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Abstract: The design of a structure is generally carried out according to a deterministic approach.
However, all structural problems have associated initial uncertain parameters that can differ from
the design value. This becomes important when the goal is to reach optimized structures, as a small
variation of these initial uncertain parameters can have a big influence on the structural behavior.
The objective of robust design optimization is to obtain an optimum design with the lowest possible
variation of the objective functions. For this purpose, a probabilistic optimization is necessary to
obtain the statistical parameters that represent the mean value and variation of the objective function
considered. However, one of the disadvantages of the optimal robust design is its high computational
cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete
box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural
stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with
the high computational cost. Results show that the main variables that control the structural behavior
are the depth of the cross-section and compressive strength of the concrete and that a compromise
solution between the optimal cost and the robustness of the design can be reached.

Keywords: robust design optimization; RDO; post-tensioned concrete; box-girder bridge; structural
optimization; metamodel; kriging

1. Introduction

All structural designs involve variability and uncertainty [1,2]. The initial parameters, the structure
dimensions, the mechanical characteristics of the materials, and the loads may differ from the design
values [3,4]. Nevertheless, the design of a structure is made using the nominal value, which has a
low probability of occurring (for example, the resistance of concrete is the resistance that has a 5%
probability of failure). In addition, safety coefficients associated with a given probability of failure are
assigned. However, a variation of these initial uncertain parameters can influence the variability of
the structural behavior. Structural optimization usually uses a deterministic approach that does not
consider the effects of the associated uncertainty [5–13]. This means that the structure has an optimum
behavior only under the conditions initially defined, and the response can vary significantly when the
values differ from the design values [14,15].

Unlike this approach, robust design has been studied to obtain designs in which the uncertainty
of the initial parameters has the lowest possible influence on the objective response. This robust
design is reached by a probabilistic optimization. Nowadays, there are two approaches to the optimal
probabilistic design of a structure: Reliability-Based Design Optimization (RBDO) [16] and Robust
Design Optimization (RDO) [17]. In RBDO, the probability of failure is studied from the variations
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of the initial parameters. RDO studies a design that is less sensitive to the variation of the initial
parameters. The present paper focuses on the RDO. The concept of robust design was proposed by
Taguchi in the 1940s and applied to optimization problems in 1980 [1]. This approach uses the mean
and standard deviation to study the variability of the objective response.

The main limitation of RDO is the computational expense because assessing the sensitivity of the
objective response of the problem requires a high number of runs [18]. Therefore, it is necessary to
find methods that allow carrying out the optimization process more efficiently [4,19,20]. Metamodels
allow the generation of a mathematical approximation of the objective response (an objective surface)
from the assessment of points within the design space. Once the response surface has been generated,
obtaining the value of the objective response given the inputs is much faster. These mathematical
approximations or metamodels have already been used to solve RDO process problems [4]. The most
widespread metamodels are polynomial regression, artificial neural networks (ANN) and kriging.
ANN has been used in different works related to structural engineering [21,22]. However, the kriging
model has been demonstrated to be useful to obtain great reliability in the assessment of the response
due to its predictive accuracy in non-linear functions [23]. Penadés Plà et al. [24] compared standard
heuristic optimization and heuristic optimization based on kriging models, demonstrating that the
solutions obtained through optimization based on kriging models are close enough to the solutions
obtained through standard heuristic optimization, but with high savings in computational costs.

In the present paper, the robust design methodology is applied to a continuous prestressed
concrete box-girder footbridge to obtain a bridge that is optimal in terms of its cost objective function
and robust in terms of structural stability. Its structural stability is measured by the variability of the
vertical displacement in the middle of the bridge [19]. To this end, Latin hypercube sampling is used to
obtain the initial sampling, the kriging model is used to obtain the mathematical approximation to
the response, and then the simulated annealing optimization algorithm is used to obtain the robust
optimum design. All this will be studied for different uncertain design parameters: the modulus of
elasticity, the overload, and the prestressing force.

2. Robust Design Optimization

Robust design studies the variation of the objective response generated by the uncertain initial
parameters. Therefore, robust design optimization (RDO) aims to reach the best objective response with
the smallest deviation. It implies that the RDO problem is defined as a multi-objective optimization
problem in which the objective response is the mean and the standard deviation (Equation (1)).

min
{
µF(x,z)(x1, x2, x3, . . . , xn), σF(x,z)(x1, x2, x3, . . . , xn)

}
(1)

where x1, x2, x3, . . . . . . ,xn are the deterministic values of the design variables or the probabilistic
function of the uncertain initial parameters.

