compression scheme becomes a trade-off between processing complexity and 

bandwidth requirements. 

Figure 24 shows both coding structures. Each coded spike results in 78 or 3 

output samples to be transmitted, for coding schemes a and b respectively: 

one sample for the channel number, two for the timestamp and 75 samples 

corresponding to the spike waveform when scheme a is used. 
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Figure 24.  Spike coding schemes. 

4.5 Resource Management - Adaptive compression  

Signal and information management of high-density neural recording arrays 

poses many challenges including: 

 Data volume: 60-electrode array sampled at 25 kHz with a resolution 

of 12 bits/sample yields 18Mbps bit rate. 

 Variable signal quality: Variability across elements of the array due to 

temporal and spatial nonstationarity. 

 External interferences. 

 Reduced energy resources leading to reduced transmission power 

and therefore to reduced bandwidth. 

In this scenario, a wireless point to point transmission system that 

accomplishes the requirements of this specific application, such as reduced 

Lara Traver Sebastià         134/247 



Real-time detection and classification algorithms for body-centered systems     

energy consumption and miniaturization, deals with several restrictions. We are 

particularly interested in the bandwidth management provided by the ad-hoc 

designed transmission system. It is clear that it shall be oversized in relation to 

the actual required bandwidth, which is by nature variable with time offering 

short-time high-value peaks [172]. However, in order to maintain implantable 

characteristics, the bandwidth restriction must be tuned to its lower limit coming 

to a trade-off between guaranteed available bandwidth and power 

consumption.  

From these considerations we can conclude that bandwidth provided by an 

ad-hoc designed wireless transmission system is not constant over time. 

Therefore, it becomes mandatory to manage the available transmission 

bandwidth in order to allow the real time transmission of the most significant 

information from the neural recording system.  

Although near-future technology, such as Ultra Wide Band (UWB), would 

considerably reduce the need of compression, nowadays in-vitro and in-vivo 

applications demand effective compression schemes. Approaches based on 

Principal Components Analysis (PCA) [158] and Wavelet transformation [156] 

are powerful compression schemes for neural signal application that allow 

accurate reconstruction of the waveforms with little to no sacrifice in fidelity. 

However, they present the major drawback of elevated process load that 

makes them inappropriate for implantable systems with extremely reduced 

energy resources. On the other extreme, drastically reducing process load one 

could just down-sample the neural signal to near Nyquist limit. However, in this 
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case the price to pay is the inaccuracy of the reconstructed neural signal and 

thus its impracticality for further analysis, such as spike classification or spike 

frequency assessment. 

Here, the author proposes a real time Signal Compression (SC) stage 

together with a Resource Management (RM) stage that offers a trade-off 

between process load and neural signal fidelity in the wireless transmission 

scheme.   

The SC stage is based on spike detection [20] yielding an acceptable 

compromise between signal accuracy and process load. Although quite 

popular in literature (see [20] and references therein), we have included a 

novel noise-tracking algorithm for adaptive threshold setting that outperforms 

the published basic algorithms. The RM stage implements a stepped reduction 

in the transmitted data rate as the channel bandwidth decreases, enforcing its 

simplicity for sake of process load saving.    

A scheme of the designed system is shown in Figure 25. The inputs to the 

system are the channels of neural signals on one hand and the instantaneous 

wireless transmission bandwidth on the other. The system adaptively 

calculates the neural activity and evaluates the compression scheme to be 

used in each channel. Neural activity is calculated using spike detection. Once 

individual channel activity has been obtained, the RM algorithm consisting of 

an Adaptive Round-Robin with Priorities (ARRP) is applied. Channel priorities 

are static and have to be set before the algorithm starts. On the receiving side, 

channels are demultiplexed and signals reconstructed. 
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Figure 25.  System scheme including RM at the transmitter side and signal 

reconstruction at the receiver. 

Resource management processing is performed in a frame-based manner. 

Frame step advance is 50ms and the overlap segment between frames equals 

the spike length of 3ms. The overlapping allows adequate processing of spikes 

that may fall between consecutive frames. Figure 26 shows a scheme of the 

frame processing for one channel. The resulting algorithm delay equals the 

frame length since the output is available after the complete frame has been 

processed. Therefore, the frame length has been chosen so that the delay is 

tolerable for neural signal telemetry applications. 

For each 50ms-frame, the algorithm works in the following way: 

1. Available bandwidth is compared to the bandwidth required for 

sending the 60-channel raw signal, i.e., 18000 kbps. 

2. If the available bandwidth is enough, mode 0 is chosen meaning that 

the signals from the 60 channels are multiplexed and sent to the 

output. 
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3. If not then the detection-compression-resource management block is 

activated. 

a. Detection is performed and spikes per frame are counted for 

each channel. 

b. At this point, each channel is processed depending on its 

priority defined in the priority matrix and 5 modes of 

operation with increasing compression rate are evaluated 

sequentially. The first mode that uses less bandwidth than 

available is selected and data compressed according to it. 

RM modes are listed in Table 5 and Figure 27 shows the 

priority matrix chosen for our experiments. Position in the 

matrix corresponds to electrode position in the multielectrode 

planar array used for signal recording. Electrode channels 

are numbered from top to bottom and from left to right. We 

have set 4 channels with the highest priority and the rest of 

the electrodes alternate priorities 2 and 3.  

4. The selected RM mode is also coded at each frame, thus making 

decoding and reconstruction possible at the receiver.  
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 MODE 0 MODE 1 MODE 2 MODE 3 MODE 4 

P1 raw signal raw signal raw signal raw signal ch + time 

P2 raw signal ch + time + wave ch + time ch + time ch + time 

P3 raw signal ch + time + wave ch + time not sent ch + time 

Table 5  Resource Management modes.  ch + time + wave and ch + time mean 
compression schemes a) and b) respectively. 

 
Figure 26.  Frame processing scheme. 

 
Figure 27.  Channel priority matrix. 
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4.6 Decoding and signal reconstruction  

The spike coding algorithm described in section 3 is not fully reversible. 

Although it provides excellent detection performance, missing or spurious 

spikes may occur. Nevertheless, it takes advantage of the neural signal 

characteristics thus allowing signal post-processing with similar quality as 

without compression [156].  

At the decoding side, for each received frame, the decoding algorithm 

provides the crucial information extracted from the frame header as the input 

for the reconstruction algorithm (see Figure 24). In each frame, the 

reconstruction algorithm first reads the compression mode and then, according 

to it, the following samples are extracted as multiplexed raw channels, spike 

waveforms or spike time-stamps:  

a. If one channel has been sent unaltered, it is just demultiplexed.  

b. On the contrary, if spike coding has been used, it situates the spike 

samples on the corresponding channel and time scale.  

c. If only the time-stamp is used for spike-coding, a one-sample impulse is 

used in place of the spike waveform. 

Figure 28 shows segments of 0.1 second duration of the reconstructed 

signal compared to the original signal for 5 of the 60 channels. Reconstructed 

signal contains the same spikes as in the original while noise-only segments 

are absent. 
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Figure 28.  Segment of the original (top) and reconstructed (bottom) control signal 
corresponding to the first 5 channels.  

4.7 Implementation of a wireless neural signal monitoring 
system 

As a demonstration of the compression techniques applied, a prototype for 

the whole compression-transmission-reconstruction system has been 

implemented using Bluetooth and third generation mobile communication (3G). 

These last are particularly interesting wireless transmission methods for neural 

telemetry systems as they are available on conventional mobile phones and 

other portable devices [179], [14].  

Wireless communication from the neural implant to the external receiver is 

not covered here; however other works as [169] study the design of reliable 
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wireless links in the presence of lossy tissue with frequency dependent 

dielectric properties. It verifies that, in the 0.1 to 6 GHz range, the optimal 

frequency for power transfer from a cm-size to an implanted mm-size coil in a 

human skull lies in the 100s of MHz range and exhibits a rather broad 

optimum. Maximum link gain is about -27dB. The investigation of variability and 

uncertainty in tissue thickness and dielectric parameters showed that, around 

the optimal frequency, the variability of tissue thickness and of the dielectric 

properties and produce a 5 dB difference in power transfer which can severely 

affect the overall operation of an implanted device, it will be necessary to take 

this variation into account while designing future wireless neural interfaces. 

Other works as [170] use infrared communication to overcome the implant to 

external link. Any of these solutions could be used in conjunction with our 

system and we will only discuss here the rest of it. 

The neural signals are recorded by micro-electrode arrays and then, real-

time compressed and transmitted over a Bluetooth link to a mobile phone. This 

mobile device immediately, without intermediate storage, re-transmits the 

signals over 3G to a remote server where data processing and analysis is 

performed. Reconstruction of the coded neural signal provides the input to high 

performance spike classification algorithm allowing the tracking of individual 

neuron spiking patterns. Figure 29 represents the overall transmission scheme. 

The information source is a personal computer (PC), where neural data 

recorded by the Multi Channel Systems MEA are stored. This PC establishes 

via a Bluetooth-Dongle a wireless communication link with a mobile terminal. 
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The stored data are compressed and transmitted over the Bluetooth link from 

the information source to the mobile device that receives them and, without 

intermediate storing, re-transmits them via a 3G link to a remote server PC, 

where the data are definitely stored, reconstructed and post-processed. 

 
Figure 29.  Wireless Bluetooth-3G transmission. 

 Bluetooth is a flexible and capable technology for providing short-range 

radio communications between devices in an ad-hoc manner using the 2.4 

GHz band. It is well suited as a low power radio transceiver (transmitter and 

receiver) operating at up to 1 Mbps [73]. Two types of channels are used in 

Bluetooth systems: SCO and ACL. SCO are Synchronous Connection Oriented 

links with fixed 64 kbps data rate used exclusively for voice traffic; while ACL 

are Asynchronous Connection-Less links. As shown above in Section 2, 

streaming of multi-channel or even single channel neural signals demands 
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such a bandwidth which can not be offered by SCO links. The Bluetooth 

connection type capable of flexible and higher bandwidths is the Asynchronous 

Connection-Less link [158], [167]. Figure 30 shows the core Bluetooth protocol 

layers. 

 
Figure 30.  Core Bluetooth Architecture. 

