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Abstract

In this paper, some results concerning the PageRank versatility measure for multiplex

networks are given. This measure extends to the multiplex setting the well-known

classic PageRank. Particularly we focus on some spectral properties of the Laplacian

matrix of the multiplex, and on obtaining boundaries for the ranking value of a given

node when some personalization vector is added, as in the classic setting.
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1 INTRODUCTION

Determining which are the most relevant elements of a complex system is one of the most important problems dealt with by

the so-called Complexity Science4,8,11,12,13,25,36. This problem is directly related to understanding the relevance of each element

within the structure of a system, which is a first step in understanding its behavior. This problem appears in multiple fields

ranging from biological and technological systems to social systems5,7,11,15,21,36. A great help in determining the relevance of the

nodes of a specific network is provided by centrality measures that allow us to detect the most important nodes by associating a

numerical value to each vertex of the system. Centrality measures can be very different in nature, since, for example, they can

make use of local parameters (node’s degree), metric parameters (betweenness centrality) and other mathematical techniques

and tools (eigenvector centrality). Among, them the centrality PageRank28 is a culminating point since it is the basic ingredient

in web information in general and in Google’s web search engine in particular. Since its appearance in 1998 to classify web pages

to the present day, a large number of refinements and new applications of the PageRank algorithm have emerged in the scientific

literature1,6,9,11,14,17,29,34,35,39,41. These refinements are very varied in nature, and new methodologies are being developed in the

literature to detect both the most relevant nodes and the competing nodes14. The use of a personalization vector to modify the

ranking obtained (personalized PageRank)30 and a new vision of this algorithm that allows to extend PageRank to multiplex

networks are other advances that have appeared in recent years. The problem becomes more complicated when different types of

interactions appear in the system under study, forming interconnected multilayer networks3,5,11,10. In this regard, some studies

on multilayered or multirelational networks were unable to satisfactorily describe the behavior of the systems by using classical

techniques of monoplex networks (see, e.g,24 for fails regarding detection of communities,38 for misunderstandings when mixing

different interactions on social networks,30 for ranking differences when ignoring the multilayered nature of a metro system,
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FIGURE 1 A multiplex with three layers and three nodes on each layer. Red dashed lines represent interlayer links.

and31 for an analysis of the transition from a collection of independent networks to a whole multiplex). Therefore, it has been

necessary to implement new concepts and techniques to cope with the heterogeneity of links shown by these complex networks

(see, e.g,2,3,5,10,32,36,40). In particular, aggregating information to determine which node is most central is not a simple process

and requires in-depth multi-layered analysis. In11 a suitable structure is introduced to calculate centrality measures adjusted

to the context of the interconnected multilayer complex networks, emerging the concept of versatility as a good descriptor of

certain dynamic aspects that appear in this type of structures.

As a reference example, consider the situation in11 where several authors, the nodes, publish a research article together, and

the different tasks in the creation process (experiment design, data analysis, writing, etc.) are considered to be the different

layers. Then a multi-layered network appears by simply connecting two authors in a given layer when both have contributed to

the task represented in that layer. In this setting, determining the most versatile author goes beyond the simple aggregation of

the contributions to the different tasks and involves the topology of the multistructure11.

Thus, in this paper we are interested in multiplex networks5: these kind of networks are formed by a number of layers with the

same number of nodes such that the only allowed inter-layer links are those corresponding to nodes connected with themselves

in all the layers (see an example in Fig. 1 ).

More precisely, our interest focuses on PageRank versatility11 in a multiplex network, a concept that extends the well-known

classic PageRank to the multistructure. Two aspects are given special importance. The first one refers to the spectral properties

of the matrix T that contains the topology of the multiplex network and is used to construct the “Google matrix” by the convex

addition of a some personalization vector v. This is in general a difficult problem which requires to understand the associated

Laplacian matrix from the point of view of spectral theory.

The other aspect refers to the PageRank versatility interval of a given node or, in other words, to the set of admissible ranking

values that a given node may have in terms of the personalization vector v. Some valuable estimations are obtained. The results

are illustrated with an example of a synthetic toy network and one example of a real network (The Florentine Family Marriage

and Business Biplex Network, see18,27,33).

PAGERANK VERSATILITY

The concept PageRank versatility was introduced in11, where the authors make extensive use of the tensor notation for multilayer

networks developed in10. Let us denote by n the number of nodes of each layer, and by k the number of layers.

Formally, a multilayer network is characterized by a multilayer adjacency tensor M
�̃

��̃
, where indices with tilde refer to layers.

The tensor M
�̃

��̃
can be represented in matrix notation (without explicitly show the indices of the nodes) by a matrix M of size

nk × nk in the following form

M i�

j�
≡ M =

k∑
�,�=1

E(�, �)⊗ ℂ(�, �) (1)

where ⊗ denotes the Kronecker product (see, e.g.,19) and the matrix E(�, �) ∈ ℝ
k×k is given by

E(�, �) = ek
�
⊗ (ek

�
)T
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TABLE 1 Relationship between matrix and tensor notation for the PageRank versatility framework.

Matrix notation Tensor notation

in26 and11

M M
�̃

��̃

T T
�̃

��̃

G R
�̃

��̃

enkvT
1

nk
u
�̃

��̃

Π Ω�̃

� !�

where ek
�

is the �-th column of the identity matrix of size k, and the superscript T denotes transposition.

