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Abstract

New challenges in inspection, maintenance and repair tasks in offshore installations have
given rise to an increasing demand of small autonomous and cooperative underwater
vehicles that provide the required versatility to face a wide array of complex missions.
An envisioned solution is to use multiple modular vehicles that can attach to each
other rigidly into formations to share resources and extend their carrying or tool usage
capabilities. These vehicle formations may be required to execute complex maneuvers
with high accuracy to interact with the underwater installations in a precise manner.

These demanding motion capabilities can be framed as a trajectory tracking problem,
which requires knowledge of the inverse dynamics of the vehicles in order to anticipate
the forces to be executed by their motors to set the vehicles into a desired kinematic
state. Since the dynamics model of the vehicle formations is not known, the proposed
solution considers a biologically-inspired learning controller that can fit a relevant inverse
dynamics model in a short period of time. This controller is based on the ideas presented
in [30], and it is shown that it outperforms a classical PI controller with high gains in a
set of designed test scenarios, both in simulation and with a real underwater vehicle.

For the simulation, the model of a single vehicle and the model of two vehicles based
on [23] were implemented to rapidly iterate in the design process and tuning of the control
algorithm, as well as to provide part of the validation of the controller capabilities. For
the real vehicle validation, the control algorithm was implemented in ROS for both a
single vehicle and two vehicles, although only the single-vehicle controller could be tested
due to limitations out of the scope of this project.
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CHAPTER |
Infroduction

In recent years, new challenges have originated in the offshore operations sector, in which
the the number of underwater facilities installed is growing and moving towards more
remote and hostile environments. Due to the adverse conditions in the ocean, these
undersea structures often require intervention in the form of inspection, maintenance
and repair (IMR) tasks. These tasks are partially carried out by remotely operated
underwater vehicles (ROV) of heavy configuration —work-class ROV—, which carry a
variety of tools to perform the required work. However, many of the structures contain
confined spaces which cannot be accessed by these heavy ROVs.

An envisioned solution consists on using multiple small-sized autonomous underwater
vehicles (AUVs) with modular capabilities, which can cooperate and rigidly assemble into
formations. Within these formations, the AUVs can distribute the workload and carry
different instruments or objects with variable sizes, thus replicating the functionalities
of the work-class ROVs while providing more flexibility in terms of configurability and
access to tighter spaces. Additionally, these formations provide a means of fault tolerance
by sharing motor and sensor resources.

The versatility that these modular AUVs provide comes with a control design cost.
Essentially, since the physical structure of the formation can change in shape (vehicles
arrangement) and size (number of vehicles), a vast number of control scenarios arises,
each one being characterized by different system dynamics and control requirements.

In an IMR task, a vehicle may be required to precisely execute a specific maneuver or
follow a path to access a specific location. In this project, it is assumed that the motion
control problem to be addressed is trajectory tracking. This consists on making a set
of kinematic variables of the system (usually position, velocity or acceleration) follow
a reference path which is parameterized in time. For any arbitrary trajectory to be
followed accurately, a dynamical model of the system needs to be known, such that the
controller can provide the forces and moments required to set the system in a specific
kinematic state, according to its physical properties such as mass and drag.

With this, the difficulty shows in the modeling of the system since the dynamics for
each formation are different and need to be identified as accurately as possible to provide
performant trajectory tracking. This extensive modeling becomes highly impractical if
done with traditional system identification methods, which usually require high amounts
of empirical data and a specific set of experimental setups. Some analytical approaches
have been considered [23] which attempt to obtain a model of the whole system by as-
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suming that the model of an individual vehicle is known and by mathematically defining
the set of rigid connections among the different vehicles as motion constraints. The
main disadvantage of this approach is that any mismatch between the individual model
and the real vehicle will be present in all the defined structure, and that when attaching
several vehicles together, new unmodeled dynamics arise due to the interaction between
the fluid and the new shape.

Because of the notable impracticality and drawbacks of the aforementioned methods,
a different direction in solving the control problem is to focus instead on designing self-
adjusting control architectures that, given a physical reconfiguration of the formation,
can gradually change their behaviour (dictated by a set of modifiable parameters) to
keep performing as desired based on the data gathered in the interaction between the
vehicles and the environment. The most common and traditionally used set of methods
that falls into these specifications is the adaptive control paradigm [7]. Adaptive control
assumes that a partially known (or at least a parameterized) plant model is available,
and the main goal is to adjust the model parameters during the system operation so that
it converges towards the real plant dynamics while at the same time optimizes a control
objective. The main limitation of adaptive control is that, despite the flexibility provided
in its parameter adaptation capabilities, the structure of these parameters is fixed and
therefore it only defines a fixed set of models (linear models, non-linear with quadratic
terms, etc). This implies that the model to be represented should be determined in
advance, thus not allowing an arbitrary non-linear model to be captured.

The alternative set of methods that overcomes the adaptive control limitations (this
is, allows for an arbitrary non-linear model representation) is that of learning controllers
[7]. These may, however, require more data to be gathered before obtaining a reliable
model. The biologically-inspired control methods can also be found inside this category,
which are characterized for applying neuroscience principles into the control problem,
either in structure, function or both.

In the following sections, the main work in the field of learning controllers applied
to motion control in robotics will be reviewed, and special focus will be made on those
applied to underwater autonomous vehicles.

1.1 Model Dynamics Learning

Generally, learning controllers in the scope of motion control problems aim to represent
the mapping between the desired and/or measured kinematic states and the control ac-
tion to be performed to achieve such states according to its physical properties properties
(mass and drag). This corresponds to learning the inverse dynamics model of the plant.
The opposite is also common, this is, learning the mapping between a control action and
the successive states induced by it, which corresponds to the forward dynamics model
of the plant. A combination of both is possible too.

An approach to learn the model of a plant is to use popular machine learning tech-
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niques such as Artificial Neural Networks (ANN) and derived methods. This has been
successfully applied in [31]. However, despite the ability of ANNs to represent any non-
linear dynamics function, they usually require rich and vast amounts of data covering
all the kinematics and control action space or, at least, the space that the robot will
encounter during a typical mission. Hence, this data should be gathered in an explo-
ration stage prior to any real mission of the vehicle, which is equivalent to performing
a system identification stage with other traditional methods. If learning is done in an
on-line fashion (i.e., during a mission), traditional neural networks may suffer from over-
fitting and catastrophic forgetting, since the network’s parameters may reach saturation
before exploring all the state and action space. A direction in solving this issue has
been addressed in [33], which combines a statistical techique (LWPR, presented in next
paragraph) with ANNs to gradually build a baseline model which does not suffer form
the aforementioned ANN problems, and which is used by the ANN to learn the complete
model of the plant.

Other statistical methods have been developed and employed to learn the dynam-
ics of a system in an on-line fashion, thus overcoming the main limitations of ANNs.
Among these, special emphasis should be made on Locally Weighted Projected Regres-
sion (LWPR) [32], Gaussian Process Regression (GPR) and derived methods, and Sup-
port Vector Regression (SVR). The work by J. Sun de la Cruz et al. [11][9] shows that
LWPR and Sparse Online Gaussian Processes (SOGP). [10] can effectively be used learn
an inverse dynamics model of a robotic arm manipulator. They also show that prior
model knowledge, even if incomplete, can be introduced into these techniques to boost
the performance and training speed [8].

Biologically inspired methods may combine some of the above mentioned statisti-
cal and machine learning techniques, while at the same time introducing neuroscience
principles which aim to replicate some of the structures, functionalities or computations
observed in the motor areas of the brain. These are assumed to be a reference in terms of
control design since the brain successfully solves many complex control tasks. In many
cases, bio-inspired methods successfully inherit and mimic such principles to a certain
extent, giving the overall control algorithm an advantage in terms of data efficiency and
control robustness. S. Tolu et al. [30] modelled a control structure with parallelisms to
the cerebellum structure, which combines a LWPR module for long-term model learning
and another module for short-term adaptation, while a feedback controller is used in
parallel to ensure stability and assist with learning. This was applied successfully to a
3-degrees-of-freedom robot arm. Further work has been done by extending the learning
module [5] and by combining it with spiking neural networks [24]. Another bio-inspired
approach worth mentioning is the Cerebellar Model Articulation Controller (CMAC) [2],
a perceptron-like algorithm that mimics the local learning properties of the cerebellum,
which has been widely applied to many robotics tasks.
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1.1.1  Dynamics Learning in Autonomous Underwater
Venhicles

In the field of AUVs, and in particular for motion control and trajectory tracking, most
of the techniques presented in the previous section have been successfully applied for
individual vehicles. However, to the best of the author’s knowledge, no learning methods
have been applied to trajectory tracking in multiple-modular-AUV formations.

In the domain of ANNSs, neural network-based controllers have been successfully ap-
plied in simulation in [36], outperforming lead compensators, pole cancelation techniques
and adaptive sliding controllers in terms of error-tracking. In [12] robust trajectory track-
ing was achieved in simulation by decomposing the problem in system identification
with a neural network and control by combining a feedback and an ANN-based learn-
ing controller. The work in [37] showed in simulation non-linear and coupling terms
cancellation with a neural network, predictive control for accounting for input delay,
and stability analysis of the proposed system. [31] presents a classification of other past
implementations of ANN-based learning controllers for underwater robots. Additionally,
reinforcement learning has also proven successful in trajectory tracking for AUVs [34].

In [14], a LWPR module was used to improve state estimation in AUV navigation.

Regarding the work on biologically-inspired methods, [21] combined a CMAC with
a feedback controller in a simulated underwater vehicle, obtaining good performance
compared to just using a feedback controller. [6] also used a CMAC network for motion
control in sumulated AUVs.

1.2 Project Direction

Given the properties of the different techniques presented in previous work and the
requirements of this project, the direction followed here can be established. Specifically,
it is desired that the motion controller in the vehicles can learn a relevant model in few
iterations and without presenting overfitting to a specific trajectory. This is critical in
real-life IMR scenarios in which the vehicle formation may change during the operation
to adapt to different needs, in which case the time to adapt and obtain a new model
should be minimal. These requirements are incompatible with conventional ANN or RL
methods which usually require an extensive period for collecting data.

Because of this, the proposed approach in this project is to design a learning controller
based on cerebellar learning theory. The method will be described in detail in the
following chapters, and it is inspired by the work presented in [30]. The interesting
properties that it presents are on-line learning (can update the model during operation),
fast learning (requires little data relative to other methods), and local learning (the
model is built gradually around localized regions of the its input space, thus avoiding the
overfitting problem that a traditional ANN would present if a trajectory only explored
part of the space that can be represented by the input). The main drawback of the
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adopted method is that the solution may be suboptimal with respect to other techinques
such as RL, since the the control problem is not stated as an optimization problem.

With this, several research questions can be formulated, which will be addressed
during the development of the project.

e Can a biologically-inspired controller in the scope of AUVs learn a relevant dy-
namics model such that it outperforms other traditional techinques in terms of
trajectory tracking?

e Can this controller learn a relevant model in a short enough period of time such
that it does mot hinder the operation of the vehicles in an IMR task?

o Can the learning controller be designed to be robust against external disturbances
and changes in the dynamical model?

o Can the learning controller provide some level of fault tolerance?

1.3 Objectives

The objective of this project is to design a biologically-inspired motion controller and
implement it in the scope of modular underwater autonomous vehicles, such that it
assists in the trajectory tracking of a multiple-vehicle rigid formation by learning its
dynamical properties.

The project can be further divided into several sub-objectives:

o Review the state of the art in learning controllers for AUVs and choose the direction
that this project will follow

e Define the control problem to be solved and the specific requirements that the
control algorithm should meet

e Design a learning controller that meets the specified requirements

e Implement the controller in simulation to validate its properties and iteratively
improve its design based on the results

e Design an experimental campaign to fully test and compare the controller both in
simulation and in the real vehicle and facilities

o Implement the control algorithm in the Robot Operating System (ROS) framework
to deploy and test it in the real vehicles

This project was affected by the safety measures adopted after the COVID-19 out-
break in spring 2020, which implied that the university campus and therefore the testing
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facilities remained closed during most of the period that had been planned to carry out
the experiments. This resulted in limited experimental validation activities and collected
data.

1.4 Conftributions

This project has made use of several already available resources that were not developed
by the author. In this section a distinction will be made between these and the parts
that were in fact developed for this project.

All hardware used was manufactured or acquired by the REMORA laboratory at
DTU. The only exception is the personal computer from the author. Regarding the soft-
ware, MATLAB and several of its libraries (for vehicle guidance, navigation and control
utilities) were acquired before the start of the project. The MATLAB and C++ base
implementations of the LWPR algorithm were downloaded from open source websites.
The main design concept for the learning controller used was originally developed by
[30]. Finally, for the ROS implementation, the libraries for communicating with the
motors, joystick and motion capture system were part open-source and part previously
developed by other students and staff related to the REMORA laboratory.