The baseband layer enables the physical RF link between Bluetooth units 

making a connection. Link Manager Protocol (LMP) is responsible for link set-

up between Bluetooth devices and managing security aspects such as 

authentication and encryption. L2CAP adapts upper layer protocols to the 

baseband. It multiplexes between the various logical connections made by the 

upper layers. Audio data typically is routed directly to and from the baseband 

and does not go through L2CAP.  

Given that our communication scheme includes a client application 

implemented on the information source and the server application running on a 

mobile phone, it is reasonable to choose a Bluetooth programming technology 

that is provided in nowadays mobile devices. That is why we have decided to 
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use the standard Bluetooth Java programming API JSR-82 currently supported 

in a wide range of mobile devices from different manufacturers [176]. JSR-82 

API allows us to establish an L2CAP point-to-point connection between client 

and server devices through which the neural signals are transmitted. JSR-82 

supports Bluetooth standard v1.1 which is therefore the version used in our 

experiments. 

In order to have control over the Bluetooth transmission we have 

programmed the client and server applications implementing the 

communication. In this scheme, first, an L2CAP connection is established 

between the master and the slave. Once communication is established, the 

client application running on the slave starts sending data over the connection 

to the master’s server application. The data packet size used in the connection 

can be selected at compilation time and a 2 Mbytes neuronal signal of the type 

described at the beginning of this chapter is used as data source. The 

transmitter monitors the channel quality by inspecting throughput. 

As the mobile device receives the neural data from the information source, 

they are retransmitted immediately to the remote server over the 3G network. 

Once the mobile phone is registered in the network, a profile containing all 

necessary parameters for the 3G transmission, such as access point etc., is 

established. The TCP, Transmission Control Protocol, is used for the data 

transmission. It offers a point-to-point connection-oriented reliable link 

recovering a huge variety of errors dynamically and adaptively. In order to use 

the TCP, the transmitter (in this particular case the mobile phone) and the 
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receiver (equivalent to the remote server in our application) shall create the 

terminal points of the connection, called sockets. A socket is defined by a 

transmission protocol (TCP is this case), an IP address and a port number. In 

our experiments the mobile phone is programmed to be the client. It requests 

the opening of a TCP-socket to the server that is waiting for inquiries. 

The application running on the mobile phone implementing both, the 

Bluetooth and 3G transmission is programmed in J2METM (due to the limited 

device resources). Also, the server application is programmed using JavaTM. 

In Figure 29, it can be observed that both the application running on the 

information source PC and the remote server application incorporate the 

JMATLink software package. This package allows the integration of MATLABTM 

applications with JavaTM applications.  

Especially for data pre- and post-processing as well as for real-time data 

representation this package offers huge advantages. The data compression 

algorithms described in Section 4.4 are implemented in MATLABTM and 

launched by JMATLink. For the evaluation of the transmission, real-time 

graphical data representation is required on the server, also implemented in 

MATLABTM and launched by JMATLink.  

Due to the fact that the Bluetooth L2CAP connection is a secure channel, 

retransmissions assure the correct arrival of each single packet and until the 

acknowledgment of the former packet does not confirm its correct reception a 

new packet is not transmitted. For this reason, measuring transmission 
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throughput is equivalent to measuring reception throughput. Moreover, this 

ensures the real-time transmission as long as the data stream generation 

velocity does not surpass the channel throughput. 

4.8 Results and discussion 

4.8.1 Spike detection results 

Both STH and NEO detectors have been used to detect spikes in the set of 

real and artificial signals. Figure 31 shows spike detections given by STH 

detector with automatic noise-envelope tracking. One can observe that 

threshold adaptation to the appropriate level above the underlying noise occurs 

in about 0.5 seconds and that it is not affected by the spiking activity. 

Comparison among the four tested channels shows the algorithm ability to 

adapt to different SNR conditions (Figure 31 (a) to (d)). One can observe that 

threshold adaptation to the appropriate level above the underlying noise occurs 

in about 0.5 seconds and that it is not affected by the spiking activity.  
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Figure 31. Automatic neural-signal noise-envelope tracking for different real 

recording channels with different signal to noise ratios.  

In order to compare STH’s and NEO’s performance, the Receiver Operating 

Curves (ROCs) have been plotted from the spike detection results. Figure 32 

shows ROC families obtained for STH (top) and NEO (bottom) when applied to 

the artificial signals set. It also includes resulting probabilities of detection and 

false alarm for the different SNRs obtained using the adaptive threshold 

method. Here one can see that the adaptation mechanism sets the detection 

working point according to the input SNR. Arrows in Figure 32 indicate the 

moving direction of the working point with changing SNR if a fix threshold is 

used with the consequent performance degradation. 
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Figure 32.  Family of ROC curves obtained for the set of 10 artificial signals with 

SNRs ranging from 1 to 4.6 dB. Top: STH detector, bottom: NEO detector. 
Thick dots on of the curves correspond to the detection and false alarm 
probabilities obtained using adaptive threshold. Arrows indicate working 
point moving direction if a fix threshold is used for the rest of SNR 
conditions. 

Similarly, Figure 33 plots ROCs corresponding to the real signal and shows 

that NEO curve is closer to the ideal detection curve, which is the step function. 

Area-under-curve figure for NEO is 0.9473 against 0.9258 for STH. 
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Figure 33.  ROC curves obtained using real data for STH (circles) and NEO 

(triangles). The use of adaptive threshold for STH or NEO results in only 
one working point on the ROC curve represented as a cross and an 
asterisk for STH and NEO, respectively. 

From the results we conclude that a new method for adaptive threshold 

spike detection has been applied that successfully adapts to different input 

SNRs. It can be used for both STH and NEO spike detectors improving 

detection and eliminating the need for manual threshold setting. Additionally, 

spike detection quality for STH and NEO has been assessed. Although 

previous publications (Obeid and Wolf [6]) show that STH detection is 

comparable to NEO when the input signal is previously high-pass filtered; here 

we show that, when no pre-filtering is applied, NEO brings a significant 

improvement to spike detection results. 
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4.8.2 Spike sorting results  

In order to assess performance quality of the implemented classification 

algorithm it has been applied to both, the artificially generated signals and the 

real recordings from Multi Channel Systems. 

Similarly to the process described in section 4.1, artificial signals containing 

two trains of spikes randomly superposed were generated and in fact, the 

artificial multi-spike train classification were used to interactively tune several 

parameters of the classification process such as Principal Component score, 

clustering distance etc. Once the optimized parameters are obtained, the 

classification algorithm is applied to the real signal recordings from Multi 

Channel Systems described also in section 4.1.  

Figure 34.  to Figure 37 show graphically the developed classification 

process applied to one channel of real recordings. In Figure 34 the 

superposition, aligned to the minimum, of the detected spikes is shown. These 

spikes represent the input set for the PCA. As a result of the PCA, a sorted list 

of base vectors is computed.  
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Figure 34.  Superposition of the detected spikes of one channel. Alignment is 

performed to the minimum value.  

The computed scores of the Principal Components of the complete input 

spike set that form the sorted list are shown in Figure 35 (top). The three higher 

scored Principal Components collect more than 81% of the overall scores, thus 

yielding a high-fidelity representation of the complete input set when truncating 

at a 3-dimensional representation. Precisely these three most relevant signals 

are depicted in Figure 35 (bottom). They form an orthogonal vector base that 

will be used for the whole input set space.  
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Figure 35.  Scores of Principal Components of the input spike set (top) and three 

most relevant Principal Components (bottom).  

From this 3-dimensional representation the k-means clustering algorithm is 

applied to establish the membership of each spike to one determined class. 

Figure 36 (top) shows the 3-dimensional representation of the complete spike 

input set separating color-wise the 3 different classes. For sake of clarity, the 2-

dimensional projection on the two first Principal Components is also shown in 

Figure 36 (bottom).  
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Figure 36.  Dimensional representation of the input spike set (top) and 2-

dimensional projection (bottom). 

The overall result of the classification is summarized in Figure 37 (top) that 

shows the input spike set separated color-wise depending on its class 

membership. As it can be observed from Figure 37 (bottom), the spikes 

belonging to one class show similar wave forms. 
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Figure 37.  Classified input spike set (top) and spikes belonging to class 1-3 

(bottom). 

The classification performance for the set of artificial multi-spike trains yields 

to 92% of correctly classified spikes.  

For the real data recorded by Multi Channel Systems, the classification 

performance shall be assessed through evaluation of experts, similarly to the 

assessment of the detection quality described in section 4.2.  

4.8.3 Compression and transmission results 

We have conducted several experiments using the input neural signals 

described in section 4.1, control recording and NMDA recording (Figure 38), in 

conjunction with dynamic transmission bandwidths. In order to consider real-life 

conditions experimentally measured instant Bluetooth data rates are used as 
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input signal. Additionally, an experimental increasing bandwidth is computed as 

input signal which allows design facility of a fixed-bandwidth point-to-point 

transmission system: 

 Experimental Bluetooth v1.1 data rates. 

 Experimental Bluetooth v2.0 EDR data rates. 

 Increasing bandwidth from 1Mbps to 20Mbps in 1Mbps steps. 

System performance has been evaluated using the set of configurations 

given by the combination of the input signals and input bandwidths. While 

running the model several parameters were stored which allowed subsequent 

performance analysis. Figure 39 and Figure 40 show the results. Both figures 

contain similar information but corresponding to Control and NMDA 

experiments respectively. The top subplots show neural activity per channel 

and total neural activity. The following pairs of subplots show available 

bandwidth compared with the resulting occupied bandwidth corresponding with 

the selected RM operation mode, and the selected operation mode, 

respectively.  
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Figure 38.  Neural activity (brightness indicates activity in number of spikes per 

second). Top: control experiment before drug application. Bottom: 
experiment after application of NMDA. 
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Figure 39.  Resource Management results for control signals. Transmission 

bandwidth corresponding to Bluetooth v1.1. Bluetooth v2.0 EDR and 
increasing from 1Mbps to 20 Mbps. Full line: Available Bandwidth, Dotted 
line: Occupied Bandwidth. 
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Figure 40.  Resource Management results for NMDA signals. Transmission 

bandwidth corresponding to Bluetooth v1.1. Bluetooth v2.0 EDR and 
increasing from 1Mbps to 20 Mbps. Full line: Available Bandwidth, Dotted 
line: Occupied Bandwidth. 