The matrices ℂ(�, �) ∈ ℝ
n×n represent both the adjacency matrices of the layers and the matrices accounting for the links

between layers. In the case of a multiplex network this reduces to the following

ℂ(�, �) =

{
In if � ≠ �

A� if � = �

where In is the identity matrix of size n and A� is the adjacency matrix of layer �. In particular, M is an block-matrix of k × k

blocks, each of them of size n × n, of the form

M =

⎛
⎜⎜⎜⎜⎝

A1 In … In

In A2 … In

⋮ ⋮ ⋱ ⋮

In In … Ak

⎞
⎟⎟⎟⎟⎠
. (2)

Once M is defined, the PageRank versatility can be defined following a similar procedure as in the classic PageRank28. For the

sake of clearness we use matrix notation. Note that in a multiplex framework with undirected links, the matrix M is a symmetric

matrix and has no zero rows. Let us denote mij , i, j ∈ {1, 2,… , nk} each element of M. Hence we can define the row stochastic

matrix T with elements tij as follows

tij =
mij∑nk

j=1
mij

and define a matrix G ∈ ℝ
nk×nk (analogous to the Google matrix28) as follows

G = �T + (1 − �)enkvT

where enk ∈ ℝ
nk×1 is the vector of all ones, and vT =

1

k
[v1

T v2
T ,… vk

T ] is a personalization vector formed by staking the

personalization vector of each layer vi ∈ ℝ
n×1. Notice that

enkvT =
1

k

⎛
⎜⎜⎜⎜⎝

v1
T v2

T … vk
T

v1
T v2

T vk
T

⋮ ⋮ ⋮

v1
T v2

T vk
T

⎞
⎟⎟⎟⎟⎠
.

Each vector v�
T models the probability of teleportation in layer �. We remark that by taking v� =

1

n
[1, 1,… , 1] for all �, the

matrix enkvT is
1

nk
multiplied by a square matrix of size nk × nk with all its elements equal to one (in Table 1 is shown the

correspondence with the tensor notation used in26 and11).

By construction, it is clear that G has a unique positive left eigenvector Π ∈ ℝ
nk×1 with norm equal to 1 associated to the

dominant eigenvalue of G. This vector can be folded to obtain a vector of size ℝ
n×1 by doing the following. First, we define
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pi = ek ⊗ en
i
=

⎛
⎜⎜⎜⎜⎝

en
i

en
i

⋮

en
i

⎞
⎟⎟⎟⎟⎠
, i = 1, 2,… , n

where ek is the vector of all ones in ℝ
k×1 and en

i
is the i-th column of the identity matrix of size n. Second, we define

�i = pT
i
Π = [(en

i
)T (en

i
)T … (en

i
)T ]

⎛
⎜⎜⎜⎜⎝

Π1

Π2

⋮

Πk

⎞
⎟⎟⎟⎟⎠
=

= (en
i
)T

k∑
�=1

Π� = (

k∑
�=1

(Π�)
T )en

i
∈ ℝ

and finally, the personalized PageRank versatility vector is the vector of ℝn×1 given by

� = [�1, �2,… , �n]
T

Note that G is formally a Google matrix and, therefore, it has well-known good properties. In particular, by using Theorem

5.1 in22 it is known that the spectrum of G is {1, ��2, ��3,… , ��nk} where {1, �2,… , �nk} is the spectrum of the row stochastic

matrix T . In general, is difficult to give details about the spectrum of T . We can give, however, some results by looking at the

Laplacian matrix of the multiplex (usually called supra-Laplacian16,37). But first, We introduce some notation and known results

in the next section.

2 NOTATION AND KNOWN RESULTS

We recall that given an adjacency matrix A ∈ ℝ
n×n, with elements aij , of an undirected network, the Laplacian matrix can be

defined as

L = D −A

where D ia a diagonal matrix with elements deg(i) =
∑n

j=1
aij .

Analogously, given a multiplex of n nodes and k layers with adjacency matrix M, given by (1), the corresponding supra-

Laplacian1 matrix can be defined by

L = D −M (3)

where D is a diagonal matrix with elements dii =
∑nk

j=1
mij .

It is straightforward to see that we can write

L =

⎛
⎜⎜⎜⎜⎝

L1 0 ⋯ 0

0 L2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Lk

⎞
⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

(k − 1)In −In ⋯ −In
−In (k − 1)In ⋯ −In
⋮ ⋮ ⋱ ⋮

−In −In ⋯ (k − 1)In

⎞
⎟⎟⎟⎟⎠

where the first matrix is the direct sum of the Laplacians of each layer (that is, defined by the intralayer links). Let us denote (as

in37)

L =

⎛
⎜⎜⎜⎜⎝

L1 0 ⋯ 0

0 L2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ Lk

⎞
⎟⎟⎟⎟⎠
, I =

⎛
⎜⎜⎜⎜⎝

(k − 1)In −In ⋯ −In
−In (k − 1)In ⋯ −In
⋮ ⋮ ⋱ ⋮

−In −In ⋯ (k − 1)In

⎞
⎟⎟⎟⎟⎠

1This matrix is called  in 37
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Where L is the supra-Laplacian of the independent layers and I is called interlayer supra-Laplacian. The notation can be

simplified by introducing a new matrix called interlayer Laplacian in the form:

L
I = S

I −W
I ∈ ℝ

k×k (4)

where

S
I = (k − 1)Ik, W

I = ek(ek)T − Ik

where ek(ek)T is the square matrix of all ones of size k.

With these new matrices we have

I = L
I ⊗ In (5)

expression that will be useful later.

We remark here that we use mostly the notation used in16 and37, with the restriction that in our case we do not treat any

diffusion problem and therefore all the coefficients denoted as D� or Dij in16 and37 are here treated as 1. This feature will allow

us to give some new results on eigenvalues and eigenvectors later.

