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Abstract: The rapid increasing of the population in combination with the emergence of new
energy-consuming technologies has risen worldwide total energy consumption towards unprecedent
values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse
gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy
sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are
promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal
stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous
attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based
on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and
highlighted in this review. In addition, the challenges, future trends, and prospects of composite
membranes based on PBI for solid electrolytes are also discussed.

Keywords: fuel cells; proton exchange membrane; polymer; polybenzimidazole; composite membranes;
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1. Introduction

Proton conductivity has received intense attention owing to its application in chemical sensors,
electrochemical devices, and power generation [1,2]. Proton conducting membranes form an important
part in fuel cells (FCs), batteries, and supercapacitors [3]. Fuel cells based on proton exchange membranes
(PEMs) are one of the most promising alternative energy sources because of their high efficiency, high
power density, low emissions, and energy supply [4,5]. These alternatives provide the possibility of
receiving energy from hydrogen, synthetic, or bio-synthetic fuels and can operate with greater efficiency
and environmental sustainability compared with thermal motors [6,7]. Fuel cells can be used for
a wide variety of technological devices such as vehicles, mobile phones, portable electronics, and power
generators [8–10]; they are generally classified by the kind of electrolyte they use. Common classifications
include alkaline fuel cells [11], direct methanol fuel cells [12], polymer electrolyte membrane fuel cells [13],
phosphoric acid fuel cells [14], molten carbonate fuel cells [15], solid oxide fuel cells [16], and reversible
fuel cells (also called unitized regenerative fuel cells) [17].
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In a typical proton exchange membrane fuel cell (PEMFC), the polymer electrolyte membrane
is responsible for proton conductivity, which allows the transport of protons from the anode to the
cathode, constituting the essential component of the electrochemical device [18]. PEMFCs constitute
a promising alternative to fossil fuels as they generate water as a byproduct and use only hydrogen
and oxygen as reactants (Figure 1). According to their range of operating temperatures, PEMFCs can
be classified into three main categories: (a) low temperature PEMFCs (LT-PEMFCs), which operate
around 50–80 ◦C [19]; (b) intermediate temperature (IT-PEMFCs), which operate in the 80–120 ◦C
range [20–22]; and (c) high temperature (HT-PEMFCs), which operate from 140 ◦C up to 200 ◦C [23,24],
generally under anhydrous conditions. Among the numerous types of PEMs, membranes based on
perfluorosulfonic acid polymers, such as Nafion® (Figure 2), have wide acceptance as they have been
demonstrated to possess good conductivity as well as chemical and mechanical properties, have been
used at temperatures below 90 ◦C, and have endured conditions of high relative humidity [25].
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Nafion®, developed by DuPont in the late 1960s, still remains as the state-of-the-art membrane 
for low temperature PEMFCs (LT-PEMFCs). The main drawbacks of Nafion® membranes are mainly 
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conditions are reached [26–30]. Consequently, Nafion®-based membranes are limited to operate as 
LT-PEMFCs. These practical limitations have promoted the development of membranes that may be 
applied in HT-PEMFCs operating temperatures in the range of 140−200 °C and, hence, in the absence 
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Nafion®, developed by DuPont in the late 1960s, still remains as the state-of-the-art membrane
for low temperature PEMFCs (LT-PEMFCs). The main drawbacks of Nafion® membranes are mainly
their costly manufacturing process, the destruction of the polymer structure at higher temperatures,
and the strong decrease in proton conductivity at temperatures above 90 ◦C when low hydration
conditions are reached [26–30]. Consequently, Nafion®-based membranes are limited to operate as
LT-PEMFCs. These practical limitations have promoted the development of membranes that may be
applied in HT-PEMFCs operating temperatures in the range of 140–200 ◦C and, hence, in the absence
of water [31–35].

Among the benefits of working at high temperatures, it is worth mentioning a decrease in the
catalyst contamination by CO and CO2 poisoning, as the kinetics in the electrodes are faster and have
a simpler thermal and water handling, low dependency on cooling systems, a high amount of reusable
heat energy, as well as a lower cost of the membrane-electrode assemblies (MEAs) in comparison
with LT-PEMFCs based on Nafion® [36–38]. The high CO tolerance of the anode catalyst makes
it possible for an FC to use hydrogen directly from a simple methanol reformer, thus the selective
oxidant and/or CO separator device can be removed from the processing system. Consequently,
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the size of an FC is importantly reduced, improving its performance, responsiveness, and reliability,
which ultimately allows to bring down system maintenance and operating costs [39]. In order
to optimize the performance of FCs, a lot of work has been done in the development of HT-PEMs,
particularly on those based on polybenzimidazoles (PBIs), which have emerged as promising candidates
to operate at high temperatures [40–44].

PBIs are aromatic linear heterocyclic macromolecules that belong to the class of high performance
polymers; they are highly resistant to acids and bases; have high glass transition temperatures
(425–436 ◦C); and possess excellent thermal and mechanical stability, low flammability, and high energy
radiation resistance. Aromatic polybenzimidazoles were firstly synthesized by H. Vogel and C. S.
Marvel in 1961 [45], and as a consequence of their exceptional thermal and oxidative stability, they were
used on aerospace and defense applications by NASA and the Air Force Materials Laboratory (AFML),
respectively. The most widely studied polybenzimidazole is one commercialized by the corporation
Celanese, poly [2,2′-(m-phenylene)-5,5′-bibenzimidazole], or m-PBI (also known as simply PBI).
This polymer can be synthesized by a polycondensation reaction using 3,3′-diaminobenzidine (DAB)
and isophthalic acid (IPA) [46,47]. Another available polybenzimidazole is poly (2,5-benzimidazole)
(or AB-PBI), which was also carefully studied as membrane for HT–PEMFCs. The AB-PBI is prepared
by condensation of 3,4-diaminobenzoic acid (DABA) [48]. The chemical structures of both m-PBI and
AB-PBI are shown in Figure 3.
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However, to achieve the high proton conductivity levels required for HT-PEMFCs, these simple
PBIs need to be doped with acid because their intrinsic conductivity is very low (around 10−12 S/cm).
In particular, phosphoric acid (PA)-doped PBI membranes demonstrated good thermal and mechanical
stability, low gas permeability, and conductivity values between 0.07 and 0.2 S/cm at approximately 200 ◦C
without any additional humidification [49,50]. As the ionic conductivity of PA is low at low temperatures,
PBI embedded in PA operating temperature range is about 150–250 ◦C. The hydrogen oxidized at
the anode splits into protons and electrons. The electrons pass through the external electrical circuit,
whereas the protons are transferred through the electrolyte. On the cathode side, the redox reaction
between positive hydrogen ions, electrons, and oxygen gas results in water formation [51]. The main
advantage of phosphoric fuel cells is their capacity to generate and separate electricity and useful heat at
the same time. However, the use of this acid-doping method presents various inconveniences, limiting
the applications; particularly, the pyrolysis of PA above 190 ◦C [50], the migration of PA resulting in loss
of transition metal catalyst and reducing proton conductivities, acid leaching problems, and reduced
mechanical properties under HT-PEMFCs’ operation conditions.

Another efficient method to increase conductivity is the introduction of the covalently bound
sulfonic and/or phosphoric groups into the backbone chains, but multi-step complex syntheses are
generally needed for the formation of such PBIs [52,53] Additionally, the aggressive polymerization
conditions may affect the side-groups, resulting in a crosslinked polymer gel instead of a linear
structure. Consequently, the possible structural variations in the polymers are limited and PBIs
containing functional groups in their main chain are scarce. PBIs obtained by changing one of the
monomers allow for the modification of the physico-chemical properties (e.g., basicity), simply by
playing with the number of the nitrogen atoms in the monomer and their distribution along the
polymer [54]; in this manner, acid leaching can be minimized [55].
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The doping strategies for PBI-type membranes consist of an incorporation of significant amounts
of phosphoric acid to the polymer matrix to achieve sufficient proton conductivity. The acid doping can
be performed in various ways. The simplest and most efficient method consists of directly immersing
the PBI-type membrane sheet into hot phosphoric acid. The doping level of the membrane depends on
the immersion time and temperature. As an example, the AB-PBI based-membrane doped at 120 ◦C
for 24 h can absorb phosphoric acid up to 2.5 times its own weight, which corresponds to the chemical
formula AB-PBI·5H3PO4. On the other hand, the thickness practically doubles during the doping
process. For example, the thickness changed from 50 µm for a pristine PBI membrane to almost 100 µm
when it was fully doped [56]. The interaction between acid and the polymer matrix occurs via the
N-imidazole sites. The basic N-sites of PBI act as proton acceptors like in a standard acid–base reaction,
creating the ion pairs in this process as shown in Figure 4. Therefore, the polymer bearing more basic
N-sites forms stronger bonds with acids.
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The conductivity depends not only on the doping level, but also on the acid distribution within the
membrane. In this sense, the membranes should ensure that the acid percolates throughout the polymer
network and interacts with nearly every basic N-site of the polymer matrix. Finally, the conductivity
of composite membranes based on PBIs is also affected by the dehydration reaction of phosphoric acid.
It was noticed that, under anhydrous conditions, the conductivity of phosphoric acid decreases for
temperatures above 140 ◦C owing to a condensation reaction of PA affording pyrophosphoric acid
(H4P2O7) and water. Therefore, at temperatures between 140 and 180 ◦C, the cell resistance of MEA
based on PBIs under open circuit conditions is significantly higher than that with an electrical load
and, additionally, it allows to produce water through the fuel cell reaction. The water formed permits
the rehydration of the membrane in the MEA and results in a better conducting phosphoric acid [57].