Commonly, the two objective functions to be minimized in an RDO problem are in conflict. This
situation leads to a set of solutions that represent a Pareto frontier. Figure 1 shows an example of the
difference between the optimal solution and the robust optimal solution in a design space of one design
variable. Solution A is the optimal solution, point B is the most robust solution and point C is the
robust optimal solution. It is possible to see that the same variation of the design variable (v) causes a
higher variation in the objective function of the solution A (f A) than it does in the solution C (f C).
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3. Robust Design Optimization Using Metamodels

The main goal of metamodels is to obtain results more efficiently by creating a mathematical
approximate model of a detailed simulation model (model of a model). This makes it possible to
predict output data (objective response) from input data (variables or design parameters) of the design
space. There are three main steps to create a metamodel: (1) obtaining the initial points of the input or
sampling data set within the design space (size and position), (2) choosing the method to create the
approximate mathematical model, and (3) choosing the fitted model. Each of these three steps can
be performed using many different options [25]. In this study, Latin hypercube sampling is used to
obtain the initial sampling, the kriging model is used to create the approximate mathematical model,
and the search for the Best Linear Unbiased Predictor (BLUP) is used as the fitted model. Then, the
mathematical approximation created is used to predict the objective functions according to the initial
design variables and parameters. In this way, the optimization can be carried out more efficiently,
saving a lot of computational costs, which is important in a probabilistic optimization. In addition, the
simulated annealing algorithm is used to perform the optimization. Figure 2 shows a flowchart of the
robust design optimization using these characteristics. A more detailed description of this approach
can be seen in Penadés-Plà et al. [24].
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3.1. Latin Hypercube Sampling

McKay et al. proposed in 1979 the Latin hypercube sampling (LHS) [26]. This method is a
space-filling type of design of experiments. That means that this type of design of experiment trends
to cover all of the design space by the positions of the initial sample points. In this way, local
deformation of any area of the design space can be taken into account. For this purpose, a number
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N of non-overlapping intervals must first be determined. These intervals divide each range of the
design variables (v) into N sections, generating a mesh in the design space with Nv regions. Then, a
combination of N random points is generated, so each point is placed in a combination of different
intervals of each range of design variables. This guarantees that the initial sampling covers the
entire range of each design variable. LHS has been used in several papers, showing its validity for
the estimation of metamodel output data [20,27]. For this reason, in the present paper, a uniform
distribution of the initial sample points by LHS is employed.

3.2. Kriging

The Kriging metamodel was originally created by Dannie Gerhardus Krige, later much research
contributed to its development and finally, Matheron formalized the approach in 1963 [28]. The main
idea of the kriging metamodel is that the deterministic response y(x) can be described by

y(x) = (x) + Z(x) (2)

where the approximation function is known is called f (x), and Z(x) is an execution of a stochastic
process with a mean zero, variance σ2 and a non-zero covariance. The first term of the equation, f(x),
offers a global approach to the design space that is similar to a regression model (Equation (3)). The
second term, Z(x), generates local deviations to interpolate the initial sample points using the kriging
model (Equation (4)).

f (x) =
n∑

i=1

βi· fi(x) (3)

cov
[
Z(xi), Z

(
x j

)]
= σ2

·R
(
xi, x j

)
(4)

where the process variance σ2 scales the spatial correlation function R(xi,xj) between two data points.
The Gaussian correlation function (Equation (5)) is widely used in engineering design [29]. It can be
defined with a single parameter (θ) that determines the area of influence of the adjacent points [30].
When the sample points have a high correlation, then θ is low, thus Z(x) will be similar throughout the
design space. As the θ grows, the closest points will have the greatest correlation, thus Z(x) will vary
according to the point in the design space:

R
(
xi, x j

)
= e
−

m∑
k=1

θ|xi
k−x j

k |
2

(5)

3.3. The Fitted Model

The search for the Best Linear Unbiased Predictor (BLUP) is used by the formulation of kriging.
Simpson et al. [31] have discussed fitting methods for most widely-used metamodels.

3.4. Mean and Variance

The mean (µ) and standard deviation (σ) of the responses of the objectives measure the robust
optimum design. These statistical parameters have been obtained for four different levels of uncertainty
(10%, 20%, 30%, and 40%). The value of the uncertain initial parameter has been calculated according
to a uniform distribution depending on the level of uncertainty. In this way, the mean refers to the
optimum design, and the standard variation refers to the robust design.