To summarize, the supra-Laplacian matrix can be written as

L = L + I (6)

where L and I are symmetric matrices. In what follows, we will sort the eigenvalues of L and I in increasing order, that is

�1(
L) ≤ �2(

L) ≤ … ≤ �kn(
L)

�1(
I ) ≤ �2(

I ) ≤ … ≤ �kn(
I )

We remark also that, since L is diagonal by blocks, then its spectrum is the union of the spectrums of matrices Li. That is,

�(L) =

k⋃
i=1

�(Li) (7)

Moreover, note that each Lj ∈ ℝ
n×n is a symmetric real matrix and therefore there exists a basis of ℝn×n formed by eigenvectors

of Lj for each j = 1,… , k. The spectrum and the eigenspace of L is readily known as the next result shows.

Proposition 1. Let wi(Lj), for i = 1,… , n and for j = 1,… , k, be an eigenvector of Lj associated to the eigenvalue �i(Lj).

Then ek
j
⊗ wi(Lj) is an eigenvector of L associated to the eigenvalue �i(Lj).

Proof. SinceL is diagonal by blocks, beingLj each block, for j = 1,… k, it is clear that each eigenvalue �i(Lj), for i = 1,… , n,

is also an eigenvalue of L. Without loss of generality, let j = 1 and let us show that ek
1
⊗ wi(L1) is an eigenvector of L

associated to the eigenvalue �i(L1). It suffices to see that

Lek
1
⊗wi(L1) = L

⎛
⎜⎜⎜⎜⎝

wi(L1)

0n×1
⋮

0n×1

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

L1wi(L1)

0n×1
⋮

0n×1

⎞
⎟⎟⎟⎟⎠

= �i(L1)

⎛
⎜⎜⎜⎜⎝

wi(L1)

0n×1
⋮

0n×1

⎞
⎟⎟⎟⎟⎠

= �i(L1)e
k

1
⊗wi(L1).

Hence, by repeating this process for any j the proof follows.
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Example 8. For the multiplex depicted in Fig. 1 we have n = 3 and k = 3. And

M =

⎛
⎜⎜⎝

A1 I3 I3
I3 A2 I3
I3 I3 A3

⎞
⎟⎟⎠

with

A1 =

⎛
⎜⎜⎝

0 1 1

1 0 0

1 0 0

⎞
⎟⎟⎠
, A2 =

⎛
⎜⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎟⎠
, A3 =

⎛
⎜⎜⎝

0 1 0

1 0 1

0 1 0

⎞
⎟⎟⎠

and denoting

D1 =

⎛⎜⎜⎝

2 0 0

0 1 0

0 0 1

⎞⎟⎟⎠
, D2 =

⎛⎜⎜⎝

2 0 0

0 2 0

0 0 2

⎞⎟⎟⎠
, D3 =

⎛⎜⎜⎝

1 0 0

0 2 0

0 0 1

⎞⎟⎟⎠
it is clear that matrix D can be written as

D =

⎛
⎜⎜⎝

D1 + 2I3 0 0

0 D2 + 2I3 0

0 0 D3 + 2I3

⎞
⎟⎟⎠

and therefore

L =

⎛
⎜⎜⎝

D1 + 2I3 − A1 −I3 −I3
−I3 D2 + 2I3 −A2 −I3
−I3 −I3 D3 + 2I3 − A3

⎞
⎟⎟⎠

that is

L =

⎛
⎜⎜⎝

L1 0 0

0 L2 0

0 0 L3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

2I3 −I3 −I3
−I3 2I3 −I3
−I3 −I3 2I3

⎞
⎟⎟⎠
≡ L + I

In this example we also have

S
I =

⎛
⎜⎜⎝

2 0 0

0 2 0

0 0 2

⎞
⎟⎟⎠
, W

I =

⎛
⎜⎜⎝

0 1 1

1 0 1

1 1 0

⎞
⎟⎟⎠

and therefore

L
I = S

I −W
I =

⎛
⎜⎜⎝

2 −1 −1

−1 2 −1

−1 −1 2

⎞
⎟⎟⎠

Note that I = L
I ⊗ I3, as given by (5).

Let us recall two results that will be useful later. The first one is about the spectrum of the Kronecker product of two matrices.

Theorem 1. 19 Let A ∈ ℝ
n×n and B ∈ ℝ

m×m. If � ∈ �(A), � ∈ �(B), x ∈ ℂ
n is a corresponding eigenvector of A, and

y ∈ ℂ
m is a corresponding eigenvector of B, then �� ∈ �(A ⊗ B) and x ⊗ y ∈ ℂ

nm is a corresponding eigenvector of

A ⊗ B. Every eigenvalue of A ⊗ B arises as such a product of eigenvalues of A and B. If �(A) = {�i(A); i = 1,… , n} and

�(B) = {�i(B); j = 1,… , m} then �(A ⊗ B) = {�i(A)�j(B); i = 1,… , n, j = 1,… , m} (including algebraic multiplicities in

all three cases).

The second result is about symmetric matrices, and it is due to Weyl.

Theorem 2. 20 Let A,B ∈ ℝ
n×n be Hermitian and let the eigenvalues �i(A), �i(B), and �i(A + B), be arranged in increasing

order. For each s = 1, 2,… n we have

�s(A) + �1(B) ≤ �s(A + B) ≤ �s(A) + �n(B).



F. PEDROCHE ET AL 7

3 SPECTRUM OF THE LAPLACIAN MATRIX

In this section we formalize and extend some results appearing in37. In particular, we give an explicit expression for the

eigenvalues and eigenvectors of matrices LI , I and L and we bound the spectrum of the supra-Laplacian matrix L.

We begin by showing a result about the spectrum and the eigenspace of matrix L
I defined in (4).

Theorem 3. The spectrum of matrix L
I is given by

�1(L
I ) = 0, and �s(L

I ) = k, for s = 2,… k

and the corresponding associated eigenvectors are given by

v1 = ek

vs = −ek
1
+ ek

s
, s = 2,… , k

(9)

where ek is the column vector of all ones in ℝ
k×1 and ek

i
is the i-th column of the identity matrix of size k. Moreover, the set

{vj ; j = 1,… , k} is a basis of ℝk×k.