Despite the wide use of PA as acid doping for PBI-based membranes, other acids have been used
in the past years to overcome the drawbacks associated with the use of PA, mainly acid leaching
and corrosion, which can seriously affect the long-term stability of fuel cells. Among other doping
acids containing phosphonate groups, phytic acid (myoinositol hexakisphosphate) is considered
a sustainable alternative to phosphoric acid (Figure 4). Phytic acid is a phosphorus-containing organic
acid that can be found in plants, especially in seeds and fibers. This acid has been used as a doping agent
in combination with metal organic frameworks (MOFs) for polymer electrolyte membranes based on
Nafion®, reaching high proton conductivities [58,59]. Because of its molecular size, this natural acid can
be encapsulated into cavities, reducing the leaching from the membrane. Another type of alternative
acid is heteropolyacids, which are a particular class of acids made up of a combination of hydrogen
and oxygen with metals and non-metals. Among this family of heteropolyacids, phosphotungstic acid
(HPW), with molecular formula H3P4W12O40, has been efficiently applied as a proton carrier in proton
exchange membrane fuel cells [60,61]. Some representative literature on heteropolyacid doped polymer
as PEM should be consulted [62,63]. In a recent work, we have evaluated the long-term stability of
PBI membranes doped with different concentrations of the widely used PA, and an important acid
leaching and subsequent conductivity drop was observed [64].
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2. Proton Conduction and Transport Mechanism

As has been previously commented, the proton conductivity of acid-doped PBI membranes
is strongly dependent on the physico-chemical parameters such as temperature, relative humidity
(RH), as well as the acid doping level measured in molar concentration of the doping solution [65,66].
Such conductivity is generally accepted to occur by two different mechanisms [67]: the Grotthuss
mechanism (also known as hopping mechanism) and the vehicle mechanism. The prevalence of either
the hopping or vehicle mechanism depends on the hydration level of the membrane. On the other
hand, the mechanism of proton transport in composite and hybrid membranes is much more complex
as it involves both the surface and chemical properties of the inorganic and organic phases present in
the composite membrane.

The Grotthuss mechanism is characterized by the protons’ jumping from one site to another along
a hydrogen-bonding (HB) chain. In the case of PBI composite membranes, the protons are transferred
from the nitrogen benzimidazole sites (N–H) to the phosphoric acid anions inside of the polymer matrix.
This contribution is relevant for n = [H3PO4]/[PBI] < 2. When n > 2, there is a possibility of a proton
hopping along the phosphoric acid anions. This mechanism is relevant in the case of non-doped PBI.
The original idea was proposed by Theodore von Grotthuss in 1806 to explain a mechanism for proton
(H+) transport between water molecules [68]. As shown in Figure 5, the protons jump from a protonic
species such as H3O+ to another protonic species in the membrane [69].
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The second mechanism, namely the vehicle mechanism, was proposed in 1982 by Kreuer, Rabenau,
and Weppner [70] and rationalizes that the motion of protons is assisted by carrying molecules that,
in general, are associated to the doping acidic groups. This last mechanism accounts for the major
contribution for the conductivity increment of the polymeric membranes. Finally, a combination of the
two described mechanisms can be observed in the case of diffusion of protons as part of polymeric
structures involving molecules of water such as H3O+, H5O2

+ (Zundel cation), H9O4
+ (Eigen cation),

or some other species, such as NH4
+, which may also be present in the polyelectrolyte, in combination

with the diffusion of vehicles as uncharged molecules. As illustrated in Figure 6, the protons attach
themselves to a vehicle site such as water, which is diffused through the medium, and thus carry the
protons along.
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When the protons are moving through a hopping mechanism, the conductivity of the acid-doped
PBI is governed by an activation mechanism that obeys the Arrhenius law [71], where the relation
between the conductivity and temperature is governed by the expression.

σ = A exp
(
−

Ea

RT

)
, (1)

where σ (S/cm) is the proton conductivity at a certain RH, A is a pre-factor, Ea (kJ/mol) is the activation
energy at a certain RH, R (8.314 J/mol K) is the gas constant, and T (K) is the absolute temperature.

The values of Ea for n > 2 are in the range 15–25 kJ/mol, very near to that of concentrated H3PO4

aqueous solution. In this situation, PBI-based membranes doped with acidic groups show high
proton conductivity if properly doped with strong acids such as H3PO4 depending on the amount
of PA absorbed into the porous of its matrix. In fact, PBI is a basic polymer, which dissociates PA
releasing protons, as sketched by the following reaction: H3PO4 + PBI→H2PO4

− + PBI−H+, where the
equilibrium constant is about K = 1.17 × 103 and H+ ions can migrate through the polymer backbone
by means of hydrogen bonds, in this case, assisted by phosphate anions by means of the Grotthuss
mechanism, as we previously mentioned.

In some cases, such as PA-doped composite membranes of PBI containing ionic liquids,
the dependence of the conductivity versus temperature presents a different behavior than the typical
Arrhenius behavior and the activation energy associated with the conductivity mechanism is not
constant for the entire the range of temperatures. In such a situation, the conductivity of the membranes
exhibits a Vogel–Tammann–Fulcher (VTF) conduction behavior, where proton hopping is coupled
with the segmental motion of the polymer chains and the activation mechanism is given according to
the equation.

ln σdc = ln σ∞ −
B

T − T0
, (2)

where B is the fitting parameter related with the curvature of the experimental data plot; T0 is the Vogel
temperature, which is considered as the one at which the relaxation time would diverge; and σ∞ is the
pre-factor related with the conductivity limit at high temperatures.

Figure 7 displays the results found for the conductivity of some composite membranes of PBI
filled with ionic liquids (ILs), where a behavior different from linear is observed depending on the
IL type. The activation energy associated with this kind of composite membrane is much higher
for lower temperatures than the one associated with higher temperatures, in agreement with the
experimental results. The values for the activation energy obtained from the fit of Equation (2) to
the experimental data plotted in Figure 7 follow the trend [Cl]− (6.33 kJ/mol) > [I]− (5.80 kJ/mol) >

[NTf2]− (5.35 kJ/mol) > [Br]− (3.04 kJ/mol) > [NCS]− (2.91 kJ/mol) > [BF4]− (2.53 kJ/mol) ≈ [PF6]−

(2.51 kJ/mol). A close inspection of Figure 7 reveals a change in the slopes. For PBI@BMIM-NTf2 and
PBI@BMIM-Cl, a negative slope is observed at high temperatures, in contrast with a slightly positive
slope for PBI@BMIM-NCS and PBI@BMIM-BF4. This behavior can be associated with the variation
in Debye’s length, which is related to the effective dissociation energy and the measured dielectric
permittivity in the absence of electrode polarization as well as of orientational polarization of dipolar
ions, as previously reported [72,73].
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(X: [NTf2]−, [Cl]−, [BF4]−, [I]−, [PF6]−, [NCS]− and [Br]−). For comparison, the conductivity dependence
with temperature for PBI pristine membrane doped with phosphoric acid is also given.

There are many examples of PBI composite membranes with values of proton conductivity and its
corresponding activation energy. As an example, Wang and et al. [74] prepared an insoluble sulfonated
polyphosphazene (SPOP) with 117% degree of sulfonation; the SPOP was used as the proton conductor
in the PBI as HT-PEM, and the polyfunctional triglycidyl isocyanurate (TGIC) was used as a covalent
cross-linking agent to inhibit swelling at low degree of cross linking of the PBI-TGIC/SPOP composite
membranes obtained. The proton conduction activation energy was calculated at a specific set of RH
and is summarized in Table 1. The conductivity of PBI-TGIC(5%)/SPOP(50%) at 100% RH, 50% RH,
and 0% RH is 0.143, 0.076, and 0.044 S/cm at 180 ◦C, respectively. The authors described that the proton
conduction activation energy increased with the increasing degree of crosslinking. This inhibited
the water absorption of the composite membrane and hindered the passage in the membrane of the
proton conduction through the vehicle mechanism. On the other hand, the increase of the doping
amount of SPOP reduced the proton activation energy, because it promoted water absorption of the
membrane and improved the connectivity of the hydrophilic regions in the membrane. When the RH%
was lowered, the efficiency of the vehicle mechanism for conducting protons was reduced, thereby
causing a decrease in proton conductivity and an increase in proton conduction activation energy.
At 0% RH, the proton conduction mechanism of the PBI-TGIC/SPOP composite membrane is the
hopping mechanism.

Table 1. Proton conduction activation energy calculated by polybenzimidazole (PBI)-triglycidyl
isocyanurate (TGIC)/sulfonated polyphosphazene (SPOP) composite membranes.

Polymer Ea(RH 100%) kJ/mol Ea(RH 50%) kJ/mol Ea(RH 0%) kJ/mol

PBI-TGIC(5%)/SPOP(50%) 12.7 19.5 24.3
PBI-TGIC(10%)/SPOP(50%) 14.1 20.8 25.2
PBI-TGIC(5%)/SPOP(40%) 16.2 22.1 26.7

PBI-TGIC(10%)/SPOP(40%) 18.6 23.5 27.1

Recently, Rajabi et al. prepared composite membranes by introducing melamine-based dendrimer
amines (MDA) with mesoporous silica (SBA-15), and 1,3-di(3-methylimidazolium) propane dibromide
dicationic ionic liquid (pr(mim)2Br2) (DIL), the membranes were doped with PA and were used
to improve the proton conductivity [75]. The APBI-DIL4.5-MDA1.5 composite membranes exhibit
a proton conductivity of 0.22 S/cm at 180 ◦C under dry conditions. With the increasing temperature,
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the interaction between polymer chains decreases, leading to more mobility of proton carriers. The high
mobility of protons and their access to the active sites can also have a positive effect on the Ea required
for proton conduction through the Grotthuss and vehicular mechanisms in the membranes. According
to the results displayed in Table 2, APBI-DIL4.5-MDA1.5 composite membranes require a lower Ea to
conduct the proton compared with the other membranes.

Table 2. Proton conduction activation energy calculated by APBI-dicationic ionic liquid (pr(mim)2Br2)
(DIL)/mesoporous silica (MDA) composite membranes. PA, phosphoric acid.

Polymer PA/PBI25 ◦C σ (S/cm) Ea (kJ/mol)

APBI 7 0.051 21.20
APBI-DIL4 10.99 0.142 13.56

APBI-DIL4.5-MDA0.5 13.67 0.182 —-
APBI-DIL4.5-MDA1.5 15.32 0.224 8.87
APBI-DIL4.5-MDA2.0 15.09 0.221 —-

Compañ’s working group [64] presents a systematic study of the physico-chemical properties
and proton conductivity of PBI membranes doped with PA and other acids such as phytic acid and
phosphotungstic acid (HPW). To further study the proton conduction mechanism of the membranes,
the Arrhenius plots of the membranes and their proton conduction activation energy values (Ea)
were analyzed; the results are presented in Table 3. Proton conductivity increases for all membranes
from 20 to 180 ◦C, following typical Arrhenius behavior. The obtained values followed the trend:
Ea (PBI–PA 14 M) < (PBI–PA 1 M) ≈ (PBI–phytic) < (PBI–PA 0.1 M) < (PBI–HPW). These results
indicate that proton mobilities increased with the amount of PA, and then PA formed channels in the
organic phase of porous PBI. Similar activation energies were obtained for PBI–PA 1 M, PBI–PA 0.1 M,
and PBI–phytic acid membranes, but PBI–PA 14 M displayed a lower value as the PA concentration
was much higher and, therefore, the proton transport was more favored. According to these results,
the Grotthuss mechanism dominates the proton transport in acid doped PBI membranes.