The contributions from the author include:

o The adaptation and implementation of the learning controller into the specific
needs and software of this project,

e The dynamical analysis of the learning controller to assess its convergence and
stability properties,

o The development of several additional guidance, navigation and control functions
for MATLAB and C++ (ROS),

o The extension of the LWPR library (both MATLAB and C++) to meet the de-
signed learning controller specifications

o The design of the experiments to be carried out both in simulation and in the real
facilities

1.5 Thesis outline

In the next chapters, the following topics and respective contents will be presented:

Theoretical Background: In this chapter, a conceptual description of the core
principles and fundamentals that lead to the adopted solution is provided. These are
the the Cerebellar Learning Theory and the LWPR algorithm principles. At the end
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of the chapter, these are tied together to describe the adopted solution at a conceptual
level.

Mathematical Modeling: This chapter includes the mathematical description of
the physical system and how it is formulated into the control problem. The main math-
ematical principles and the algorithmic outline of the adopted solution is also provided
here, relating it to the presented control problem.

Materials and Methods: In this chapter the main software and hardware com-
ponents are presented, as well as some details on how the proposed solution has been
implemented.

Results: This chapter starts with the description of the designed experiments and
follows with the results both from simulation and the real vehicle. A short discussion
and analysis of the results is also provided for each subsection.

Discussion: In this chapter, the results are discussed at a more global level, relating
them to the research questions and objectives presented in previous chapters.

Conclusion and Future Work: A general overview of the project highlighting its
achievements, limitations and possible future improvements.






CHAPTER 2
Theoretical Background

This chapter presents the main theoretical concepts required to derive and understand
the adopted control solution, which is based on the cerebellar learning theory and the
LWPR algorithm.

2.1 Cerebellar Learning Theory

Biologically-inspired control methods rely on the known principles on which the brain
processes the sensory and motor states from different regions of the brain and body, and
produces the suitable motor commands for the muscles. There are several areas in the
brain that are involved in such motor processes, and their overall structure follows a
hierarchy that reflects different identifiable motor functions.

The main role in motor control in the brain is taken by the motor cortex, found in
the cerebral cortex (as shown in red in Figure 2.1), and its functions include planning
and executing voluntary movements. Additionally, there are several other parts in the
brain which regulate other aspects of motion, and of special interest here is the cere-
bellum. This part integrates the sensorimotor state information of the organism with
the objective of improving the accuracy and automating motor behaviors commanded
by brain regions belonging to higher levels in the control hierarchy, such as the motor
cortex.

Figure 2.1: Brain with the areas involved in motion highlited. Red: motor cortex; green:
sensory cortex; blue: cerebellum
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The cerebellum has been suggested to be responsible for learning physical models
of the world, representing both forward and inverse dynamics of different parts of the
body and their interactions with objects and the environment Although the exact mech-
anisms by which these models are represented inside the cerebellum are not yet fully
understood, a remarkable property that it presents and which may contribute to the
wide range of models and functions that in can learn is its highly regular structure com-
posed by repeated microcircuits. Each of these microcircuits have been regarded as a
“neuronal machine” [13] which presents the characteristics of an adaptive filter [16]. The
adaptive filter model of the cerebellar microcircuits builds upon the ideas and features
identified by Marr and Albus [3][22], and is based on three key principles: analysis and
decomposition of an input signal into its basic features; synthesis of these features by
performing a weighted sum to produce an output; and adaptation of the weights accord-
ing to a teaching signal. Additionally, these three principles have been associated with
some specific regions and cells of the cerebellar microcircuit, providing thus empirical
evidence for their existence and functionality.

Microcomplex

Sensory

Prediction

.......................... e 6 0 00 000 0 0
’ Desired states,

actual states,

Sensor -—> :
motor efference copy

Figure 2.2: Cerebellar microcircuit. Adapted from [29]

As a brief overview, the structural anatomy of the cerebellar microcircuit can be
described as follows. The input signal is carried into the circuit by the mossy fibers
(MFs), which originate in the precerebellar nuclei (PN) found in the brain stem and
convey sensorimotor information encoding desired and actual states, and motor efferent
copies (copies of the motor output). These input signals are distributed among the gran-
ule cells (GCs), which in essence “encode” the signals into an expanded representation
and transmit them through the parallel fibers (PFs). These PFs, in turn, extend the
encoded signals over a portion of the cerebellar cortex, which facilitate their access to
the Purkinje cells (PCs) they pass through. The PCs then integrate the information
carried by tens of thousands of PFs, producing the main component of the microcircuit
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output. This output is then sent to the deep cerebellar nuclei (DCN), which also takes
information from other cells and produces motor corrections. Finally, the climbing fibers
(CFs) coming from the inferior olive (I0) provide error signals related to movement and
constitute the teaching signal that modifies synapses such as those formed by PFs-PCs,
thus materializing the cerebellar learning mechanism.

It is important to note that the description of the cerebellar microcircuit provided
above depicts only a simplified version of the real anatomy, since there are in fact addi-
tional cells involved in the process which play other roles and which have been omitted
here, such as interneurons for memory consolidation [35].

As it can be observed, this structure reflects the three functions of the adaptive filter
previously presented, and it has led to several computational models that exhibit the
core properties of this circuit. The solution adopted in this project for the learning
controller is based on one of these models, and will be presented in the last section of
this chapter.

2.2 Locally Weighted Projected Regression

The Locally Weighted Projected Regression is an algorithm that combines several sta-
tistical techniques with the aim of approximating non-linear functions whose data may
be sampled gradually. It has been successfully applied to a wide range of robotics and
control tasks, both for learning forward and inverse dynamics models.

A short mathematical description of the elements that play a major role in the final
adopted solution is provided here, describing only qualitatively the rest. The algorithm
assumes that data is sampled from a non-liner function y which is dependent on the
variable vector & and has been added zero-mean Gaussian noise e.

y=f(x)+e (2.1)

The idea behind LWPR is to identify a set of linear models that locally approximate
the non-linear function in a sub-region of the input space covered by @x. This is, for any
input « located close enough to the center x; of the k% local linear model, the function
can be approximated as

Yp = ,B,I:v + € (2.2)

where Bj is the vector of parameters that defines the hyperplane corresponding to
yx. Now, formally stated, the locality of this linear model or, in other words, the degree
to which an input & belongs to this local model, is determined by the expression

Wy, = exp <—; (@ — )" Dy (@ — mk)) (2.3)
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where wy, is the weight that determines the degree of & belonging to the k' local
model, which is characterized by its center oy and the matrix Dy, which defines the shape
and size of the region covered by this model. Such region is also known as receptive field
(RF). The weights wy will also be regarded as RFs activations py in following sections.
Finally, the output ¢ of the algorithm is obtained as

A Zi(:l WYk
_ il 24
y(w) 2521 e ( )

which corresponds to a weighted sum over all K local linear models’ outputs y; with
their corresponding weights wy. In essence, an input sample & activates all K receptive
fields to a certain degree w; and yields an output ¥, for their respective linear models,
which are then weighted in a way that those linear models that are closer to the input
and therefore have a larger w; will contribute the most to the final output 3.

The adaptive capabilities of the algorithm are achieved by updating the linear re-
gression parameters 3; and the RF parameters x; and Dy as more data gets collected.
Additionally, the number of RFs are also updated dynamically according to two tunable
parameters that determine when a new RF should be created and when it should be
removed. Finally, a key principle of LWPR is that it assumes that for each RF, the
distribution of the data for the corresponding local linear model can be represented in
a lower dimensional space than the original one presented by . Thus, it attempts to
reduce the dimensionality of & via Partial Least Square regression, essentially project-
ing the data into a lower dimensional space. This usually holds true for many robotic
applications in which the many degrees of freedom and sensor variables may present
several correlations, allowing for the compression of the information carried and saving
in computational effort when processing the linear models. For the mathematical details
of these parameter updates and dimesion reduction see the original paper [32].

In the case of wanting to represent a multiple-output function, the algorithm creates
multiple single-output LWPR models that have the same input x but different target
functions .

2.3 Learning Controller, Unit Learning
Machine

The learning controller (LC) used in this project can be classified as biologically-inspired,
since, on the one hand it follows the three main principles of the cerebellar microcircuit
adaptive filter model, namely, analysis, synthesis and adaptation. On the other hand,
it replicates part of the microcircuit structure, finding analogies between the controller
modules and the cerebellar cortex cells and their functions.

The controller is based on the ideas presented in [30], which aimed to design an
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algorithmic analog of a simplified cerebellar circuit, based on the properties of the LWPR
algorithm and other machine learning and control techniques which provide biologically-
plausible components to the control structure.

a) b)
Parallel fiber (PF) wr , PF/PC True function
T — 3 | synapse
t (N N
et —3 i)
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/"/»_
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. t
E}ézr;ulle ell Climbing Sampling . i (?)
fiber (CF) |
~— .~/ ;
Mossy e(t) . { Wk
x(t) T fiber (MF) 3(¢) l Purkinje P
cell (PC) x(t)

Figure 2.3: Qualitative representation comparing a cerebellar microcircuit (left, adapted
from [26]) and the LWPR algorithm (right)

In control theory terms, the LC is composed by a feedback part and a feedforward
part. The feedback part guarantees stability and provides a teaching signal to the
learning components of the controller, as will be explained in the following paragraphs.
Despite the fact that this part could be implemented with any form of feedback controller,
a simple proportional velocity controller is chosen here since it satisfies the requirements
for the learning algorithm in [30] and keeps the overall structure simpler and easier to
tune.

The feedforward part corresponds to the adaptive component of the controller which
learns the inverse dynamics of the plant. The input to this block is usually composed
by a subset of the desired kinematic state (position, velocity and acceleration) and the
current state, which from a biological perspective represents the previously described
input signals to the cerebellar microcircuit carried by the MFs. These inputs are fed
to the LWPR algorithm, which creates RFs with their respective weights (also referred
to as activations) that spatially encode the signal analogously to the encoding done by
the GCs in the cerebellum. The granular cell layer has been hypothesized to produce
an optimal set of basis functions that enable accurate and fast learning [25]. This is
replicated by the LWPR in the optimization of the size and location of its RFs. The
output of the LWPR is obtained by performing a weighted sum over all linear local
models, which corresponds biologically to the PF-PC synapses and the PC output that
integrates the many PFs activations into a single signal.

The LWPR learns the inverse model at a rate that is not sufficient for fast adaptation
against disturbances. To compensate this, the feedforward block also includes an addi-
tional component named cerebellar module (CM) which enables short term adaptation.
This way, the LWPR builds a model that captures the long-term plant dynamics while
the CM allows for quicker adjustments needed after unexpected changes in the model,



14 2 Theoretical Background

disturbances and other uncertainties. In terms of structure, the CM relies on the RFs
created by the LWPR, and assigns them individual weights whose update rule is based
on gradient-descent, as detailed in the following paragraphs and the next chapter. The
output of the CM is computed by performing the inner product between the CM weights
and the RFs activations. The cerebellar analogy here, similarly to the LWPR output,
comes from the fact that the strength of the PFs-PC synapses can be interpreted by
weights (the CM weights here) and the signals carried by the PFs can be regarded as
the spatial encoding provided by the LWPR RFs activations.

The two elements composing the feedforward block (LWPR and CM) are known as
the unit learning machine (ULM). The final output of the ULM is the sum of its compo-
nents, namely the LWPR and the CM outputs, which represents the total feedforward
action to be performed by the inverse dynamics model.

Finally, the learning mechanism is enabled by establishing the teaching signals for
each module. These signals come from the motor (control action) signals in the system,
just as in the cerebellum the teaching signals from the CFs carry motion-related errors.
On the one hand, the teaching signal in the LWPR corresponds to the total control
action sent to the plant (this is, the sum of the ULM output and feedback controller
output) which is the output of the target function to be learnt by the algorithm. On
the other hand, the CM updates its weights by performing gradient descent assuming
that the error in its function output is provided by the feedback control action, which
constitutes the teaching signal. The details of these learning mechanisms will be shown
in Section 3.2.3 of the next chapter.



CHAPTER 3
Mathematical Modeling

In this chapter the control problem will be formulated making use of mathematical
notation, starting from a physical description of the system to be controlled showing
the relevant equations of motion, followed by a reformulation of these equations into the
control problem, and concluding with the integration of the chosen learning controller.

3.1 Equations of Motion

This section describes the equations of motion of an actuated rigid body in an underwater
medium. This may refer either to a single AUV or to multiple rigidly connected AUVs.
The mathematical notation used here follows that presented both in [27] and [15]. The
vehicle motion nomenclature corresponds to the Society of Naval Architects and Marine
Engineers (SNAME), as shown in Table 3.1.

A series of simplifying assumptions will be introduced to reduce the modeling efforts
while keeping the necessary detail for solving the control problem.