Proof. Let us denote by �ij the elements of LI . By the definition of LI is clear that

�ij =

{
k − 1 if i = j

−1 else

then it is straightforward that

L
Iek = [0,… , 0]T = 0ek

Therefore, is left to show that

L
Ivs = kvs

for s = 2,… , k.

To begin with, let us study the first component of the vector LIvs. That is

[LIvs]1 =

k∑
j=1

�1j[vs]j

= �11[vs]1 + �1s[vs]s +

k∑
j≠1,j≠s

�1j[vs]j

= (k − 1)(−1) + (−1)(1) + 0 = −k = k[vs]1

where we have used that [vs]j = �sj for j ≠ 1.

The s-th component of the vector LIvs, for s = 2,… , k, results to be

[LIvs]s =

k∑
j=1

�sj[vs]j

= �ss[vs]s + �s1[vs]1 +

k∑
j≠1,j≠s

�sj[vs]j

= (k − 1)(1) + (−1)(−1) + 0 = k = k[vs]s

And finally, the q-th component of the vector LIvs, for q ≠ 1 and q ≠ s, results to be

[LIvs]q =

k∑
j=1

�qj[vs]j

= �qq[vs]q + �q1[vs]1 + �qs[vs]s +

k∑
j≠1,q,s

�qj[vs]j

= (k − 1)(0) + (−1)(1) + (−1)(−1) + 0 = 0 = k[vs]q

since [vs]q = 0 for q ≠ 1 and q ≠ s.
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Now we show that the eigenvectors {vj ; j = 1,… , k} form a basis of ℝk×1. This can be shown by forming a matrix with the

eigenvectors as rows

⎛
⎜⎜⎜⎜⎝

vT
1

vT
2

⋮

vT
k

⎞
⎟⎟⎟⎟⎠
=

(
1 (ek−1)T

−ek−1 Ik−1

)

and noticing that the determinant of this matrix is

|||||
1 (ek−1)T

−ek−1 Ik−1

|||||
= |Ik−1||1 + (ek−1)T Ik−1e

k−1| = 1 + k − 1 = k ≠ 0.

It is known (see37) that the eigenvalues of I are those of LI (multiplying by n the multiplicity of each eigenvalue), and

that any eigenvector of LI gives raise to an eigenvector of I . We now go further, explicitly showing the spectrum and the

eigenspaces of I .

Corollary 1. The spectrum of I given by (5) is

�(I ) =

{
0 with algebraic multiplicity n

k with algebraic multiplicity (k − 1)n

and the corresponding eigenvectors are

ek ⊗ en
i

for i = 1,… , n, associated to the eigenvalue 0 (10)

(−ek
1
+ ek

s
)⊗ en

i
for s = 2,… , k, and i = 1,… , n, (11)

associated to the eigenvalue k. Moreover, the set of all these eigenvectors is a basis of ℝkn×kn.

Proof. By applying Theorem 1 to matrix I given by (5) we have

�(I ) = �(LI ⊗ In) = {�i(L
I )�j(In); i = 1,… , k, j = 1,… , n} (12)

and since each identity matrix In has the eigenvalue 1 with algebraic multiplicity n, we conclude that the spectrum of I is

formed by the spectrum of LI multiplying by n the multiplicity of each eigenvalue. Then, by using Theorem 3, the proof about

the spectrum is done. For the eigenvectors, we take into account that In has n eigenvectors of the form en
i
, for i = 1,… , n. Then,

by using Theorem 1, we have that the eigenvector v1 of LI given by (9) gives raise to an eigenvector of I :

v1 ⊗ en
i
= ek ⊗ en

i

for each i = 1… , n. We also have that any eigenvector vs of LI , for s = 2… , k, given by (9) gives raise to an eigenvector of I :

vs ⊗ en
i
= (−ek

1
+ ek)⊗ en

i

for each i = 1, 2,… , n.

Finally, let us consider the following matrices:

F1 = [v1 ⊗ en
1
|v1 ⊗ en

2
|⋯ |v1 ⊗ en

n
] = v1 ⊗ In ∈ ℝ

kn×n

and, for each s = 2,… , k

Fs = [vs ⊗ en
1
|vs ⊗ en

2
|⋯ |vs ⊗ en

n
] = vs ⊗ In ∈ ℝ

kn×n

Now we form the matrix with all the eigenvectors (10) and (11) as column vectors, that is

[F1F2 …Fn] = [v1v2 … vk]⊗ In

and since rank(A ⊗ B) = rank(A)rank(B) we conclude that rank([F1F2 …Fn]) = rank([v1v2 … vk])n = kn since we know

from Theorem (3) that the vi form a linearly independent set.

In Proposition 1 we have seen how to obtain the eigenvectors of L knowing the eigenvectors of each Li for i = 1,… , k. In

the next result we show that k eigenvectors associated to the zero eigenvalue of L can be constructed by using (9).
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Proposition 2. Let vi, for i = 1,… , k be the vectors given by (9). Then the vectors vi⊗en, for i = 1,… , k form a set of linearly

independent eigenvectors of L associated to the eigenvalue 0.

Proof. For i = 1 we have

Lv1 ⊗ en = Lek ⊗ en = Lekn = 0 ∈ ℝ
kn×1

since all the rows of L sum up to 0.

For i = 2,… , k we have

Lvi ⊗ en = L(−ek
1
+ ek

i
)⊗ en =

⎛
⎜⎜⎜⎜⎜⎜⎝

−L1e
n

0

⋮

Lie
n

⋮

0

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0 ∈ ℝ
kn×1

Note that since the the vectors vi, i = 1,… k, form a linearly independent set it is straightforward to see (by proceeding

analogously as in Corollary 1) that vi ⊗ en, i = 1,… k, also form a linearly independent set.

