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Abstract: In this work, we performed an study about the domain of existence and uniqueness
for an efficient fifth order iterative method for solving nonlinear problems treated in their infinite
dimensional form. The hypotheses for the operator and starting guess are weaker than in the previous
studies. We assume omega continuity condition on second order Fréchet derivative. This fact it is
motivated by showing different problems where the nonlinear operators that define the equation
do not verify Lipschitz and Hölder condition; however, these operators verify the omega condition
established. Then, the semilocal convergence balls are obtained and the R-order of convergence and
error bounds can be obtained by following thee main theorem. Finally, we perform a numerical
experience by solving a nonlinear Hammerstein integral equations in order to show the applicability
of the theoretical results by obtaining the existence and uniqueness balls.

Keywords: semilocal convergence; Lipschitz condition; Hölder condition; Hammerstein integral
equation; dynamical systems

MSC: 65G49; 47H99

1. Introduction

Let X and Y are Banach spaces where G : Ω ⊆ X → Y be a nonlinear function in an open convex
domain Ω0 ⊆ Ω. We use iterative methods in order to solve the nonlinear equation:

G(x) = 0 (1)

which characterizes various real life problems such as dynamical systems, boundary value problems
described by ordinary differential equations, partial derivative equations and nonlinear integral
equations with applications in different fields of engineering, finances, optimization costs and benefits,
etc. A great variety of iterative schemes for solving these problems are obtained in [1–3]. It is well
known that Newton’s method is the most widely used iterative scheme to solve (1), it is defined for
k ≥ 0, by

xk+1 = xk − ΓkG(xk) (2)
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where Γk = G
′
(xk)

−1 and x0 is the starting guess and it reaches convergence order two. Different
modifications of Newton’s method have been published in order to increase the order of convergence
and efficiency. We center in such publications in the literature involving complete studies in the sense
of local and semilocal convergence, (see, [4–19]), where authors studied the convergence of iterative
methods with high order of convergence under different continuity hypotheses.

In a recent paper, Singh et al. [20] presented the semilocal convergence of an efficient fifth order
method under the Lipschitz condition on second derivative for non linear operator F

′′
. The iterative

scheme can be written for k = 0, 1, 2 . . . as

yk = xk − ΓkG(xk),

zk = yk − ΓkG(yk), (3)

xk+1 = zk − G
′
(yk)

−1G(zk).

In real life applications, (see [21–23]), various numerical examples involving Hammerstein type
integral equation [2] can be found which neither satisfy the Lipschitz nor the Hölder condition. This is
the reason that motivated us to establish the semilocal convergence for the iterative method defined
above in (3) under weaker conditions, which is also an efficient fifth-order method.

Consider nonlinear Hammerstein type integral equation

x(r) +
m

∑
i=1

∫ b

a
Ki(r, s)Si(x(s))ds = f (r), r ∈ [a, b], (4)

where functions f , Ki and Si for i = 1, 2, . . . m are known, the solution x is to be determined and
−∞ < a < b < +∞. In order to solve (4), we have to solve

G(x)(u) = x(u) +
m

∑
i=1

∫ b

a
Ki(u, v)Si(x(v))dv− f (u) (5)

If S
′
i(x(u)) is (Mi, αi)- Hölder continuous in Ω, then, under max-norm, we have

‖G′′(x)− G
′′
(y)‖ ≤

m

∑
i=1

Mi‖x− y‖αi , Mi ≥ 0, αi ∈ [0, 1], ∀ x, y ∈ Ω. (6)

For different αi, G
′′

neither satisfies Lipschitz nor Hölder condition but satisfies the weaker ω-condition.
In this work and in Section 2, we developed the semilocal convergence analysis of an iterative

method of five order of convergence; this has been done under weaker conditions for solving nonlinear
equations. Moreover, theoretical results about the existence and uniqueness for the solution have been
established along with error bounds for the solution. In Section 3, we developed numerical examples
and obtained the radius of existence and uniqueness for the solution, showing the applicability of our
study. Finally, some conclusions are included in Section 4.

2. Semilocal Convergence Analysis

In this section, we give the hypothesis for the nonlinear operator G in the starting point, so we
construct the convergence ball centered at this point, that is, the ball at which all the iterates belong
and converge to the solution.