Assumption 3.1. The AUVs move in the horizontal plane at a constant depth. This
reduces the degrees of freedom (DOF) of the vehicles form six to three: surge, sway and
yaw.

The Assumption 3.1 will be addressed experimentally by providing active roll and
pitch stabilization, as well as depth holding. The equations and variables presented
in the next sub-sections will be formulated in a 3-dimensional space with all six DOF
to provide a full understanding of the system, and afterwards Assumption 3.1 will be
applied to focus only on the relevant DOF.

Motion description Name Forces and moments Velocities Positions
Translation along the x-axis Surge X U x
Translation along the y-axis Sway Y v Y
Translation along the z-axis Heave Z w z
Rotation about the z-axis Roll K P 0]
Rotation about the y-axis Pitch M q 0
Rotation about the z-axis Yaw N r Y

Table 3.1: SNAME notation used.
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v (sway)

0 (pitch)
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w (heave)
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Figure 3.1: Main kinematic variables of the vehicle in a 3-dimensional environment

3.1.1 Kinematics

In order to describe the motion of the AUV in a 3-dimensional environment, two reference
frames are used. One is fixed in the world, considered inertial and denoted by {n}, while
the other is fixed to the vehicle and moves together with it, and is referred to as {b}.
The pose of the vehicle in the world 7 € RS is defined by a position vector p € R3 and
a rotation vector @ € R3.

n:{pT @T}T:[aﬁyzqﬁﬁd)}T (3.1)

The velocity of the system v € R® is also determined by a linear component v € R?
and an angular component w € R3.
T T
V:[UT wT}:[uvaqT (3.2)
The relationship between the body linear velocity and the time derivative of the
position in the world can be determined by the mapping

v=R;(©)p (3.3)

where R?(©) is the rotation matrix from the world frame to the body frame, and it is
parameterized by the current rotation ®

CyCo Sy Ch —Sp
R (O®) = | —s5yCh+ CySeSs  CuCo + 5pS05¢  S4Co (3.4)
SypSp T CpSeCy  —CySy + SySeCh  CyCo

In the previous rotation matrix and in the following equations, ¢, refers to cos(«)
and s, to sin(«).

The transformation from the world angular position’s time-derivative to the body
angular velocity is given by '
w=J(0)O (3.5)
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with the Jacobian matrix J’(®) as a function of ©

1 0 —Sg
Jg(@) = 0 Cop CoS¢ (36)
0 —S¢  CeCy

Both the linear velocity and the angular velocity transformations can be expressed
together as

v = THO)) = [ o ] 0 (37)

n

3.1.2 Rigid Body Dynamics

The sum of forces and torques applied to the AUV gives rise to the vector of resultant
forces 70 € R? and the vector of resultant moment 7y € R?

r=[n" '] =[xV z K MN] (3.8)

With this, the dynamics model of a rigid-body in a 3-dimensional aquatic environ-
ment can be described as follows

Mv+ Dv)v+Cv)v+g(n) =1 (3.9)

where M is the matrix of inertia which contains both the rigid-body inertia and the
hydrodynamic added mass, D(v) is the hydrodynamic damping matrix, the C(v) matrix
accounts for the Coriolis and centripetal terms, and g(n) is the vector accounting both
for the gravity and the buoyancy terms.

At this point, additional simplifying assumptions are introduced. Generally, the
matrices D(v) and C(v) are dense, which implies that the motion in different degrees of
freedom (DOF) will be coupled. This, in principle, does not pose a problem for a learning
controller that aims to learn an approximation of the full inverse dynamics, including
coupled motions. Indeed, the learning controller accounts for this, as mentioned at the
end of Section 3.2.2. However, in order to make the analysis and the controller design
simpler and for constituting the guidance system —as will be shown in Section 3.3.1—,
Assumption 3.2 is applied. Assumptions 3.3 and 3.4 are also presented next.

Assumption 3.2. The body coordinate frame axes, the principal axes and the axes of
symmetry of the vehicle are all aligned. This implies that the off-diagonal terms of M
and D(v) are zero and that all degrees of freedom are uncoupled in motion.

This Assumption 3.2 is valid for vehicles that have three planes of symmetry and
move at low velocities.
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Assumption 3.3. The gravity and buoyancy force vectors have the same magnitude
and the buoyancy vector acts on the center of gravity (CG) of the body. This implies
that the vehicle is neutrally buoyant, that is, both the force and the moment components
in g(n) are zero since on the one hand the gravity and buoyancy vectors cancel each
other out in magnitude and on the other hand no moment is generated since the vectors
act on the same point.

Assumption 3.4. The vehicle rotates at low speeds, thus making the Coriolis and
centripetal effects negligible and the matrix C(v) is set to be zero.

The Assumption 3.3 will be ensured experimentally by adjusting the ballasts and
flotation devices on the AUVs as well as by providing active depth holding. With
Assumptions 3.3 and 3.4 in place, the system is simplified as

Mv+ Dy =1 (3.10)

where M and D(v) are diagonal matrices according to Assumption 3.2. The matrix M,
as mentioned before, is composed by the rigid-body mass and the hydrodynamic added
mass. This can be expressed as the sum of two matrices, Mgrp and M, respectively.

M = Mgg + M, (311)

The Mg matrix is composed by the vehicle mass m and the moment of inertia
terms

(3.12)

Mg = [ mIsys 0343 ]

0343 A

where I3.3 is the 3 x 3 identity matrix, and A is the moment of inertia tensor which is
diagonal in this case due to assumption 3.2

A = diag (Ig, 1, I..) (3.13)

where I,,, I, and I., are the moments of inertia for the x, y and z axes of the vehicle
respectively. The matrix of My is defined as

where each term of the diagonal is the partial derivative of the force applied in a cer-
tain DOF direction with respect to the acceleration experienced in that direction. For
example, for the surge direction this is

09X

Xo= v
o

(3.15)

The matrix D(v) is also composed by the sum of two diagonal matrices

D(v) = D, + D,(v) (3.16)
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one accounting for the linear drag coefficients
D, = diag (X, Y,, Zy, K,, M,, N,) (3.17)
and another for the quadratic drag terms
D, (v) = diag (Xuulul: Yojullvl, Zujullwl, Kpplpl, Mygllal, Nojvilr]) (3.18)

where the terms X, and X, for surge (and similarly for all the other DOF) are found
with the partial derivatives analogously to Equation 3.15, but taking the derivative with
respect to u and u|u| respectively.

From here on, applying Assumption 3.1, Equation 3.10 will refer to the system with
the 3-DOF motion in surge, sway and yaw. This is, only the first two entries and the
last entry in the diagonal matrices and in the vectors will be considered.

Thrusters

Thruster
{] } Vehicle

Figure 3.2: Generic 2-dimensional representation of the vehicle frame with a thruster

The single-vehicle motion is controlled by a set of thrusters distributed across its
body, in a way that they provide full 6-DOF control, this is, the system is just-actuated.
However, considering Assumption 3.1, only those thrusters involved in the 3-DOF motion
control at a constant-depth plane will be considered here. Each thruster is assigned a
reference frame {j} that is rotated and/or displaced a certain magnitude with respect
to the vehicle reference frame {b}, and the z-axis of the thruster frame is aligned with
the thrust direction. The z-axis of both {j} and {b} are aligned. This way, the thrust
vector p4 of a motor j expressed in {b} is

cos(a)
p; =tip; = | sin(ay) | p; (3.19)
0

where t? represents z-axis unit vector of {j} expressed in {b}, a; is the angle from {b}-
z-axis to {j}-z-axis and p; is the scalar value of the thrust. These thrust vectors act at
point displaced from the center of the vehicle frame

Lj
pl=1y (3.20)
0
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where x; and y; are the displacements in surge and sway respectively of the j motor
with respect to the vehicle frame center. With all this, the total thrust applied to the
vehicle body is obtained as

T=Y h(pp) = X

JjET JeET

(3.21)

P’
p; X pj

where J represents the set of thrusters attached to the vehicle.

3.1.3 Multiple vehicles

For multiple vehicles, the following assumption is made:

Assumption 3.5. The links attaching together the vehicles that compose the multiple-
vehicle system are considered rigid, and the vehicles themselves remain behaving as rigid
bodies. This implies that the overall structure is treated dynamically as a single rigid

body.

With Assumption 3.5 in place, all the kinematic and dynamic equations presented in
the previous sections remain valid. Some parameters will of course change to adapt to
the new physical properties of the system and to properly meet the previous assumptions.
These changes are:

» The coordinate frame {b} is now placed at the center of gravity of the whole struc-
ture, which coincides with the symmetry center and all axis are aligned, according
to Assumption 3.2.

o The individual vehicle’s reference frames are now designated as {i} which are
located at the center of gravity of each corresponding vehicle.

o The physical parameters accounting for the inertia and the drag of the system
are now different, which implies that the coefficients of the matrices M and D(v)
have changed.

Additionally, the system is now overactuated, since there exist redundancies in the control
action space generated by the thrusters to achieve any particular motion. With these
clarifications, from here on the terms vehicle, vehicle system and vehicles will refer to the
same set of systems obeying the equations of motion presented in the previous sections,
whether it be a single vehicle or a formation of several rigidly-connected vehicles.

3.2 Conftrol Problem

As mentioned in previous chapters, the control problem to be addressed is trajectory
tracking applied to the vehicle system. This corresponds to controlling a set kinematic
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variables which describe the motion of the system CG, or equivalently the center body
frame center {b}. These variables are usually either the position (if a path in space has
to be followed over time) or velocity (if a certain velocity profile needs to be achieved)
in any degree of freedom. Based on the definition presented in [1], it can be formally
stated as:

Definition 3.1. Trajectory tracking. Let yq(t) : [0,00) — R be a trajectory reference
to be followed by the kinematic variable y(t) of a dynamical system. y,(t) is smoothly
defined in time and its time-derivative is bounded. The controller of this system can be
designed to keep all signals bounded while achieving an arbitrarily small tracking error

1ya(t) —y(D)]]-

In this project the chosen variable to be controlled is the velocity and the solution
will be designed for it. As implied in Assumption 3.2, the DOF of the system are not
coupled in motion, which means that the trajectory tracking problem can be addressed
for each DOF indepentently.

3.2.1 State-Space Formulation

Based on the dynamics equations developed in Section 3.1.2 of this chapter and the
trajectory tracking problem just defined, a state-space formulation of the system can
be developed. The vector of variables @ that, together with its time derivative x, is
sufficient to describe the dynamical state of the system, corresponds the velocity vector
v of the vehicle

r =V

. (3.22)
T=v
This is deduced from Equation 3.10, which can be rewritten as
v=M1'(-DWwv+T
(~D(w)v +7) -

=-M 'Dwy+M 't

which represents the set of differential equations given by the vector v and its time-
derivative . Applying Equation 3.22, which defines the state vector of the system as ,
and letting the vector of applied forces and moments 7 be the control action vector u,
the state-space system representation becomes

& = A(x)x + Bu (3.24)

where A(x) = —M'D(v) and B = M~'. Since the matrix A(x) depends on the
state vector @, this corresponds to a non-linear system. According to Equation 3.16,
this matrix can be decomposed into a linear part A; and a non-linear (quadratic) time-
variant part A,(x) as follows

Alx) = A+ A,(x)

3.25
—_M"'D - M 'D,(v) (3.25)
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For the implementation of the classical part of the controller (feedback gains and the
alternative PI controller) it will be assumed that the system is Linear Time Invariant
(LTI), by linearizing the system in Equation 3.24 either in an operation point u =
and * = x,, or at the zero-input equilibrium state, this is, when v = 0 and = 0.
On the other hand, for the design of the overall proposed control structure —including
the learning module—, the system will be treated as being composed by the linear and
non-linear parts presented in Equation 3.25, and the linear part A; will be used to find
the feedback controller gains. This is, it will be assumed that the linearization has been
performed at the zero-input equilibrium state.