3.5. Optimization

Simulated annealing (SA) is the heuristic algorithm used to carry out the RDO. This algorithm
has been used in a lot of research to solve optimization problems [32,33]. In the present paper, the
method of Medina [34] is used to calibrate the initial temperature. This method suggests that the
starting temperature is halved when the rate of acceptance is above 40% but doubled when it is below
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20%. When a Markov chain ends, the temperature then drops in accordance with a cooling coefficient
k based on the equation T = k*T. In this study, the calibration showed that the length of the Markov
chain of 1000 and a coefficient of cooling of 0.8 are suitable. The algorithm stops after three Markov
chains without finding improvements.

4. Problem Design

In this section, the robust design optimization problems proposed are discussed. Section 4.1
describes the structure considered and Section 4.2 defines the characteristics of the problem. Section 4.2
includes the initial uncertain parameters considered and the objective functions studied.

4.1. Description of the Box-Girder Footbridge

The structure is a concrete pedestrian bridge with three continuous spans of 40–50–40 m long.
The box-girder cross-section has a uniform width of 3 m, and seven variables define the remaining
geometric dimensions of the cross-section (Figure 3): depth (h), web inclination width (d), bottom slab
width (b), bottom slab thickness (ei), top slab thickness (es), external cantilever section thickness (ev),
and webs slab thickness (ea). The variables are restricted to a range as shown in Table 1. The haunch
(c), is determined from the other variables (Equation (6)) as recommended by Schlaich and Scheff [35].
Furthermore, the haunch must also allow space to enclose the ducts in the high and low points.
This structure was used to compare the standard heuristic optimization and kriging-based heuristic
optimization. In this work, the kriging-based heuristic optimization and RDO are applied to the same
structure. More detailed information about this structure can be found in Penadés-Plà et al. [24].

t = max
{

b− 2·ea
5

, ei
}

(6)
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Table 1. Main parameters of the analysis.

Design Variable Min. Value (m) Max. Value (m) Precision (m)

Depth h 1.25 2.5 0.05
Width (b) 1.2 1.8 0.05

Inclination width (d) 0 0.4 0.05
Top slab thickness (es) 0.15 0.4 0.05

External cantilever
section thickness (ev) 0.15 0.4 0.05

Bottom slab thickness (ei) 0.15 0.4 0.05
Webs slab thickness (ea) 0.3 0.6 0.05
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Spanish regulations [36,37] and the Eurocodes [38,39] are used to carry out the structural
verification defined by the ultimate and service limit states: bending, vertical shear, longitudinal shear,
punching shear, compression and tension stress, torsion, torsion combined with bending and shear,
cracking, and vibration. Moreover, compliance with constructability and geometrical criteria must are
also be checked.

4.2. Description of the Robust Design Optimization Problem

The robust design optimization proposed in this paper is defined by two objective functions: the
first one is the mean cost, and the second one is the structural stability represented by the vertical
displacement in the middle of the bridge [19]. The statistical parameters for both objective functions
are obtained varying the initial uncertain parameter (modulus of elasticity, overload, and prestressing
force) according to a uniform distribution with three different levels of uncertainty (10%, 20%, and
30% for the modulus of elasticity and 10%, 20%, 30%, and 40% for the overload and prestressing
force). These uncertain parameters were chosen after carrying out a sensitivity analysis of the vertical
displacement and selecting the critical parameters.

In this way, the differences between the different Pareto frontiers obtained for each problem can
be studied. Therefore, the goal is to obtain the design with the best cost that has the best structural
stability for each RDO problem. Equations (7) and (8) correspond to these objective functions assessed.

µCOST =
∑

i=1,n

ei ×mi(x1,x2, . . . ., xn) (7)

σVERTICALDISPLACEMENT(x1, x2, x3, . . . , xn) (8)

where x1, x2, x3, . . . . . . , xn are the design variables.
The conventional objective function assesses the cost for the construction units taking into account

the placement and material used. The BEDEC ITEC database provides unit costs [40]. The compressive
strength grade determines the cost of the concrete. The unit costs of the problem are shown in Table 2.
The measurements (mi) relating to the construction units are calculated as defined by the design
variables. The variation of the vertical displacement in the middle of the bridge has been obtained
according to the standard deviation of 20 different cases varying the initial uncertain parameter. Each
one of these vertical displacements has been calculated in accordance with Spanish regulations [36,37]
along with the Eurocodes [38,39].

