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Universitat Politècnica de València,
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Abstract. In this work, we study the full randomized versions of Airy, Hermite
and Laguerre differential equations, which depend on a random variable appearing
as an equation coefficient as well as two random initial conditions. In previous
contributions, the mean square stochastic solutions to the aforementioned ran-
dom differential equations were constructed via the Fröbenius method, under the
assumption of exponential growth of the absolute moments of the equation co-
efficient, which is equivalent to its essential boundedness. In this paper we aim
at relaxing the boundedness hypothesis to allow more general probability distri-
butions for the equation coefficient. We prove that the equations are solvable in
the mean square sense when the equation coefficient has finite moment-generating
function in a neighborhood of the origin. A thorough discussion of the new hy-
potheses is included.

Keywords: random differential equation, second-order linear differential equation,
Fröbenius method, mean square calculus, mean fourth calculus.
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1. Introduction, goals and assumptions

Random differential equations are differential equations with uncertain input co-
efficients, in the form of random variables or stochastic processes with any type of
probability distributions. The references [1, 2] provide good introductions to the
theory of random differential equations. These equations must not be confused with
stochastic differential equations driven by irregular processes, which are usually
studied using a special tool called Itô calculus [3, pp. 96–98].

In the recent years, important efforts have been made in the analysis of random
second-order linear differential equations, in order to extend their deterministic coun-
terpart. The main goal has been to construct the rigorous mean square stochastic
solution, thus obtaining approximations for its mean and its variance. We refer the
reader to [4] for an exposition of mean square and mean fourth calculus. Important
random differential equations from Mathematical Physics that have been solved are
Airy’s equation,

Ẍ(t) + AtX(t) = 0, t ∈ R, X(0) = Y0, Ẋ(0) = Y1, (1.1)
1
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Hermite’s equation,

Ẍ(t)− 2tẊ(t) + AX(t) = 0, t ∈ R, X(0) = Y0, Ẋ(0) = Y1, (1.2)

and Laguerre’s equation,

tẌ(t) + (1− t)Ẋ(t) + AX(t) = 0, t ∈ R, X(0) = Y0. (1.3)

It is assumed that the equation coefficient A and the initial conditions Y0 and Y1

are random variables on an underlying complete probability space (Ω,F ,P), where
Ω is the sample space equipped with outcomes ω ∈ Ω, F ⊆ 2Ω is the σ-algebra of
events and P is the probability measure. For the sake of generality, no statistical
independence is assumed between A, Y0 and Y1. The term X(t) is a stochastic
process, which represents the mean square solution.

Regarding notation, E denotes the expectation operator and ‖·‖q denotes the q-th
Lebesgue norm for random variables, 1 ≤ q ≤ ∞. The norm ‖ · ‖∞ is the essential
supremum and ‖ · ‖q = (E[| · |q])1/q, q < ∞. The cases q = 2 and q = 4 correspond
to mean square and mean fourth calculus, respectively.

In [5–7], the Fröbenius method was utilized to find a random power series solu-
tion X(t) =

∑∞
n=0Xnt

n, i.e., a mean square analytic solution, to Airy’s, Hermite’s
and Laguerre’s equation, respectively. The coefficients Xn are second-order random
variables satisfying

∑∞
n=0 ‖Xn‖2|t|n <∞, for t ∈ R. Here, we point out that the use

of mean square convergence, instead of other strong types of stochastic convergence,
is mainly motivated by the fact that it has the following distinctive property:

Xn

‖·‖2−−−→
n→∞

X ⇒ E[Xn] −−−→
n→∞

E[X] and V[Xn] −−−→
n→∞

V[X].

This property plays a key role to construct reliable approximations to the mean and
the variance of the solution to random differential equations, whose approximations
are obtained after truncating the infinite random series via the Fröbenius method.

A common hypothesis in the works [5–7] was the exponential growth of the ab-
solute moments of A: E[|A|n] ≤ ηHn for n ≥ 1, for certain constants η,H > 0.
This assumption is equivalent to the boundedness of A, ‖A‖∞ <∞, as shown in [8].
Under boundedness of the equation coefficients, in [9, 10] we studied general ran-
dom second-order linear differential equations, Ẍ(t) + C(t)Ẋ(t) + D(t)X(t) = 0,
by constructing the mean square convergent power series solution via the Fröbenius
method.