The vehicles are equipped with an inertial measurement unit (IMU) that provides
linear accelerations, angular rates and heading of the vehicle. Additionally, a motion
capture system provides the surge and yaw positions, as well as the yaw heading angle.
Therefore, the output of the system —this is, the variables that can be read with the
available sensors and that are of interest here— corresponds to the angular rates w and
the linear and angular positions in 1. The velocities in w belong to the state vector, so a
direct linear transformation can be establish between both. However, the positions 1 are
obtained from an integration in time of the velocities that constitute the state vector .
In order to achieve a direct linear transformation for the positions as well, the state vector
should be augmented such that it includes both the velocities v and positions 1. This
dynamical system would be defined according to the following state-pace formulation

v _ A(V) 03x3 v B u
HEEAEEIHE A P
Tq Aa(ma) La B, Ugq

where &,, A,(x,), €., B, and u, are the augmented versions of the state vector time-
derivative, the state dynamical matrix, the state vector, the input matrix and the control
action vector respectively. With this definition, the output y is found as

Y 001,053 v
[n = [0 que ) L2 (3.27)
4x1 3x3 ., £3X3 e 6x1

Yy C La

The drawback of using state-space system from Equation 3.26 is that the augmented
state dynamical matrix A,(x,) is now singular, which hinders the design of the controller
following common techniques. For this reason, the system in Equation 3.24 will be used
for the controller design, while the system from Equations 3.26 and 3.27 will be used in
simulation for forward passes in order to obtain the output of the system. A kinematic
Kalman filter (KKF), as will be shown later, will be used to obtain the estimate of the
state x from the measured outputs. The block diagram of the proposed system in open
loop is shown in Figure 3.3.
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Figure 3.3: Open-loop block-diagram system representation

3.2.2 Conftroller Design

As mentioned in Section 2.3 from the previous chapter, the designed controller is com-
posed of a feedback and a feedforward part. This section presents how both parts are
related and how each one contributes to the total control action. An analysis of the
tracking error will be presented which will serve as a guideline for the specific design
and tuning of the learning part of the controller.

Feedback Controller

The feedback part aims to control the linearized system given by A; and is established
as the combination of a full-state feedback controller with a reference-feedforward block.
This is a commonly used classical control structure (see Figure 3.4) which allows for
tuning of the state dynamics via the full-state feedback gain matrix K, while providing
a way to influence the output via the feedforward block IN, which gain is usually set
to be the inverse of the closed-loop gain in steady state so that the reference r has the
same magnitude as the output y.

A
A |«
_K:

Figure 3.4: Typical full-state feedback (K') and reference-feedforward (IN') control struc-
ture for a LTI system (here the matrix A is linear)

However, in this project, the set of variables that are to be controlled are the velocities,
which constitute the state itself @, and specifically, these velocities need to follow a
reference r and the error between them e = r — @ needs to be minimized. For this
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reason, the matrix IN is chosen to be the same as K but with opposite sign in the block
diagram, since this is equivalent to act on the error with a proportional gain

UFB — Kr - Kx
=K(r —x) (3.28)
= Ke

thus constituting a classical proportional (P) controller. Despite this approach not being
the common one used to tune the gains of a P controller, it has been employed here for
two main reasons. On the one hand, it allows to modify the dynamics of the closed
loop via the full-state feedback pole-placement technique, which is an intuitive way to
formulate the desired behavior of the system. On the other hand, it facilitates the matrix
analysis of the closed-loop state-space system given the inherent matrix formulation of
the gain K, as will be shown next.

There are two conditions that must be met in order to implement the full-state
feedback control

o First, the state & must be known or estimated. Since no direct measurements of
the linear velocities are available, the full state is not known a priori. However,
given the position measurements in time, these velocities can be estimated with
an observer such a KKF.

 Second, for guaranteeing arbitrary pole (or eigenvalue) placement, the system must
be controllable. This is satisfied since the matrix A is diagonal and the input ma-
trix B does not have any zero rows, implying that each state evolves independently
of the rest and can be directly affected by one of the inputs.

With the control law from Equation 3.28, the closed-loop system expression now becomes,
for the LTI system given by A and B:

z=Ax+ B(Kr — Kx)
—(A- BK)z + BKr (3.29)
= AK$+BKT

where Ay is the closed-loop state transition matrix.

Feedforward Learning Controller

The feedforward part of the controller corresponds to the learning module, the ULM,
presented in the previous chapter. Formulated in a general way, its inputs are the desired
state x4, the desired state time-derivative £, —which in this case are equivalent to the
references r and 7, respectively— and current state estimate &, and its output is the
feedforward control action upp. This module will be referred to as ® in the following
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diagrams and equations. Since the ULM is composed by two sub-modules, the LWPR
and the CM, the output of ® is the sum of both of them

UFF = ULWPR T+ UCM (330)
‘ /____-l
Ty, Ty, T P Urr i A (z)
¥ 3 |
| | €T €T N y
ey B / ~J(©) C
v
A] < f
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Figure 3.5: Proposed control structure including the feedback module and the feedfor-
ward learning module

The non-linear part of the system given by the product A,(x)x is introduced again
in order to provide a complete analysis, and for simplicity, it will be referred to as n(x)
while the linear part will be represented by a matrix named A as opposed to A,

The total control action w provided by the control system depicted in Figure 3.5 is

U = Upp + UpF
3.31
:chd—ch+uFF ( )

Inserting this control law into the non-linear state-space formulation of the system,
the following expression is found

z=Azx+n(x)+ B (Kx; — Kz + upr)

3.32
= Agx +n(x) + BKx,;+ Bugg ( )

which provides a full mathematical description of the closed-loop system with the feed-
back and the feedforward control action as well as the non-linear components. Now, by
considering the error definition and its time derivative

e =g — X
o (3.33)
e=x,—T

Equation 3.32 can be rewritten into the error-dynamics form

ée=Age + &, — Az, — n(xy — €) — Bugr (3.34)
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which contains an asymptotically stable part Axe that makes the error e converge to
zero (since the matrix Ay is designed to be asymptotically stable) only if the rest of the
components of the equation (highlighted in red) cancel each other out —this is, their
sum is equal to zero—. In order to achieve this, the feedforward action wpp provided by
the ULM should approximate the following function

UFF = B_1 (did - Awd - ’I’L(.’Bd - e)) (335)

Now, if the terms in Equation 3.35 are substituted by their original definitions based
on the physical system and with & = x; — e, the following expression is found

upp = M (&4 + M~ Dizy+ M~ Dy(z)z)
= Ma,+ Dz, + D, (x)x (3.36)
= Mv;+ D, + Dn(ll)l/

which corresponds to the inverse dynamics model of the vehicle evaluating the inertia
and the linear drag terms at the desired accelerations and velocities, and the non-linear
drag term at the current velocity. This shows that the the function to be learned by
the ULM depends on these variables, which should be the inputs to the ® block. In the
case of small errors or fast convergence, the current velocities can be approximated as
the desired velocities (x &~ x4), which may allow for using only the desired accelerations
and velocities as inputs to ® to learn a sufficiently valid inverse dynamics function —in
practice it was found that including the estimated state & did not provide any significant
improvement.

It is important to note at this point that, despite Assumption 3.2 being made, the
learning controller does not require the matrices M and D to be diagonal since, as a
general function approximator, the ULM can represent a function of the form shown in
Equation 3.36 in which the matrices M and D are dense. This implies that, even if
Assumption 3.2 is not fully met in practice, the ULM will still be able to represent a
model with coupled motion between DOF.

3.2.3 Learning Mechanism, Stability and Convergence

In Section 2.2 of the previous chapter, the principles of the ULM were presented, pro-
viding a general understanding of the capabilities of this control method. Here, a more
detailed mathematical description of its elements is shown, including the computation of
the output and the update rule of the function. Additionally, although a full mathemat-
ical proof for its stability and convergence has not been developed, a brief, principled
analysis is presented, which may also serve as a guideline for tuning of the algorithm.

The ULM is composed by the LWPR and the CM (cerebellar module). Regarding
the LWPR, the main mathematical principles of its output computation and function
update were already described in Section 2.2. After the analysis of the feedforward
learning controller provided in the previous section, it can be now specified that the
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Figure 3.6: Detail of a ULM unit (® in the block diagrams)

output of the LWPR is a function of the desired velocities and accelerations of the
vehicle system and optionally the current state estimate

UTLWPR — LWPR (:z:d, de, 3?3) (337)

The update of the LWPR is realized by setting the target function to be learned
as the mapping from the current LWPR inputs to the the total control action at the
current time step, this is

LWPRpdate(t) := (2a(t), a(t), &(t)) — u(t) (3.38)
where u(t) = upp(t) + upp(t). From a computational point of view, a data point is

added to the algorithm, which is used to update the local linear regression models.

Regarding the CM, for a given controlled degree of freedom n —in the next equations,
for simplicity, the subscript n will be dropped for simplicity, and the scalar signals ucwm »,
eCM,ny UGN n and upp,, will be referred to as ucwm, ecm, ugy and upp, respectively—, the
output ucy is obtained from the inner product between the vector of the CM weights
wcy and the vector of LWPR RFs activations wgp for such DOF controlled

uen = (Wen, WRE) = WnWRE (3.39)

The update rule is found by applying gradient descent. An error function over the
CM weights is defined

1
E (wem) = §e%M (3.40)

where ecy is the error between the CM output ucym and the target function uéy, to be
learned by the CM

ecM = Uey — UCM (3.41)
Since the target function is not known, it can be approximated to be
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The reason behind this approximation is that the control action ugpg provided by the
feedback controller reflects the current tracking error e in the system —for the specific
DOF—, defined in Equation 3.33. If tracking was perfect, the error e would be zero,
as well as the action wpg, which would imply that, in Equation 3.42, the currently
provided control action ucy would already match the target. In the general case of
imperfect tracking, the action upg can be seen as the deviation between the target and
the current action output, thus playing the role of an “action error”, this is

ecM ~ UFB (343)
With this, according to gradient descent, the change of a CM weight 7 is determined

by
oF

A == 3.44
on. 651001\@' (3.44)
where the partial derivative is found as
oF 1 Oe? 0
Owem, 2 0wewm, Owem,i
and finally
decm _ 0 (u* — 3 wew ) — Wre (3.46)
alUCM7i 8'(1)(}1\/[71' CM CM,i WRF,i RF,i .
Therefore, the gradient descent update rule is
Awen = =B ecm(—wrr,;i) = B urs Wrr, (3.47)

which is the approximation that will be used to change the weights of the CM.

Now, two additional parameters in the LWPR algorithm are presented which are
relevant for the convergence analysis. The first one is the forgetting factor A\; € [0, 1],
which determines how much the current model is maintained against new data points.
This is, for Ay ~ 1, the model is virtually not updated with any new data and for
As =~ 0, the model represents only the last data point. The second parameter is the
output confidence interval I, € (0,+00), which accounts for the uncertainty in the
model derived from the data scarcity and disparity (i.e., how much the gathered data
“disagrees” with the function to be represented) and roughly represents the range in
which the “true” function output may be located. For large, congruent amounts of data
around a point in the input space, I. will tend to zero, whereas it will tend to infinity
for no data or for data representing a random function, since there is no knowledge or
consensus on what the function should represent.

With this, the qualitative convergence and stability analysis of the learning algorithm
is presented now. Focusing again on Equation 3.34, the error-dynamics equation can be
seen as a dynamical system with state variable e, state-transition matrix Ag, control
action upr and disturbance d. equal to the rest of the terms

d.=x5— Az —n(xy — e) (3.48)



3.2 Control Problem 29

Since upp is a signal that changes in time due to the update rules of the LWPR
and the CM, an approximated dynamical formulation can be established. It is assumed
here that the system is operating in a small enough region O around the ULM input
variables 4, 3, °, in order to allow the ULM to collect data and learn a function for
that input region. With this, the dynamical equations of the signals that compose upr,
this is, urwpr and wucy, are presented next.

For the CM —and again, for a given DOF n, despite the subscript not being included
in the following equations for simplicity—, the variation in time can be found by first
expressing Equation 3.39 in variation form

Aucy ~ Awly; wre (3.49)

where the approximation is due to the previous assumption, such that the variation in
the input space is low (in the region Q) and therefore the RF activations wgrr between
two time-steps remain approximately the same. Now, taking Equation 3.47 expressed in
vector form and substituting in the previous equation, the following expression is found

T
Aucm = Burps WRRrWRF

= 7YCcM UFB

(3.50)

which gives the update rule in discrete time of the CM as a function of upg with the
parameter Yoy = [ WhpWRE-

For the case of the LWPR, the rate of change in the model is initially large but after a
few data points have been collected, the the update rule in the region O at the iteration
k is approximated by A; as follows (derived from the original LWPR paper [32])

ULWPRk+1 = A f Unwpr,k + (1 — Ap)ug (3.51)
where uy, is the total output for a given DOF n, this is
Uk = UFF k + UCMk = ULWPR,k + UCM,k T UFB.k (3.52)

which substituted back in the previous equation, it becomes

ULwPRk+1 = Af Unwprk + (1 — Af) (Unwpr.k + Ucwke + UrBk) (3.53)
and in variation form
Aupwpr = (1 — Af)(UCM + upp)
= ywpr (Ucum + urB)

which shows that the update of the LWPR depends both on the feedback and CM terms,
and the update rate for the LWPR is given by yiwpr = (1 — Ay).