Table 2. Unit cost.

Unit Measurements Cost (€)

m3 of scaffolding 10.2
m2 of formwork 33.81

m3 of lighting 104.57
kg of steel (B-500-S) 1.16

kg of post-tensioned steel (Y1860-S7) 3.40
m3 of concrete HP-35 104.57
m3 of concrete HP-40 109.33
m3 of concrete HP-45 114.10
m3 of concrete HP-50 118.87
m3 of concrete HP-55 123.64
m3 of concrete HP-60 128.41
m3 of concrete HP-70 137.95
m3 of concrete HP-80 147.49
m3 of concrete HP-90 157.02

m3 of concrete HP-100 166.56
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It is common that a multi-objective optimization problem is transformed into a mono-objective
optimization where the objective function is an aggregation function [19] (Equation (9)).

Aggregation f unction = w1·µCOST + w2·σVERTICALDISPLACEMENT (9)

Here, the mean and the standard deviation are the normalized values of the objective functions,
and w1 and w2 are weights with values in the range [0,1] such that w1 + w2 = 1.

In this work, 200 different cases (N) are considered in such a way that w1 runs from 0 to 1 with
increasing 1/N and w2 corresponds to 1-w1. In this way, 200 different optimizations are made and all
the possible solutions of the Pareto frontier are covered.

5. Results

The results are subdivided into two parts according to the initial uncertain design parameter
considered: modulus of elasticity and loads (overload and prestressing force). Each one of these
sections provides an initial validation of the kriging surfaces generated, the Pareto frontiers obtained,
and some comparisons. For this purpose, 200 points are created to verify the accuracy of the kriging
surfaces (validation), and another 200 solutions are obtained from the robust design optimization
problems carried out (Pareto frontier). After that, the results will be discussed.

5.1. Variation of Modulus of Elasticity

In this part, the uncertain design parameter studied is the modulus of elasticity. Three different
RDO problems are studied. For this purpose, six kriging surfaces are generated depending on the
objective function (µcost and σvertical displacement) and the variability considered of the modulus of
elasticity (10%, 20%, and 30%). Table 3 shows the different validations of the different kriging surfaces
obtained. The accuracy of the kriging surfaces that predict the mean costs are better than the kriging
surfaces that predict the variability of the vertical displacement. The difference between the real and
predicted mean value of the cost is lower than 2%, and the difference between the real and predicted
standard deviation of the vertical displacement of the middle of the bridge is lower than 5% in all
different uncertainties of the modulus of elasticity considered.

Table 3. Validation of the kriging surfaces while varying the modulus of elasticity.

Uncertainty of E (%) 10 20 30

µ Cost discrepancy 1.21% 1.28% 1.07%
σ Displacement

discrepancy 4.63% 4.75% 4.03%

Figure 4 shows the Pareto frontiers for the different uncertainties of the modulus of elasticity
considered. This figure represents the mean of the cost against the standard deviation of the vertical
displacement of the middle of the bridge. It shows that an increment of the uncertainty of the modulus
of elasticity causes a displacement of the Pareto frontier, moving away from the positive ideal point
(lowest µcost and lowest σvertical displacement). This is because the design of the structure should resist all
the possible values of the uncertain parameter. Therefore, a higher variation of the initial uncertain
parameter imposes greater requirements on the design and an increment of the cost.
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Table 4 shows a comparison between the designs of the different Pareto frontiers with the same
structural behavior. In this case, the reference value taken into account is the standard deviation of
the vertical displacement of the cheapest design of the Pareto frontier with the lowest variation of the
modulus of elasticity studied. In this way, an imaginary horizontal line will intersect all the Pareto
frontiers (dashed line of Figure 4). Solutions S10, S20, and S30 are selected, which correspond to a
σvertical displacement lower than 3.82 mm. It shows that to reach similar structural behavior, the price
increases with an increment of the uncertainty of the modulus of elasticity and that the design variables
that cause this increment of the price are the depth and f ck. Both are higher for each increment of the
variability of the modulus of elasticity.