Table 3. Proton conduction activation energy calculated by PBI doped with different acids. HPW,
phosphotungstic acid.

Polymer σDC 140 ◦C (S/cm) Ea (kJ/mol)

PBI 2.5 × 10−12 53 ± 2
PBI–PA 1M 2.5 × 10−3 25 ± 3

PBI–PA 14 M 5.3 × 10−2 11.6 ± 0.7
PBI–phytic acid 2.6 × 10−4 25 ± 2

PBI-HPW 1.9 × 10−11 31 ± 3

In a recent publication of the group of Compañ, SiO2 nanofiber mats were used as fillers in the
preparation of composite PBI membranes for high temperature PEMFC applications [76]. In this work,
SiO2 nanofibers were fabricated through an electrospinning process and later functionalized using
silane chemistry to introduce different polar groups, namely, −OH (neutral), −SO3H (acidic), and −NH2

(basic). The modified nanofiber mats were embedded in PBI to fabricate mixed matrix membranes.
Proton conduction measurements show that PBI composite membranes containing nanofiber mats
with basic groups showed higher proton conductivities. The Ea values of the composite membranes
under wet conditions were lower than that for the pure PBI membrane, which is associated with
an enhanced proton mobility, as the nanofiber acts as a carrier-bridge for protons and, consequently,
the process demands less energy. On the one hand, the Grotthuss mechanism explains the conductivity
by means of the interaction of protons through the jump between a hydrogen bond network of N−H
groups, both from the PBI and from the functionalized groups of the nanofiber mats. On the other
hand, protons can move via the vehicle mechanism through the hydroxyl, amine, or sulfonic groups
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from the different nanofiber functionalization and imidazole groups present in the PBI, which may
interact with water molecules, promoting the proton conductivity. Additionally, activation energies
under dry conditions improve proton conduction, which is mainly owing to a vehicular mechanism,
as inferred from the calculated activation energies, with values higher than 55 kJ/mol (see Table 4).

Table 4. Activation energies for the PBI composite membranes in wet and dry conditions for the
temperature interval 20–90 ◦C.

Polymer Ea(wet) kJ/mol Ea(dry) kJ/mol

PBI 55.6 ± 0.8 75 ± 3
PBI-SiNF 12.7 ± 0.4 72 ± 3

PBI-SiNF-NH2 10.7 ± 0.3 56 ± 2
PBI-SiNF-SO3H 25 ± 1.5 123 ± 10

In 2018, our research group described the preparation and characterization of composite PBI
membranes containing zeolitic imidazolate framework (ZIF-8) and (ZIF-67) [77]. The calculated Ea

associated with the proton transport in the PBI−ZIF-8 and PBI−ZIF-67 and PBI−ZIF−mix are shown
in Table 5. Considering that the Ea for the PBI-ZIF membranes is lower than that for pure PBI
membrane, it is suggested that the ZIFs clearly favor the conductivity of the membrane at moderate
and high temperatures.

Table 5. Activation energies for the PBI composite membranes along the temperature interval 20–90 ◦C.
ZIF, zeolitic imidazolate framework.

Polymer Ea kJ/mol

PBI 36 ± 2
PBI−ZIF-8 33 ± 2
PBI−ZIF-67 30 ± 2

PBI−ZIF−mix 19 ± 1.4

According to the calculated activation energies, the proton conductivity could be rationalized
by means of the Grotthuss mechanism by proton hopping through a network of hydrogen bonds
along the polymeric matrix involving polybenzimidazole polymeric chains, phosphoric acid networks,
and imidazolate rings from the ZIF (Figure 8).
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Abouzari-Loft and co-workers used the 2,6-pyridine functionalized polybenzimidazole (Py-PBI)
as substrate for hosting PA moiety. Phosphonated graphene oxide (PGO) was added to Py-PBI
substrate at different levels prior to acid doping [78]. They found that the conductivity is more stable
in the Py-PBI-PGO membranes. The proton conductivity of the membranes showed a temperature
dependence, that is, an Arrhenius-type of behavior in the whole range of temperatures. The activation
energy for the Py-PBI based membrane was lower for the composite membranes with 1.0% and 1.5%
PGO contents, as shown in Table 6. The authors proposed that such a reduction in the Ea for the PGO
containing membranes may indicate the synergic effect of the phosphonated PGO filler in boosting
the membrane proton conductivity. The presence of PGO with an exfoliated structure may have
disrupted the crystalline structure of PyPBI, which results in more available and stronger sites for PA
trapping and provided additional diffusion pathways for proton hopping across the membrane via the
Grotthuss mechanism.

Table 6. Activation energies for the PyPBI-phosphonated graphene oxide (PGO) composite membranes
doped PA.

Polymer Ea(dry) kJ/mol

PyPBI 22.8
PyPBI-PGO1.0 18.2
PyPBI-PGO1.5 18.0

3. Influence of the PBI Structure and Synthetic Methods on Its Conductivity

As mentioned above, PBIs, owing to their excellent mechanical properties and high chemical
resistance, are considered as the most important polymers for the fabrication of membranes to work at
high temperatures in the construction of stacks for HT-PEMFCs. The PBI membranes are generally
prepared by casting from polymer solutions and then doped with acid, although a direct method for
casting the PBI together with acid has also been developed [79,80].

The structure of PBI has an important effect on many of its properties such as solubility, stability,
and proton conductivity. PBIs have a poor solubility owing to their rigid structure. Another important
factor affecting the solubility is the molecular weight of the polymer. In this regard, PBIs with molecular
weights ranging from 23 to 37 kDa have relatively good solubility, but polymers with lower molecular
weights are not strong enough to ensure fuel cell requirements. However, polymers with higher
molecular weights are found to be poorly soluble in polar organic solvents. Therefore, many approaches
have been used to improve both the strength and solubility of PBI [81,82].

One strategy to strengthen and make PBI more soluble consists of introducing a flexible group in
the backbone, such as ether linkages, that facilitates the chain mobility, and consequently solubility,
and simultaneously enhances the molecular weight of the PBI and its strength. PBIs containing ether
units have been synthesized and applied as polymeric electrolytes for HT-PEMFCs. Furthermore,
the introduction of ether units in the PBI has been reported an effective method of increasing the proton
conductivity of the membranes. So, the synthesis of poly [2,2′-(p-oxydiphenylene)-5,5′-benzimidazole]
(OPBI) obtained by polycondensation of 3,3′-diaminobenzidine (DAB) and 4,4′-oxybisbenzoic acid
(OBBA) was reported (Figure 9), and the membrane prepared from this polymer, after PA doping,
which showed values of proton conductivity up to 0.083 S/cm at 150 ◦C under anhydrous conditions [83].
The fabricated PBI/PA MEA was tested for 100 h without any degradation in voltage noticed,
reaching maximum power and current densities of 1.17 W/cm2 and 6.0 A/cm2, respectively (Figure 10).
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In 2019, Berber and Nakashima described the synthesis of bipyridine-based polybenzimidazole
(Bipy-PBI) of various molecular weights and it was concluded that the molecular weight significantly
affected thermal stability, mechanical properties, proton conductivity, and FC performance of the
membranes [84]. The conductivity of the 141 kDa Bipy-PBI membrane reached 0.037 S/cm at 120 ◦C
and anhydrous conditions, with a maximum power density of 0.78 W/cm2 and a current density at
0.5 V of 1.6 A/cm2.

An alternative synthesis of OPBI by microwave irradiation was also reported by Kang and
coworkers [85]. The proton conductivity of the H2SO4-doped membranes prepared from this PBI
showed values up to 0.190 S/cm at 160 ◦C and anhydrous conditions. The synthesis of porous and
asymmetric OPBI without the use of any porogenic additive was also developed by Ou and coworkers;
the conductivity of 0.072 S/cm at 180 ◦C for such OPBI membrane was reported and a peak power
density of 0.4 W/cm2 at 160 ◦C under anhydrous conditions was reached in the fuel cell test [86].

The incorporation of hexafluoroisopropylidene groups in the polymeric structure has been
efficiently used to improve the proton conductivity of polyimides and polyamides [87]. Consequently,
such an approach was tried on PBI membranes. In this regard, Qian and Benicewicz prepared
a hexafluoroisopropylidene-containing o-polybenzimidazole (o-6F-PBI) membrane with a proton
conductivity of 0.09 S/cm at 180 ◦C after phosphoric acid doping and a fuel cell performance with
a maximum power density of 0.58 W/cm2 0.2 A/cm2 was described [88]. A year later, another
hexafluoroisopropylidene-containing PBI (m-6F-PBI) was synthesized and the PA-doped membrane
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exhibited a proton conductivity of 0.02 S/cm at 180 ◦C, and a peak power density of 0.574 W/cm2 at
0.2 A/cm2 at 180 ◦C. The synthesis of other fluorinated PBIs, such as poly (2,2′-(tetrafluoro-p-phenylene)-
5,5′-bibenzimidazole) (o-4F-PBI) and poly(2,2′-tetradecafluoroheptylene- 5,5′-bibenzimidazole)
(o-14F-PBI), has been described, and their PA-doped membranes reached conductivity values up to
0.03 S/cm at 150 ◦C. The crosslinked m-6F-PBI membranes using epoxide cross-linkers were prepared.
The membranes showed high acid doping level, enhanced mechanical strength, and oxidation stability
in comparison with the pure m-6F-PBI. Additionally, the proton conductivity in these cross-linked
PA-doped membranes reached values up to 0.060 S/cm at 160 ◦C and a current density of 0.634 A/cm2

at 0.51 V [89].
Chemical modification of PBI by means of click chemistry reactions [90] and by the alternative

and enviromental friendly metal-free click chemistry reactions [91], such as the strain-promoted
azide–alkyne cycloaddition (SPAAC) [92], the thiol-ene [93,94] and thiol-yne coupling [95,96],
the inverse electron−demand Diels−Alder (IEDDA) reaction [97], the strain-promoted alkyne−nitrone
cycloaddition (SPANC) [98,99], and the strain-promoted oxidation-controlled cyclooctyne–1,2–quinone
cycloaddition (SPOCQ) [100–102], can afford an interesting variety of PBI structures with potential
applications in PEM for fuel cell applications. The main advantages of these reactions include their
fast reaction kinetics, versatililty and regiospecificity, high product yields, and easy purification of the
products. In this regard, these methodologies have been efficiently used along the past decade in the
preparation of polymers [103], but their application in fuel cells remains almost unexplored.