(3.54)

With both update rules defined in discrete time and their corresponding rates given
by vom and ywer, the next step is to formulate these equations in continuous time. For
this, the following time-derivative approximation will be used

Af

Fr~3y (3.55)
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where f is a generic function and At is the time interval between two consecutive time-
steps in the discrete controller. This approximation will be more accurate as At — 0.
Applying this to the LWPR update rule and expressing it in vector form

. _ Aupwer
UTWPR ~ 7A ‘

_ YLWPR
At

= Ywer (Uom + UrB)

(3.56)

(ucym + upB)

where 4] wpg is the continuous-time update parameter for the LWPR. Now, for the CM
update rule in vector form it becomes

A’U,CM

At

- %UFB (3.57)

!
= YcMm UFB

~
~

Ucm

where V{ywpr is the CM continuous-time update parameter.
As a last step, the feedback control action urg depends on the tracking error e such
that upg = Ke. This defines the continuous-time update rule for the LWPR as

Upwpr ~ Ywer(Ucm + Ke) (3.58)

and for the CM
Ucn R 761\/1 Ke (3.59)

Finally, putting all main results together, the state-space system approximation for
the error e and the feedforward control ation components urwpr and ucy around an
input region O can be defined as

e AK -B -B e I3 %3
uom | = | YomE  Osxs  Osys ucm | + | O3x3 | de (3.60)
ULWPR YwerrE  Mwpr  03x3 ULWPR 0343
A,

This system shares similarities with a traditional control structure that includes
integral action. Here, the integral signal would correspond to the sum of the feedforward
signals wcn and upwpgr, which builds up on the error e and provides the control action
in a negative feedback way through B, thus acting against the error. The signal d,
corresponds to a disturbance that is injected into the state to be stabilized, in this case
the error e. This way, the matrix A, can be adjusted through the tunable parameters
K, v and y{wpr such that the system is made stable (the trajectory tracking error
is bounded and converges to zero) and capable of rejecting disturbances (the terms in
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d. are compensated by upp, thus effectively learning the inverse dynamics model from
Equation 3.36).

A remarkable observation that can be made from the formulated error system is
that, the speed of convergence of the feedforward action upr towards the function that
compensates d., is determined by K in both of its components ucy and upwpr. For
larger values of this parameter, the convergence will be faster, meaning that the inverse
model will update at a higher rate. This may be desirable in the initial stage of learning
or upon a significant change in the physical model induced by sources such as the failure
of some motor or an permanently added external force (a strong recurrent ocean current,
an undesirable object attached to the vehicles, etc.). However, for small, randomly-
fluctuating disturbances, having a higher gain K will amplify the noise carried by these
external signals. In order to tackle this, it is proposed here to use the confidence interval
I. to distinguish between this double nature of external disturbances and adjust the
update rate of the feedforward action accordingly.

Specifically, recalling the properties of I., the confidence interval will grow (repre-
senting more uncertainty) if little data has been gathered around an input region (initial
phase of learning) or if a permanent change in the model has altered the function rep-
resented by d. and over a given period of time this new data has been gathered by the
LWPR thus increasing the disparity in the model. In these situations, the rate of change
in upp should increase, and this has been realized in this project by adjusting the gain
of the feedback controller K as a function of I. according to the following equation

—_J?
K(L:) = Kax — (Kmax - Krnin) eXp( ;) (361)
g

[

which represents a smooth function varying from K, at high certainty (I. ~ 0) to
K ,..x at lower certainty (I, ~ 30.). The parameter 3o, is be chosen to be lower than the
maximum possible value represented by the inverse dynamics function or the maximum
demandable control action (limited by the thrusters capacity). This is, for such levels
represented by I., the uncertainty in the upp output is “as high as it can get”, and
therefore the function should converge faster to the currently represented dynamics
model, thus increasing the convergence rate by providing K ... The effectivity of this
modulated gain will be tested in the system.

3.2.4 Conftrol Allocation and Distributed Control
Architecture

So far the controller presented addresses the motion control of each DOF independently.
However, given the fact that several thrusters may interact in the motion of a given
DOF, the problem of how to properly assign the thrust to each motor needs to be solved.
Additionally, the analysis of this problem will also open the possibility of another control
architecture, as will be shown next.



32 3 Mathematical Modeling

The contribution of each thruster in the vehicle system to the force and moments
applied in each DOF is determined by the thruster configuration matrix (TCM), desig-
nated here as H. For a system composed of NN; vehicles, with N; thrusters per vehicle,
and N, degrees of freedom to be controlled, the matrix H has dimensions N, x N; - N;.
For the specific case of the vehicle used in this project (BlueROV-R1) operating at a
constant-depth plane (only three thrusters used, N; = 3), the TCM of the i*" vehicle,
withi=1,2,...,N;, is

cos(a 1) cos(a 2) cos(a 3)
Hz' = sin(am) sin(am) SiD(OéLg) (362)
Piasin(Bi) pigsin(Bi2) pigsin(Bis)

where «; j, with j = 1,2,3, is the angle described from the system {b}-z-axis to the
thruster {j}-z-axis belonging to vehicle ¢; 3; ; is the angle form the vector p?. —described
in Equation 3.20— to the thruster {j}-z-axis belonging to vehicle ¢, and p;; is the
magnitude of the vector pg for the vehicle ¢

For the specific case of a single BlueROV vehicle, {b} and {i} and, as shown in Figure
3.7, this matrix becomes

1 1 0
H=| 0 0 1 (3.63)

—DPix1 DPi2 Pig3
/ | X ) |
A ) | ) e (R
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. Bs . .

Figure 3.7: BlueROV-R1 thruster distribution. Only those thrusters involved in the
motion control of the vehicle at a constant-depth plane are shown here, In this case {b}
and {i} coincide since only one vehicle is represented

The contribution to the total torque and moment vector 7; from vehicle ¢ is found
with the multiplication

Pi,1
7, =H;p;=H; | pi2 (3-64>
Pi3
where p; is the motors’ thrust vector of the vehicle ¢ and p; ;, with j = 1,2,3, is the
thrust provided by the j** thruster in vehicle i.
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For a system composed of INV; vehicles, the total force and moment vector 7 applied
is found as

TZHPZ{Hl H, --- HI] : (3.65)
PI

Now, the element provided by the controller is 7, whereas the actuators of the system
provide p. If the individual thrusts needed to be assigned to each motor —in some cases
this is not required since the vehicle automatically makes this assignment—, these could
be found by

p=H'r (3.66)

where H" denotes the Moore-Penrose inverse of H, since it is not a square matrix for
the case of multiple vehicles.

Distributed Control Architecture

At this point, after establishing the method to convert from total forces and torque to
individual motor thrust commands, a distributed control architecture that incorporates
such method is presented.

The inspiration behind this architecture is that, from a biological perspective, dif-
ferent muscles in the body are controlled by different regions in the motor cortex and
the cerebellum, allowing for fine-tuning of the specific motion requirements of each body
part. Here, the question of whether the same principle can be applied to a mobile sys-
tem with several actuators arises. To address this question, the proposed architecture
assigns an individual ULM to each thruster, while the feedback control is still performed
at the level of the whole rigid-body system (an independent feedback controller for each
DOF). Although this is not a truly distributed architecture, since the information is still
processed at the body-level and then allocated to the motor-level where the ULMs use
such information to update their functions, it presents a first step towards a biologically-
plausible control structure.

The details of this control architecture are presented in Figure 3.8 and a step-by-step
description of the internal operations is shown next.

1. The sensor measurements y;, ys from each vehicle are processed by their respective
Kalman filters KF; and KF,. This produces the state estimates &,, &5, which
correspond to the velocities of each vehicle’s frame of reference {i}.

2. Considering the geometry of the formation, the geometric transformation of the
estimated velocities @9, &5 from the vehicles reference frames {i} to the formation
frame {b} is performed, and the average is calculated, thus obtaining &.
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Figure 3.8: Distributed control architecture for the case of two vehicles

. The estimated state & of the formation is subtracted to the reference x,; to obtain

the error e. This is fed to the proportional controller K which yields the control
action vector upg containing the force or moment to be applied to each DOF.

. The transformation of the control action signal urg from DOF to individual motors

is calculated via Equation 3.66, that provides the allocated feedback control actions
upp,;,; for motor j of vehicle 1.

. The feedforward control action upr ; ; for motor j in vehicle 7 is also obtained at this

point from the corresponding ULM, @, ;, and both the feedforward and feedback
control actions are added together to produce ur;;. Note that the input for all
ULMs is the same and corresponds to the whole formation’ reference velocities x4
and accelerations x4, and optionally the estimated velocities &.

. The total control action signal ur ; is limited by a saturation block which considers

the maximum thrust obtainable at each thruster, and the saturated signals are
merged into the vector of motor thrusts p; for vehicle 7.

. Finally, the saturated total control action is fed to the LWPR as the objective func-

tion to be learned, and the feedback control action is used to update the weights
of the CM (cerebellar module). Note that, although it has not been represented in
the diagram, the weights of the CM are only updated if the total control action has
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not reached saturation, in order to avoid error accumulation and excesive growinf
od the weights (similar to an anti-windup mechanism in a PID controller).

3.3 Guidance, Navigation and Control

The previous sections presented the motion equations of the vehicle and how the pro-
posed controller is designed to track a velocity trajectory. However, the full solution
to the trajectory tracking problem requires other components that provide and process
information needed by the controller to become truly functional. This section presents
these components and how all of them are integrated in the full control solution.

Trajectory tracking can be encompassed in the Guidance, Navigation and Control
(GNC) framework. GNC divides the motion control architecture of autonomous mobile
systems into several connected modules (guidance, navigation and control) that play
complementary roles. The guidance module accounts for the decisions to be made
during the operation of the vehicle and the interaction with the environment. It follows
a plan and, considering the state of the environment (such as the presence of other
objects), it provides the right setpoints to the controller in order to execute the desired
path. The navigation module addresses the state estimation of the vehicle by using
the available sensors and applying observer and filtering techniques such as the Kalman
filter. The control module deals with providing the right control actions to the actuators
according to the references provided by the guidance system and the estimated state from
the navigation system.

The control module corresponds to the controller architecture already presented in
previous sections. The guidance and navigation modules are presented next.

Plan, .
M Environment
anual .
Information
Commands
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- ™ - ™ S
- r, P ~ u p _ x
Trajectory! Motion . Control 2 Vehicle Sensors Y
Generator Controller Allocation
) y
T
Ob
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Figure 3.9: GNC signal flow diagram. Recreated from [15]
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3.3.1 Guidance System

For trajectory tracking, the guidance system (GS) provides the trajectory to be followed
in terms of the controlled variable and its time-derivative. As previously mentioned, in
this case this corresponds to the desired velocity and the acceleration, which are sufficient
to describe the dynamics of the vehicle and therefore can be used by the feedforward
block in the control module to provide an inverse dynamics control action.

The method to generate the trajectory can vary and the main requisite is that the
path generated in time is smooth and its time-derivative is bounded, as established in
3.1. In this project, it is assumed that a series of setpoints in velocities have to be
reached at different arbitrary times, and the transition from the current velocity to the
next setpoint should be described by a smooth curve in time.

These velocity setpoints can be established from several sources, whether it is from
a planner module that considers the mission needs, a manual operator, or even a higher-
level position controller whose control action directly affects these setpoints. For the
purpose of testing the algorithm, as it is the case of this project, a set of setpoints
describing a simple periodic path will be used.

In order to achieve smooth transitions between the setpoints, a simulated dynamical
model of the closed-loop system is employed. This allows for generating a trajectory that
is compatible with physics and that presents desirable properties in terms of convergence
speed that can be tuned via the closed-loop controller. In fact, this guidance controller
can be chosen arbitrarily to achieve the desired behavior of the system. There are,
however, several considerations to account for in the implementation of the simulated
model and the guidance controller.

1. The closed-loop bandwidth of the simulated model must be lower than the real
system closed-loop bandwidth. This is, the rate of change of the signals generated
in the GS should not exceed that achievable in the real system.

This condition can be achieved in two ways. On the one hand, the bandwidth of
the open loop itself can be affected by the right choice of the inertia M and drag D
matrices. Specifically, by increasing the magnitude of M and/or decreasing that of D,
the bandwidth is reduced since the poles of the system given by the matrix A = —M 1D
are moved closer to the origin (they become smaller in magnitude and therefore the time
constant of the system increases). Additionally, increasing M also affects the scaling of
the input to the system, given by the matrix B = M ~!. On the other hand, the the
closed-loop bandwidth is directly influenced by the gains of the guidance controller, such
that, for a higher proportional gain, the bandwidth is increased. The guidance controller
chosen in this project is a PI velocity controller, which will be tuned manually.

An important remark at this point is that, as reflected on the objectives and scope
of this project, it is assumed that the model of the plant is not fully known, specially in
the case of multiple vehicles. For this reason, the model used by the GS consists of the
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Figure 3.10: Guidance system block diagram

linear approximated matrices M , D, which constitute the linear state space matrices
A, B. Furthermore, even though an estimate of the magnitude of M and D for a
single vehicle may be available, it cannot be directly scaled to multiple vehicles since
additional unaccounted fluid dynamics effects may appear. This can be addressed by
establishing conservatively high values for the inertia matrix M while keeping the gains
of the guidance controller low enough such that it is ensured that the bandwidth of the
simulated closed-loop system in the GS remains low.