2.1. Preliminaries Results

Let x0 ∈ Ω, such as Γ0 = G
′
(x0)

−1 ∈ BL(Y, X) exists, being a bounded linear operator from Y to
X for which the following conditions hold.
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(1) ‖Γ0‖ ≤ β0

(2) ‖Γ0G(x0)‖ ≤ η0

(3) ‖G′′(x)‖ ≤ M
(4) ‖G′′(x)− G

′′
(y)‖ ≤ ω(‖x − y‖), x, y ∈ Ω, for a non-decreasing continuous real function ω(a),

a > 0, ω(0) ≥ 0 such that, ω(ta) ≤ tqω(a) for t ∈ [0, 1], a ∈ (0, ∞) and q ∈ [0, 1].

Let r0 = Mβ0η0, s0 = β0η0ω(η0) and define sequences {rk}, {sk} and {ηk} for k = 0, 1, 2 . . ., by

rk+1 = rkφ(rk)
2ψ(rk, sk), (7)

sk+1 = skφ(rk)
2+qψ(rk, sk)

1+q, (8)

ηk+1 = ηkφ(rk)ψ(rk, sk), (9)

where,

φ(u) =
1

1− ug(u)
, (10)

g(u) =
(

1 +
u
2
+

u2

2(1− u)

(
1 +

u
4

))
, (11)

and

ψ(u, v) =
u2

2(1− u)

(
1 +

u
4

) [ v
1 + q

(
u1+q

21+q +
1

2 + q

(
u2

2(1− u)

(
1 +

u
4

))1+q)

+
u
2

(
u +

u2

2(1− u)

(
1 +

u
4

)) ]
. (12)

Let h(u) = g(u) u− 1. Moreover, h(0) = −1 and g(u) is an increasing function, therefore, h(u) has a
real root ν verifying If u ∈ (0, ν), we get g(u) u < 1.

Lemma 1. Let φ(u), g(u) and ψ(u, v) are given by (10), (11) and (13) respectively. If 0 < r0 < ν and
φ(r0)

2ψ(r0, s0) < 1, then
(i) φ(u) and g(u) are increasing functions verifying φ(u) > 1, g(u) > 1 for u ∈ (0, ν).
(ii) ψ(u, v) is an increasing function of u, for u ∈ (0, ν).
(iii) {rk}, {sk} and {ηk} are decreasing sequences and rkg(rk) < 1 as well as φ(rk)

2ψ(rk, sk) < 1 for k ≥ 0.

Proof. The proof of (i) and (ii) are trivial. The proof of (iii) can be given in the following manner.
For k = 0, (7) gives r1 = r0φ(r0)

2ψ(r0, s0) < r0. Using (8) and (9), we get s1 = s0φ(r0)
2+qψ(r0, s0)

1+q <

s0(φ(r0)
2ψ(r0, s0))

1+q < s0 and η1 = φ(r0)ψ(r0, s0)η0 < η0. Thus, (iii) holds for k = 0. Since, φ(u)
and g(u) are increasing functions, and therefore, by using mathematical induction Lemma 1 holds
∀ k ≥ 0.

Lemma 2. Let φ(u) and ψ(u, v) be defined by (10) and (13). If γ ∈ (0, 1) we have φ(γt) < γφ(t) and
ψ(γu, γ1+qv) < γ3+qψ(u, v).

Proof. The proof is trivial. Since g(γt) < g(t), as g(t) is an increasing function. Therefore, φ(γt) <
φ(t). Now,
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ψ(γu, γ1+qv) =
(γu)2

2(1− γu)

(
1 +

γu
4

) [ (γ1+qv)
1 + q

 (γu)1+q

21+q +
1

2 + q

(
(γu)2

2(1− γu)

(
1 +

γu
4

))1+q


+
(γu)

2

(
γu +

(γu)2

2(1− γu)

(
1 +

γu
4

)) ]
.

< γ3+qψ(u, v)

Lemma 3. Let γ = φ(r0)
2ψ(r0, s0), 0 < r0 < ν and δ = 1

φ(r0)
. Then,

(i) rk ≤ γ(4+q)k−1
rk−1 ≤ γ

(4+q)k−1
3+q r0 and sk ≤

(
γ(4+q)k−1)1+q

sk−1 ≤
(

γ
(4+q)k−1

3+q
)1+q

s0.