4. Copolymers

Another commonly used alternative to fabricate PBI-based polymers with desirable properties
(high proton conductivity in combination with high chemical and thermal stability and adequate
mechanical properties) is based on the preparation of PBI copolymers [104]. On these lines,
copolymerization has attracted researchers’ interest in the last decade as it allows a fine tuning
of the polymer properties by simply selecting the monomer concentration/monomer ratio in the
copolymer (Figure 11) [105].
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Aili, Javakhishvili, and coworkers have synthesized an amino-functional benzimidazole
copolymer by condensation of isophthalic acid, 3,3′-diaminobenzidine, and new a hexamine,
N,N′-bis(2,4-diaminophenyl)-1,3-diaminopropane (Figure 11). Blend membranes prepared with
conventional PBI showed proton conductivities up to 0.12 S/cm at 160 ◦C after phosphoric acid
doping [106], which was in accordance with the observed high acid uptakes. Zhao et al. synthesized
a series of grafted polybenzimidazole copolymers containing polyhedral oligosilsesquioxane (POSS)
pendant moieties, which are a family of well-defined cage-like molecules (Figure 11) [107].
These copolymers exhibited improved mechanical properties over pristine PBI, with a Young’s
modulus of ∼5 GPa and tensile strength of 85 MPa; whereas for pristine PBI, the values were of
1.36 GPa and 71 MPa, respectively. Another copolymerization approach described by McGrath and
coworkers was based on multiblock copolymers containing different block lengths. These copolymers
were prepared by coupling carboxyl functional aromatic poly (arylene ethers) with ortho diamino
functional PBI oligomers in different poly(arylene ether sulfone) and PBI ratios [108]. Using a similar
approach, Lee and coworkers described the synthesis of poly (aryl ether benzimidazole) copolymers
containing different contents of aryl ether linkages by condensation of 4,4-dicarboxydiphenyl ether
(DCPE) and terephthalic acid (TA) by varying the DCPE/TA ratio (Figure 11). The authors concluded
that the optimal content of aryl ether linkages was 10–30 mol %. With this approach and after PA
doping, membranes displayed a proton conductivity of 0.1 S/cm at 180 ◦C [109].

The group of Benicewicz has deeply explored the synthesis of new compositions to improve the
chemical, thermal, and mechanical stability, as well as proton conductivity, of PBI-based membranes.
In 2005, a series of meta/para-PBI random copolymer membranes were fabricated by Benicewicz and
coworkers via a phosphoric acid sol–gel process. These copolymers exhibited a maximum proton
conductivity of 0.26 S/cm at 180 ◦C with a high acid doping level, which was efficiently retained in the
membrane [110]. Fuel cell tests displayed a current density of 0.2 A/cm2 and a voltage around 0.65 V at
temperatures above 150 ◦C without any feed gas humidification, and were stable for more than 1000 h.
In 2011, Mader and Benicewicz reported the preparation of PBI containing sulphonic acid groups
by copolymerization of p-PBI with polyphosphoric acid (PPA), which displayed excellent proton
conductivities with values close to 0.3 S/cm at 180 ◦C [111]. The authors used different segmented
block copolymers containing p-PBI and sulphonated PBI (s-PBI) in different ratios for the preparation
of membranes, which displayed fuel cell performances at 160 ◦C with voltages around 0.74 V at
0.2 A/cm2. The highest conductivity was found for the 25:75 s-PBI/p-PBI membrane (0.376 S/cm).
The same group has also described the preparation of polyphenylquinoxaline-based PBI copolymers
via the polyphosphoric acid (PPA) process with proton conductivities up to 0.26 S/cm [112]. Using
the PPA process, a series of pyridine-containing m-PBI copolymers were used for the preparation of
membranes with enhanced mechanical properties, which displayed a proton conductivity of 0.16 S/cm at
160 ◦C [113]. Fuel cell performances of these membranes were similar to those of para-PBI and long-term
stability showed these copolymers maintained a consistent fuel cell voltage of 0.6 V at 0.2 A/cm2 for
over 2300 h. In a later study, the long-term stability was extended to more than 8000 h [114]. A series
of PBI-based block copolymers consisting of phosphophilic PBI and phosphophobic non-PBI segments
were synthesized via coupling of ortho-diamino terminated meta-PBI telechelic macromonomers and
carboxylic acid end-capped poly (arylene ether) telechelic macromonomers (Figure 12). The block
copolymer PBI-fluorinated poly (arylene ether) displayed a conductivity up to 0.11 S/cm after doping
with concentrated PA, but having low mechanical properties [115]. The fuel cell performance showed
a 20 µV/h degradation rate when operating at 0.2 A/cm2 over 2000 h with an initial 0.58 V at 0.2 A/cm2.
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Maity and Jana reported the synthesis of a series of meta-PBI-block-para-PBI segmented block
copolymers with different block lengths by the condensation reaction of diamine-terminated meta-PBI
and acid-terminated para-PBI oligomers [116]. The maximum proton conductivity for this block
copolymer was 0.11 S/cm at 160 ◦C, displaying a block structural influence on the proton conductivity.
Pan and coworkers synthesized a series of sulfonated polybenzimidazole multiblock copolymers
containing pyridine rings via the condensation polymerization of a dicarboxyl monomer containing
pyridine, 3,3′,4,4′-tetraaminobiphenyl, and 4-aminobenzoic acid in polyphosphoric acid. Next,
membranes were prepared via the generally used solution casting method and subsequently doped
with phosphoric acid [117]. The prepared membranes displayed an improved thermal and oxidative
stability, reaching proton conductivities up to 0.23 S/cm at 180 ◦C.

Co-polymers of ABPBIs containing phenoxy in the main chain were synthesized by Wang and
coworkers via the solution casting method. The copolymers were synthesized by copolymerization of
3,4-diaminobenzoic acid (DABA) and 4-(3,4-diaminophenoxy)benzoic acid (DPBA) under microwave
irradiation. The polymeric membranes displayed an improved stability in organic solvents with proton
conductivities up to 0.05 S/cm at 160 ◦C for the PA-doped membranes (Figure 13); however, a low tensile
strength of ∼2 MPa was reached after acid doping [118]. Kim et al. prepared cross-linked copolymer
membranes of polybenzimidazole and polybenzoxazine [119]. The copolymerized membranes showed
a maximum proton conductivity of 0.12 S/cm at 150 ◦C under anhydrous conditions. Fuel cell tests
showed operating voltages of 0.71 V at 0.2 A/cm2, with an excellent long-term durability up to 2000
operating cycles.
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permission of Elsevier.

5. Composite Membranes

Development of the composite PBI membranes, i.e., appropriate combination of inorganic-organic
hybrid materials and polymer matrix, allowed significant improvement in the proton conductivity [120].
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These composite materials are very attractive since they take advantage of the properties of inorganic
and polymeric materials. Moreover, introduction of various inorganic or organometallic fillers into
the same polymer matrix results in formation of novel materials. Different fillers were proposed for
improving the mechanical integrity of PBI composite membranes. As a first generation, such fillers as
silica (SiO2) [121], titanium (TiO2) [122], zirconia (ZrO2) [123], and carbon materials [124] were reported
to improve the dimensional stability, mechanical properties and gas permeability of PBI composite
membranes. Recently, a second generation of acid functionalized fillers have received growing attention
due to the mutual contribution to the proton transport. In this regards, various carbon-based substrates
including graphene oxide (GO) [125,126] and carbon nanotubes (CNTs) [127], ionic liquids (ILs) [128],
metal organic frameworks (MOFs) [77], nanofibers [129], among others were reported.

The properties of PBI composite membranes classified by the type of filler are outlined as follows.

5.1. PBI/Inorganic Composite Membranes

In order to address limitation issues in PA doped PBI membranes, such as low mechanical
properties caused by high doping level and acid leaching from the membrane in extreme temperatures,
the most widely used approach is the incorporation of an inorganic filler. Introducing various inorganic
fillers greatly contributes to the improvement of the membrane behavior and its intrinsic ability to
conduct protons. It was found that the addition of inorganic material to PBI to obtain composite
or nanocomposite membranes allowed to improve the proton conductivity, water/PA uptake and
retention, durability, high mechanical, thermal, and chemical stability at high temperatures, as well as
overall fuel cell performance [130,131].

5.1.1. Metallic Oxides

Metallic oxide fillers such as SiO2, TiO2, and ZrO2 were introduced into PBI matrices and some
improvements in terms of dimensional stability, mechanical properties, and gas permeability of such
formed composite membranes were observed. Over the past decade, a significant increase in the use of
fillers based on metallic oxide compounds has been observed for fuel cell applications, as can be seen
in Figure 14. As shown in Table 7, proton conductivity values close to 0.12 S/cm can be reached using
metallic oxides as inorganic fillers in composite PBI membranes.
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Figure 14. Number of publications in the period of 2001–2019 indexed in the Web of Science:
(A) keywords: metallic oxide AND fuel cell; and (B) keywords: metallic oxide AND fuel cell AND
proton exchange membrane. Source: www.webofknowledge.com.