From the figures, one can observe that, in general, the adequate mode is 

selected at each time so that the occupied bandwidth does never surpass the 

available bandwidth. However, in the case of Bluetooth v1.1, there are some 

high-activity frames in which signals can not be fitted into the available 
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bandwidth with any of the resource management modes given that Bluetooth 

v1.1’s bandwidth is too low. That fact is presented in the figure as gaps in the 

occupied bandwidth representation and in the selected mode. In such case, the 

alternative is to just send the number of channels that fit and leave the rest 

unsent. This result proves that Bluetooth v1.1 is not suitable for simultaneous 

real-time transmission of 60 neural signals. On the contrary, the use of 

Bluetooth v2.0 EDR in conjunction with the ARRP-RM algorithm makes that 

objective possible. 

When looking at the results corresponding to the experiment in which the 

bandwidth provided by the wireless link is slowly increasing from 1Mbps to 

20Mbps, both for control and NMDA neural activity, in the first frames, the 

bandwidth is only enough for RM mode 4, so spike coding is used in every 

channel and only channel number and timestamp is sent for each spike. As the 

bandwidth increases RM modes 1 and 2 are used and the raw signals of the 4 

channels with higher priority are sent while the rest of the channels are 

compressed using spike coding. In this period one can observe how occupied 

bandwidth follows the dynamics of the spiking activity. As expected, an 

available bandwidth of 18 Mbps is above the level required for transmitting raw 

signals from all the channels and therefore RM mode 0 is chosen. However, 

some over sizing shall be included for unexpected interferences with other 

systems.  

In order to summarize the results, Figure 41 shows the resulting percentage 

of the available bandwidth that is occupied as the input neural activity 
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increases. Different lines in the graphic represent different transmission 

bandwidths. For the 3 curves corresponding to bandwidths of 2048, 4096 and 

8192 kbps, one can observe that the occupied bandwidth increases with the 

neural activity. Obviously the occupied bandwidth can not surpass the available 

transmission bandwidth and, therefore, when the occupied bandwidth 

approaches 100%, the algorithm automatically changes the compression 

scheme and this results in a downwards jump in the graph. After the jump, the 

percentage of occupied bandwidth continues to rise towards 100%. In the 

cases of 1024 and 16384 kbps, the graphic does not show a jump. The reason 

is that, for the represented spiking activity range, the occupied bandwidth does 

not reach 100%, and, therefore, the same compression scheme is used across 

the whole range. 
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Figure 41.  Resulting percentage of occupied bandwidth against the spiking activity 
of the cellular culture. Different available bandwidths are presented. 
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In summary, a compression and resource management algorithm to be used 

in the wireless transmission of neural signals has been designed and tested. 

The frame-based algorithm is capable of adapting signal compression of the 60 

channels at the input according to the neural activity present, the priority set to 

each channel and the bandwidth available at each processing frame. As a 

result, signals are compressed and multiplexed in a single transmission frame. 

The reconstruction algorithm at the receiving side is able to demultiplex and 

decode signals to reconstruct the spiking patterns. Ideally, signals from each 

channel should contain original spikes so that sorting algorithms can be used 

to isolate individual neuron’s activity. That is eventually not possible when the 

bandwidth is too low, then the strategy is to send spike timestamps only. Spike 

sorting at the transmitting end should be done to overcome the problem.  

In the presented ARRP-RM algorithm, channel priorities can be configured 

at compilation time and can be based on observed channel activity or on 

correlation among channels. Precisely this characteristic makes the developed 

algorithm highly useful for nowadays in-vitro and in-vivo applications: For 

example, only one out of two highly correlated channels will be assigned with 

the highest priority whereas the other will be given the lowest. In case of 

bandwidth restrictions, the latter will not be sent given that the information it 

carries is somehow redundant. In another application example, the proposed 

algorithm can be used in the neural recording stage of a Brain Machine 

Interface (BMI) so that the channels containing signals from highly-tuned cells 

will be given the highest priority. The signals captured form them will always be 
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sent to the receiver whereas less significant cells will only be monitored in high 

bandwidth availability conditions. 

4.8.4 Bluetooth-3G transmission results. 

The system described in section 4.7 is evaluated for its application to the 

real-time transmission of neural signals captured by implanted micro-electrode 

array sensors. Average compression rate of 75% of the neural signal is 

achieved through detection using nonlinear energy operator pre-processing 

and automatic threshold adaptation. The transmission rate is limited by the 

Bluetooth and 3G links, depending on the transmission packet size. Due to the 

limited resources of the mobile phone, the maximum transmission unit is also 

bounded, thus achieving a maximum transmission rate of 323.1 Kbps. With this 

transmission rate, it is not possible to transmit more than one neural signal in 

real-time over the Bluetooth link without compression. With the developed 

compression algorithm the system performance is enhanced allowing real-time 

transmission of 4 neural signals considering average spiking activity and taking 

into account that no buffering is performed. 

In Figure 42, the transmission mean throughput in relation to the defined 

packet size is represented. The mean throughput is calculated as the number 

of transmitted bits divided by the overall time required for transmission in 

nanoseconds. It can be observed that the mean throughput increases with the 

packet size. For a packet sizes smaller than 1000 bytes the throughput is 

below 180 kbps. Due to the fact that the required minimum transmission data 
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rate for neural signals, as described in section 2 is 180 kbps, only packet sizes 

greater than 1000 bytes provide real-time transmission of one neural signal. 

For these packet sizes (> 1000 bytes) as the packet size increases, saturation 

in the mean throughput is observed. The obtained maximum mean throughput 

value is below 230 kbps.  

 
Figure 42.  Measured mean throughput with respect to the transmission packet size. 
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Figure 43.  Measured throughput and packet transmission time for packet size 512 

bytes with EDR. 

Fortunately, the measured throughput values are improved by using 

Bluetooth v.2. EDR (Enhanced Data Rate). With this standard, data rates up to 

3 Mbps are achieved. Due to the limited processing and storage capabilities of 

the mobile phone, the maximum packet size for the Bluetooth transmission is 

512 bytes. In Figure 43 (top) the real-time evolution of the transmission 

throughput for a packet size of 512 bytes is represented. It can be observed 

that peak values of up to 695.6 kbps appear while the minimum value is 24.61 

kbps. The mean throughput obtained for a 512-bytes-packet size is of 323.1 

kbps for the experiment shown. Figure 43 (bottom) shows the corresponding 

time profile. It can be observed, that throughput peak values in Figure 43 (top) 

correspond to time minimum values as appears in packet nr. 8. The mean 
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packet transmission time is calculated to be 12.67ms. The obtained throughput 

allows the real-time transmission of one neural signal channel (180 kbps 

required for each channel). Therefore, adequate data compression before 

transmission is mandatory. 

Analyzing the real-time throughput evolution, it is observed that less than 

20% of the measured throughput values fall below the range of the mean 

value. Therefore, an adequate mean throughput value guaranties the channel 

capacity for over the 20% of the time. 

The developed compression algorithm described in section 4.4 is able to 

reduce the required data transmission rate on average to 75% depending on 

the spiking activity of the particular culture. Therefore, with the transmission 

rate limited to 323.1 kbps and taking advantage of the compression algorithm, 

on average, it is possible to transmit in real-time 4 neural signals (considering 

25Khz sampling and 12 bits resolution).  

As a conclusion, the system has shown the feasibility of a wireless 

transmission system. however, considering the high data rates generated by 

implantable neural sensors, Bluetooth does not provide enough capacity in 

practice. Future applications will probably start to exploit technologies able to 

provide higher data rates as Ultra Wideband (UWB) [181], [175], [174]. UWB 

presents several characteristics that make it very attractive for this particular 

application:  

 considerable high transmission rates of over 100 Mbps 
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 extremely low power consumption 

 no interference with other wireless technologies due to its spread 

transmission spectrum (short pulse transmission) 

There are some additional considerations to be regarded. UWB allows only 

short distance communications with these high transmission rates, which is 

perfectly assumable for body area networks but raises the need of a bridge 

between the close body field and remote stations. 
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Chapter 5  

 

On-Body UWB Channel modeling 

5.1 Introduction 

The recent advent of wireless data acquisition systems will facilitate fully 

implantable BMI systems obviating the need for transcutaneous wires and 

offering a high grade of mobility to the patients [159]. Incorporating spike 

detection will allow the BMI to transmit only the action potential waveforms and 

spiking times instead of the sparse, raw signal in its entirety, thus reducing 

significatively the extremely high transmission rates [210]. However, for neural 

signal analysis, making the entire raw signal available in real-time will offer 

enormous possibilities to explore neural signal characteristics, such as 

evaluating spike detection and classification in real-time, or performing real-

time parameter adaptation for more efficient algorithms. Most commercially 

available wireless transmission systems do not offer the sufficient data rates to 

transmit the raw neural signal captured from multi-electrode recording systems 

[211], [7], [180]. In addition, a wireless transmission system designed for BMI 
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applications shall also fulfill extremely severe low-power requirements, not only 

because of near-body radiation considerations but also to extend battery life. 

In this context, Ultra Wideband (UWB) is the best candidate because it 

provides outstanding high data transmission rate together with extremely low 

power consumption [180]. Nonetheless, it has to be taken into account that 

UWB, as any other wireless transmission system will have to deal with data 

losses due to possible interferences with other systems, reflections, dispersion, 

multipath components or signal fading. 

As described above, a high-data rate on-body wireless transmission system 

would enormously benefit the development of neural signal monitoring systems 

for both research and therapeutic applications. It would make it possible for 

researchers to study neural codes in freely-moving subjects and the 

therapeutic community to design better devices without the need for 

uncomfortable cables. That is the motivation behind the presented study of the 

on-body UWB propagation. The objective is to characterize the channel and 

assess the limitations for future transceiver design. 

In this chapter, first, general channel modeling and specific UWB stochastic 

modeling are introduced, then, the need for on-body UWB channel modeling is 

exposed. Following that, the on-body UWB measuring campaign is described 

and the results and conclusions are devised. Finally an evaluation on the 

effects of UWB transmission on neural signal characteristics is presented. 



Real-time detection and classification algorithms for body-centered systems     

5.1.1 BAN-UWB channel stochastic modeling  

As channel one understands the set of propagation effects occurring 

between transmitter and receiver in a communication link, such as ordinary 

free space loss, multipath, diffraction, refraction, and scattering, as well as 

general background noise. These effects have an influence on the 

transmission resulting in an effective link capacity for information transmission, 

as is described in the Shannon’s law, see eq. (5-1), where C is the link 

capacity, B is the channel bandwidth, S is the signal power and N is the noise 

power. 