(ii) φ(rk)ψ(rk, sk) ≤
γ(4+q)k

φ(r0)
∀ k ∈ N.

(iii) ηk ≤ γ
(4+q)k−1

3+q δkη0.

Proof. Using k = 0 in (7) and (8), we get r1 = r0φ(r0)
2ψ(r0, s0) = γr0 and

s1 = s0φ(r0)
2+qψ(r0, s0)

1+q ≤ γ1+qs0.

Thus, Lemma holds for k = 0. Assume that Lemma holds for k = n. Using induction, we will prove
for k = n + 1. Then, we have

rn+1 = rnφ(rn)
2ψ(rn, sn)

≤ γ(4+q)n−1
rn−1φ

(
γ(4+q)n−1

rn−1

)2
ψ
(

γ(4+q)n−1
rn−1(γ

(4+q)n−1
)1+qsn−1

)
≤ γ(4+q)n−1

rn−1φ (rn−1)
2
(

γ(4+q)n−1)3+q
ψ(rn−1, sn−1)

≤
(

γ(4+q)n−1)(4+q)
rn−1φ(rn−1)

2ψ(rn−1, sn−1),

≤ γ(4+q)n
rn. (13)

In a similar manner, we get

rn+1 ≤ γ(4+q)n
rn ≤ γ(4+q)n

γ(4+q)n−1
rn−1

≤ · · · ≤ γ(4+q)n
γ(4+q)n−1

. . . γ(4+q)0
r0 = γ

(4+q)n+1−1
3+q r0. (14)

Now, we consider

sn+1 = snφ (rn)
(2+q) ψ(rn, sn)

1+q ≤ sn

(
φ(rn)

2ψ (rn, sn)
)1+q

≤ sn

(
rn+1

rn

)1+q
≤
(

γ(4+q)n)1+q
sn
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proceeding in this way, we get

sn+1 ≤
(

γ(4+q)n)1+q
sn ≤

(
γ(4+q)n)1+q (

γ(4+q)n−1)1+q
sn−1

≤
(

γ
(4+q)n+1−1

3+q

)1+q

s0. (15)

Hence, (i) holds ∀ k ≥ 0 by using mathematical induction. Now, consider

φ(rk)ψ(rk, sk) ≤ φ(γ
(4+q)k−1

3+q r0)ψ

(
γ

(4+q)k−1
3+q r0, (γ

(4+q)k−1
3+q )1+qs0

)
≤ γ(4+q)k−1φ(r0)ψ (r0, s0) = γ(4+q)k

δ. (16)

Thus, (ii) is proven. From (9), we get

ηk = φ(rk−1)ψ(rk−1, sk−1)ηk−1 ≤
k−1

∏
n=0

φ(rn)ψ(rn, sn)η0

≤
k−1

∏
n=0

γ(4+q)n

φ(r0)
η0 ≤ γ

(4+q)k−1
1+q δkη0. (17)

Thus, (iii) is proven.

2.2. Main Results

In this section, we establish the recurrence relations for (3) under the assumption considered in
the previous section. Consider

‖I − Γ0G
′
(y0)‖ ≤ ‖Γ0‖ ‖G

′
(y0)− G

′
(x0)‖ ≤ Mβ0η0 = r0, (18)

if r0 < 1, then

‖G′(y0)
−1G

′
(x0)‖ ≤

1
1− r0

(19)

and by substituting k = 0 in (3), we get

z0 − x0 = −Γ0G(x0)− Γ0G(y0). (20)

By using Taylor expansion of G(y0) about x0, we get

G(y0) = G(x0) + G
′
(x0)(y0 − x0) +

∫ 1

0
G
′′
(x0 + θ(y0 − x0))(y0 − x0)

2(1− θ)dθ

=
∫ 1

0
G
′′
(x0 + θ(y0 − x0))(y0 − x0)

2θdθ. (21)