Pu and coworkers [132] prepared PBI/SiO2 composites with up to 15% SiO2 content; the membranes
were thermally stable up to 600 ◦C and generally exhibited better mechanical properties than the PBI
membranes of the same structure, but without the filler. A decrease in the tensile strength was observed
only at higher SiO2 content. The membranes had proton conductivity of 3.9 × 10−3 S/cm at 180 ◦C. Later,
Devrim and collaborators [133] prepared PBI/SiO2 membranes that were tested in single cell HT-PEMFC;
they exhibited higher proton conductivity of 0.103 S/cm at 180 ◦C. For comparison, the conductivity of
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the same PBI membrane without filler was 0.094 S/cm. Many efforts have been devoted to improving
the compatibility and membrane properties, studying combinations of various metals or modified metal
oxide structures as fillers. For example, high conductivity of 0.31 S/cm was obtained for composite
membranes filled with mixed Al-Si. The filler was readily produced by the sol–gel method [134].
The proton conductivity and MEA performance of PBI/Al-Si composite were improved with the
increasing Al-Si concentration, but the mechanical properties were not desirable, as they got worse.
Lysova and coworkers prepared a polybenzimidazole based on 3,3′,4,4′-tetraaminodiphenyloxide and
3,3′-bis(p-carboxiphenyl)phtalide (PBI-O-PhT) and formed composite membranes using SiO2 or ZrO2

added by two different methods: (1) addition of preliminarily synthesized particles in situ during
the polymer synthesis and (2) addition during the casting [135]. It was shown that the modification
by zirconia with the in situ method improved the ionic conductivity better than the modification by
silica. In the case of the casting method, better results were obtained for silica modification. Zhang and
coworkers prepared a membrane using an OPBI polymer and zirconium phosphate (Zr(HPO4)2·nH2O,
ZrP) [136]. The PBI/ZrP exhibited excellent mechanical strength with 10 wt.% ZrP and showed the
highest proton conductivity of 0.192 S/cm at 160 ◦C under anhydrous condition. Lobato and coworkers
prepared membranes PBI by casting in the presence of 2 wt.% TiO2, and the fuel cell with this composite
showed better performance compared with the fuel cell with the standard PBI membranes, achieving
1000 mW/cm2 at 175 ◦C [137]. The study of PBI composites using mixed Fe2TiO5 oxides was also
performed [138]. According to the Lewis acid–base theory, the main cations Ti4+ and Fe3+ are classified
as hard acids [139]. This means that they may easily react with OH of water. Additionally, it was
suggested that, when Fe3+ cations were placed near Ti4+ cations, as occurred in the Fe2TiO5 structure,
their acidity was increased. Therefore, Fe2TiO5 single-phase nanoparticles were more hydrophilic than
both TiO2 and Fe2O3 nanoparticles separately [140]. The PBI/Fe2TiO5 membranes showed a higher
acid uptake and proton conductivity compared with the pure PBI membranes. The proton conductivity
of 0.078 S/cm at 180 ◦C was observed for the PBI/Fe2TiO5 containing 4 wt.% of nanoparticles.

Table 7. Composite membranes of polybenzimidazole derivates with inorganic materials.

Polymer Filler wt.% σDC (S/cm) T (◦C) Doped Ref

PBI — — 10−12 160 — [64]
PBI SiO2 15 0.004 180 — [132]
PBI SiO2 5 0.103 180 — [121]
PBI Al-Si 0.310 — [134]

PBI-O-PhT ZrO2 - 0.162 180 D [135]
OPBI α-ZrP 10 0.192 160 — [136]
PBI TiO2 2 0.081 175 — [137]
PBI Fe2TiO5 4 0.078 180 D [138]
PBI SiWA-SiO2 50 0.001 160 — [141]
PBI SiWA-SiO2 50 0.002 160 D [141]
PBI ZrP 15 0.096 200 D [142]
PBI BPO4 25 0.027 180 D [142]
PBI CsPOMo 30 0.120 160 D [143]
PBI CsPOW 30 0.100 160 D [143]
PBI CsSiOW 30 0.057 160 D [143]
PBI CsSiMo 30 0.051 160 D [143]
PBI BaZrO3 4 0.125 180 D [144]

The composite membranes prepared from silicotungstic acid supported on silica (SiWA-SiO2/PBI)
were studied by Staiti [141]. The silica was necessary to entrap the acid, averting its dissolution in water,
and to improve the proton conduction. The best result was obtained for the membrane with 50 wt.% of
inorganic material; it was mechanically stable and gave a proton conductivity of 1.2 × 10−3 S/cm at
160 ◦C and 100% RH, while the membranes prepared with pure silicotungstic acid had a conductivity
of 2.23 × 10−3 S/cm under the same conditions.
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PA-doped PBIs containing inorganic proton conductors such as zirconium phosphate (ZrP)
(Zr(HPO4)2·nH2O), phosphotungstic acid (PWA) (H3PW12O40·nH2O), and silicotungstic acid (SiWA)
(H4SiW12O40·nH2O), or boron (BPO4), were investigated by Di et al. [142]. It was concluded that the
conductivity of these composite membranes depended on the acid doping level, RH, and temperature,
similar to simple PA-doped PBIs. The conductivity was found to be insignificantly higher for the
inorganic composite membranes.

Xu et al. [143] presented different PBI-based inorganic–organic composite membranes from Cs
substituted heteropolyacids (CsHPAs) with the intention to build MEA for application at intermediate
and high temperatures. The CsHPA/PBI membranes loaded with H3PO4 had much higher conductivity
than that of PA-doped PBI. It was observed that conductivity increased with an increase of the filler in
the composite. The membrane of 30% CsPOMo/PBI with a doping level of 4.5 exhibited conductivity
as high as 0.12 S/cm at 150 ◦C and anhydrous conditions, and additionally demonstrated excellent
mechanical behavior with a strength of 40 MPa. The performance of CsPOMo/PBI/H3PO4 membranes
in a H2/O2 single fuel cell was also very good, holding a power density of around 0.6 W cm−2 with
oxygen at atmospheric pressure.

Hooshyari et al. [144] studied the behavior of PBI-BaZrO3 (PBZ) nanocomposite membranes for
HT-PEMFC; their results showed that the water uptake, acid doping level, and proton conductivity of
the PBZ were higher than that of the virgin PBI membrane owing to the presence of BaZrO3 perovskite
nanoparticles (Figure 15). The proton conductivity observed for these composites containing 4 wt.% of
the nanofillers was around 0.125 S/cm at 180 ◦C, and the performance in a mono fuel cell produced
a power density at 0.5 V and 180 ◦C of 0.56 W/cm2, below a 5% RH with a current density of 1.12 A/cm2.
These results indicate that such membranes are excellent candidates for HT-PEMFC.
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Akbar et al. studied the composite membranes using perovskite-type SrCeO3 nanoparticles for
improving their properties at high temperatures for the application in HT-PEMFC [145]. The PA-doped
PBI/SrCeO3 membranes showed higher acid uptake (190%), excellent proton conductivity (0.105 S/cm
at 180 ◦C), and better thermal stability at 8 wt.% of SrCeO3 (PSC8) content in comparison with the
pure PBI membrane. The performance of the PSC8 nanocomposite membrane showed a 0.44 W/cm2

power density and 0.88 A/cm2 current density at 0.5 V and 180 ◦C. The results obtained in these studies
clearly demonstrated the enhanced potential of the PSC8 as PEM for high temperature proton exchange
membrane fuel cells.
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5.1.2. Metalcarboranes

Our group, in collaboration with the group of F. Teixidor, has also studied a family of inorganic
fillers based on sandwich compounds of molecular formula M[Co(C2B9H11)2] (M = Li+, Na+, H+),
also named M[COSANE] (Figure 16). These compounds are highly stable anionic materials with a very
low charge density. In 2017, we investigated the temperature dependence of the proton conductivity of
the cobalt salt H [COSANE] under wet and dry conditions. We observed that conductivity was strongly
dependent on the relative humidity and was higher in H[COSANE] than in other metallacarboranes
from the same family such as Na[COSANE] or Li[COSANE]. In this regard, the observed conductivity
of H[COSANE] was similar to that of other PBI membranes containing carboxylic groups and inorganic
fillers, reaching values up to 0.01 S/cm [146]. Recently, we have used these fillers in the preparation
of composite proton exchange membranes based on PBI. In a cation study, using H[COSANE],
Li[COSANE], and Na[COSANE] fillers, the conductivity of the composite membranes followed the
trend σ(PBI@H[COSANE]) > σ(PBI@Na[COSANE]) > σ(PBI@Li[COSANE]), reaching values close
to 0.001 S/cm [147]. The electrochemical impedance spectroscopy results showed that conductivity
increased with temperature and is higher for H+ than for Li+ and Na+ for all temperatures under
study. The temperature dependence of the conductivity of the composite was followed by a typical
Arrhenius behavior with two different regions: (i) between 20 and 100 ◦C and (ii) between 100 and
150 ◦C, whose activation energy values are given in Table 8. The pristine PBI membranes show
that the conductivity strongly begins to fall down, which may be because of the hydration of the
membrane when the temperature is higher than 100 ◦C. However, for the PBI composite membrane, the
authors observed a second behavior between 100 and 150 ◦C, where the conductivity tends to increase
with a different slope compared with the first interval up to 150 ◦C. At temperatures above 150 ◦C,
in composite membranes, conductivities decreased when temperature increased. This is possible
owing to the solvent evaporation temperature used in membranes’ preparation. The evaporation
temperature of solvent (DMAc) is about 160 ◦C, which could explain why membrane conductivity was
found to be reduced above this temperature value.Polymers 2020, 12, x FOR PEER REVIEW 19 of 41 
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Figure 16. Ball and stick view of H[COSANE] (left) and Bode diagram for composite membranes of
PBI containing 15 wt.% of H[COSANE] (right). Reproduced from [148] with permission of the Royal
Society of Chemistry.
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Table 8. Activation energy values for PBI, PBI@M[COSANE], and PBI@M[TPB] membranes.

Membrane Ea (kJ/mol) T ∈ [20–100 ◦C] Ea (kJ/mol)T ∈ [100–150 ◦C]

PBI@H[COSANE] 24.7 ± 0.7 5.6 ± 0.1
PBI@Li[COSANE] 19.1 ± 0.8 3.9 ± 0.4
PBI@Na[COSANE] 26.1 ± 1.2 5.2 ± 0.3

PBI@Li[TPB] 29.5 ± 0.9 6.1 ± 0.6
PBI@Na[TPB] 29.1 ± 1.6 7.3 ± 0.3

PBI 20.5 ± 2.3 —-

In a recent study, the effect of the H[COSANE] concentration in three different polymeric matrices
based on the PBI structure, PBI, OPBI, and o-6F-PBI have been investigated [148]. All prepared
membranes displayed excellent proton conductivities higher than 0.03 S/cm above 140 ◦C, reaching
a maximum when the amount of H[COSANE] was 15 wt.%.