2C=B log 1
S

N
   
 

 (5-1) 

The specific propagation effects that must be accounted for depend on the 

characteristics of the system, i.e., the frequency of operation, the symbol rate, 

the modulation, coding, antenna types and heights, the environment rates of 

movement, and other geometrical factors (e.g., distances between antennas 

and distances to reflective surfaces). For low-data-rate systems, multipath 

transmission can often be represented as flat fading, i.e., as a time-varying 

attenuation that affects the amplitudes but not the shapes of received signal 

pulses. For higher data-rate systems, however, multipath causes distortion of 

pulses and inter-symbol interference; these effects can be crucial in 

determining waveform parameters and receiver characteristics, including 

equalization, rake reception, error control coding and interleaving, and the use 

of spread spectrum techniques. The objective in channel modeling is to 
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characterize all the set of propagation effects in order to predict the behavior of 

the channel when used in a communication link. 

Channel models can be grouped in deterministic and stochastic models. 

Deterministic models precisely describe the behavior of the channel but they 

require an equally precise description of the propagation environment, which 

becomes unrealizable for complex scenarios as it is the on-body propagation. 

On the other hand, stochastic empirical models use simplified descriptions of 

the scenario and produce statistically accurate results. For this thesis, the aim 

is to obtain a stochastic channel model and to extract its characterization 

parameters. 

We start with some definitions, first, if we define  ,h t   as the random time-

varying channel impulse response at the moment in time t for delay , then 

      *
1 1, ,E h t h t P      is the Power Delay Profile (PDP) of the channel. 

The discrete model for the PDP assumes that it is a discrete sum of individual 

contributions at different delay times of the form: 

   
1

N

k k
K

P a   


    (5-2) 

Coherence time is the approximate time window over which the channel 

appears static. It is a measure of how fast the transmission environment 

changes over time. In fact, when the coherence time is shorter than the length 

of the transmitted symbol, the channel is said to be fast-fading, on the 

contrary, when coherence time is larger than the length of the transmitted 
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symbol, the channel is said to be slow-fading. In other words, fast fading 

occurs when the channel changing rate is faster than the symbol transmission 

rate and slow fading in the opposite case. 

Coherence bandwidth is the approximate range of frequencies over which 

the channel appears static. The cause of frequency incoherence is multipath 

propagation. A channel is frequency-selective when its coherence bandwidth 

is smaller than the bandwidth of the transmitted signal and it is said to have 

frequency-flat fading otherwise. 

The delay spread is the time delay between the arrival of the first received 

signal component (Line Of Sight (LOS) or multipath) and the last received 

signal component associated with a single transmitted pulse. If the delay 

spread is small compared to the inverse of the signal bandwidth, then there is 

little time spreading in the received signal. However, when the delay spread is 

relatively large, there is significant time spreading of the received signal which 

can lead to substantial signal distortion. 

5.1.2 The need for on-body UWB channel modeling 

Wireless Body Area Networks (WBANs) are wireless communication 

networks where either transmitter, receiver or both are placed on the human 

body. Nowadays, with the raising number of applications in health monitoring 

and telemedicine, characterization of the channel behavior involving the human 

body is becoming increasingly important. Body-worn devices must be 

permanently available and, at the same time, operate at a low transmission 
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power, not only because of the body proximity but also in order to extend 

battery life. In such scenario, Ultra Wideband (UWB) technology appears as an 

appropriate solution for wireless communication, providing considerable 

transmission rates at a relatively low power consumption cost. It is therefore of 

interest to obtain a realistic model of the on-body UWB channel model to be 

used in the design of the communication devices for new health monitoring, 

telemedicine and sports applications.  

5.1.3 Head-to-body UWB channel model 

In the literature, several measurements and models of the UWB channel for 

indoor and outdoor propagation can be found [183], [184], [185] and [187]. 

Some studies try to model the effects of the human body as it interferes with a 

wireless network by interposing a person between two antennas [188]. Others 

[189], [190] consist on measurement campaigns where only the transmitter 

antenna is placed on the body. Additionally, studies performed by Alomany et 

al. [191] place both antennas on the body, but the focus lies in finding out 

which kind of antennas are best fitted to be used in WBAN channel estimation. 

In [192] measures are done in a hospital room but not in an anechoic chamber. 

The results of [181] demonstrate the propagation mechanisms on the head, 

like diffraction or absorption, but without an exhaustive analysis of the 

propagation channel. In [193], the authors use a human model and the finite-

difference time domain (FDTD) method. Finally, characterization of the channel 

with transmitter and receiver antennas along the torso is performed in [196], 
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[197]. Despite all the above studies, it has been found that there are few works 

taking into account the human head.  

In this thesis, the analyzed channel is defined by transmitter placed on the 

head and the receiver placed in several parts along the torso, arms or legs. 

The objective is to study the behavior of the UWB channel surrounding the 

body for the specific application described in Chapter 4: the transmission of 

signals recorded from the head to a device such as a mobile phone or a PDA 

that the person is carrying or also from the transmitter on the head to other 

devices located along the body. In future medical applications those devices 

would be either monitoring or active devices.  

Stochastic channel models are based on experimental channel measures 

taken at a number n instants of time using either a VNA or a channel sounder. 

From the obtained measures channel statistics are derived. Section 5.2 

describes the set of measuring campaigns carried out in this work to obtain the 

realizations for the channel model. Using the traditional Saleh–Valenzuela 

discrete- time approximation for the wideband multipath channel model defined 

in [183], we made several assumptions and modifications to the model. 

Previous works, like [184] and [185] among others, also made similar 

modifications. This model is especially useful in the study of spread spectrum 

systems and RAKE receivers, as explained in .[200]   

The channel model is described in [183] as follows: 
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 
L-1 K-1

, ,
l=0 k=0

h(t) = ;k l l k lt T      (5-3) 

Where h(t) is the channel impulse response, L is the number of clusters and 

K is the number of multi path components inside each cluster. αk,l is the small 

scale amplitude of the k−th ray of the l−th cluster. Tl is the arrival time of the 

l−th cluster and τk,l is the arrival time of the k−th multi path component relative 

to the l−th cluster. The statistics of the channel for a given t are thus given by 

the statistics of τk,l, Tl and αk,l. In the next section we describe the set of 

channel measures that were conducted to obtain the statistics for those 

parameters. 

5.2 BAN-UWB Channel measuring campaigns 

Previous studies such as [26] have shown that typical on body channel 

impulse responses are the result of two additive propagation parts: first the 

diffraction components corresponding to waves on the body surface and a 

second part corresponding to reflections of the environment. Total channel 

characterization can therefore be divided in the diffraction channel 

characterization and the reflection channel characterization. In this work, 

channel measurements are done in an anechoic chamber and are intended to 

obtain the diffraction model. 

5.2.1 Experimental set-up 

Measurements are performed in an anechoic chamber. A Vector Network 

Analyzer (VNA) is used and the complex frequency transfer function of the 
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channel, S-parameter S21, is recorded for a large set of discrete frequencies in 

the range from 1 to 12 GHz. Specifically, the particular vector network analyzer 

is the ZVA40 model from Rhode & Schwarz. This analyzer allows measuring 

magnitude and phase of a signal from 300 kHz to 50 GHz with up to 150 dB 

dynamic range. Two antennas are connected to the VNA by means two MFR-

57500 cables, a 5m length A94-245 and 9 m length A90-199. These cables are 

suitable for measured frequency ranges and their attenuation will not affect the 

measure thanks to the calibration process of the VNA. 

The VNA setup is summarized at Table 6, basically transmission power was 

10dBm, the sampling frequency (fs) 24GHz, the measurement frequency range 

was from 1GHz to 12GHz and with a bandwidth resolution (∆BW) of 1 KHz and 

the frequency step (∆f) was 50MHz. As a result, 221 complex samples in 

frequency domain were obtained for each repetition. The sweep time was 

500ms and 100 repetitions were taken for each spatial point. 

Location Anechoic Chamber (ENSTA) 

Measurement System VNA R&S ZVA40 

BW, ∆f (GHz) [1 – 12] 

Resolution BW (kHz) 1 

frequency step, δf (MHz) 50 

frequency samples, N 221 

Sweep time (ms) ~ 500 

Source power (dBm) 10 

Cable length X+ Y 

Cables attenuation A(f1), B(f2), C(f3) 

Table 6.  Parameter setting for channel measurement in the Anechoic Chamber 
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The post processing of measured data from the VNA follows the Hermite 

process, this is, the measurement from the signal parameter S21(w) from the 

lowest frequency to origin is completed with zeros (zero padding), later, we add 

the symmetric complex conjugate to obtain the complete signal parameter. 

After that the real Channel Impulse Response (CIR) is obtained applying 

Inverse Fourier Transform (IFFT). 

Antennas 

During the measuring campaign design the choice of the antenna among a 

set of available antennas was made based on the antenna’s performance in 

the measured band. Figure 44 shows the S11 parameter with respect to the 

frequency for the set of 6 antennas that where compared. Best performance in 

the 1-12 GHz range was for the Dual-Fed Microstrip Monopole antenna with 

Dielectric Lens (DFMM-DL) [198] and for the monocone antenna. We have 

selected the DFMM-DL antenna that been designed and manufactured at the 

Laboratory of Electronics and Computer Engineering of the ENSTA2 in Paris. 

                                                      
2 ENSTA: École Nationale Supérieure de Techniques Avancées (France). 
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Figure 44.  Antenna comparison (S ) in the measured frequency band. 11

Each measurement was made with (Dual-Fed Microstrip Monopole antenna 

with Dielectric Lens) DFMM-DL directive antennas [198]. The DFMM-DL 

antenna is a 33 mm x 20 mm x 11.5 mm UWB semi-directional antenna. It 

combines a quasi omni-directional radiator with a dielectric lens which focuses 

the radiation. This type of antenna, when placed on the body directs the 

radiation opposite to the body, thus avoiding radiation towards the body. That 

is beneficial since it increases the level of power that is lost by body absorption. 