The boundedness assumption for A is quite general. Indeed, many standard prob-
ability distributions have bounded support: Beta, Triangular, Uniform, Binomial,
etc. Moreover, the theorem of existence and uniqueness of mean square solution to
general random initial value problems, which is an extension of the classical Picard’s
theorem with Lipschitz assumption, requires boundedness of the equation coeffi-
cients [2, Ch. 5]. By truncating unbounded supports one can use truncated Normal,
Gamma and Poisson distributions, for instance (the truncation may be justified by
Chebyshev’s inequality). However, it would be interesting to prove the existence of
mean square solution under a more general assumption than boundedness. We take
as main reference here the works [11–13]. Reference [11] studies random first-order
linear differential equations, [12] is devoted to a specific random second-order linear
differential equation to introduce some random trigonometric functions, and [13] is
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a doctoral dissertation on the application of the Fröbenius method to solve random
differential equations. Following these works, we will assume that Y0 and Y1 are
fourth-order random variables and that

‖An‖4 ≤ ηHn−1(n− 1)!p (1.4)

for n ≥ n0, for constants n0, η,H, p > 0. This includes the case of A being bounded,
but also the Normal (p = 1/2) and the Gamma (p = 1) distributions. The assump-
tion (1.4) is a straightforward consequence of polynomial growth for the ratio of
moments: ‖An+1‖4/‖An‖4 = O(np), where the constant corresponding to O is H,
and η = ‖A‖4.

For Airy’s, Hermite’s and Laguerre’s equation, we will prove that the formal power
series solutionX(t) =

∑∞
n=0 Xnt

n constructed in [5–7] satisfies
∑∞

n=0 ‖Xn‖2|t|n <∞,
for t ∈ R. This is enough since the random power series can be differentiated
termwise in the mean square sense [9, Th. 3.1]. Our reasoning will be more concise
and optimized than in such contributions.

In the last part of the paper, we will include a thorough discussion about the new
hypotheses that permit extending the results published in [5–7]. We will show the
equivalence between condition (1.4) for p ≤ 1 and φA(t) <∞ in a neighborhood of
0, where φA(t) = E[etA] is the moment-generating function of A. This includes a lot
of important probability distributions for A.

2. Random Airy differential equation

The formal solution to (1.1) is given by

X(t) = Y0X1(t) + Y1X2(t),

X1(t) = 1 +
∞∑
n=1

(−1)nAn(3n− 2)!!!

(3n)!
t3n, X2(t) = t+

∞∑
n=1

(−1)nAn(3n− 1)!!!

(3n+ 1)!
t3n+1,

see [5]. Essentially, the solution X(t) is a linear combination of the fundamen-
tal set {X1(t), X2(t)}, where X1(t) and X2(t) solve (1.1) with initial conditions
(X1(0), Ẋ1(0)) = (1, 0) and (X2(0), Ẋ2(0)) = (0, 1), respectively.

If Y0 and Y1 are fourth-order random variables, we need to prove the mean fourth
convergence of X1(t) and X2(t), for each t ∈ R. That is,

∞∑
n=1

‖An‖4(3n− 2)!!!

(3n)!
|t|3n <∞,

∞∑
n=1

‖An‖4(3n− 1)!!!

(3n+ 1)!
|t|3n+1 <∞.

We work with the first series, as the analysis for the second one is analogous. We
have, as a direct consequence of (1.4),

∞∑
n=1

‖An‖4(3n− 2)!!!

(3n)!
|t|3n ≤ η

∞∑
n=1

Hn−1(n− 1)!p(3n− 2)!!!

(3n)!
|t|3n.

We use d’Alembert’s ratio test to derive the radius of convergence of the latter power
series. We have

lim
n→∞

Hnn!p(3n+1)!!!
(3n+3)!

|t|3n+3

Hn−1(n−1)!p(3n−2)!!!
(3n)!

|t|3n
= H|t|3 lim

n→∞

np(3n+ 1)

(3n+ 3)(3n+ 2)(3n+ 1)
=

{
0, 0 ≤ p < 2,
H|t|3

9
, p = 2.
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Then, for 0 ≤ p < 2, the series converges for all t ∈ R; while for p = 2, it converges
for |t| < 3

√
9/H.