5.2. Graphene Oxide, Carbon Nanotubes, and Others

Another type of filler that has been attracting attention for the last two decades is the family
of graphene nanomaterials, mostly in the form of nanotubes or graphene oxide (GO). In particular,
GO has received special interest because of the unique combination of its properties, as can be shown
by the number of publications over the last decade (Figure 17). GO is formed from the oxidation of
graphite and comprises 2D carbon sheets, but is decorated with oxygen-containing functionalities
on the edges (hydroxyl, carbonyl, and carboxyl groups) and on the surface (hydroxyl and epoxide
groups) [149,150].
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Figure 17. Number of publications in the period of 2001–2019 indexed in the Web of Science:
(A) keywords: graphene oxide AND fuel cell AND proton exchange membrane; and (B) keywords:
carbon nanotube AND fuel cell AND proton exchange membrane. Source: www.webofknowledge.com.

Thus, GO maintains all exceptional properties of graphene, but in contrast to graphene, GO
is easily dispersible in water, organic solvents, or polymer matrices owing to the presence of the
oxygen functionalities, whereas graphene has a strong tendency to agglomerate. The use of GO
as a precursor is the most reliable and effective approach for preparing graphene-based polymer
composites. GO typically preserves the layer structure of the graphite, but the layers are buckled and the
interlayer spacing is much larger than the graphite [151]. GO is an electronic insulator with differential
conductivity; however, when GO is added into a polymer matrix, the protons presented in the
membrane interact with GO, and this promotes proton conductivity on the composite membrane [152].
Owing to its unique properties, GO has found tremendous applications in a diverse range of fields,
such as gas barrier nanocomposites [153], water treatment [154], stimuli-responsive materials [155],
energy storage as supercapacitors [156], lithium ion batteries [157], and stretchable electronics [158].

The presence of GO in the membrane provides the advantages of excellent mechanical properties, large
specific surface area, and as high as 0.01 S/cm inherent proton conductivity. Therefore, the introduction of
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GO into the PBI polymer matrix helps to improve the acid doping and proton conductivity, and prevent
acid leaching. Besides, GO allows improving the performance and increasing the durability of HT-PEMFC.
As shown in Table 9, proton conductivity values close to 0.17 S/cm can be reached using GO as a filler in
PBI membranes.

Üregen and coworkers prepared and studied a PBI/GO nanocomposite with different weight
percentage GO loading [38]. The maximum proton conductivity of 0.17 S/cm at 165 ◦C was observed for
the membrane with 2 wt.% GO content. The membrane performance in the HT-PEMFC system showed
that it was significantly improved in comparison with the pristine PBI membrane under dry conditions.
In the last years, attempts to apply GO modified with sulfonated, phosphonated, and other groups have
been made in order to improve proton conductivity, as well as dispersion and compatibility between
the filler and polymeric matrix. Yang and coworkers prepared a PBI composite membrane with GO
bearing triazole groups (TrGO) [159]. The presence of triazole functionality allowed improving the
compatibility with the polymer. The PBI/TrGO membranes with 1.2 wt.% of TrGO were much more
uniform and homogeneous than the PBI/GO membranes. The last ones were quite heterogeneous and
demonstrated obvious phase-separation. The tensile strength of the PA doped composite membranes
was 12.6 MPa, which was much higher than that of the PBI membrane with a similar acid doping level
(ADL) of around 12. Moreover, the high proton conductivity of 0.135 S/cm at 180 ◦C was achieved in
this membrane.

Cai and coworkers prepared sulfonated GO (SGO), using the 60Co γ-ray radiation grafting method,
which was then added into PBI via solution-casting [126]. The sulfonic acid groups in SGO were
able to form stronger interactions with the –N = or −NH groups of the benzimidazole ring than the
oxygen-containing groups of the non-modified GO, and thus SGO was well dispersed in the polymer
even with the SGO content of 1 wt.% (PBI/SGO-1%). Additionally, the composite exhibited much
better mechanical properties, with a tensile strength of 133.1 MPa, an elongation at break of 36.4%,
and a tensile modulus of 2134 MPa. These values increased in 32.0%, 220%, and 33% compared with
those for pure PBI membrane, respectively. However, when SGO content was >1%, low dispersion in
the polymer matrix led to a reduction in the mechanical properties of the membranes. The proton
conductivity of PBI/SGO-1%/PA was 0.023 S/cm at 170 ◦C under dry conditions (Figure 18). Then,
composites of 2,6-pyridine functionalized PBI with highly dispersible phosphoric acid functionalized
GO (PGO) were proposed as candidates for durable performance at elevated temperature (PBI-Py/PGO)
applied in fuel cells [116]. The incorporation of 1.5 wt.% of PGO in the membrane attained the highest
conductivity value of 76.4 × 10−3 S/cm at 140 ◦C (compared with 19.6 × 10−3 S/cm for PA doped
PBI-Py membrane under similar conditions). In addition, the durability of the proton transport was
significantly improved in the PGO containing membranes.Polymers 2020, 12, x FOR PEER REVIEW 21 of 41 
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Carbon nanotubes (CNTs) have been shown to be promising materials for various applications,
such as biological and biomedical research [160,161], environmental science [162], catalysis [163],
fabrication of composite materials [164], microelectronics [165], solar cells [166,167], electronic
components [168,169], energy storage [170], hydrogen storage [171], and so on. The PBI-based
composed membranes with CNTs (PBI/CNT) were investigated and their properties were compared
with the plain PBI membrane. The proton conductivity of PA-doped PBI and PBI/CNT was 0.063 and
0.074 S/cm, respectively, at 180 ◦C [172].

Liu and co-workers prepared PBI-functionalized multiwalled carbon nanotubes (MWCNTs)
through an ozone mediated process [173] and used as fillers in the preparation of PBI/MWCNT
nanocomposite membranes [174]. In the preparation of PBI/MWCNT nanocomposite membranes
using the conventional solution casting method, MWCNT/PBI were well dispersed in the PBI solution.
Interestingly, the addition of the functionalized MWCNTs enhanced the thermal and mechanical
properties of the composite membranes, increasing the Young’s moduli and tensile strength 70% and
75%, respectively, with respect to pristine PBI membrane. Regarding the PA-doped PBI nanocomposite
membrane containing 0.2 wt.% of MWCNT–PBI, it had a proton conductivity of 0.08 S/cm at 160 ◦C
under anhydrous conditions, compared with the proton conductivity of 0.045 S/cm of the PA-doped
PBI membrane (Figure 19). The authors attributed the high proton conductivity to the relatively high
acid uptake level of PBI composite membranes and proton migration under anhydrous conditions
was described to be mainly based on a Grotthuss-type mechanism. In studies of performance in
single cell tests at 150 ◦C, the MWCNT/PBI composite membranes demonstrated maximum power
densities of 600 mW/cm2. These values are much higher than that found with a pristine PBI membrane
(530 mW/cm2) and lower than that of MWCNT/Nafion® nanocomposite membranes containing the
same amount of MWCNT, whose value was 700 mW/cm2.
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multiwalled carbon nanotubes (MWCNTs) (top) and proton conductivity of different composite 
membranes at 80–160 °C without humidification (bottom). Reproduced from [174] with permission 
of the Royal Society of Chemistry. 
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MWNTs [178]. Next, composite membranes were prepared via the casting method using mixtures of 
functionalized MWNT and a fluorine containing PBI solution. The PBI composite membranes 
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composite membrane exhibited a conductivity of 0.074 S/cm, slightly higher than that for the PA 

Figure 19. Schematic representation of preparation of sulfonated Nafion®- and PBI-functionalized
multiwalled carbon nanotubes (MWCNTs) (top) and proton conductivity of different composite
membranes at 80–160 ◦C without humidification (bottom). Reproduced from [174] with permission of
the Royal Society of Chemistry.
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Table 9. Composite membranes of polybenzimidazole derivates with GO derivates. MWCNT,
multiwalled carbon nanotube. GO, graphene oxide; PGO, phosphonated GO; SGO, sulfonated GO;
TrGO, GO bearing triazole groups.

Polymer Filler wt.% σDC (S/cm) T (◦C) PA Ref

PBI GO 2 0.170 165 — [38]
PBI TrGO 1.2 0.135 180 D [159]
PBI SGO 1 0.023 170 D [126]

PBI-Py PGO 1.5 0.076 140 D [118]
PBI CNT 0.074 180 D [172]
PBI MWCNT 0.2 0.08 160 D [175]

On the other hand, the PBI nanocomposite membranes filled with phosphonate functionalized
carbon nanotube (P-MWCNT) were also prepared and their properties were studied. It was shown
that the two properties of key importance for PEM—the proton conductivity and mechanical stability
above 100 ◦C—were improved [175]. It turned out that P-MWCNTs, being incorporated into the
PA-doped PBI matrix, organized in domain-like structures. The enhanced performance was attributed
to the formation of proton conducting networks that formed along the sidewalls of P-MWCNTs with
a domain size of 17 nm.

In 2013, Hsu and co-workers prepared PBI composite membranes containing carbon nanotubes
with different functional groups, which were studied for proton exchange membrane fuel cells [176].
Two approaches were employed in the functionalization of MWNTs. The first functionalization involved
non-covalent modification by an in situ radical polymerization of sodium 4-vinylbenzenesulfonate with
MWNTs to yield MWNTpoly (NaSS) [177]. The second approach involved the covalent modification of
COOH-modified MWNTs by reaction with 1-(3-aminopropyl) imidazole through DCC-mediated amide
bond formation to afford imidazole-functionalized MWNTs [178]. Next, composite membranes were
prepared via the casting method using mixtures of functionalized MWNT and a fluorine containing
PBI solution. The PBI composite membranes containing imidazole-functionalized MWNT provided
more significant mechanical reinforcement compared with unmodified MWNTs and MWNT-poly
(NaSS) membranes, which was attributed to its better compatibility with PBI. For PA doped
MWNT-poly(NaSS)/PBI and MWNT-imidazole/PBI composite membranes, the proton conductivities
were up to 0.051 and 0.043 S/cm at 160 ◦C under anhydrous condition, respectively, which were slightly
higher than pristine PBI (0.028 S/cm). This enhancement was attributed to the combination of the
increase of free volume of the membranes at higher temperatures and the positive correction between
volume swelling and acid-doping level.