Remark 1. Note that if each layer is connected then �1(Li) = 0 is simple, for any i = 1, 2,… , k and therefore L has the

eigenvalue 0 with multiplicity k and the previous proposition gives the corresponding eigenspace.

Proposition 3. The eigenvalues � = 0 (simple) and � = k with algebraic multiplicity at least k − 1, are eigenvalues of the

supra-Laplacian matrix L.

Proof. The supra-Laplacian matrix L can be considered as a usual Laplacian matrix with adjacency matrix M. Since the mul-

tiplex is connected (it has only one component) we have that the eigenvalue 0 of L must be simple (see, e.g.,23). Of course, the

corresponding eigenvector is ekn.

Let vi, for i = 2,… , k be the vectors given by (9). Then, by using (6), we have

Lvi ⊗ en = (L + I )vi ⊗ en = Lvi ⊗ en + Ivi ⊗ en

and by Proposition 2 we know that Lvi ⊗ en = 0 and from Corollary 1 we have that Ivi ⊗ en = kvi ⊗ en. Therefore, we

conclude

Lvi ⊗ en = kvi ⊗ en.

Now we present a bound for the eigenvalues of the supra-Laplacian matrix L.

Theorem 4. The eigenvalues of L are such that �1(L) = 0 and

max[�s(
L), �s(

I )] ≤ �s(L) ≤ min[�s(
L) + k, �s(

I ) + �kn(
L)]

for s = 2,… , kn.

Proof. We have seen that �1(L) = 0 in Proposition 3. By applying Theorem 2 to matrices A = L and B = I we get:

�s(
L) + �1(

I ) ≤ �s(L) ≤ �s(
L) + �kn(

I ), s = 1, 2… , kn (13)

and by applying the same Theorem 2 to matrices A = I and B = L we obtain:

�s(
I ) + �1(

L) ≤ �s(L) ≤ �s(
I ) + �kn(

L), s = 1, 2… , kn (14)

Now, note that by (7) we have that �s(
L) = 0, for s = 1,… , k since each Li (for i = 1,… k) is a Laplacian matrix. Note also

that for Corollary 1 we have that �s(
I ) = 0 for s = 1,… , n, and �kn(

I ) = k. Then, by combining the bounds in (13) and (14)

the proof follows.

Example 15. For the matrices associated to the multiplex shown in Fig. 1 we obtain the following

�(L1) = {0, 1, 3}, �(L2) = {0, 3, 3}, �(L3) = {0, 1, 3}
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�(L) =

k⋃
i=1

�(Li) = {0, 0, 0, 1, 1, 3, 3, 3, 3}

�(LI ) = {0, 3, 3}, v1 = (1, 1, 1)T , v2 = (−1, 1, 0)T , v3 = (−1, 0, 1)T

�(I ) = �(LI ⊗ I3) = {0(triple), 3(triple), 3(triple)},= {0(triple), 3(alg.multiplicity = 6)}

By using Theorem 4 the eigenvalues of �s(L) are bouded as

0 ≤ �2,3(L) ≤ 3

3 ≤ �4,5(L) ≤ 4

3 ≤ �6,7,8,9(L) ≤ 6

while computing the eigenvalues we have (rounding to the first decimal place)

�(L) = {0, 1.7, 2.4, 3, 3, 4.6, 5.3, 6, 6}

Example 16. Let us consider a biplex defined by the Laplacians

L1 =

⎛
⎜⎜⎜⎜⎝

1 −1 0 0

−1 3 −1 −1

0 −1 1 0

0 −1 0 1

⎞
⎟⎟⎟⎟⎠
, L2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 −1

0 1 −1 0

0 −1 2 −1

−1 0 −1 2

⎞
⎟⎟⎟⎟⎠

Then we obtain

�(L1) = {0, 1, 1, 4}, �(L2) = {0, 2 −
√
2, 2, 2 +

√
2}, �(L) = �(L1) ∪ �(L2)

L
I =

(
1 −1

−1 1

)
, �(LI ) = {0, 2}, v1 = (1, 1)T , v2 = (−1, 1)T ,

�(I ) = {0(alg.multiplicity = 4), 2(alg.multiplicity = 4)},

By using Theorem 4 the eigenvalues of �s(L) are bouded as

0 ≤ �2(L) ≤ 2

0.59 ≤ �3(L) ≤ 2.59

1 ≤ �4(L) ≤ 3

2 ≤ �5(L) ≤ 3

2 ≤ �6(L) ≤ 4

3.41 ≤ �7(L) ≤ 5.41

4 ≤ �8(L) ≤ 6

while computing the eigenvalues we have (rounding to the second decimal place)

�(L) = {0, 0.95, 1.55, 2, 2, 3.4, 4.7, 5.4}

4 BOUNDS FOR THE PAGERANK VERSATILITY

In this section we are going to establish the interval in which each component of the personalized PageRank versatility vector

ranges. For each i = 1,… , n the corresponding interval is sharp, in the sense that all values in the interval can be achieved as

the ith-component of the PageRank versatility for a certain personalization vector.

Theorem 5. Given a multilayer network with n nodes and k layers, let A1,… , Ak be the adjacency matrices of each layer,

vT =
1

k
[v1

T v2
T ,… vk

T ] a personalization vector of the network, then for each i = 1,… , n the set of all possible values of the

ith-component of the personalized PageRank versatility vector coincides with the open interval(
1

k
(min

j
(C1)ji +⋯ + min

j
(Ck)ji),

1

k
(max

j
(C1)ji +⋯ +max

j
(Ck)ji)

)
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where each C� =
∑k

�=1
X�� is the sum of the blocks in X corresponding to the � th-row in the k × k-decomposition of X =

(1 − �)(I − �T )−1

X =

⎛
⎜⎜⎝

X11 … X1k

⋮ ⋱

Xk1 … Xkk

⎞
⎟⎟⎠

and where T denotes the row-stochastic matrix obtained from

M =

⎛
⎜⎜⎜⎜⎝

A1 In … In

In A2 … In

⋮ ⋮ ⋱ ⋮

In In … Ak

⎞
⎟⎟⎟⎟⎠

by normalizing each of its rows.