3. Random Hermite differential equation

The formal solution to (1.2) is given by a linear combination of a fundamental set
{X1(t), X2(t)},

X(t) = Y0X1(t) + Y1X2(t), (3.1)

X1(t) = 1 +
∞∑
n=0

t2n+2

(2n+ 2)!

n∏
j=0

(4j − A), X2(t) = t+
∞∑
n=0

t2n+3

(2n+ 3)!

n∏
j=0

(4j + 2− A),

(3.2)
see [6]. If Y0 and Y1 are fourth-order random variables, we prove that

∞∑
n=0

t2n+2

(2n+ 2)!

∥∥∥∥∥
n∏
j=0

(4j − A)

∥∥∥∥∥
4

<∞,
∞∑
n=0

|t|2n+3

(2n+ 3)!

∥∥∥∥∥
n∏
j=0

(4j + 2− A)

∥∥∥∥∥
4

<∞,

for t ∈ R. We focus on the convergence analysis for the former series, as the analysis
for the second one is analogous.

By Hölder’s and the triangular inequalities,∥∥∥∥∥
n∏
j=0

(4j − A)

∥∥∥∥∥
4

≤
n∏
j=0

‖4j −A‖4(n+1) ≤
n∏
j=0

(
4j + ‖A‖4(n+1)

)
≤
(
4n+ ‖A‖4(n+1)

)n+1
.

The last inequality would be tighter if we used the arithmetic-geometric mean in-
equality, but the final conclusion that we will derive about the radius of convergence
is the same. We have, then,

∞∑
n=0

t2n+2

(2n+ 2)!

∥∥∥∥∥
n∏
j=0

(4j − A)

∥∥∥∥∥
4

≤
∞∑
n=0

t2n+2

(2n+ 2)!

(
4n+ ‖A‖4(n+1)

)n+1
.

From (1.4) (just power it to 1/(n+ 1)), ‖A‖4(n+1) ≤ η1/(n+1)Hn/(n+1)n!p/(n+1). Then

∞∑
n=0

t2n+2

(2n+ 2)!

∥∥∥∥∥
n∏
j=0

(4j − A)

∥∥∥∥∥
4

≤
∞∑
n=0

t2n+2

(2n+ 2)!

(
4n+ η1/(n+1)Hn/(n+1)n!p/(n+1)

)n+1
.

Now we use the root test:

lim
n→∞

n

√
t2n+2

(2n+ 2)!
(4n+ η1/(n+1)Hn/(n+1)n!p/(n+1))

n+1

= lim
n→∞

|t|2+ 2
n

(2n+ 2)!
1
n

(
4n+ η1/(n+1)Hn/(n+1)n!p/(n+1)

)n+1
n =

{
0, 0 ≤ p < 2,

t2H
4
, p = 2.

As a consequence, for 0 ≤ p < 2 the series converges for all t ∈ R; for p = 2 it
converges for |t| < 2/

√
H.
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4. Random Laguerre differential equation

The formal solution to (1.3) is expressed as

X(t) = Y0

∞∑
n=0

tn
n∏
k=1

k − 1− A
k2

, (4.1)

see [7]. In this case, there is only one initial condition because 0 is a regular singular
point. If Y0 is a fourth-order random variable, we prove that

∞∑
n=0

|t|n
∥∥∥∥∥

n∏
k=1

k − 1− A
k2

∥∥∥∥∥
4

<∞.

By Hölder’s and the triangular inequalities,∥∥∥∥∥
n∏
k=1

k − 1− A
k2

∥∥∥∥∥
4

≤
n∏
k=1

∥∥∥∥k − 1− A
k2

∥∥∥∥
4n

≤
n∏
k=1

k + ‖A‖4n

k2

≤
(
n+ η1/nH(n−1)/n(n− 1)!p/n

)n
n!2

.

At this point, we would like to point out a mistake in the inequality derived for
‖
∏n

k=1
k−1−A
k2
‖4 in [7], as the numerator of the final bound found by the authors

should be powered to the n-th. This mistake, however, does not change their con-
clusions about the radius of convergence.

We use the root test:

lim
n→∞

n

√
(n+ η1/nH(n−1)/n(n− 1)!p/n)

n

n!2
|t|n

= |t| lim
n→∞

n+ η1/nH(n−1)/n(n− 1)!p/n

n!2/n
=

{
0, 0 ≤ p < 2,

|t|H, p = 2.