In 2015, Guerrero Moreno and co-workers prepared composite polymeric PBI membranes filled
with 1 wt.% of MWCNTs (with 20 and 140 nm inner and outside diameter, respectively, and 8 µm
length) by spin coating [179]. The mechanical stability of the PBI membrane improved upon the
addition of the carbon-based materials. The tensile strength of the composite PBI/CNT membrane with
1 wt.% CNTs loading was found to be 32% higher than the pristine PBI membrane. When studying the
proton conductivity at 180 ◦C under anhydrous conditions, the PA doped PBI/MWCNT composite
membrane exhibited a conductivity of 0.074 S/cm, slightly higher than that for the PA doped PBI
membrane (0.063 S/cm). The authors attributed this enhancement to the higher molar ratio of PA to the
polymer-repeat-unit owing to the presence of the CNTs.

5.3. Metal Organic Frameworks

Metal–organic structures (MOFs) are another type of commonly used filler used to improve
proton conductivity in polymer electrolyte membranes. In recent years, the use of metal–organic
structures as fillers in PEMs has attracted interest owing to their high conductivity, which is mainly
attributed to their high porosity and the retention of water molecules in their pores [180–183].
The MOFs are a family of metal-based crystalline porous materials that contain bonding organic units,
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which can form strong bonds, and lead to the creation of open crystalline structures with regular
porous arrangement [184–186]. These interesting compounds have been studied for possible different
applications such as fuel cells [187], pervaporation [188], nanofiltration [189], gas separation [190],
desammonia adsorption [191], and organocatalysis [192]. The introduction of MOFs into organic
polymer results in the enhanced thermal chemical stability of the formed composites under harsh
conditions, making them suitable for industrial application [193]. For elaboration of these membranes,
polymers such as perfulorosulfonic acid [194], sulfonated poly (ether ether ketone) [195], and poly(vinyl
alcohol) [196] have been used.

As illustrated in Figure 20, the number of published research articles on MOF containing materials
for fuel cell applications has increased significantly over the past decade, especially in recent years
(2016–2019). Over the past decade, a diverse range of MOFs have been used as fillers in the preparation
of mixed matrix membranes based on Nafion® [197–201], SPEEK [202–206], and other polymeric
materials [207–211]; however, their use in PBI polymers is still very scarce.
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Figure 20. Number of publications in the period of 2009–2019 indexed in the Web of Science:
(A) keywords: metal organic framework AND fuel cell; and (B) keywords: metal organic framework
AND fuel cell AND proton exchange membrane. Source: www.webofknowledge.com.

In this regard, our group prepared PBI membranes containing the imidazolate zeolites (ZIFs) [77],
a subclass of MOFs. ZIFs are materials with zeolitic topology when a M2+ tetrahedral divalent metal
cation (M = Co, Zn) coordinates to four imidazolate rings, forming a neutral (M(Im)2) porous structure
of high chemical and thermal stability [212,213]. The conductivity in the ZIF/PBI composite membranes
containing 5 wt.% ZIF fillers varied from 0.003 to 0.091 S/cm at 200 ◦C, depending on the type of ZIF
(Figure 21).
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Figure 21. (A) Schematic representation of chemical structure of ZIF-8 and ZIF-69. (B) Structural
representation of ZIF-8. (C) Field-emission scanning electron microscopy (FE-SEM) images of ZIF-8,
ZI-67, and ZIF-mix. (D) Arrhenius plot of phosphoric acid doped PBI composite membranes containing
5 wt.% of ZIFs [77].
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5.4. Ionic Liquids and Other Conductive Compounds

The use of ionic liquids (ILs) as conductive fillers to replace PA was proposed in an attempt to
overcome the disadvantages of PA, such as leaching and conduction instability with the time mentioned
above. ILs are purely ionic materials with generally low, below 100 ◦C, melting temperatures [214].
ILs have found applications in a wide variety of fields including their use as green solvents in organic
synthesis [215], catalysis [216,217], extraction, separation [218], supramolecular chemistry [219,220],
transport agents [221], pharmaceutical chemistry [222], materials science, and drug sensing [223],
among others. ILs have several favorable properties including their temperature stability, non-volatility
and non-flammability, rather high ionic conductivity, and reduced environmental impact. So, ILs are
considered as promising compounds for the preparation of electrochemical devices [224]. As shown in
Table 10, proton conductivity values close to 0.1 S/cm can be reached using ionic liquids as fillers in
composite PBI membranes.

As shown in Figure 22, ionic liquids began to be used in in fuel cells since their discovery at the
beginning of the 21st century, and the number of publications of the use of ionic liquids in fuel cells
has flourished in the past 15 years.
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Figure 22. Number of publications in the period of 2001–2019 indexed in the Web of Science:
(A) keywords: ionic liquid AND fuel cell; and (B) keywords: ionic liquid AND fuel cell AND proton
exchange membrane. Source: www.webofknowledge.com.

Wang and coworkers prepared a polymer composite membrane based on fluorine containing PBI
and 1-hexyl-3-methylimidazolium trifluoromethanesulfonate (HMI-Tf) as IL [225]. The conductivity
of the PBI/HMI-Tf membrane was 0.016 S/cm at 250 ◦C under anhydrous conditions. Then, Ven and
coworkers introduced 1-H-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([h-mim] Ntf2) IL
in the PBI support [226]. The resulting membrane showed a proton conductivity of 0.002 S/cm at 190
◦C and the thermal stability in the range of 150–190 ◦C. Recently, our group prepared a series of PEMs
based on PBI filled with 1-butyl-3-methylimidazolium (BMIM) bearing different anions (Cl, I, BF4, PF6,
NCS, Br, NTf2, BF4) [227,228]. Under PA doping conditions, these composite membranes with 5 wt.%
of ILs exhibited the highest proton conductivity of 0.098 S/cm at 120 ◦C when BF4 anion was present.
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Table 10. Composite membranes of polybenzimidazole with ionic liquids (ILs). HMI-Tf,
1-hexyl-3-methylimidazolium trifluoromethanesulfonate; BMIM, 1-butyl-3-methylimidazolium; SPAN,
sulfonated polyaniline.

Polymer ILs wt.% σDC (S/cm) T (◦C) Ref

o-F6-PBI HMI-Tf 3 0.016 250 [225]
PBI [h-mim] NTf2 — 0.00186 190 [226]
PBI BMIM 5 0.098 120 [227]
PBI Cl 5 1.0 × 10−4 160 [227]
PBI BF4 5 3 × 10−6 160 [227]
PBI NCS 5 4 × 10−7 160 [227]
PBI NTf2 5 6.5 × 10−4 160 [227]
PBI [dema][TfO]33 33 <10−4 160 [229]
PBI [dema][TfO]50 50 <10−4 160 [229]

OPBI perovskite (SrCeO3)-PA 8 0.105 180 [230]
PBI-TGIC (5%) SPAN 50 0.13 180 [145]
PBI-TGIC (10%) SPAN 50 0.12 180 [145]

Liu et al. [229] found that the membranes composed of PBI/[dema][TfO]33 and PBI/[dema][TfO]50

exhibited low conductivity (<10−4 S/cm at 160 ◦C) at a low content of IL in the polymer matrix and
reasonably high conductivity (>10−3 S/cm at 40 ◦C) when the concentration of [dema][TfO] in the
polymer increased to 83% (PBI/[dema][TfO]83). The growth in conductivity at a higher IL content
may be explained by enhanced free ionic mobility in the membrane matrix and the formation of
well-developed ionic channels. The MEAs built with such composite membranes showed conductivity
levels comparable to the data reported for other composite membranes, suggesting that the IL composite
membranes have a potential for HT-PEMFC application under anhydrous conditions (Figure 23).
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Figure 23. Variation of the conductivity of the ionic liquid (IL) and membranes at different temperatures
(left) and polarization curve of an anhydrous H2/Cl2 fuel cell using the PBI/[dema][TfO]83 composite
membrane at different temperatures (right). Reproduced from [229] with permission of the American
Chemical Society.

Xipeng Soing et al. [230] prepared a series of poly(oxyphenylene benzimidazole) (OPBI)/ionic liquid
(IL) composite membranes mixing the polymer with 1-butyl-3-methylimidazolium tetrafluoroborate
([BMIm]BF4). The obtained membranes had high proton selectivity that was useful for application as
vanadium redox flow batteries. It was also found that, when the IL content increased, the vanadium
resistance and proton conductivity of the membranes increased, obtaining an optimized proton
selectivity for OPBI/BF4-20 composite membrane. The optimum value was 1.41 × 106 S·min cm−3,
which was much higher than that of the unmodified OPBI membrane (6.06 × 105 S·min cm−3) or
a commercialized Nafion® 115 membrane (1.61 × 104 S·min cm−3). On the other hand, OPBI/BF4-20
exhibited a higher coulombic efficiency (CE, 99.24%), voltage efficiency (VE, 93.10%), and energy
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efficiency (EE, 92.39%) at 40 mA cm−2 than the unmodified OPBI (CE 98.06%, VE 90.67%, and EE
88.86%) and even higher than Nafion® 115 membranes (CE 95.44%, VE 91.75%, and EE 87.57%).

Finally, studies carried out on the PBI-based membranes prepared by covalent crosslinking with
triglycidylisocyanurate (TGIC) and doped with highly sulfonated polyaniline (SPAN) showed the
good thermal, dimensional, mechanical, and oxidative stability of these membranes applied in MEAs
of direct methanol fuel cells (DMFCs) [231]. The relatively low degree of cross-linking allowed high
doping level of SPAN and, consequently, the high proton conductivity. The proton conductivities of
PBI-TGIC (5%)/SPAN(50%) and PBI-TGIC(10%)/SPAN (50%) were 0.13 and 0.12 S/cm, respectively,
at 180 ◦C and 100% RH; 0.064 and 0.058 S/cm, respectively, at 180 ◦C and 50% RH; and 0.018 and
0.016 S/cm, respectively, at 180 ◦C and 0% RH.