The achieved input bandwidth is 3.9-15 GHz. Its main lobe covers a large 

zone. This should be a good trade-off in order to improve the link-budget 

margin, i.e. the power attenuation that is allowed without compromising correct 
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signal reception, while preserving the robustness of the link and the small size 

of the antenna.  

 
Figure 45.  DFMM-DL antenna by the ENSTA. 

In order to measure the channel in the scenarios representative for the 

neural signal monitoring application, a set of transmitter and receiver positions 

were defined. Figure 46 shows the complete set of positions. The transmitter is 

placed on the head at four different locations: top, right side, left side and back 

of the head. Receiver is according to two different types of applications. First, 

for applications were the receiver is a hand-held device, receiver antenna is 

placed at six probable hand-held device locations along the body: in the hand 

with extended arm, in the hand with half extended arm, in the hand with the 

arm flexed to the chest, near the ear (talking on the phone), in the front pocket 

and in the back pocket. Second, assuming the receiver would be a wearable 

device; locations of the receiving antenna are set along 12 different positions 

along the front and back of the human body. Measurements between each 

transmitter and each receiver result in a total of 72 different arrangements 

corresponding to 72 different propagation channels. Table 7 shows the 

transmitter and receiver positions together with the corresponding channel 

number and link distance.  
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Figure 46.  Transmitter and receiver positions. 

The whole set of measures was repeated for two subjects, one male and 

one female in order to analyze subject variability. However measures in the 

conference room were performed on the female subject only.  
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 Distance [cm] 
 Female Male 
  TX1 TX2 TX3 TX4 TX1 TX2 TX3 TX4 

1 43 33 34 27 40 33 28 26 

2 59 35 41 28 50 31 33 29 

3 75 56 60 50 63 45 50 43 

4 69 56 54 50 70 60 56 55 

5 80 66 69 62 85 68 65 67 

6 92 83 78 75 96 88 77 80 

7 133 113 111 102 130 124 120 117 

F
ro

nt
 

8 174 154 151 146 170 157 154 155 

b1 44 34 23 35 50 41 25 38 

b2 50 40 38 52 57 48 32 50 

b3 74 56 50 56 79 52 48 61 ba
ck

 

b4 128 115 109 118 137 128 110 120 

h1 21 28 15 1 23 33 16 3 

h2 32 20 28 21 34 20 29 19 

h3 68 64 60 56 54 65 48 50 

h4 89 86 81 80 84 95 78 80 

h5 97 79 80 78 93 76 80 77 

H
an

d-
he

ld
 

h6 88 80 70 78 103 90 78 90 

Table 7.  Link distances. 

5.3 BAN-UWB modeling results 

5.3.1 Averaged Power Delay Profiles (APDPs) 

The power delay profile of the channel is an average power of the channel 

as a function of an excess delay with respect to the first arrival path which is 

denoted by the variable  [194]. APDPs have been calculated by averaging the 

100 sweeps taken at each transmitter/receiver combination. This is done in 

order to reduce noise in the measures. 
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Figure 47 contains the 3-D Averaged Power Delay Profiles for all the 

valuated channels. Each figure groups channels with the same transmitter 

position. Separate subplots are given for male and female subjects. Although 

no quantitative conclusions can be extracted from the graphs, they are useful 

in order to have a global view of the measured channels and in order to see the 

energy concentrations in each case. They may also become convenient to 

point out at first glance any big differences between the two subjects can be 

observed. 
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Figure 47.  Averaged Power Delay Profiles of the 72 channels grouped by transmitter 

position and by subject.  

5.3.2 Dispersion Parameters 

Mean excess Delay ( m ) and RMS Delay spread ( RMS ) parameters are 

calculated according to (5-4) and (5-5), respectively [195]. 
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




 (5-4) 

 22
RMS m     

(5-5) 

where ,k l is the amplitude of the measured multi path component (MPC). 
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Bandwidth and Time coherence can be approximately calculated from RMS  

as 1
50C

RMS
B    and 9 9

16 16C
d c

cT f vf    respectively. Where c is the 

speed of light, df  is the Doppler frequency c
d

vf
f

c
 ,  is the central 

frequency and  is the average human body speed.  Average human 

body speed is taken for coherence time calculation since channel variability 

measures have not been taken. 

c =5,5GHz f

s1,5 /mv 

Figure 48 shows the relation between the RMS delay spread, the signal 

bandwidth and whether the channel presents a frequency-selective or flat 

fading. The figure is extracted from [194]. 

 

Figure 48.  Power Delay Profile (Ac()), RMS delay Spread and Coherence 
Bandwidth. Tm corresponds to the RMS delay spread (RMS). 

All presented parameters are listed in Table 8 where results are separated in 

three columns. The first column shows the calculated parameters when all the 

measures have been taken into account. The second and third columns 

present the results for transmitter and receiver positions in which there is line-

of-sight (LOS) or not (NLOS), respectively.  
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 ALL LOS NLOS 

m  [ns]  1.06 0.65 1.40 

 [ns]RMS  1.81 1.30 2.24 

[MHz]CB  11.05 15.44 8.91 

[ns]CT  9.76 9.76 9.76 

Table 8.   Calculated channel dispersion parameters 

RMS delay spread values are comparable to those obtained in measures 

along the torso in [181]. Coherence bandwidth of 11.05 MHz implies that for 

signal bandwidths up to 11MHz, which is not the case in UWB, the channel is 

flat and thus the signal will experience “flat fading” [194]. For negligible ISI the 

Symbol rate should be much smaller than the inverse of the RMS delay spread 

[194], S ST ,  i.e. T 10 10 1.81 18.1 .RMS RMS ns       This implies a 

maximum symbol rate of 
S

1
T 55.2 Msymbols/s.  

5.3.3 Large scale statistics (Path Loss) 

As explained in detail in [194] and other well-known books on the topic, the 

linear path loss of the channel is the ratio of transmitted power to received 

power: 

t

r

P
PL

P
  (5-6) 

which we can express also as the difference in dB between the transmitted 

and received signal power:  
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10( ) 10 log t

r

PPL dB P
    
 

 (5-7) 

Path loss is caused by dissipation of the power radiated by the transmitter as 

well as effects of the propagation channel. Path loss models generally assume 

that path loss is the same at a given transmitter-receiver distance. Shadowing 

is caused by obstacles between the transmitter and receiver that attenuate 

signal power through absorption, reflection, scattering, and diffraction. When 

the attenuation is very strong, the signal is blocked. Variation due to path loss 

occurs over very large distances (100-1000 meters), whereas variation due to 

shadowing occurs over distances proportional to the length of the obstructing 

object (10-100 meters in outdoor environments and less in indoor 

environments). Since variations due to path loss and shadowing occur over 

relatively large distances, this variation is sometimes referred to as large-scale 

propagation effects. Variation due to multipath occurs over very short 

distances, on the order of the signal wavelength, so these variations are 

sometimes referred to as small-scale propagation effects.  

Obtaining a probabilistic model of the path loss is important in the design of 

a communications system because if one knows the value of the received 

power which is needed for a successful communication and the probability for 

a given path loss between transmitter and receiver, one can obtain the 

communication range as a function of the transmission power. 

We will use an empirical path loss model in dB between the transmitting and 

the receiving antenna as a function of the distance d. It is based on the Friis 
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formula in free space [194] and where the random effects of shadowing are 

modeled as a random process: 

0 10
0

( ) ( ) 10 log dPL d PL d n Sd
      
 

 (5-8) 

Where d0=10cm is the reference distance n is the path-loss exponent and S 

is a normally distributed variable with zero mean and standard deviation  

representing the Shadowing. Shadowing is the result of the random variations 

due to blockage from objects in the signal path, which give rise to changing 

values of the received power at a given distance. Such variations are also 

caused by changes in reflecting surfaces and scattering objects. 

In Figure 49 one can see the result of fitting the measurement points to the 

above mentioned model. The analysis is performed for the whole measurement 

set and also for the separated in LOS and NLOS channels.  One can observe 

that is all the cases the polynomial power decay behavior of propagation is 

almost completely obscured by the superimposed shadowing. On the right side 

of the figure we observe that the power variations due to shadowing can be 

realistically modeled as random normally distributed variables with standard 

deviation of about 12dB for both LOS and NLOS channels is of about 15dB if 

we consider the whole data set (LOS and NLOS) together. 
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Figure 49.  Path loss linear fit (left) and Shadowing model fit. 

Comparison of our results with previous IEEE WPAN models [199] 

The path loss figures extracted from our measurements in the anechoic 

chamber have been compared with figures provided by the IEEE WPANs 

Working Group [199] for the S4 to S5 scenarios: Body surface to body surface 

CM3 (Scenario S4 & S5) for 3.1-10.6 GHz (see Table 9). 

In [199], two different models A and B are presented based on 2 separate 

measurement campaigns. A and B measures where performed around and 

along a human torso respectively. Table 10 and Table 11 present the IEEE 

models A and B together with our measurements’ results (right-most column). 

Model B is based on measures along torso where there is no obstacle between 

transmitter and receiver, that is why we have compared that model with our 
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LOS results. Path loss at 10 cm and path loss exponents obtained by us are 

comparable to those published by the IEEE BAN working group, however our 

measures present much higher path loss variability at each distance point. This 

can be due to the effect of the subject’s head shadowing, i.e. whether the head 

presents an obstacle or not in the channel probably affects in the total path loss 

more than the distance.  

Scenario Channel Description Frequency Band Model 

S1 Implant to Implant 402-405 MHz CM1 

S2 Implant to Body Surface 402-405 MHz CM2 

S3 Implant to External 402-405 MHz CM2 

S4 Body Surface to Body 
Surface (LOS) 

13.5, 50, 400, 600, 900 MHz 

2.4, 3.1-10.6 GHZ 

CM3 

S5 Body Surface to Body 
Surface (NLOS) 

13.5, 50, 400, 600, 900 MHz 

2.4, 3.1-10.6 GHZ 

CM3 

S6 Body Surface to External 
(LOS) 

900 MHz 

2.4, 3.1-10.6 GHZ 

CM4 

S7 Body Surface to External 
(NLOS) 

900 MHz 

2.4, 3.1-10.6 GHZ 

CM4 

Table 9.  IEEE WPANs Working Group on-body scenarios3. 