The series thus converges on R when 0 ≤ p < 2, and on (−1/H, 1/H) when p = 2.

Remark 4.1. If the random vector (Y0, Y1) and A are independent, then we can
relax the hypotheses to Y0 and Y1 second-order random variables and

‖An‖2 ≤ ηHn−1(n− 1)!p.

Indeed, this is because ‖UV ‖2 = ‖U‖2‖V ‖2 whenever U and V are two independent
random variables.

Remark 4.2. In the contributions [5–7], when A is unbounded, its support gets
truncated. Suppose that Y0 and Y1 are mean fourth integrable and A satisfies (1.4).
Consider truncations A(m) = A1{|A|≤am}, where limm→∞ am =∞. These truncations

are bounded and satisfy limm→∞ ‖A(m) − A‖k = 0, for all 1 ≤ k < ∞ (by the
dominated convergence theorem). Let X(m)(t) be the solution to the equation with
coefficient A(m), and let X(t) be the solution when the coefficient is A. These
solutions are given by random power series, see the previous sections. We have
that limm→∞ ‖X(m)(t) − X(t)‖2 = 0, for each t ∈ R (this is a consequence of the
dominated convergence theorem for series).
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5. About the hypotheses

As a consequence of Stirling’s formula, (n−1)! ≈
√

2π(n− 1)(n−1
e

)n−1 as n→∞,
hypothesis (1.4) is equivalent to

‖An‖4 ≤ γCn−1(n− 1)p(n−1) (5.1)

for n ≥ n1, for constants n1, γ, C, p > 0.
This condition (5.1) might be easier to check in practice. For example, let us

prove that the Poisson(λ) distribution for A satisfies (1.4), by taking advantage of
the well-known convergence of the Binomial distribution to the Poisson distribution
under specific hypotheses on their corresponding parameters. Let k ≥ 1. Let Vs,α ∼
Binomial(s, α), where s ≥ k is a positive integer and α ∈ (0, 1). By [15, Prop. 4.7],
there is a constant C > 0 independent of α, s and k such that

‖Vs,α‖k ≤ C
k

log( k
αs

)
,

when k/(αs) ≥ e. Let s→∞, α→ 0, αs→ λ. Then Vs,α converges to a Poisson(λ)
random variable U , which satisfies

‖U‖k ≤ C
k

log( k
λ
)

when k ≥ eλ. In particular, if A ∼ Poisson(λ), then

‖An‖4 = ‖A‖n4n ≤ Cn (4n)n

logn(4n/λ)
≤ Cn(4n)n

for large n, so (5.1) holds with p = 1.
Up to now, we know that (1.4) is fulfilled by the bounded, Normal, Gamma and

Poisson distributions, with p = 0, p = 1/2 and p = 1, respectively. We show
that condition (1.4) for p ≤ 1 is equivalent to φA(t) < ∞ in a neighborhood of 0,
where φA(t) = E[etA] denotes the moment-generating function of A. We use [16,
Th. A, p. 5], (a)⇔(c): φA(t) < ∞ in a neighborhood of 0 if and only if E[A4k] ≤
Ck(4k)! for certain C > 0. Now, Ck(4k)! ∼ D4kk4k, for certain D > 0, by Stirling’s
approximation. Then E[A4k] ≤ Ck(4k)! is equivalent to ‖Ak‖4 ≤ Dkkk, which is in
turn equivalent to (5.1) with p = 1.

Condition (1.4) for p ≤ 2 and A ≥ 0 is equivalent to φ√A(t) < ∞ in a neighbor-
hood of 0, by [16, Th. B, p. 6], (a)⇔(c).