5.5. Electrospinned Fillers

Among the different approaches to develop novel materials in the fabrication of PEMFC for
sustainable energy devices, nanofibrous structured materials have become an efficient alternative in
the midst of several fuel concerns. As displayed in Figure 24, the number of publications concerning
nanofibrous materials for fuel cell applications is still growing.
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Figure 24. Number of publications in the period of 2009–2019 indexed in the Web of Science:
(A) keywords: electrospinning AND fuel cell; and (B) keywords: electrospinning AND fuel cell AND
proton exchange membrane. Source: www.webofknowledge.com.

Electrospinning has generated considerable interest as a promising method for fabricating
nanofiber-based PEMs owing to the specific properties associated with its advanced features, including
the high surface area, low density, high porosity, fully interconnected pores, high orientation or
alignment of nanofibers, and easy scalability.

PEMs composed of aligned electrospun nanofibers can offer a uniaxial arrangement of the polymer
chains in nanofibers, thereby providing better mechanical properties and promoting the formation
of interconnected channels, resulting in enhanced proton conductivity [232]. In the field of PEMs,
polymers such as sulfonated poly (ether ether ketone) [233,234], polyimide [235], and Nafion® [236,237],
among others, have been electrospun into fibers.

Li and coworkers prepared polybenzoxazine (PBz)-modified polybenzimidazole (PBI) nanofibers
by the electrospinning process [238]. The nanofibers were crosslinked through the ring-opening addition
reaction of the benzoxazine groups. Modification of the PBI composite membranes with the crosslinking
PBI nanofibers significantly improves their mechanical properties, acid uptakes, and dimensional
stability upon acid doping. The composite membranes showed proton conductivity of 0.17 S/cm at
160 ◦C under anhydrous conditions, which was about twofold higher than the proton conductivity
of the neat PBI membrane. Muthuraja and coworkers prepared different types of membranes from
the whole poly (aryl sulfone ether benzimidazole) (SO2-OPBI) and from its nanofibers obtained by
the electrospinning process [239]. Compared with the traditional PBI, presence of the sulfone and
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ether linked in the polymeric backbones improved the membrane flexibility and its resistance towards
radical oxidation, as noted above. Nanofiber SO2-OPBI membrane reached proton conductivity of
0.067 S/cm, which was higher than that of dense SO2-OPBI (0.033 S/cm) and PBI membranes (0.008 S/cm)
at 160 ◦C. As a result, the acid doped SO2-OPBI membranes showed better chemical strength and higher
proton conductivity.

Jahangiri and coworkers produced PBI electrospun nanofiber of 170 nm diameter [240]. Immersion
into PA for 72 h led to a highest proton conductivity of 0.123 S/cm, whereas the conductivity of 96 h
doped PBI mats decreased. Tensile strength of the membranes was found to increase with doping
level, whereas the strain at break (%) decreased because of the brittle nature of the formed network
(Figure 25).

Figure 25. (Left) Scanning electron microscope micrographs of (A) PBI-9–24 h, (B) PBI-9–48 h,
(C) PBI-9–72 h, and (D) PBI-9–96 h phosphoric acid–doped polybenzimidazole (PBI) nanofibers and
(right) stress–strain curves of undoped and PA doped during 24, 48, 72, and 96 h electrospun membranes.
Reproduced from [240] with permission of John Wiley and Sons.

Our group has also contributed to the field of nanofiber materials through the preparation of PBI
composite membranes containing SiO2 nanofiber mats [76]. The nanofiber materials were fabricated
via the electrospinning process and later functionalized with terminal neutral, acidic, and basic groups
using silane chemistry. This surface functionalization was characterized by X-ray photoelectron
spectroscopy (XPS), which is a widely used surface characterization technique [241–243]. The different
functionalized nanofiber mats were embedded into a PBI matrix to fabricate composite membranes
with enhanced chemical and thermal stability. Among the diverse composite membranes, those
containing nanofibers with basic groups displayed higher conductivity with values up to 0.003 S/cm at
200 ◦C without phosphoric acid doping (Figure 26). As shown in Table 11, these membranes displayed
lower conductivity than the previously reported membranes as they were used in undoped conditions. 
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Figure 26. FE-SEM images of SiO2 nanofibers and temperature dependence of composite PBI membranes
with neutral (PBI@SiNF), basic (PBI@SiNF–NH2), and acidic groups (PBI@SiNF–SO3H) [76].
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Table 11. Nanofibers polybenzimidazole derivates.

Polymer σDC (S/cm) T (◦C) PA Ref

PBI 0.123 200 D [240]
SO2-OPBI 0.067 160 D [239]
m-PBI-PBz 0.170 160 D [238]

PBI-basic SO2 0.003 200 — [70]

6. Conclusions

In this review, an extensive outlook of the recent developments on composite membranes based on
PBI for HT–PEMFC applications is given. The most common approach to increase proton conductivity
in PBI membranes is based on the phosphoric acid doping, which enhances proton conductivity of these
polymeric membranes up to 0.2 S/cm. However, degradation of the membrane at high temperatures
and acid leaching are drawbacks that hamper their use as HT-PEMFCs. The use of alternatives based
on the addition of fillers into the polymeric matrix can help to overcome these problems. As shown,
proton conductivity values close to those of the commercially used Nafion® membranes can be reached
using a wide diversity of materials used as fillers in PBI membranes. These fillers include carbon-based
materials such as graphene oxide and carbon nanotubes, nanofibers obtained by electrospinning
methods, inorganic fillers such as metal oxides and heteropolyacids, and organic fillers such as ionic
liquids or metal organic frameworks. Other alternatives are based on the modification of PBI structure
by synthetic methods or co-polymerization strategies, which can increase the proton conductivity and
retain phosphoric acid more efficiently. Despite that high conductivities have been reported by these
methods, phosphoric acid leaching remains a problem to be solved in the next decade.

Fuel cell technology is currently receiving much attention from researchers as well as from the
industry because it can reduce the costs of the organic and inorganic fillers such as metal organic
frameworks, ionic liquids, nanofibers, and carbon-based materials. The introduction of inorganic fillers
into the polymer matrix of PBI in order to form novel composite membranes was reported to improve
the dimensional stability, mechanical properties, and gas permeability of PBI composite membranes.

The effective design of composite membranes based-PBI doped with phosphoric acid for high
performance PEMs for fuel cells has been demonstrated with higher performance and durability.
The composite membranes based on PBI formed with nanofibers and organic and inorganic fillers
show good mechanical properties and solvent-resistance, proving the latter to be effective additives
for the preparation of reinforced PBI composite membranes through a solution process enhancing
the formation of long-range proton-conductive pathways in the PBI membranes. The acid-uptake
levels, dimensional stability upon acid-doping, and proton conductivity of the PBI-based membranes
through retention of phosphoric acid have been significantly enhanced by the formation of composite
membranes with cross-linked PBI. Cross-linking plays an important role in forming additional networks
in PBI, despite that it generally weakens the interaction between the filler and polymer chain; however,
cross-linking reinforces the polymer chain with additives producing more novel rigid materials. On the
other hand, plasticizers can form composites membranes with high flexibility, reducing hydrophilic or
hydrophobic properties (depending on the nature of the plasticizers), and even increasing the proton
conductivity. The addition of plasticizers has also increased the amorphous phase in PBI composites.

The use of additives involves a wide variety of technologies in polymer technology, with a great
field of materials engineering to be applied in energy existing today. The focus of this review has been
the use of additives in PBI membranes to facilitate PA doping to be durable over prolonged cyclic usage
and, in the long term, especially to obtain high performance and durability in HT-PEMFC with low
costs. The reported membranes have been studied from their physical structure and morphology as
well as their chemical and electrochemical performance. As per our findings, most of the previous work
found in the literature reported that the presence of additive material in a polymer matrix enhances
the properties compared with the neat polymer. However, most of the synthesized membranes display
poor performance in a single fuel cell in the presence of additives with a diminution in terms of proton
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conductivity and mechanical strength owing to some problems such as the agglomeration, swelling,
and interaction filler polymeric PBI matrix, among others. Consequently, there is a strong need to
overcome these drawbacks and reach an equilibrium between proton conductivity and thermal and
mechanical stability in the composite membrane.

The challenges and opportunities of composite membranes of PBI are still growing as their impact
on the research and development (R&D) industry is under continuous growth, as the demand increases
every year following that of devices operating at moderate and high temperatures. Thus, the design of
novel materials is of crucial interest when providing major durability and strength of PBI. However,
a crucial requirement they need to fulfill to be applied as fuel cells and as super capacitors is the need
for high conductivity and long-term durability. For this purpose, as mentioned above, the use of PA
doped membranes can be a strong limitation and, at the same time, an advantage, if the natural route
is applied when synthesizing the additive. Nonetheless, there are still some aspects that need to be
improved on these composite membranes based on PBI, such as reducing the degradation rates of
the polymeric membranes present owing to the operation at high temperatures. It is also desirable to
design new PEMs with enhanced chemical stability towards peroxide and radical attacks, as well as
increase the retention factor of phosphoric acid to reduce the loss of the electrolyte, and maintain the
proton conductivity for extended periods of time.

The market for polymer electrolyte membrane fuel cells is expected to grow at a compound
annual growth rate (CAGR) of 15.28% during the next five years. Major factors driving the market are
increasing R&D activities for energy applications, which has driven to various technological advantages,
such as high power density, decrease in the time to refuel, longer storage durability, and increase of
life-cycles of PEM fuel cells over alternatives such as Li-ion batteries; in addition, efforts have been
focused on the design of PEM fuel cell-powered vehicles with the help of government incentives and
policies. However, the current cost of PEMFC technology is still relatively high, a substantial limitation
to overcome. In the next years, attempts have to be oriented towards getting around this important
barrier, which can help to successfully implement this green technology in commercial usage for
stationary and transportation, among others [244].

In the past few years, considerable progress has been made through the commercialization
of HT-PEMFC technology, and it has emerged as an attractive alternative to other kinds. As an
example, commercially available Advent PBI MEAs, based on PBI, possess excellent thermal and
oxidative stability, and can operate at 120 to 180 ◦C using phosphoric acid as the electrolyte. Among
the advantages, it is worth mentioning that they do not need water for conductivity and can reach
proton conductivities up to 0.1 S/cm with a proven lifetime of 20,000 h [245]. The elevated operating
temperature leads to important advantages, making them potential candidates as a near-future
environmentally friendly technology.
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