                                                      
3 Table is extracted from [199] 
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IEEE Along torso 
 

(0mm antenna-body) (5mm antenna-body)

Our measurements 
(LOS & NLOS) 

PL 
model 0 10

0
( )[ ] [ ] 10 log dPL d dB P dB n d

      
 

 

P0 dB 56.5 44.6 48.1 

d0 m 0.1 0.1 0.1 

n 3.1 3.1 2.3 

 n: Path loss exponent 

 P0: Path loss at the reference distance 

 d0: Reference distance 

Table 10.  Measured parameters vs. IEEE model 8.2.7. B 

 
IEEE 

Around torso 
Measured (LOS & NLOS) 

PL model  10( )[ ] logPL d dB a b d N     

a dB  34.1 48.1 
b -31.4 -22.6 
n 4.85 15.1 

 a and b : Coefficients of linear fitting 

 d : Tx-Rx distance in mm 

 N: Normally distributed variable with zero mean 
and standard deviation n 

Table 11. Measured parameters vs. IEEE model 8.2.7. A. 

5.3.4 Small scale statistics 

As stated in section 5.1.3, to characterize the channel model we need to 

determine the statistics for the number of clusters (L) and MPC (K), the 

amplitude contributions (αk,l), the cluster arrival times (Tl) and the MPCs arrival 

times is the arrival time of the k−th multi path component relative to the 

corresponding (τk,l). Here we will obtain the statistics for those variables. 
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Number of Clusters and MPCs (L, K) 

To identify the number of clusters in a particular APDP we use visual 

inspection as it is done in previous works like [183], [184], [201] and [202], 

because as far as we know, robust algorithms for cluster identification have not 

yet been found. Once clusters have been identified, we obtain the average 

number of clusters L  by just averaging the count through the whole set of 

measured APDPs.  

In the same way, the average number of MPCs ,k l  is obtained by averaging 

the number of MPCs per cluster through all the APDPs.  

When fitting the obtained distributions for the number of clusters and for the 

number of MPCs to a probabilistic distribution, we find that they can both be 

represented as an exponential distribution of the form: 

  1
1 xf x e 
   (5-9) 

Or specifically for each of them: 

  1
1 L

x

L
f x L e

  

 
1

,

,

1
,

k l

k l

x

k lf x e 




  
(5-10) 

Figure 50 shows the histogram for the number of clusters while in Figure 51 

we observe the exponential fit of the cumulative distribution function for the 

number of MPCs. Table 12 presents the resulting fit parameters. 

The number of significant MPCs gives an indication of the number of RAKE 

fingers required to extract most of the channel energy and significantly influences 
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the performance of many UWB receivers [203]. Given the high number of MPCs, 

the RAKE receiver will require many fingers if all the scattered energy is to be 

collected. However a trade-off between complexity of the receiver and transmission 

power will need to be done. 

 
Figure 50.  Histogram for the number of clusters. 

 ALL LOS NLOS 

L 1.80 1.20 2.31 

kl  38.68 40.06 38.07 

Table 12.  Average values for the number of clusters and MPCs. 
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Figure 51.  Number of MPCs, Cumulative Distribution 

Small Scale Amplitude (k,l) 

During the process of model fitting for the amplitude of the MPCs k,l, 

several candidate distributions like Weibull, Normal, Nakagami and exponential 

were considered. In Figure 52 the most relevant distributions are compared. 

Visual inspection shows that the log-normal Cumulative Density Function 

(CDF) is the curve that best follows the experimental CDF. Moreover when 

evaluating the fitting errors we find that log-normal fitting outperforms both 
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Weibull and Exponential fits. Root Mean Squared Error for log-normal is 2% 

while it reaches 5% and 14% for Weibull and Exponential respectively. Fitting 

parameters and corresponding errors are presented in Table 13. 

 
Figure 52.  Small Scale Amplitude fit Comparison using candidate distributions: log-

normal, Weibull and exponential 

  σ RMS Error 

LOS − 5.52 1.55 2.2 % 

NLOS − 4.90 1.42 2.4 % 

ALL − 5.19 1.52 2.0 % 

Table 13.  Log normal fit parameters 
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We therefore derive that normalized small scale amplitudes for all the 

measurements from APDPs are log normal distributed as (5-11), where x is the 

small scale amplitude. Distribution parameters  and  correspond to the mean 

and standard deviation of the associated normal distribution.  

 
 2

2

ln

2
,

1
,

2

x

k l L x e
x



  
 




  (5-11) 

Previous authors like [26], [204], [205] and [206] confirm the log-normal 

distribution for the amplitude of the MPCs. 

Amplitude Decay Factors  

Decay factor for Cluster and MPCs amplitudes follow an exponential 

distribution which can be described (5-12). 

0, ,

2 2
k,l 0,0= e e

l k l 
 

  
   
  



  (5-12) 

Where 2
0,0 , Г and γ are the expected mean power of the first multipath 

component and the cluster and MPC exponential decay factors respectively. 

In order to characterize parameters Г and γ, it becomes necessary to isolate 

each parameter individually. In the case of Γ, we identify the first multipath 

component of each cluster and its respective delay. Amplitudes are normalized 

with respect to the strongest MPC and as Г is an exponential decay factor the 

natural logarithm of the measurements is taken and therefore we have a linear 

equation (5-13). 

0,-2 2
0, 0,0 e ;

l

l



     (5-13) 
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 (5-14) 

4.97 4.97
m ;

m


 
  


 (5-15) 

The value of the decay factor Г is obtained by means of a Least Square Fit 

process where the fit equation is a linear approximation, so the parameter can 

be calculated as where = -(4.97/m )  m  is the slope of the fit equation. 

Results are shown in Figure 44 with the normalized amplitude of the first 

MPC of each cluster plotted against its delay with respect to the first MPC of 

the APDP.  
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Figure 53.  Cluster’s Power Decay Factor Fit 

We follow a similar procedure to identify the MPC decay factor. In this case, 

all MPCs inside each cluster are used. Each of the components is normalized 

and the logarithm taken. Then it is presented against its delay with respect to 

the beginning of the cluster 0,l. Following that, MPC decay factor () is 

calculated using a least square fit algorithm of a linear (5-16).  
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4.97  ;  - mm x
    (5-16) 

Table 14 summarizes the resulting parameters for LOS, NLOS and ALL 

(both LOS and NLOS) scenarios.  

 ALL LOS NLOS 

Г [ns] 0.39 0.37 0.39 

γ [ns] 0.11 0.13 0.10 

Table 14.  Cluster and MPCS decay factor parameters 

Figure 54 presents the fitting results graphically. 

 
Figure 54.  MPC’s Power Decay Factor Fit 

Lara Traver Sebastià         199/247 



Chapter 5 - On-Body UWB Channel  

Clusters and MPCs Inter Arrivals Time’s Statistics 

As it is stated in previous works as [184], [185] and [200], cluster arrival 

times follow a Poisson process. Besides, it is also known that if the arrival time 

follows a Poisson distribution, then the time between two arrivals follows an 

exponential distribution ([207], [208]). Therefore the inter-arrival time between 

clusters can be described as and exponential of the form: 

   1

1 , 0l lT T
l lp T T e l 

     (5-17) 

Where p(Tl|Tl−1) is the conditional probability that a cluster will arrive at time 

Tl given that the previous one has arrived at time Tl-1 and 1/Λ is the mean 

inter-arrival time between Clusters. 

Once defined that the model for the inter-arrival times follows an exponential 

distribution we will fit the parameter Λ using the Complementary Cumulative 

Distribution Function (CCDFexp, the probability of the variable to be above the 

level). See eq. (5-19). 

 

 

exp 0 0
0

exp 0

exp exp

( )

1
1

x x t

xt x x

CDF  p t x p t d t  e d t

CDF e e e e
CCDF  p t x CDF



   

           

        
    

 
 

(5-18) 

exp
xCCDF e  (5-19) 

Additionally, in order to ease the fitting process, the CCDFexp is log-scaled 

so that Λ can be obtained by means of a linear fit as shown in (5-20). 

expln( )  -CCDF x   (5-20) 
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Figure 55 plots the results of the fitting process and Table 15 presents the 

fitted parameters for the LOS and NLOS scenarios separately and also for the 

combination of both (ALL). 

 ALL LOS NLOS

Λ [ns−1] 0.36 0.39 0.35 

Table 15.  Cluster inter arrival times 

 
Figure 55.  Clusters Inter Arrival Time Fit 

The statistical model for MPCs inter-arrival time is deduced in a similar way. 

Previous works use simple Poisson process to model the arrival time for 
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MPCs, however in UWB, inter-arrival time does not follows this behavior. 

Studies like [184] and [200] present an alternative where a Poisson mixture 

distribution is proposed as in (5-21). 

       1 , 1, 2 , 1,

, 1, 1 2 p | = e + 1- e ; k l k l k l k l

k l k l k
             

 0   (5-21) 

Where 1/λ1 and 1/λ2 are the inter arrival mean times of two exponential 

processes inside the same cluster, and β is the mixture parameter. 

Fitted parameters are presented in Figure 56 and least square fitting values 

are shown in Table 16. 
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Figure 56.  MPCs Inter Arrival Time Fit 

 ALL LOS NLOS 

 0.9907 0.9910 0.0095

λ1 [ns−1] 8.24 9.18 0.30 

λ2 [ns−1] 0.28 0.24 7.95 

Table 16.  MPCs inter arrival times 
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5.4 Discussion 

A statistical BAN channel model is presented for on-body UWB 

communications. In particular the study is centered in the conditions where the 

transmitter is placed on the head and the receiver is placed in several parts 

along the torso, arms or legs. The objective is to study the behavior of the 

UWB channel surrounding the body.  

Dispersion parameters have been calculated and, based on the results, we 

derive that the coherence bandwidth lies in the range 11-12 GHz, meaning that 

communication using a signal bandwidth bellow 10 GHz would not experience 

frequency selectivity, i.e., the channel will be flat-fading [194]. With signal 

bandwidth BS = 10 GHz, the symbol time would be TS = 1/ BS=0.1 ns. 

However, on the other hand, if we analyze it in terms of Inter-Symbol 

Interference (ISI) the channel will not present important ISI as far as the inter-

symbol time Ts is bigger than 10RMS =18.1ns. This implies a symbol rate of 55 

Msymbols/s. Increasing this rate will always man that the ISI effects will need 

to be softened by using channel equalization techniques. 