Table 4. Comparison of design with the same structural behavior in modulus of elasticity RDO problems.

b
(mm)

h
(mm)

d
(mm)

ev
(mm)

es
(mm)

ea
(mm)

ei
(mm)

f ck
(MPa)

c
(mm) µcost (€) σv,displacement

(mm)

S10 1200 1450 0 150 150 350 225 45 225 167,370.9 3.811
S20 1200 1800 125 150 150 350 250 60 250 192,570.6 3.778
S30 1200 1950 0 150 150 350 225 80 225 208,111.9 3.548

Furthermore, if just one Pareto frontier is studied and three key designs are considered: (A) the
optimum or lowest µcost, (B) the robust optimum or shortest to the positive ideal point, and (C) the
most robust or lowest σvertical displacement, the same design variables are affected. For example, Table 5
shows these designs for the Pareto frontier with a 20% variability of the modulus of elasticity. As shown
in Table 4, the values of depth and f ck are higher when more robustness is required.

Table 5. Comparison of different designs of the Pareto Frontier with a 20% variation of the modulus
of elasticity.

b
(mm)

h
(mm)

d
(mm)

ev
(mm)

es
(mm)

ea
(mm)

ei
(mm)

fck
(MPa)

c
(mm) µcost (€) σv,displacement

(mm)

A 1200 1800 125 150 150 350 250 60 250 192,570.6 3.778
B 1200 1900 50 150 150 350 150 80 150 201,479.9 2.794
C 1800 2000 200 150 150 350 175 100 220 269,128.5 1.684
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5.2. Variation of Loads: Overload and Prestressing Force

In this part, the uncertain design parameters studied are two loads. The first one is the overload
due to its high uncertainty, and the second one is the prestressing force to know how the variability
influences the behavior of the bridge. The overload is defined according to the IAP-11 [37], which
corresponds to 5 kN/m2. In this case, due to the higher uncertainty of these parameters, another
increment of uncertainty in the loads is considered (40%). Therefore, four RDO problems are studied
for each load. For this purpose, eight kriging surfaces are generated for each load depending on
the objective function (µcost and σvertical displacement) and the variability considered of the modulus of
elasticity (10%, 20%, 30%, and 40%). In these cases, the results discussed are the same as in the previous
subsection. In this way, first, the validations of both loads are discussed (Tables 6 and 7) After that, the
Pareto frontiers for each different uncertainty of the design parameter are shown (Figures 5 and 6),
and finally some solutions are compared following the same rules as in the previous comparison: the
overload (Tables 8 and 9), and the prestressing force (Tables 10 and 11).

Tables 6 and 7 show the different validations of the kriging surfaces obtained. As in the previous
cases, the discrepancy of the mean value of the cost is lower than 2% in all cases. However, the
discrepancy of the standard deviation of the vertical displacement of the middle of the bridge depends
on the variability of the displacement, being higher when the vertical displacement variability is
higher and lower when the vertical displacement variability is lower. The results show that when the
variability of the overload is lower (10%), the kriging method cannot capture the variability of the
displacement accurately. Thus, this uncertainty is not considered.

Table 6. Validation of the kriging surfaces varying the overload.

Uncertainty of Overload (%) 10 20 30 40

µ Cost discrepancy 1.32% 1.19% 1.17% 1.28%
σ Displacement discrepancy 38.61% 15.78% 11.53% 15.18%

Table 7. Validation of the kriging surfaces varying the prestressing force.

Uncertainty of P0 (%) 10 20 30 40

µ Cost discrepancy 1.34% 1.09% 1.06% 1.21%
σ Displacement discrepancy 13.5% 7.16% 3.47% 4%

Figures 5 and 6 represent the Pareto frontiers for the different variations of the loads. In both
cases, the Pareto frontiers have the same behavior as before, moving away from the positive ideal
point according to the increment of the uncertainty of the loads. In addition, the comparisons made
(Tables 8–11) have similar behavior to the above.

Tables 8 and 10 show a comparison between different designs with the same structural behavior
of the different Pareto frontiers. Table 8 corresponds to the RDO problems in which the overload
is the uncertain parameter, and the σvertical displacement of reference corresponds to 2.93 mm (dashed
line of Figure 5). Table 9 corresponds to the RDO problems in which the prestressing force is the
uncertain parameter, and the σvertical displacement of reference corresponds to 11.06 mm (dashed line of
Figure 6). In both cases, to reach a similar structural behavior the price increases with an increment
of the uncertainty of the loads. As well as in the case of the RDO problems in which the modulus of
elasticity is the uncertain parameter, the increment of the price is due to the increment of the depth
and f ck. The difference is that in the case (where the modulus of elasticity is the uncertain parameter)
the depth and the value of f ck increase in each increment of variability, and in the case where the
uncertain parameter is the load, the increment of the depth and f ck is not simultaneous. In these cases,
a balance between these two design variables is achieved to reach a similar structural behavior. In
addition, this increment of depth and f ck is less significant in the case of the overload, due to the low
differences among the different uncertainties. The same occurs when the comparison is made between
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the optimum or cheapest (A), the robust optimum or shortest to the positive ideal point (B), and the
most robust or lowest variation of the vertical displacement (C) (Tables 9 and 11). As above, the key
design variables to modify the structural behavior change are the depth and f ck. These variables tend
to be higher when higher robustness is required.
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Table 9. Comparison of different designs of the Pareto Frontier with a 20% variation of the overload.