2. The simulated model should account for any limitation of the vehicles such as the
motor saturation levels or the maximum speed achievable.

This consideration is crucial in order to keep the signals bounded within the limits of
the actual system, and can be easily achieved by implementing these saturation elements
into the GS vehicle model.

3. The simulated model should include any information available regarding the dis-
tribution of the vehicles and their thrusters when they are attached to each other
in a formation.

a) + Surge b) + Surge

i i i
N NN o0 N o0 =
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Figure 3.11: Two possible vehicle formations with the same number of vehicles but
different configuration

The importance of this last consideration resides in the fact that, for a given set
of vehicles, the spatial arrangement (position and orientation) of each vehicle within
the formation will determine the availability of thrusters for each DOF, which in turn
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affects the total control action (saturation level) that can be assigned to each DOF. This
is illustrated in Figure 3.11, which shows two cases with the same number of vehicles
but different configuration and therefore available thrust in each DOF.

3.3.2 Navigation System

The navigation module in the multiple-vehicle system is composed by the set of ob-
servers that provide the state estimates for each vehicle and a block accounting for the
combination of all these filter outputs into a single state estimate corresponding to the
frame {b} of the whole system.

The filters used by the motion capture system in the experimental facilities is a
kinematic Kalman filter (KKF) which provides linear velocity estimates from the position
measurements. The angular velocities are provided by the inertial measurement units
(IMUs) in the vehicles. For the simulation, a plane-restricted motion version of the KKF
has been implemented, following the theory presented in [18].

The block in charge of providing the final estimate of the {b} state, already repre-
sented in Figure 3.8, obtains the angular velocity as the average of all angular velocities

Q=) =—> (3.67)

where @} is the estimated angular velocity of the vehicle formation, @} is the estimated
angular velocity of a vehicle ¢ in the formation expressed in the formation reference
frame {b} and N; is the total number of vehicles. The linear velocity is found with the
expression

1 Y
N > (0! + p} x 9!) (3.68)

)

A b
b =10, =

where p? is the vector from the center of a vehicle frame {i} to the center of the formation
frame {b}, 0 is the estimated linear velocity of the vehicle formation,  is the estimated
linear velocity of a vehicle 7 in the formation expressed in the formation reference frame

{b}.



CHAPTER 4
Materials and Methods

This chapter presents the hardware and software elements used in the development and
execution of this project, as well as it provides a further description of some implemen-
tation details of the proposed solution.

4.1 Hardware and Facilities

The main hardware components are the underwater vehicles, the motion capture system
and the remote operation elements. Some of these components are proprietary hardware

that had been acquired by the REMORA laboratory at DTU while others had been
deveolped in the laboratory.

Pool

The experimental campaign was held in the pool located inside the Autonomous Systems
Test Arena (ASTA) belonging to the Automation and Control department at DTU,
Denmark. It is 6 meters long, 3.5 m wide and 3 m deep.

BlueROV

The set of underwater vehicles used corresponds to several units of the Blue ROV vehicle,
from Blue Robotics® [4], which is a remotely operated underwater vehicle (ROV) that
offers full-DOF motion control capabilities and it is highly configurable. The specific
version used is the BluerROV-R1, which was the first commercially available version
launched by Blue Robotics®.

The vehicle has six thrusters, which offer maneuverability in all six DOF although, as
mentioned in previous chapters, only those involved in the motion at a constant-depth
plane are used here. These are highlighted in Figure 4.1.

The sensors available in the vehicle include an inertial measurement unit (IMU) which
provides the angular velocities and linear accelerations (although the latter is not used
in this project), and a depth sensor which is used to hold the ROV at the constant-depth
plane at which it will navigate.
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Figure 4.1: BlueROV frame diagram with the used thrusters highlighted in red

The ROVs are equipped with several additional electronic components that are in-
volved in its operation, the most relevant ones being the on-board computer and the
autopilot computer. The first hosts the operating system of the ROV, runs the programs
for control and other functionalities and communicates with the autopilot computer as
well as any other connected remote computer via an Ethernet cable. The second acts as
a sensor-fusion unit and it manages the signals to be sent to the motors.

In order to connect several ROVs, there are custom-made docking modules available
—developed by the REMORA laboratory— that can be fixed to either of the vehicle sides.
A pair of these modules attach to each other magnetically ensuring a rigid connection
between the ROVs carrying them.

Motion Capture System

The motion capture system (MCS) provides the position and rotation measurements of
a vehicle that has been equipped accordingly to be detected by the system. Specifically,
the MCS relies on the optical detection of a light-emmitting diode (LED) pattern that
is carried by the vehicle. There main components of the MCS are:

e A monocular camera. It is equipped with an infrared filter and provides the cap-
tured images to the personal computer.

o LED superstructure. It consists of a carbon fiber and 3D printed plastic structure
specifically designed to carry a LED pattern above the vehicle, as shown in Figure
4.2.

e Truss structure. It is an aluminium structure that is placed besides the pool and
extends above it holding the camera, which is facing down to the area where the
ROVs operate.
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Figure 4.2: BlueROV with LED superstructure. (a) General overview (b) LED super-
structure close-up (¢) ROV close-up

Considering the field of view of the camera, the truss was mounted to have an altitude
that would provide an area for tracking the LED superstructure of dimensions at least
5 meters long and 2.5 meters wide. This is illustrated in Figure 4.3
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Figure 4.3: Representation of all the hardware components required in a typical experi-
ment in the pool
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Remote Operation

In order for a manual operator to interact with all the elements in the system, two
components are used: a personal computer and a joystick. The personal computer is
connected through Ethernet cable to the ROVs and through USB cable to the joystick
and the camera of the MCS. The joystick is used to place the vehicles in the starting
positions for the experiments while the personal computer is used as an intermediate
node between the MCS, the joystick and the ROVs, and may assist in some of the
computations needed for the control program.

4.2 Software

The software used can be mainly divided into two groups, one used for the simulation
of the system and another for the final implementation and deployment in the vehicles.

Simulation Software

The proprietary software MATLAB® has been used for the simulation. It provides a
working environment as well as a programming language which are aimed to address a
wide range of numerical computing problems. It also offers several toolboxes —which
are packages that add functionalities to the base software— and other extensions to
address specific scientific and engineering domain needs.

In this project, the Control System Toolbor and the Statistics and Machine Learning
Toolbox have been used. Part of the simulation has also been implemented with the
Simulink® extension, which provides a block-diagram graphical environment to model
and simulate dynamical systems.

Additionally, other MATLAB modules that have been developed by other entities
have also been employed. These include a model of a single BlueROV vehicle whose
physical parameters had been identified for the relevant degrees of freedom, including the

non-linear (quadratic) drag terms; a set of functions for GNC kinematic transformations,
and the LWPR library for MATLAB.

Vehicle Operation Software

The framework used for the implementation of the motion control system and for the
communication with all the elements presented in the previous hardware section is Robot
Operating System (ROS).

ROS acts as a middleware in a network of connected nodes and provides extensive
functionalities for the communication between them. The nodes are constituted by
individual computation units that provide functionalities or relevant information to the
network. The code for these units is usually implemented in ROS “packages”, which
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support several programming languages —in this project, C++ has been used—. Apart
from the control system package that has been developed for this project and which
includes a the controller nodes and a setpoint generator node, the rest of the packages
had already been developed by other sources and have only suffered minor modifications
to adapt some of their functionalities to the needs of this project. These include

o Motion capture package: provides the image processing functions and implements
the kinematic Kalman filter node to obtain the linear velocities estimates.

o Joystick package: provides the node to communicate with the joystick.

e BlueROV package: provides several functions and services to communicate with
the ROV and access its motors and sensors.

Additionally, the C++ library for the LWPR algorithm has also been used and adapted
to this project, integrating it in the controller nodes.

4.3 Implementation

This section presents some implementation considerations for both the simulated system
and the final vehicle control system.

The LWPR code was extended both cases to account for the cerebellar module ca-
pabilities presented in the previous chapters.

Simulation

The ROV models were simulated using the empirically identified physical parameters in
[17] which include both linear and quadratic drag terms.

In order to account for the discrepancies between the real ROV dynamics and the
model used by a controller when it is operating in the real vehicle, the simulation in
this project also included differences between the model of the plant and the model used
by the controller. Specifically, the dynamical model of the plant used the best available
information, —this is, the full model with the non-linear quadratic drag terms—, whereas
the models used by the control algorithm (in obtaining the full-state feedback controller
gains K and in the guidance system to generate the trajectories), only considered up to
the linear drag terms, and all the parameters were slightly tweaked with respect to the
identified ones.

The noise in the sensors was implemented with random zero-mean Gaussian noise,
and the standard deviation was chosen to match that of the real sensors (the IMU sensors
and the motion capture system).
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For simulating two rigidly connected ROVs, the methodology presented in [23] was
implemented. However, an alternative, simpler method was also developed to obtain
faster simulation speeds, and was used in most of the project. It consisted on simulating
just one rigid body with altered mass and drag to match the properties and behavior of
the system obtained with the aforementioned, complete method. The motors and sensor
sources were also duplicated and positioned in the respective places.

For obtaining the gains of the full-state feedback controller, the place MATLAB
command was used, which implements the pole placement method in [19]. Although
these were later tuned manually as well, the initial method served as a way to find the
right order of magnitude.

Real Vehicle System

The depth-hold functionality of the ROVs was achieved by using the services provided
by the BlueROV ROS package that communicates with the ROV firmware to establish
what is called “flight modes”. These modes aim to assist several control scenarios needs,
and the depth-hold mode is included among them. This mode stabilizes the ROV for
roll and pitch, and controls the depth to keep it at a constant value with the help of the
on-board depth sensor.

For the implementation of the control architecture for two vehicles, the design consid-
ered a ROS node to be executed by each vehicle, which processed their respective sensor
data and sent the motor commands processed by a third node. This third node acted as
a central unit that merged the filtered sensor data from the two ROVs and provided an
allocated control action to each vehicle, according to Figure 3.8 in the previous chapter.
Due to lack of time from the limitations menrioned in the first chapter, this dual-ROV
control system ROS implementation could not be tested.



CHAPTER 5
Results

This chapter presents the main results obtained in a series of simulations and real ex-
periments. In order to test the proposed control algorithm, several control scenarios
are designed, with varying levels of complexity and requirements. The algorithm was
first implemented in a single-vehicle simulation in order iterate and tune it faster, and
was then adapted to the dual-vehicle simulation. In the real experiments, it was only
possible to test it in one ROV, due to the limitations mentioned in Section 1.3 in the
first chapter.

5.1 Control Scenarios

To assess the controller performance, a subset of the simulation experiments is performed
with only one controlled degree of freedom. Focusing on one DOF allows to obtain one-
dimensional metrics which can be easily interpreted and provide a good understanding
on how the control algorithm behaves in the system. Apart from the main learning
controller (LC), which includes the feedback term and the ULM, other controllers are
also considered to contrast the results. These include a LC without the cerebellar module,
a LC with the feedback gain K modulated by the confidence interval I. and a classical
PI controller which is tuned to have the same proportional gain as the LC and an
integral gain that provides fast convergence of the tracked variable without introducing
overshooting. The specific test cases considered for one DOF are:

e Step response. A step response analysis to evaluate the convergence characteristics
of the tracked velocity is performed on the LC and the PI controller.

o Disturbance rejection. The ability of the proposed controller to adapt to distur-
bances in the plant is tested, and compared against the LC with no CM and the
PI controller.

Additionally, three main metrics are measured to provide a numerical analysis of the
performance.

« Standard deviation of the tracking error, o(eys,;), for a whole trajectory after the
LC has completed an initial phase of learning. The vector ey, is composed of the
tracking errors for all time-steps in the trajectory, for the particular DOF tested.
This provides a magnitude reference for the overall tracking error in the trajectory.
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o L-infinity norm on the tracking error, |||, for the same situation as the L2
norm. This shows the largest tracking error in the trajectory.

 Standard deviation o(usg) of the control action for a given period of time in steady
state, ugs. This indicates how much noise is being amplified by the controller and
a reference for its energy usage.