In the large scale modeling, path loss is modeled as a logarithmic decay with 

respect to the distance and with a superimposed shadowing effect. The results 

show that the shadowing effect is so strong that logarithmic behavior is almost 

hidden by it. These results show higher shadowing (on the order of 15dB 

power fluctuations) than previous UWB on-body channel models, which that 

can be explained by the fact that the transmitter is located on the head and it 

causes stronger diffraction effects in all the measured channels as it presents 
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an early obstacle to direct transmission. For a communication system this 

means that the link budget would need to be of about 15dB. 

Additionally, in the small-scale field, we show that in the presented scenario, 

propagation can be described using a modified Saleh–Valenzuela model which 

presents clusters with Poisson arrival times, a mixed Poisson distribution for 

MPC arrival times and in which scatterers are sparse. Evidences of cluster 

overlapping were also observed. The number of clusters and MPCs are 

exponentially distributed while cluster and MPC’s power both present 

exponential decay with respect to the delay. Inter-arrival time variations are 

produced because propagated rays have several paths around human body to 

arrive from transmitter to receiver, diffraction being the dominant process in 

propagation. Such conditions produce an average of 2-3 clusters in the 

channel power delay profile, thus the human body behaves as a sparse 

environment. The surface of the reflecting areas are big (like arms and legs), 

therefore reflecting rays are propagated and reflected in big scatterers. In this 

way, arrival paths can have similar delays, thus producing the cluster 

overlapping observed in our measurements. Body symmetry can be one of the 

reasons for overlapping clusters since, propagation from head to legs has 

symmetric reflectors in both sides of the body and therefore two cluster are 

expected to be produced by the symmetric reflectors. Finally, regarding the 

small scale amplitude contributions, we conclude that they are log-normally 

distributed.  
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This channel model can be used to in realistic on-body UWB channel 

simulations and help in the design of an UWB communications system to be 

used in neural signal monitoring systems. For example, the long delay spread 

can be positive and negative in different senses. It is beneficial because 

multipath arrivals will undergo fewer amplitude fluctuations (fading) since there 

will be fewer reflections that cause destructive/constructive interference. But on 

the negative side, received energy is distributed between a number of clusters. 

In impulse-based UWB, RAKE receivers would need to be used to capture the 

energy of several clusters. The fact that the channel is sparse implies that the 

RAKE receiver will be complex as the number and position of the fingers will 

need to be calculated to capture the strongest MPCs and thus collecting 

enough energy for reception, since not every tap carries significant energy. 

System design falls out of the scope of this work but the proposed channel 

parameterization will be a starting point of the definition process.  

5.5 Performance of an Ultra Wideband wireless system for 
real-time neural signal monitoring 

Taking one step further in the evaluation of UWB for real-time neural signal 

monitoring, in this section we present the effects of transmission in several 

scenarios of real neural signals. The purpose of this work is to benchmark the 

best case performance of UWB for handling spike data, and future work will 

characterize its performance in moving data from inside to outside of the 

cranium, scalp or body.  
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Spike detection quality is selected as the main spiking characteristic of 

evaluated signals since spike timing information constitutes one of the most 

relevant neural signal characteristics. That is why transmission effects are 

evaluated by comparing spiking characteristics between transmitted and 

received signals presented through corresponding Receiver Operating 

Characteristics (ROCs) and Area-Under-the-Curve (AUC) for different 

experimental set-ups.  

 In order to assess spike detection quality, a set of artificially generated 

neural signals is constructed from real neural recordings such that the ground 

truth is known. Data analysis shows how channel Signal-To-Noise-Ratio (SNR) 

variation affects AUC in different signal SNR cases.  

5.5.1 Neural Signal Source and Spike Detection  

For the performance evaluation of the wireless transmission system the 

detected spiking characteristics of the received neural signal are analyzed and 

presented through corresponding ROCs. As it has widely been discussed in 

the literature [20], quantitatively assessing spike detection requires knowledge 

of the ground truth. Recordings from micro-electrode arrays do not allow intra-

cellular recording which means that the ground truth is not known. As it is 

described in Chapter 4, section 4.1.1, in order to overcome this problem we 

have constructed a set of synthetic signals adding artificially generated 

neuronal noise with a principal neuron spike train. Signals with different levels 

of noise, i.e., with different SNRs are used in order to compare the effects of 
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transmission in varying input SNR conditions. Spike Detection is performed 

using a thresholding technique as has already been described in section 4.2.  

Figure 57 presents the experimental setup that is used to evaluate the 

performance of the designed wireless UWB transmission system for neural 

signal monitoring. As described above, the data source is a set of synthetically 

generated signals from a statistical model resembling real signals. These 

signals are multiplexed to form one unique bit stream, and then transmitted via 

the UWB module. On the other end, the UWB module receives the Radio 

Frequency (RF) and in the next processing stage the BER is calculated 

considering the transmitted bit stream. The neural signals are then 

demultiplexed and the spiking quality of the received signals is analyzed in 

comparison to the original recordings assessing spike detection performance 

via ROC calculation. 

The commercially available product selected to implement the UWB link is 

the Wisair Development Kit DV9110M, which is based on the WiMedia 

standard and incorporates two OFDM-UWB transmitter/receiver modules. Each 

module provides a physical (PHY) and a medium access control (MAC) layer 

implementation providing Frequency Band Group 1, between 3.168 and 

4.752GHz, and an output power of -42dBm/MHz.  

Different transmission rate configurations of the UWB module are selected 

(53.3, 80 and 106.7Mbps) and the wireless link distance is varied between 1, 2 

and 3m. As transport protocol the User Datagram Protocol (UDP) is chosen, 

since, although it does not provide reliability and ordering guaranty, it is fast 
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and efficient for real-time applications. The experiments are performed in a 

typical office environment with metallic furniture and cabinets. The signal 

quality of the received data is analyzed through its spiking characteristics 

applying the spike detection algorithm described in Section 4.2. For each set-

up the experiment is performed 100 times and the resulting mean values are 

calculated.  

 
Figure 57.  Experimental set-up including data source, UWB link implementing 

Wimedia standard and signal quality analysis. Data source are a set of 
synthetically generated signals from a statistical model multiplexed to 
form one unique bit stream. UWB module DV911M by Wisair receives the 
RF-signal. BER is calculated and neural signals are reconstructed. 
Spiking quality of the received signals is analyzed in comparison to the 
original recordings assessing spike detection performance via ROC 
calculation. 

5.5.2 Results and Discussion  

To measure detection quality, ROC curves are used, that show the 

probability of false alarm versus the probability of detection. The parameter that 

will be used to compare ROC curves is the Area-Under-the-Curve (AUC), 

which has value 1 in the case of the ideal detector's ROC, i.e., the area under 

a step function.  
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Effect of Channel SNR on Spike Detection 

A MatlabTM simulator implementing the UWB Wimedia standard and a 

wireless indoor channel of 0-4m are used to evaluate the effect of different 

channel SNRs on spike detection.  

Figure 58 explicitly shows channel SNR effects on AUC in various signal 

SNR cases. Signals with low Signal-To-Noise-Ratios (SNRs) present poor 

spiking characteristics equivalent to reduced AUC (neural signal with 1dB SNR 

presents an AUC number of 0.65). Therefore, their spiking characteristics are 

less affected by varying channel SNR. This can be observed from Figure 58, 

where for the 1dB signal, the AUC oscillates around 0.5 for low channel SNR 

and increases up to 0.65 for high channel SNR (AUC variation of less than 

30\%), while the spiking characteristics of neural signals with medium and high 

SNR (4.6dB and 10.6dB in Figure 58 get more deteriorated when channel SNR 

reduces (from an AUC number of approximately 1 for channel SNR of 15dB 

reduced to AUC number oscillating around 0.5 for channel SNR smaller than 

7dB).  

As it can be observed from the figure, the evolution in AUC as the channel 

SNR improves is not monotonically increasing. The better performance in AUC 

for signal at SNR = 4.6dB compared to signal at SNR = 10.6dB at medium 

channel SNR can be an artifact due to the particular data used or due to the 

Wimedia protocol. The authors are unsure of the true reason of the observed 

phenomenon. 
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Figure 58.  Data show channel quality effects on AUC and how these results are 

modulated by different signal SNRs. Signals with high SNR get more 
affected by channel SNR variation than those with reduced SNR. 
(Bottom) Channel BER versus channel SNR. 

Bit Error Rate 

Aside from the described computer simulations, in order to evaluate the 

wireless link communication quality of the experimental set-up described in 

Figure 57, the Bit Error Rate (BER) is calculated dividing the number of 

erroneously received bits by the total number of transmitted bits 

 erroneous bits
total bitsBER   

In Figure 59, the results corresponding to the mean of 100 trials for each 

configuration (UWB module transmission rate: 53.3 (top), 80 (middle) and 

106.7Mbps (bottom); link distance: 1, 2 and 3m) are shown. The mean BER is 
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plotted versus the actual measured transmission rate. The common 

characteristic in the three figures and for the three distance cases is that there 

exists and an inflection point above which the BER increases more rapidly with 

the transmission rate. That inflection point is situated at about 40% of the 

configuration rate (23Mbps for the 53.3Mbps case, 32Mbps for the 80Mbps 

case and 40Mbps for the 106.7Mpbs case). Below the inflection point the BER 

is below 0.01 for the 1m link, below 0.025 for the 2m link and below 0.07 in the 

3m link.  

As the actual transmission rate increases also the BER gets higher and 

when it comes close to the configuration rate, the transmission quality drops 

dramatically with the BER reaching values of 0.2. Losses from there on are 

caused by hardware limitations of the UWB module. Furthermore, it can be 

noticed that the BERs corresponding to 1 and 2m link distances have a similar 

behavior, but for 3m link distance the BER increases more rapidly at the 

inflexion point.  
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Figure 59.  BER for 53.3Mbps (top), 80Mbps (middle) and 106.7Mbps (bottom) at 

different distances. Evaluation of BER at link layer is considered. Given 
that Wimedia modes mandatorily support transmission of an 
acknowledgement, even when UDP is selected, the higher the data rate 
becomes, the number of retransmissions increases. 
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Receiver Operating Curves 

Evaluation of the transmission quality of the designed system is done 

through comparison of ROC curves corresponding to transmitted and received 

signals. This allows studying the degradation of the spiking characteristics of 

the received signals depending on the BER. The results are compared using 

the AUC figure. 