Then, by using (21) in (20) and taking norm, we get

‖z0 − x0‖ ≤ ‖Γ0G(x0)‖+ ‖Γ‖
M
2
‖y0 − x0‖2

≤
(

1 +
r0

2

)
η0. (22)

Now,

‖z0 − y0‖ = ‖Γ0G(y0)‖ ≤
r0

2
η0,



Mathematics 2020, 8, 384 6 of 11

and by substituting k = 0 in (3) and taking norm, we get

‖x1 − z0‖ ≤ ‖G′(y0)
−1G(z0)‖ ≤ ‖G

′
(y0)

−1G
′
(x0)‖‖Γ0G(z0)‖

≤
r2

0
2(1− r0)

(
1 +

r0

4

)
η0. (23)

Therefore,

‖x1 − x0‖ ≤ ‖x1 − z0‖+ ‖z0 − x0‖

≤
(

1 +
r0

2
+

r2
0

2(1− r0)

(
1 +

r0

4

))
η0 = g(r0)η0. (24)

So, we have

‖I − Γ0G
′
(x1)‖ ≤ ‖Γ0‖‖G

′
(x1)− G

′
(x0)‖ ≤ β0M‖x1 − x0‖

≤ Mβ0η0g(r0) = r0g(r0) < 1,

therefore, by Banach Lemma, we get

‖Γ1‖ ≤
‖Γ0‖

1− r0g(r0)
= ‖Γ0‖φ(r0). (25)

Moreover,
‖Γ0‖‖y0 − x0‖ω (‖y0 − x0‖) ≤ β0η0ω(η0) = s0.

Using Taylor expansion of G(x1) about z0, we get

G(x1) =
∫ 1

0

(
G
′′
(y0 + t(z0 − y0))− G

′′
(y0)

)
(z0 − y0)(x1 − z0)dt + G

′′
(y0)(z0 − y0)(x1 − z0)

+
∫ 1

0
G
′′
(z0 + t(x1 − z0))(x1 − z0)

2(1− t)dt +
1
2

G
′′
(z0) (x1 − z0)

2 . (26)

Therefore,

‖Γ1G(x1)‖ ≤ φ(r0)‖Γ0‖‖G(x1)‖,

≤ φ(r0)
r0

2

2(1− r0)

(
1 +

r0

4

) [ s0

1 + q

(
r0

1+q

21+q +
1

2 + q

(
r0

2

2(1− r0)

(
1 +

r0

4

))1+q)

+
r0

2

(
r0 +

r0
2

2(1− r0)

(
1 +

r0

4

)) ]
= φ(r0)ψ(r0, s0)η0 = η1. (27)

Using (27), we get

M‖Γ1‖‖Γ1G(x1)‖ ≤ Mφ(r0)‖Γ0‖φ(r0)ψ(r0, s0)η0

≤ r0φ(r0)
2ψ(r0, s0) = r1 (28)

and

‖Γ1‖‖Γ1G(x1)‖ω (‖Γ1G(x1)‖) ≤ β0η0ω(η0)φ(r0)
1+qψ (r0, s0)

1+q

≤ s0φ(r0)
2+qψ (r0, s0)

1+q = s1. (29)
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The following recurrence relations are established for k ≥ 1 using mathematical induction.

(I) ‖Γk‖ ≤ φ(rk−1)‖Γk−1‖,
(II) ‖ΓkG(xk)‖ ≤ φ(rk−1)ψ(rk−1, sk−1)ηk−1,
(III) M‖Γk‖‖ΓkG(xk)‖ ≤ rk,
(IV) ‖Γk‖‖ΓkG(xk)‖ω (‖ΓkG(xk)‖) ≤ sk,
(V) ‖xk − xk−1‖ ≤ g(rk−1)ηk−1,

Hence, the recurrence relations (I)–(IV) for k = 1 follow from (25), (27), (28) and (29) respectively.
The recurrence relation (V) is proved for k = 1 in (24). Using mathematical induction, these recurrence
relations hold ∀ k ≥ 1.