Proof. First we are going to prove that each component of the personalized PageRank versatility vector belongs to the open

interval stated in the claim. If we denote the personalized PageRank versatility vector by � = [�1, �2,… , �n]
T , recall that each

of its components is calculated as

�i = (

k∑
�=1

(Π�)
T )en

i

where Π is the unique positive left eigenvector in ℝ
nk×1 with norm equal to 1 associated to the dominant eigenvalue of G =

�T + (1 − �)enkvT . Then

ΠT = ΠT
G = ΠT (T + (1 − �)enkvT ) = ΠT

T + (1 − �)vT ,

hence ΠT = vT (1 − �)(I − �T )−1 where I denotes the nk × nk-identity matrix. Let us denote X = (1 − �)(I − �T )−1, so

ΠT = vTX =
1

k
[vT

1
… vT

k
]X. (17)

If we consider the matrix X as a k × k-block matrix of the form

X =

⎛
⎜⎜⎝

X11 … X1k

⋮ ⋱

Xk1 … Xkk

⎞
⎟⎟⎠

we have, from 17, that ΠT = [ΠT
1
,ΠT

2
,… ,ΠT

k
] satisfies

ΠT

�
=

1

k

k∑
�=1

vT
�
X��, � = 1,… , k.

Define C� =
∑k

�=1
X�� as the sum of the blocks of X corresponding to the � th-row in the previous k × k-decomposition. Then

�i = (

k∑
�=1

ΠT
�
)en

i
=

1

k
(

k∑
�=1

k∑
�=1

vT
�
X��)e

n
i
=

=
1

k

k∑
�=1

vT
�
(

k∑
�=1

X��)e
n

i
=

1

k

k∑
�=1

vT
�
C�e

n

i
.

Since C�e
n
i

is just the ith-column of the matrix C� and v� is a (positive) stochastic vector, we have that vT
�
C�e

n
i

is a strict

convex combination of the ith-column of C� , hence

min
j
(C�)ji < vT

�
C�e

n
i
< max

j
(C�)ji

Therefore each component �i =
1

k

∑k

�=1
vT
�
C�e

n
i

of the PageRank versatility vector � satisfies

1

k
(min

j
(C1)ji +⋯ + min

j
(Ck)ji) < �i <

1

k
(max

j
(C1)ji +⋯ +max

j
(Ck)ji) (18)

Conversely, any particular b satisfying

1

k
(min

j
(C1)ji +⋯ +min

j
(Ck)ji) < b <

1

k
(max

j
(C1)ji +⋯ +max

j
(Ck)ji)
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can be expressed as b =
∑k

�=1
b� where for every � = 1,… , k

min
j
(C�)ji < kb� < max

j
(C�)ji

Using the same argument as in the Proof of Step 2 of14 Theorem 3.2, there exist (positive) stochastic vectors v� such that

vT
�
C�ei = kb� .

Consider the personalized PageRank versatility vector � = [�1,… , �n]
T with personalization vector vT =

1

k
[vT

1
… vT

k
] for those

precise v1,… , vk. Then

�i =
1

k

k∑
�=1

vT
�
C�ei =

k∑
�=1

b� = b,

i.e., the ith-component of the personalized PageRank versatility vector with personalization vector vT =
1

k
[vT

1
… vT

k
] coincides

with b.

5 EXAMPLES

5.1 Example 1

In this section we illustrate an application of Theorem 5 to a toy multiplex. To that end, let us consider a multiplex formed by 4

layers and with 4 nodes on each layer. Let the adjacency matrices of the layers be the following

A1 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

0 0 0 1

1 1 0 1

1 1 1 0

⎞
⎟⎟⎟⎟⎠
, A2 =

⎛
⎜⎜⎜⎜⎝

0 1 1 0

1 0 0 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎟⎠

A3 =

⎛
⎜⎜⎜⎜⎝

0 1 1 0

1 0 1 0

0 0 0 1

1 0 1 0

⎞
⎟⎟⎟⎟⎠
, A4 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

⎞
⎟⎟⎟⎟⎠

The matrices C� referred in Theorem 5 result to be

C1 =

⎛
⎜⎜⎜⎜⎝

0.4744 0.2625 0.1564 0.1067

0.1610 0.5068 0.1639 0.1682

0.1870 0.1932 0.4239 0.1959

0.2164 0.2040 0.1762 0.4034

⎞
⎟⎟⎟⎟⎠
, C2 =

⎛
⎜⎜⎜⎜⎝

0.4476 0.2375 0.1995 0.1154

0.2015 0.5127 0.1680 0.1178

0.1568 0.1305 0.4768 0.2359

0.2400 0.1610 0.1534 0.4456

⎞
⎟⎟⎟⎟⎠

C3 =

⎛
⎜⎜⎜⎜⎝

0.4453 0.2308 0.2069 0.1170

0.1890 0.4684 0.2108 0.1317

0.1535 0.1288 0.4847 0.2330

0.2209 0.1512 0.1987 0.4292

⎞
⎟⎟⎟⎟⎠
, C4 =

⎛
⎜⎜⎜⎜⎝

0.4726 0.2603 0.1656 0.1016

0.1507 0.4941 0.2164 0.1388

0.1576 0.1312 0.4757 0.2354

0.2443 0.1650 0.1474 0.4432

⎞
⎟⎟⎟⎟⎠

and according to the cited Theorem the bounds for the personalized PageRank versatility of each node, �i, are the following (see

equation (18))

�1 ∈ (0.1555, 0.4600)

�2 ∈ (0.1460, 0.4955)

�3 ∈ (0.1640, 0.4653)

�4 ∈ (0.1102, 0.4304)

(19)

To show that these bounds are sharp, let us compute the PageRank versatility for some particular personalization vectors. For

example, when taking the so-called homogeneous personalization vector vT =
1

16
e16 =

1

16
[1, 1, 1, 1|1, 1, 1, 1|1, 1, 1, 1|1, 1, 1, 1]
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a computation shows that

�1 = 0.2574

�2 = 0.2649

�3 = 0.2515

�4 = 0.2262

and therefore the most important node (as classified by the PageRank versatility) is node number 2.