After this, the controlled degrees of freedom are increased to evaluate the ability of
the ULM to learn a more complex function. Specifically, two cases are of special interest:

o In the case that Assumption 3.2 holds true —the motion of each DOF is uncoupled—
check whether the LWPR output for each DOF only depends on the input kine-
matic variables for that specific DOF —the function learned should be insensitive
to the rest of the input variables—. For example, for the LWPR controlling the
surge motion, its output should only vary when the surge reference velocities and
accelerations change, and not when the yaw or sway reference variables change.
This can be tested in simulation by establishing diagonal inertia M and drag D
matrices to ensure that Assumption 3.2 is met.

o In the case that Assumption 3.2 is not met —which may be the case in the real
vehicles—, confirm that a change in the input vector of a single DOF actually af-
fects several LWPR outputs —those corresponding to the DOF that are coupled—.
For example, if the yaw motion is coupled with the surge motion, a change in the
desired velocities and accelerations in surge should activate the LWPR models
in both surge and yaw. The coupling can be ensured in simulation by adding
off-diagonal terms to the matrices M and D to break Assumption 3.2.

The trajectories used for testing are classified into those that only involve one DOF
and those that involve two. For a single controlled DOF, the trajectory is composed
of step changes in velocity which increase in magnitude over time, in order to provide
the ULM with a gradual approach in learning the dynamics function. This trajectory is
generated by providing the velocity setpoints as a reference to the guidance controller,
which outputs a velocity signal with smooth transitions between these setpoints.

For two DOF (specifically surge and yaw), a zigzag trajectory is generated. The
guidance controller for surge is fed with velocity steps that increase in magnitude over
time, but always remain positive (to ensure a forward zigzag motion). The yaw guidance
controller receives a reference step signal which also increases in magnitude over time
but alternates the sign every time the vehicle reaches a certain turned angle in the
corresponding direction. This specific trajectory is common in marine vehicles to test
the maneuvering capabilities, and it is also known as Kempf’s zigzag maneuver [20].

All the previous tests are performed with the centralized control architecture which
assigns a LC to the motion control of each DOF. Afterwards, an analysis of the dis-
tributed control structure presented in Section 3.2.4 is also included.
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5.2 Simulation Results

5.2.1 1-DOF experiments

Controller Performance

The previously defined metrics are applied to three versions of the LC and two versions of
a PI controller. The LC controller is tested with its base design, the design including the
modulation of the feedback gain matrix K (a scalar K in the case of one controlled DOF)
as a function of the confidence interval I. of the LWPR output, and the base LC without
the CM. The classical PI is evaluated with a version that has the same proportional gains
as the base LC feedback module and another with higher proportional gains, with their
respective integral gains adjusted to maximize tracking performance. The results of
these tests are found in Table 5.1, which shows the statistical values of mean X and
standard deviation o, for five executed simulations for each controller.

(€traj) [ms'] [€6eajll, [ms™'] o(uss) [N]
X X

x 1072 Ox X o, x 1072 O
LC base 3.46 1.41 x 1072 0.097 9.96 x 10~ % | 6.49 5.96 x 103
LC (no CM) | 3.44 1.92 x 1072 [ 0.091 3.19 x 1073 | 5.65 2.68 x 1073
LC K(1,) 3.29 6.28 x 1073 | 0.108 1.01 x 103 | 6.23 1.01 x 102
PI equal gain | 11.3 8.25 x 1073 | 0.336 2.18 x 1073 | 8.19 1.47 x 1072
PI high gain | 8.58 1.04 x 1072 [ 0.280 3.42 x 1073 | 9.02 5.38 x 1073

Table 5.1: Average and standard deviation values for the three metrics applied to the
each controller

It can be observed that the LC in all its configurations provides better performance
than the classical PI controller both in terms of trajectory tracking error ei,; for the
whole trajectory and steady-state noise amplification from o,. Among the different
configurations of the LLC, both the base LC and the LC with no CM have similar tracking
performance, but the noise amplification is larger in the base LC since the CM dynamics
introduce additional frequency components in the control action. According to these
results it might seem that the LC with no CM is preferable. However, these results were
obtained from a simulation scenario with no disturbances. As it will be shown later,
the CM is be crucial for disturbance rejection. Finally, the LC with K gain modulation
provides a similar performance, with lower general tracking error but slightly higher
maximum error given by the L-infinity norm. The value ¢, remains lower than the base
LC. This has been achieved by setting a K,,,, slightly higher than the base K and a
K i slightly lower, which provides faster convergence for areas of the trajectory space
which may have not been fully explored, while keeping a softer control action in steady
state where the dynamics have been learned by the LWPR and the I. is lower, thus
diminishing o,.
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Disturbance Rejection

Next, the capacity of the controller to reject disturbances in the plant is tested. The
disturbance has been modeled as an ocean current that is applied to the vehicle following
a step signal. The magnitude of the step is equal to the present vehicle velocity, 0.5 m/s,
acting in the direction of motion. It is applied in steady state, after the LC has finished
a previous phase of learning.

The controllers tested here are the base LC, the LC with modulated K, the LC with
no CM and the PI with equal proportional gains as the LC.
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Figure 5.1: Disturbance response for the base LC (left) and the LC with modulated K
(right)

As it can be appreciated in Figure 5.1, the CM provides the required control action
(ucm in blue) to adapt rapidly to the disturbance and bring the tracked variable back
to the level specified by reference. This signal provided by the cerebellar module is
then slowly incorporated into the LWPR module, which in the long term learns the new
function to be represented. In the case of removing the CM (Figure 5.2 left), the LC
fails to adapt in an acceptable amount of time to the disturbance. These figures clearly
show the nature of both the LWPR and the CM, and the importance of the later to
provide short-term adaptation.

In Figure 5.1 it is observed that the K gain modulation endows the LC with faster
adaptation against disturbances, with the settling time in the base LC being over 2.6
seconds —with longer time to remove offset in velocity observed after the initial peak—
and in the LC K(I.) under 2.4 seconds —with faster offset removal. The confidence
interval I. of the LWPR output is shown in black and, as it grows, it increases the K
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Figure 5.2: Disturbance response for the LC with no CM (left) and the PI controller
(right)

gain which in term accelerates the convergence of the total feedforward action to the
value required to cancel the disturbance. This confirms the established statements in
the last part of Section 3.2.3 of Chapter 3 about the role played by the K gain in the
convergence of upp and proves that the I. signal can be used to alter the update rules
of the LWPR and the CM.

Finally, the PI controller shows an overall faster convergence and lower amplitude of
the velocity variation induced by the disturbance. This is due to the fact that the PI has
been tuned to provide a fast response to changes in velocity, to attempt to match the
performance of the LC in normal trajectory tracking conditions. Nevertheless, L.C could
also be tuned to reduce the convergence time in front of disturbances by increasing the
update rate [ of the cerebellum or the magnitude of feedback gain matrix K, but this
would increase as well the noise amplification measured by ¢,. A compromise could be
achieved according to the specific needs of the particular mission of the vehicles.

Step Response

Now, the response of the system after a change in the velocity reference is analyzed.
Since the step is applied in the guidance system as a velocity setpoint, the reference
signal provided to the plant is a smooth function, thus not corresponding to a pure step.
This analysis does not consider a pure step since the LC has not been designed to follow
abrupt changes in the tracked variable. Rather, it expects a smooth function in the
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tracked velocity, and the corresponding time-derivative function. These are provided by
the GS and their specific profile can be shaped with the choice of the GS parameters.
However, an analysis of the LC performance without the time-derivative as an input to
the feedforward module will be provided, to evaluate the its influence in the LC behavior.

The controllers tested in this section are only the base LLC and the PI with equal
proportional gain. This is because the behavior of the LC under normal operation
conditions (trajectory tracking with no disturbances) does not vary significantly between
the versions presented before.
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Figure 5.3: Step response for the base LC (left) and PI (right)

Figure 5.3 shows the smooth-step response of both the LC and the PI controllers.
It is clearly seen that the LC provides a significant control action immediately after
the reference velocity starts to rise. This corresponds to the feedforward control action,
provided mostly by the LWPR, which matches the required force to set the vehicle to
the desired velocity according to the inverse dynamics model. Indeed, this control signal
makes the vehicle velocity follow the reference closely, as can be observed. On the other
hand, the PI response lags behind the reference signal, since there exists an inherent
delay in a feedback-based controller to settle after a reference change.

The LWPR is able to provide the instant feedforward control action due to the
instant change in its intput corresponding to the desired acceleration of the vehicle
(time-derivative of the tracked variable). In fact, the profile of this signal, together with
the velocity, is shown in Figure 5.4 (right). If the acceleration is removed as an input to
the LWPR for that particular step change, the plant response takes the form shown in
Figure 5.4 (left).
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This shows that the time-derivative of the reference variable —u,o in Figure 5.4
(right)— is crucial for the LWPR to provide the feedforward control action, since this
action represents the inverse dynamics function of the plant, which is dependent on the

acceleration.

5.2.2 2-DOF experiments
Uncoupled Motion and LWPR input-output Independence

The zigzag trajectory was used to test the question of whether, for a vehicle with uncou-
pled motion in all DOF, the LWPR output for a particular DOF is independent of the
inputs for the rest of DOF. As stated in previous chapters, the LWPR inputs are the
reference velocities and accelerations for all controlled DOF, since it is desirable that
the function learned can capture the interdependecies in motion between all DOF (the
coupling effects). However, if only one DOF input is excited, only the LWPR output
assigned to that DOF should be excited.

In this zigzag trajectory, the velocity reference for the surge motion was kept at a
constant value for the entire path, whereas the yaw velocity reference was gradually
increased in magnitude and was periodically switched in sign to produce the zigzag
motion.

The results are shown in Figure 5.5. The first 30 to 40 seconds represent the initial



52 5 Results

Reference Variables Control Action

OE 0.5 10
el
‘S
[ 5 L
g g El
c .0
SR 2.’
~
Fc% ‘f"}ref St
'%‘ Wref
£-0.5 -10 '
3 10
% 01
)
& .o — Ut
; .\005 i o ¥ UFB
n @ ref ULWPR
g 10 + ucMm
L‘é 0r Utotal
S : : : -20 : : :
0 20 40 60 80 100 0 20 40 60 80 100
Time [s] Time [s]

Figure 5.5: Uncoupled system analysis. The top plots correspond to the yaw motion
and the bottom plots to the surge. The left plots show the reference variables for each
these DOF and the right plots the control action. The bottom-right plot has a floating
window that shows a detail of the LWPR output and total control action from time 65s
to 95s

learning phase, in which the LWPR output still does not approximate correctly the
inverse dynamics model and presents some random fluctuations. As it can be observed,
despite the reference for the surge being set to a constant velocity, the output of the
LWPR controlling this DOF reacts to the reference changes in the yaw motion. The
tendency of this LWPR output is to converge towards a stable value that makes the
surge velocity be steady, as it can be observed from the diminishing magnitude of the
peaks over time in the upwpr signal at the bottom-right plot. However, this is not a
desirable behavior in a real control scenario.

It is hypothesized that this outcome is produced by the fact that, when the first
change in the yaw reference variables is produced, the teaching signal for the surge
LWPR may not correspond to the stable value that represents the true inverse dynamics
function —either because the LWPR has not learned this function yet or because any
random component has been added to the target function (total control action), via noise
amplification from the feedback controller or the CM. Because of this, and considering
that the LWPR algorithm assigns more credit to the first data points gathered in a
new explored region of the input space, any bias introduced in this initial data will be
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captured by the LWPR for the long term for this input space region. Even though this
issue has not been addressed in this project, two possible approaches to solve it are
proposed.

First, in order to ensure that the learned LWPR function is stable for a particular
DOF when a change in the reference of another DOF is introduced, the algorithm should
be given more time to consolidate the function for the first DOF. This would correspond
in this case to delaying the yaw reference changes further in time.

Second, since even in the case that the LWPR function has been properly learned
any random noise component could be added to the reference function, the commonly
used technique in machine learning of batch training could be applied here. Indeed, even
though it has not been explored in this project, the LWPR offers the possibility of fitting
its function via batches of data. This would average out any random component in the
target function and would avoid the problem of assigning too much credit to the first
set of data points in a new input space region.
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Figure 5.6: Coupled system analysis. The top plots correspond to the yaw motion and
the bottom plots to the surge. The left plots show the reference variables for each of
these DOF and the right plots the control action.

Coupled Motion and LWPR input-output Dependence

To test the ability of the LWPR to learn the relationship between different coupled DOF,
it is proposed to use a straight trajectory with only changes in the surge reference. The
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coupling is set from the surge motion to the yaw motion through the drag matrix D,
such that a forward motion induces an anti-clockwise (negative in the z axis) rotation.
Therefore, for a positive reference velocity in surge, the output of the LWPR for yaw

should also be positive to counter the coupling effect. The results are shown in Figure
5.6.

These results prove that the LWPR algorithm can learn a representation of the
dynamics model in which coupled motion exists. It is observed that for a positive
reference velocity (and control action) in surge, the control action in yaw is also positive,
thus confirming the statement from the previous paragraph.