2.3. Convergence Theorem

Theorem 1. Let r0 = Mβ0η0 < ν, s0 = β0η0ω(η0) and assumptions (1)-(4) hold. Then for B(x0, Rη0) ⊆

Ω, where R =
g(r0)

1− δγ
, the sequence {xk} generated by (3) converges to the solution of (1). Moreover,

yk, zk, xk+1, x∗ ∈ B(x0, Rη0) and x∗ is the unique solution in B
(

x0, 2
L1β0
− Rη0

)
∩Ω. Then the error bound

for iterative scheme verifies:

‖xk − x∗‖ ≤ g(r0)δ
k γ

(4+q)k−1
3+q

1− δγ(4+q)k η0.

Proof. To prove the convergence theorem, we prove that {xk} is a Cauchy sequence. Using (V), we get

‖xk+1 − xk‖ ≤ g(rk)ηk ≤ g(r0)ηk ≤ g(r0)
k−1

∏
j=0

φ(rj)ψ(rj, sj)η0. (30)

Now, we consider

‖xk+m − xk‖ ≤ ‖xk+m − xk+m−1‖+ ‖xk+m−1 − xk+m−2‖+ . . . + ‖xk+1 − xk‖

≤ g(r0)
k+m−2

∏
j=0

φ(rj)ψ(rj, sj)η0 + g(r0)
k+m−1

∏
j=0

φ(rj)ψ(rj, sj)η0 + . . .

+ g(r0)
k−1

∏
j=0

φ(rj)ψ(rj, sj)η0

≤ g(r0)
m−1

∑
l=0

(
k+l−1

∏
j=0

φ(rj)ψ(rj, sj)η0

)
(31)

by using Lemma 3 (iii), we get

‖xk+m − xk‖ ≤ g(r0)
m−1

∑
l=0

δk+l

(
γ

(4+q)k+l−1
3+q

)
η0

≤ g(r0)δ
k

(
γ

(4+q)k−1
3+q

)
m−1

∑
l=0

(
δγ(4+q)k)l

≤ g(r0)δ
k

(
γ

(4+q)k−1
3+q

)
1− (δγ(4+q)k

)m

1− δγ(4+q)k η0. (32)
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Hence, {xk} is a Cauchy sequence which converges to x∗ as k→ ∞. Taking m→ ∞ in (32), we get

‖xk − x∗‖ ≤ g(r0)δ
kγ

(4+q)k−1
3+q

1

1− δγ(4+q)k η0. (33)

Taking k = 0 in (33), we get

‖x∗ − x0‖ ≤
g(r0)

1− δγ
η0 ≤ Rη0. (34)

Hence, x∗ ∈ B(x0, Rη0). Now,

‖xk+1 − x0‖ ≤
k

∑
i=0
‖xi+1 − xi‖ ≤

k

∑
i=0

g(ri)ηi ≤ g(r0)
k

∑
i=0

ηi ≤ Rη0,

and

‖yk − x0‖ ≤ ‖yk − xk‖+ ‖xk − x0‖ ≤ ηk +
k−1

∑
i=0

g(ri)ηi ≤ g(r0)
k

∑
i=0

ηi ≤ Rη0.

Using (22), we get

‖zk − x0‖ ≤ ‖zk − xk‖+ ‖xk − x0‖ ≤
(

1 +
r0

2

)
ηk +

k−1

∑
i=0

g(ri)ηi ≤ g(r0)
k

∑
i=0

ηi ≤ Rη0.

Hence, yk, zk, xk+1 ∈ B(x0, Rη0).
To show the uniqueness of x∗, let z∗ ∈ B

(
x0, 2

Mβ − Rη0

)
∩Ω be such that G(z∗) = 0, z∗ 6= x∗.

Then 0 = G(z∗)− G(x∗) =
∫ 1

0 G
′
(x∗ + t(z∗ − x∗))dt(z∗ − x∗) = P(z∗ − x∗), where, P =

∫ 1

0
G
′
(x∗ +

t(z∗ − x∗))dt. Now,

‖I − Γ0P‖ ≤ ‖Γ0‖
∫ 1

0

∥∥∥(G
′
(x∗ + t(z∗ − x∗))− G

′
(x0)

)∥∥∥ dt

≤ Mβ

2
(‖x∗ − x0‖+ ‖z∗ − x0‖)

<
Mβ

2

(
Rη0 +

2
Mβ
− Rη0

)
= 1

Therefore, ‖I − Γ0P‖ < 1. Thus, P−1 exists by Banach Lemma and hence z∗ = x∗.