Note that, as the proof of Theorem 5 suggests, to optimize the PageRank versatility of a node q we must maximize the

component j of the personalization vector of each layer i, being j the index of the row where the column q of Ci takes a

maximum value. For example, to obtain the maximum PageRank versatility of node 1 we must use the personalization vector:

wT =
1

4
[1, 0, 0, 0|1, 0, 0, 0|1, 0, 0, 0|1, 0, 0, 0]. In fact, by using this vector, a computation shows that

�1 = 0.4600

�2 = 0.2478

�3 = 0.1821

�4 = 0.1102

and we see that node 1 gets its maximum value of PageRank versatility, according to the bounds shown in (19).

On the contrary, to minimize the PageRank versatility of a node q we must maximize the component j of the personalization

vector of each layer i, being j the index of the row where the column q of Ci takes a minimum value. For example, to obtain

the minimum PageRank for node 1, we must use zT =
1

4
[0, 1, 0, 0|0, 0, 1, 0|0, 0, 1, 0|0, 1, 0, 0]. In fact, by using this vector, a

computation shows that

�1 = 0.1555

�2 = 0.3151

�3 = 0.3355

�4 = 0.1940

and we see that node 1 gets its minimum value of PageRank versatility, according to the bounds shown in (19). Note, moreover,

that the previous personalization vector wT gets the minimum value of the PageRank versatility of node 4 since it gives the

maximum bias to the indices where the column 4 of Ci takes its minimum.

Until now we have shown how Theorem 5 allows to bound the PageRank versatility. One might ask if there is another way

of giving a bound for the PageRank in this example. The answer is affirmative: we can use the known bounds corresponding

to the classic (monoplex) personalized PageRank that were obtained in14. To that end we must construct a monoplex graph to

represent the multiplex. In this example, we must construct the adjacency matrix

A =

⎛
⎜⎜⎜⎜⎝

A1 I4 I4 I4
I4 A2 I4 I4
I4 I4 A3 I4
I4 I4 I4 A4

⎞
⎟⎟⎟⎟⎠

and then we can apply, as it is shown in14, that the i-th component of the classic PageRank is located in an open interval that

depends on the matrix

X = (1 − �)(In − �PA)
−1 (20)

where PA is a row stochastic matrix obtained from A by dividing each entry by the sum of each row. More precisely, it holds

that the component i of the classic personalized PageRank has the following bound

(i) ∈ (min
j

xji, xii). (21)

By using this result we obtain that the bounds for the classic personalized PageRank associated to the adjacency matrix A are

the following

(1) ∈ (0.0337, 0.2084),

(2) ∈ (0.0462, 0.2287),

(3) ∈ (0.0317, 0.2062),

(4) ∈ (0.0323, 0.2121),

(5) ∈ (0.0389, 0.2165)

(6) ∈ (0.0270, 0.2209)

(7) ∈ (0.0322, 0.2081)

(8) ∈ (0.0221, 0.2001)
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TABLE 2 Ranking according to the indicated PageRank

PRv 2 1 3 4

[Π(1),Π(2),Π(3),Π(4)] 2 4 1 3

[Π(5),Π(6),Π(7),Π(8)] 1 2 3 4

[Π(9),Π(10),Π(11),Π(12)] 3 1 2 4

[Π(13),Π(14),Π(15),Π(16)] 2 3 1 4

(9) ∈ (0.0376, 0.2132),

(10) ∈ (0.0281, 0.2151),

(11) ∈ (0.0483, 0.2237),

(12) ∈ (0.0250, 0.2076),

(13) ∈ (0.0292, 0.2040)

(14) ∈ (0.0273, 0.2122)

(15) ∈ (0.0308, 0.2068)

(16) ∈ (0.0219, 0.1988)

Now, to translate this PageRank bounds of a monoplex to a 4 layers- 4 nodes multiplex we must add the intervals for each

corresponding node of the multiplex, since we are considering that the PageRank of node i is giving by �i = (i) + (i +

4) + (i + 8) + (i + 12). Therefore, we could state the bounds for the multiplex in the following form

�1 ∈ (0.1394, 0.8420)

�2 ∈ (0.1287, 0.8769)

�3 ∈ (0.1430, 0.8448)

�4 ∈ (0.1013, 0.8185)

where we have added the bounds for the nodes (i + 4(j − 1)), j = 1,… , 3.

By comparing these bounds with the bounds given by (19) we see that our result for the bounds of the PageRank versatility

is much more sharp than if we simply apply the bounds for the classic (monoplex) PageRank.

To end this example we show in Table 2 the ranking given by the PageRank versatility and the ranking produced in each

layer by considering the value of the corresponding components of the PageRank versatility (that is, the corresponding entries

of the vector Π ∈ ℝ
16×1). In this computation we have used the homogeneous personalization vector, that is vT =

1

16
e16.

5.2 Example 2

In this section we analyse an application of Theorem 5 by using a benchmark network known as Florentine Family Marriage

and Business Ties Data, see18,27,33. It can be analysed as a multiplex formed by two layers, with 16 nodes in each layer. One

layer is related with the business links and the other one is related with marriage relationships (see Figure 2 ). In Table 3 we

give the numbering of the families.