In Figure 60 an example is shown where the AUC of the transmitted signal is 

0.98 while the received signal presents an AUC of 0.95 for a BER of 0.01. As 

the BER increases, the AUC decreases and the ROC curves show a typical 

saturation effect that is due to inherent spike losses. In fact, an increasing BER 

does not modify the received signal such that number of false positives 

increases but, on the contrary, the number false negatives rises, which is due 

to data losses introduced by UDP transport protocol. In UDP when the received 

datagram is erroneous, it is discarded by the receiver. 

With no information on the signal contained in the discarded packed, 

reconstruction is done by replacing the missing segment with a null signal with 

no spikes and therefore the number of false negatives increases. 
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Figure 60.  ROC curves for the transmitted and received signal with BER=0.01. NEO 

detection is used to compute ROC. 

Figure 61 shows the AUC depicted against the actual transmission. Signal at 

SNR = 4.6dB is used in each of the experimental set-ups (UWB module 

transmission rate: 53.3, 80 and 106.7Mbps; link distance: 1, 2 and 3m). 

Original calculated AUC for the transmitted signal equals 0.97. Consistently 

with the results shown in Figure 59, as the BER increases, the detection quality 

drops. Previous publications state that detectors with acceptable spike 

detection quality provide a probability of correct detection of around 0.9 with a 

false positive rate of 5Hz [209]. This corresponds to 0.1 probability of false 

alarm for an average firing rate of 50Hz. AUC corresponding to such quality in 

our detector is AUC = 0.95 which means a 5% degradation from the maximum. 

The results with an AUC below this line do not fulfill the quality requirements 

and are not suitable for neural signal analysis. 

As it can be inferred from Figure 61(top) and Figure 61(middle), for link 

distances up to 2m, with an UWB module configuration of 106.7Mbps we have 

Lara Traver Sebastià         215/247 



Chapter 5 - On-Body UWB Channel  

Lara Traver Sebastià         216/247 

effective transmission rates of up to 40Mbps without dramatic degradation of 

the signal quality. In these cases, the received signals can be used for further 

analysis maintaining their fundamental spiking properties. 

On the other hand, for link distances higher than 2m (see Figure 

61(bottom)), even with the UWB module highest transmission rate 

configuration, only actual transmission of up to 30Mbps can be achieved 

without significant spike losses.  
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Figure 61.  AUC vs. actual transmission rate for all experimental set-ups (signal SNR 

4.6dB). Multiplexation of several signal channels yields high signal data 
rates up to 50 Mbps. 
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Conclusions and Further Work 

In this section, an UWB wireless system for the particular application of real-

time neural signal monitoring is evaluated. For performance evaluation the 

spiking characteristics of the received signals are compared to those of the 

transmitted signals for different experimental set-ups. 

The selected main spiking characteristic of the evaluated signals is the 

detection quality, an automatic threshold adaptation algorithm to deal with 

different SNRs. The spike detection results are represented in ROCs and the 

AUC is calculated as quality indicator. In order to allow correct assessment of 

the detected spikes, a set of artificially generated neural signals is constructed 

from real neural recordings such that the ground truth is known.  

The experimental set-up involves a commercially available UWB module that 

is configured for different transmission rates and with several link distances. 

The spiking quality of the received signals drops as the BER increases, 

especially as the actual transmission rate comes close to the configuration 

rate. The received signals exhibit an increase in false negative detection, i.e., 

spike losses. Increasing BER modifies spiking characteristics of the received 

signals such that an under-estimation of the spiking frequency is occurs due to 

spike losses. Acceptable BER values for further signal analysis lie under 0.02. 

Signals with low SNRs get less affected by reduced channel SNRs than those 

with higher SNR.  

For practical application of real-time neural signal monitoring, UWB seems to 

offer best transmission conditions in a near-body environment up to 2m. It 
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allows high-fidelity signal transmission at extremely high data rates with low 

power consumption. 

For the application of UWB in neural signal monitoring the wireless link 

between the transceiver implanted in the human body and the on-body receiver 

is composed of two different parts, namely the in-body link and the here 

considered on-body link. Finally, what is presented here is a proof of concept: 

The so far collected data represent a benchmark against which future data 

regarding the degradation of UWB signal through the body can be compared. 

The results of the present study are an upper bound for in-body communication 

links. Future work will be devoted to study the BER performance of the in-body 

link depending on the specific sensor device and considering different tissues, 

such as nervous cells, cranial bones and dermal tissue. 
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Chapter 6  

Conclusions 

As it has been seen during the chapters of this thesis, the main objective for 

which body centered systems are being developed is to obtain and process 

biological signals in order to monitor and, in some cases even treat, a physical 

condition, either a disease or the athletic performance in the case of sports. 

Since the core of body-centered systems is sensing and processing, signal 

processing algorithms play a central role in the system’s functioning. This 

thesis is focused on those real-time algorithms that are needed to obtain the 

relevant information from the sensed signals. In the initial part, the types of 

sensors and algorithms are reviewed, after that, the thesis deals with two 

different applications and the related real-time signal processing algorithms are 

designed and implemented.  

The first study case (Chapter 3) is glucose monitoring in diabetes patients, in 

which learning algorithms for pattern classification are used to the detection of 

therapeutically wrong measurements of Medtronic’s Minimed CGMS. Patients 

were monitored using CGMS and simultaneously blood samples were taken in 

a clinical study. Gaussian SVM classifiers are tuned making use of monitor’s 
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electrical signal and glucose estimation. The results show that the classifiers 

are indeed able to learn the data structure and an overall good detection of 

wrong measures was obtained in spite of the somewhat low sensitivity of the 

detector. The classifiers are able to detect the time intervals where the 

monitor’s glucose profile shouldn’t be trusted because of wrong 

measurements. This is illustrated with the detection of hypoglycemic episodes 

missed by the CGMS.  

From the analysis above described, it is concluded that detection of 

therapeutically wrong measurements given by the continuous glucose monitor 

Minimed CGMS is feasible through the use of SVM classifiers. For all patients, 

missed hypoglycemic states were detected, as well as other therapeutically 

wrong measurements. The presence of False Positives did not alter the 

conclusions drawn out from the analysis of time profiles. This tool could thus 

support the clinician in the interpretation of continuous glucose monitor 

readings. Furthermore, the SVM could be used in the CGMS to generate an 

alarm for the patient when the CGMS measures could be wrong. In such 

situations the patient could perform a blood glucose test which would give him 

the security of a correct measure.  

The second application of body centered systems, included in Chapter 4 is 

neural signal monitoring. Recent medical advances have demonstrated the 

benefits that such monitoring can bring to medicine and even to other areas as 

entertainment. That is why nowadays there are many research groups 

dedicated to develop wireless implantable brain monitors. In this work neural 
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spike detection, classification and compression algorithms have been 

implemented and evaluated together with wireless transmission techniques. 

Such combination will enable in the future the implementation of the wireless 

brain monitors. A new method for adaptive threshold spike detection has been 

applied that successfully adapts to different input SNRs eliminating the need 

for manual threshold setting. For the classification algorithm, a performance of 

92% of correctly classified spikes was accomplished. Detection and 

classifications were used together with a compression and resource 

management algorithm for efficient wireless transmission of neural signals. The 

frame-based algorithm is capable of adapting signal compression of the 60 

channels at the input according to the neural activity present, the priority set to 

each channel and the bandwidth available at each processing frame. As a 

result, signals are compressed and multiplexed in a single transmission frame 

that adapts to the available bandwidth. The reconstruction algorithm at the 

receiving side is able to demultiplex and decode signals to reconstruct the 

spiking patterns. The conjunction of detection, sorting and compression 

algorithms produce a scheme for neural monitoring system that self-adapts to 

the signal conditions (adaptive threshold detector) and to the transmission 

bandwidth. In future research it would be interesting to collaborate with a 

neural physiology experts in order to evaluate the developed algorithms in a 

real monitoring environment where signals could be interpreted by experts of 

neuronal physiology.  
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Finally, although the main topic of the thesis is signal processing, a chapter 

has been dedicated to wireless transmission technologies and more precisely 

to UWB transmission for on-body channels. UWB is selected in this thesis as 

the most promising transmission technology for body-centered systems 

because of its characteristics of low-power short-range and high data rates. 

There are some additional considerations to be regarded. UWB allows only 

short distance communications with high transmission rates. This is perfectly 

assumable for body area networks but raises the need of a bridge between the 

close body field and remote stations. Additionally, UWB can be used for on-

body communication, however for implanted neural sensors, as are those 

described in chapter 4, the signals from neural ensembles still need to be taken 

out of the skull by means of cables or another wireless technology. Therefore, 

the wireless link between the transceiver implanted in the human body and the 

on-body receiver is composed of two different parts, namely the in-body link 

and the here considered on-body link. This in-body link has not been included 

in the present thesis but remains a strong handicap for the development of the 

field. What is presented here is a proof of concept: The so far collected data 

represent a benchmark against which future data regarding the degradation of 

UWB signal through the body can be compared. The results of the present 

study are an upper bound for in-body communication links. In summary, in this 

work an UWB wireless system for the particular application of real-time neural 

signal monitoring has been evaluated. For performance evaluation, the spiking 

characteristics of the received signals are compared to those of the transmitted 
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signals for different experimental set-ups. Future work will be devoted to study 

the BER performance of the in-body link depending on the specific sensor 

device and considering different tissues, such as nervous cells, cranial bones 

and dermal tissue. The study concluded that for practical application of real-

time neural signal monitoring, UWB seems to offer best transmission 

conditions in a near-body environment up to 2m. It allows high-fidelity signal 

transmission at extremely high data rates with low power consumption.  

Finally, even if body centered systems for medical applications are at the 

moment a hot topic in biomedical research, for them to become widespread in 

medical environments, still advances in miniaturization, in implantable 

materials and in signal processing and transmission will need to be done. The 

main obstacle is still the high-data rate transmission from implants to 

monitoring receivers. The conjunction of all these areas of knowledge will 

eventually produce impressive results in the form of body-centered systems 

capable of easily monitoring human bio-signals in an easy and comfortable 

manner. This thesis is a small step towards that objective that is nowadays not 

very far in the future. 
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