b
(mm)

h
(mm)

d
(mm)

ev
(mm)

es
(mm)

ea
(mm)

ei
(mm)

f ck
(MPa)

c
(mm) µcost (€) σv,displacement

(mm)

A 1200 1350 100 150 150 350 175 80 175 180,240.5 1.913
B 1200 1850 200 175 175 350 225 60 225 198,687.3 0.971
C 1600 1800 150 275 275 350 225 70 225 238,573.8 0.753

Table 10. Comparison of designs with the same structural behavior in prestressing force RDO problems.

b
(mm)

h
(mm)

d
(mm)

ev
(mm)

es
(mm)

ea
(mm)

ei
(mm)

fck
(MPa)

c
(mm) µcost (€) σv,displacement

(mm)

S20 1200 1350 0 150 150 350 200 60 200 168,833.9 11.058
S30 1200 1400 200 150 150 350 150 80 150 181,276.4 9.552
S40 1200 1750 125 150 150 350 200 55 200 186,380.7 10.497

Table 11. Comparison of different designs of the Pareto Frontier with a 20% variation of the
prestressing force.

b
(mm)

h
(mm)

d
(mm)

ev
(mm)

es
(mm)

ea
(mm)

ei
(mm)

fck
(MPa)

c
(mm) µcost (€) σv,displacement

(mm)

A 1200 1350 0 150 150 350 200 60 200 168,833.9 11.058
B 1200 1650 0 150 150 350 175 80 175 190,734.7 5.510
C 1300 2000 0 225 300 350 275 80 275 231,832.0 3.772

6. Conclusions

Currently, the design of structures is made according to a deterministic design. This approach
has the result that when the design is optimized according to a conventional objective function, the
behavior of the structure is really dependent on the initial values considered. This paper uses a
probabilistic approach to consider the variation of the design parameters. In addition, to reduce the
large computational cost of the probabilistic optimization, Latin hypercube sampling and kriging
metamodels are used. Each point of the Latin hypercube sampling is calculated 20 times varying the
initial uncertain parameters (modulus of elasticity, overload, and prestressing force) obtaining the mean
of the cost and the standard deviation of the vertical displacement in the middle of the bridge. These
values are used to create the kriging surface that predicts the objective response depending on the
initial design variables. These surfaces have an error lower than 2% in the mean of the cost for all cases,
lower than 5% in the standard deviation of the vertical displacement when the modulus of elasticity is
the uncertain parameter, and an accuracy dependent on the value of the vertical displacement when
the loads are the uncertain parameters. After that, 200 solutions have been calculated for each case to
obtain the different Pareto frontiers.

The Pareto frontiers show that, for all RDO problems, an increment of the uncertainty causes a
displacement of the Pareto frontier, moving away from the positive ideal point. That means that to
obtain specific robustness when the uncertainty of the parameter is higher, the cost of the design will be
higher. In addition, when just one Pareto frontier is taken into account, a more robust design implies an
expensive design. In all cases, this increment of the price is due to an increment of two specific design
variables: depth (h) and f ck. Therefore, to obtain a robust design, it is necessary to increment the depth
(h) and/or f ck. However, these Pareto frontiers allow obtaining a compromise design between cost and
robustness: the optimum robust design. This solution is the design closest to the positive ideal point.

This work shows that a probabilistic optimization can be carried out to obtain an optimum
robust design. Nevertheless, the robust design optimization of complex problems requires a high
computational cost. Therefore, the use of metamodels is necessary to carry out probabilistic optimization.
In previous works, the computational cost saved and the validity of kriging metamodels were proven.
This work shows that the kriging metamodel has an appropriate behavior to carry out the robust design
optimization, and therefore can be used to carry out optimization where there is uncertain information.
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