Since we know the adjacency matrices A1 (business) and A2 (marriage) we can compute the matrix M given by (2) and we

can apply Theorem 5 to obtain the following bounds for the PageRank versatility of the nodes.

�1 ∈ (0, 0.4242),

�2 ∈ (0, 0.3497),

�3 ∈ (0, 0.2723),

�4 ∈ (0, 0.2861),

�5 ∈ (0, 0.2801),

�6 ∈ (0, 0.2973),

�7 ∈ (0, 0.2915),

�8 ∈ (0, 0.3019),

�9 ∈ (0, 0.3153)

�10 ∈ (0, 0.3418)

�11 ∈ (0, 0.2864)

�12 ∈ (0, 1.0000)

�13 ∈ (0, 0.3373)

�14 ∈ (0, 0.3173)

�15 ∈ (0, 0.3420)

�16 ∈ (0, 0.2809)

It is worth highlighting that number node 12 corresponds to Pucci family that actually has no links in any of the layers. Despite

this feature, the model is capable of assigning a value of the PageRank versatility (and of the bounds by using Theorem 5). We

see that node number 12 can achieve any value from 0 to 1 as PageRank versatility.

In the case that we take the usual personalization vector vT =
1

32
e32 a computation shows that the components of the PageRank

versatility results to be2

2These values are used to obtain the ranking in the first column of Table 4 .
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FIGURE 2 Layers of Florentine family business (left) and family marriage.

TABLE 3 Numbering of each family

node family

1 Acciaiuol

2 Albizzi

3 Barbadori

4 Bischeri

5 Castellan

6 Ginori

7 Guadagni

8 Lambertes

9 Medici

10 Pazzi

11 Peruzzi

12 Pucci

13 Rodolfi

14 Salviatis

15 Strozzi

16 Tornabuon

�1 = 0.0416,

�2 = 0.0537,

�3 = 0.0690,

�4 = 0.0671,

�5 = 0.0670,

�6 = 0.0502,

�7 = 0.0701,

�8 = 0.0602,

�9 = 0.1199

�10 = 0.0454

�11 = 0.0736

�12 = 0.0625

�13 = 0.0522

�14 = 0.0529

�15 = 0.0575

�16 = 0.0573

Note that the most important node is node number 9, that corresponds to Medici family. We know that by properly chosen

the personalization vectors of each layer we can bias the personalized PageRank versatility. Actually, by taking v1 = v2 = e16
12



16 F. PEDROCHE ET AL

TABLE 4 Ranking obtained by using the indicated PageRank

PRv Π(1 to 16) Π(17 to 32)

Medici Medici Medici

Peruzzi Strozzi Barbadori

Guadagni Guadagni Lambertes

Barbadori Albizzi Peruzzi

Bischeri Rodolfi Bischeri

Castellan Tornabuon Castellan

Pucci Castellan Pucci

Lambertes Bischeri Ginori

Strozzi Peruzzi Guadagni

Tornabuon Salviatis Pazzi

Albizzi Pucci Salviatis

Salviatis Barbadori Tornabuon

Rodolfi Acciaiuol Acciaiuol

Ginori Pazzi Albizzi

Pazzi Ginori Rodolfi

Acciaiuol Lambertes Strozzi

we obtain the personalized PageRank versatility to be e16
12

. That is, node 12 has the maximum PageRank (1), and the rest have

PageRank 0.

In the case that we want to biass the PageRank to node 11 we take the personalization vectors v1 = v2 = e16
11

and we obtain

that the components of the PageRank versatility are

�1 = 0.0071,

�2 = 0.0183,

�3 = 0.0776,

�4 = 0.1164,

�5 = 0.1187,

�6 = 0.0232,

�7 = 0.0641,

�8 = 0.0824,

�9 = 0.0505

�10 = 0.0096

�11 = 0.2864

�12 = 0.0000

�13 = 0.0276

�14 = 0.0129

�15 = 0.0813

�16 = 0.0240

Note that in this case we obtain the minimum component in node 12.

In Table 4 it is shown the ranking given by the PageRank versatility and the rankings produced in each layer by considering the

value of the corresponding components of the PageRank versatility in each layer. We have used the homogeneous personalization

vector, that is vT =
1

32
e32. In this Table we see that being Medici Family the most important node in all three methods, the

complete ranking is very different when considering the whole network as a multiplex (column 1) or when considering each

layer independently.

Since node 12 is not linked to any other family in any layer we have performed a new computation by taking out this node

from the whole multiplex. As a result we obtain a multiplex with two layers, with 15 nodes in each layer. The results are shown

in Table 5 , by using the homogeneous personalization vector.

In Table 5 we see that the elimination of Pucci family does not change the resulting rankings (note that new node 14 is the

old 15, new node 15 is the old 14, etc.). As a result we have shown that the inclusion or not of the Pucci family does not alterer

the ranking when we use the ranking given by the PageRank versatility as a whole, or considering only its components on each

layer.
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TABLE 5 Ranking obtained by using the indicated PageRank, omitting Pucci Family

PRv Π(1 to 15) Π(16 to 30)

Medici Medici Medici

Peruzzi Strozzi Barbadori

Guadagni Guadagni Lambertes

Barbadori Albizzi Peruzzi

Bischeri Ridolfi Bischeri

Castellan Tornabuon Castellan

Lambertes Castellan Ginori

Strozzi Bischeri Guadagni

Tornabuon Peruzzi Pazzi

Albizzi Salviati Salviati

Salviati Barbadori Tornabuon

Ridolfi Acciaiuol Acciaiuol

Ginori Pazzi Albizzi

Pazzi Ginori Ridolfi

Acciaiuol Lambertes Strozzi
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