Distributed Conftrol Architecture

The distributed control architecture presented in Section 3.2.4 shows a similar behavior
in motion as the previous results. It has been applied to the case of two vehicles con-
nected on their sides, similarly to the diagram shown in Figure 3.11 (a). An observation
made in the simulations is that since multiple ULMs are involved in the motion con-
trol of a given DOF, the combination of all their outputs provides the adequate control
action fur such DOF but their particular outputs do not correspond to the optimally
allocated control action for their corresponding motors.

This is, given a total control action for each motor (which is the sum of the ULM
output and the proportional feedback control action allocated for that motor, as shown
in Figure 3.8) represented by the vector p, the corresponding force or moment applied
to each DOF is determined by Equation 3.65, restated here 7 = H p.

This total control action 7 is provided correctly by the distributed control system to
achieve the desired trajectory tracking performance. Since the system is overactuated,
infinite solutions for p exist which provide the same control action 7, the optimal one
being that determined by p = H 7. However, the distributed structure usually provides
a set of solutions for p which do not correspond to the optimal one, since each ULM
learns an independent function that evolves on its own, and the teaching signal ultimately
comes form the tracking error e (as shown in Equation 3.60, which can be minimized
for any p that provides the right 7.

For this reason, even though the distributed control architecture may present a more
biologically plausible solution to the motion control problem, in the current formulation
there is not any considerable advantage of using it over the centralized architecture.
However, it provides a first step towards a more complete and comprehensive solution
which may include additional mechanisms to address the optimization of p, and which
may constitute a more biologically faithful architecture.
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5.3 Experimental Results

As mentioned before, the experimental validation of the LC was performed with one
vehicle and one controlled degree of freedom. A pattern of alternating velocity references
in surge with varying magnitude was used. Several experiments were performed to
tune the controller parameters and the results shown here represent an example of the
final version achieved. Additionally, a PI controller was also tuned to provide a similar
tracking performance as the LC, which required to increase the proportional gain to four
times as much as the feedback gain of the LC, and the integral gain was adjusted to
converge fast with no overshooting.
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Figure 5.7: Comparison of the learning (LC) and the PI controllers upon a change in
the velocity reference, tested in the real vehicle

In Figure 5.7 the response of the LC after a previous training period is shown on
the left, and it is compared against the PI on the right. The magnitudes of both the
LWPR control action uywpr and the total control action wya are represented as 50%
of their original values to bring them to a similar scale as ucy and upg in the plot. The
gray areas represent the time period and control action (force) sign required to move
the vehicle in the direction specified by the reference velocity.

As it can be observed, the LC offers a faster convergence than the PI while requiring
lower feedback gains. This difference in the gains can also be appreciated in the profile
of the total control action, which is significantly smoother in the LLC than in the PI after
the initial transient period, meaning that less noise is amplified in the feedback loop.
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Another characteristic observed in the LC is that it induces a slight overshooting in
the vehicle velocity respect to the desired values. The reason for this is that, as will be
shown next, there exists a delay between the control commands and the vehicle motion
response, which affects how the LC learns its feedforward function. Specifically, the
delay translates into a higher tracking error during the initial transient of a change in
the velocity reference. This error is amplified by the proportional feedback controller,
which adds to the total control action that constitutes the teaching signal of the LWPR.
Thus, during the delay phase, the total control action increases in every iteration, since
the LWPR keeps incorporating into its model this additional control signal —this can be
observed in Figures 5.7 and 5.8, where the total control action is larger than the LWPR
one during the transient. Over a period of training time, this shows as a feedforward
control action that exceeds that required by the plant during the transient in the velocity
change, producing the observed overshooting

The delay is shown in detail in Figure 5.8. Here, it is observed that after the first
control action in the surge direction (positive force in surge) is commanded by the
controller, the vehicle takes about 0.19 seconds to start moving in such direction. A
method to deal with delays in the plant will be proposed in the future work section.
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Figure 5.8: Detail of the LC controller upon a change in the reference signal showing
the delay in the plant response

Finally, the tracking performance of both the LC and the PI is also analyzed nu-
merically by applying both the o, and ||e.;|| . metrics to a trajectory executed over
30 seconds. Figure 5.9 shows the tracking error for both controllers over such period of
time, and Table 5.2 shows the metrics. It is observed that the delay affects similarly
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both the LC and the PI controller, with slightly higher deviations in the LC (as per the
|| €traj|| , metric). However, the LC presents a better performance overall according to o,
and it is again observed in Figure 5.9 that the LC converges faster and provides a more
steady tracking of the velocity. The higher value of ||€.;|| . in the LC might be caused
by an incomplete learning of the feedforward action by the LWPR. An earlier, higher
control action from the LWPR, specially in the 159.6s to 159.8s time period in Figure
5.8, would provide an higher velocity response in the vehicle during the first instants of
the transient.
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Figure 5.9: Tracking error for the LC and the PI controllers for a period of 30 seconds

U(etraj) [msil] ||etraj||oo[msil]
LC | 7.55 x 1072 0.2796
PI | 6.92 x 1072 0.3063

Table 5.2: Tracking metrics for a trajectory of 30 seconds executed in the real vehicle,
for the LC and the PI controllers
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CHAPTER 6
Discussion

The main results and considerations from the previous chapter are highlighted here.

The proposed learning controller proves effective to learn an inverse dynamics model
of the plant, represented by the ULM. This model is represented as a feedforward mod-
ule in the control structure, which allows the LC to provide better trajectory tracking
accuracy than a PI controller that has higher feedback gains, thus reducing as well the
noise amplification in the feedback loop.

The cerebellar module shows essential to deploy the LC in a real scenario such as the
ocean, in which disturbances in the form of currents are constantly affecting the vehicle
and thus fast adaptation is required.

The LC version incorporating the K gain matrix modulation as a function of I, has
demonstrated that it can be advantageous in some situations, since the K (I.) function
shown in Equation 3.61 can provide lower gains when the learned model has low uncer-
tainty —thus reducing the noise amplification in the feedback loop— and higher gains
when a permanent disturbance or change in the model appears, which allows the ULM
to learn this model faster, as shown in Equation 3.60. In general, a proper choice of
the K matrix, even if it remains constant, is crucial to ensure a balance between fast
feedforward model convergence and low noise amplification in the feedback loop.

Finally, in the case of controlling several degrees of freedom, some undesired interac-
tions appeared between motion directions that were not coupled, since the LWPR, algo-
rithm did not capture the function correctly in the initial stages of learning. Solutions
were proposed involving mainly delayed training between different motion directions and
batch training.

Next, the research questions formulated in the Introduction chapter are revisited and
analyzed according to the presented results.

Can a biologically-inspired controller in the scope of AUVs learn a relevant dynam-
ics model such that it outperforms other traditional techinques in terms of trajectory
tracking? It has been proven both in simulation and in real experiments that the pro-
posed LC successfully learns and takes advantage of the inverse dynamics model of the
plant, which allows it to outperform traditional feedback control approaches such as a
PI controller.

Can this controller learn a relevant model in a short enough period of time such that
it does not hinder the operation of the vehicles in an IMR task? The LWPR algorithm
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—the part of the ULM that consitutes the long them model learning— presents fast
converge properties with respect to other machine learning methods, especially during
the initial training period in a region of its input space. This makes it suitable to obtain
a relevant model of the plant in a short amount of time, allowing the vehicles to switch
earlier to their assigned tasks or even learn part of the model while performing them.
The specific convergence rate can be adjusted according to 3.60 to meet the required
needs.

Can the learning controller be designed to be robust against external disturbances
and changes in the dynamical model? As shown in the results, the cerebellar module
handles the short-term tracking errors induced by sudden disturbances, while the LWPR
assimilates the new model to be represented in the long term in the case of persistent
disturbances, which may correspond to changes in the dynamical model of the vehicles.
Again, the convergence speed of both the CM and the LWPR can be modulated as
desired according to Equation 3.60.

Can the learning controller provide some level of fault tolerance? Although this
question was not fully explored, it constituted part of the motivation to develop the
distributed control architecture. An enhanced and truly distributed control architecture
that individually optimized the function of each thruster’s ULM according to a global
control objective (such as the mimimization of the trajectory tracking error and the total
control action), would be able to adapt each thruster’s function in the event of a motor
failure or capacity loss. The new functions learned by the ULMs could be analyzed to
find the source of the failure.



CHAPTER /

Conclusions and Future
Work

The novelty of the problem addressed by this project endows it with a research nature,
since no prior solutions had been proposed to address the motion control of multiple
rigidly-connected vehicles in a real-life working environment. The poject started with a
review of the literature on dynamics-model learning techniques, which found previous
publications on learning controllers for single underwater vehicles that were generally
tested in more simplified and less demanding scenarios. Other techniques were also found
for different robotics applications, and of special interest were the biologically-inspired
ones, since they provided the desired properties of fast learning and no overfitting.

With this, the proposed learning controller was designed, which was constituted by
a feedback module and a feedforward learning module represented by a Unit Learning
Machine [30]. An analysis was made of its dynamical properties, which allowed to acquire
insights into its convergence capabilities and provided a way to alter them by adjusting
several parameters such as the feedback gain matrix K, the cerebellar module learning
rate § and the LWPR update parameter A\;. A distributed control architecture was also
proposed, which mimicked more faithfully the human brain motor structure.

In order to test the effectiveness of the proposed learning controller, several control
scenarios were designed, both in simulation and real experimental facilities. In simula-
tion, a model of a single vehicle and a model of two connected vehicles were implemented
in MATLAB, which allowed for extensive tuning and design improvement based on iter-
ative testing. The results showed that the proposed solution considerably outperformed
traditional approaches such as a PI controller with high gains in terms of trajectory
tracking. However, an undesired behavior in the LWPR algorithm was observed when
multiple controlled degrees of freedom interacted in the vehicle motion. Two solutions
were proposed, which will be revisited in the next future work section.

For the experimental validation, a full implementation of the learning controller
was developed in ROS, both for a single controlled vehicle and for multiple connected
vehicles. However, due to the stated limitations, only the single vehicle algorithm could
be tested. The results in this case were also promising, outperforming as well a high gain
PI controller in the trajectory tracking problem. A delay in the system was observed,
which induced an undesired behavior in the learning controller, although it did not
hinder its ability to perform the control task. The proposed LC was not designed to
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deal with delays in the controlled plant, and therefore an extension is proposed in the
future work section.

/.1 Future Work

This section addresses the aspects of the project that could not be fully completed or
that were identified during the solution implementation as possible components to be
improved in the future.

The distributed control architecture, as previously stated, does not provide a truly
distributed approach since the information used by the learning modules is by default
established by a centralized source, namely the global feedback controller. The simu-
lation results obtained with this structure did not provide any advantage either with
respect to the centralized control structure, and showed a sub-optimal solution to the
functions represented by the learning modules. Therefore, it is proposed that, to fully
harness the properties of a distributed control architecture, a more comprehensive design
is provided. In this new approach, each learning module function would be optimized
to minimize the trajectory tracking error of the vehicle formation and the total control
action used. This could also provide a means for fault tolerance capabilities, as discussed
in the previous chapter.

The LWPR in a multiple DOF control setting, as shown in the results, presented
an undesired behavior by which the output of a LWPR module assigned to control a
given DOF, reacted to the reference commands of other DOF that were not coupled
in motion. In order to tackle this, the possibility of using batch training for learning
the LWPR functions arised. This is a direction worth exploring since it is an already
implemented functionality in the LWPR algorithm, and could provide better learning
and convergence capabilities for a general setting, and specifically for the case of multiple
controlled DOF.

The time delay from a control command to the vehicle motion response found in the
experimental tests impaired to a certain extent some of the learning controller capabili-
ties, since its design did not account for such delays. In order to address this issue, the
Smith predictor [28] control structure is suggested, which incorporates a model of the
plant delay in the control loop.

The ROS implementation of the control system for two connected vehicles should
be tested to validate the effectiveness of the proposed controller to learn the inverse
dynamics function in a more complex setting.

Finally, two other ways to expand the project are also suggested. On the one hand,
the LWPR algorithm allows to save the learned model in a format that can be ported to
other devices that also make use of the LWPR libraries. It would be of interest to test
the viability of learning a LWPR model in simulation which would then be deployed to
the vehicles which, depending on the accuracy of the simulated vehicle models, would
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allow to skip or reduce the initial learning phase of the vehicles in a real working scenario.
On the other hand, the opposite would also show very convenient. That is, learning the
models in the real vehicles and then translating then into a simulated environment to
perform other model validation activities or tasks planning in preparation for a new
mission. The inconvenient here is that the LWPR model represents an inverse dynamics
model of the plant, whereas for replicating the behavior of the vehicles in simulation, a
forward model would be needed.
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Appendices






APPENDIX A
Supplementary Material

Further resources regarding code, videos or other data generated in this project may
be published at https://sites.google.com/view/adria-msc-thesis or at https://
github.com/neutrinum.


https://sites.google.com/view/adria-msc-thesis
https://github.com/neutrinum
https://github.com/neutrinum
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