3. Numerical Experience

In this section, different numerical examples are solved in order to corroborate the theoretical
results obtained and the efficiency of our approach.

Example 1. Consider nonlinear integral equation

G(x)(s) = x(s)− 1 +
∫ 1

0
H(s, t)

(
3
5

x(t)7/3 +
6
15

x(t)3
)

dt, (35)

where s ∈ [0, 1], x ∈ Ω = B(0, 2) ⊂ X.
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Clearly,

‖G′′(x)− G
′′
(y)‖ ≤ 7

30
‖x− y‖1/3 +

3
10
‖x− y‖.

where ω(µ) = 7
30 µ1/3 + 3

10 µ and q = 1
3 . Therefore, neither the Lipschitz nor the Hölder condition hold

but the ω-condition holds. Taking x0(t) = 1, all the assumptions are satisfied. Therefore, the existence
and uniqueness balls for integral equation are given by B(x0, 0.21621) and B(x0, 1.2939), respectively.
The values of the sequences {rk}, {sk} and {ηk} are given in Table 1.

Table 1. The values of rk, sk and ηk.

k rk sk ηk

0 0.24527 5.1729× 10−2 0.18519
1 7.7009× 10−4 2.126× 10−5 4.1532× 10−4

2 6.8009× 10−17 8.359× 10−23 3.665× 10−17

3 3.6373× 10−82 7.8181× 10−110 1.9601× 10−82

4 1.5916× 10−408 5.5956× 10−545 8.5771× 10−409

5 2.5535× 10−2040 1.0509× 10−2720 1.3761× 10−2040

The error bounds for x∗ are presented in Table 2.

Table 2. Error bounds.

k ‖xk− x∗‖

0 4.8381× 10−4

1 4.9181× 10−15

2 3.4921× 10−62

3 5.2372× 10−266

4 9.3095× 10−1149

5 1.6043× 10−4973

Example 2. Consider nonlinear integral equation

G(x)(s) = x(s)− f (s)− λ
∫ 1

0

s
s + t

x(t)2+qdt, (36)

where, x, f ∈ C[0, 1], λ ∈ R and s ∈ [0, 1].

Clearly,

‖G′′(x)− G
′′
(y)‖ ≤ |λ| log 2(1 + q)(2 + q)‖x− y‖q.

Here ω(η) = |λ| log 2(1 + q)(2 + q)ηq Clearly, Lipschitz condition fails for q ∈ (0, 1) but Hölder
condition holds. Taking x0 = x0(s) = 1, q = 1

5 , λ = 1
4 , and f (s) = 1 , all the assumptions are

satisfied. Therefore the existence and uniqueness balls for integral equation is given by B(x0, 0.3174)
and B(x0, 2.3879) respectively. The values of {rk}, {sk} and {ηk} are given in Table 3.
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Table 3. The values of rk, sk and ηk.

k ck dk ηk

0 0.20704 0.16052 0.28005
1 3.4155× 10−4 6.9698× 10−5 3.5373× 10−4

2 1.1985× 10−18 3.1433× 10−22 1.2408× 10−18

3 6.1808× 10−91 5.6532× 10−109 6.399× 10−91

4 2.255× 10−452 1.0637× 10−542 2.3347× 10−452

5 1.4579× 10−2259 2.509× 10−2711 1.5094× 10−2259

The error bounds for x∗ are presented in Table 4.

Table 4. Error bounds.

k ‖xk− x∗‖

0 4.004× 10−4

1 6.3045× 10−16

2 3.9701× 10−65

3 2.1201× 10−271

4 2.2551× 10−1137

5 4.3337× 10−4774

4. Conclusions

In this study, we present the semilocal convergence for an iterative scheme that reach order
of convergence five. We obtained the theoretical results by constructing the recurrence relations
that describe this algorithm that is proven to have a very efficient behavior. The hypotheses we set
are under weaker conditions than the used in previous studies and allow us to obtain competitive
error bounds. Finally, applied problems are solved involving nonlinear integral equations and big
size nonlinear systems. The convergence balls defining the existence domain were obtained for the
considered examples.
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