Example 5.1. Condition (1.4) is not satisfied by the Log-Normal distribution, for
any 0 ≤ p ≤ 2. If A follows a Log-Normal distribution of parameters µ ∈ R and
σ > 0, then E[An] = enµ+n2σ2/2. In particular, ‖An‖4 = enµ+2n2σ2

. This quantity
grows faster than Cn−1(n − 1)p(n−1) as n → ∞, for any C, p > 0, as the limit of
their ratio is infinity. As a conclusion, the random Fröbenius method does not work
with the Log-Normal distribution. This issue also occurs with other methods for
uncertainty quantification, namely Monte Carlo simulation and polynomial chaos
expansions [17]. Due to the large growth of the moments of the Log-Normal distri-
bution and its fat tails, the classical Monte Carlo procedure does not work well with
this distribution. On the other hand, polynomial chaos expansions and stochastic
Galerkin projections do not converge for the Log-Normal distribution [18].
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Example 5.2. Consider Laguerre’s equation (1.3) where A ∼ Laplace(−0.5, 0.5)
(µ = −0.5 is the location parameter and b = 0.5 is the scale parameter) and
Y0 ∼ Uniform(0.1, 0.2). These two random variables are assumed to be indepen-
dent. The moment-generating function of the Laplace distribution is finite in a
neighborhood of zero defined by the interval (−1/b, 1/b). Then, according to the
theoretical discussion, there exists a mean square solution X(t) defined by (4.1),
t ∈ R. By taking the N -th partial sum of the random power series, the expectation
and the variance of X(t), E[X(t)] and V[X(t)], can be approximated as N → ∞.
See the formulae from [7, p. 289] (the idea relies on using the linearity of the ex-
pectation and the precomputed moments of A). The convergence is exponentially
fast with N , but not uniformly in t; as t increases, a larger order N is required. In
Tables 1 and 2, we show the approximations of E[X(t)] and V[X(t)] for different
N ’s. The results are compared against Monte Carlo simulation with 100, 000 real-
izations. While the Fröbenius method gives correct significant digits very fast, the
Monte Carlo procedure shows much slower convergence.

t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.150000 0.150000 0.150000 0.150000 0.150000 0.150000 0.149982

0.2 0.167021 0.167021 0.167021 0.167021 0.167021 0.167021 0.167247
0.4 0.188737 0.188738 0.188738 0.188738 0.188738 0.188738 0.188417
0.6 0.216310 0.216320 0.216321 0.216321 0.216321 0.216321 0.215913
0.8 0.251174 0.251230 0.251238 0.251239 0.251239 0.251239 0.250905
1.0 0.295083 0.295298 0.295333 0.295338 0.295339 0.295339 0.295943
1.2 0.350149 0.350791 0.350917 0.350939 0.350943 0.350943 0.35014
1.4 0.418889 0.420507 0.420879 0.420954 0.420968 0.420970 0.421562

Table 1. Approximations of the expectation of the solution (4.1) to
the random Laguerre differential equation (1.3) using the Fröbenius
method, for different orders of truncation N and Monte Carlo (MC)
simulation. Example 5.2.

t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000834754

0.2 0.00161217 0.00161217 0.00161217 0.00161217 0.00161217 0.00161217 0.00161509
0.4 0.00428272 0.00428300 0.00428302 0.00428302 0.00428302 0.00428302 0.00427721
0.6 0.0105189 0.0105246 0.0105253 0.0105253 0.0105253 0.0105253 0.0104690
0.8 0.0234742 0.0235277 0.0235358 0.0235368 0.0235370 0.0235370 0.0235577
1.0 0.0489538 0.0492733 0.0493346 0.0493448 0.0493463 0.0493465 0.0486700
1.2 0.0973951 0.0988329 0.0991692 0.0992369 0.0992489 0.0992507 0.0991242
1.4 0.187108 0.192424 0.193900 0.194250 0.194323 0.194000 0.189003

Table 2. Approximations of the variance of the solution (4.1) to
the random Laguerre differential equation (1.3) using the Fröbenius
method, for different orders of truncation N and Monte Carlo (MC)
simulation. Example 5.2.

Example 5.3. Consider Hermite’s equation (1.2), with inputs A ∼ Poisson(2) (the
parameter 2 is the mean), Y0 ∼ Uniform(0.1, 0.2) and Y1 = −1, where A and Y0
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are assumed to be independent. The moment-generating function of the Poisson
distribution is finite on the whole R, therefore there exists a mean square solution
X(t) defined by (3.1)–(3.2), t ∈ R. By using the formulae from [6, Section 6],
based on truncating the power series to the N -th partial sum, the expectation and
the variance of X(t), E[X(t)] and V[X(t)], can be approximated as N → ∞. In
Tables 3 and 4, we show the approximations of E[X(t)] and V[X(t)] for different
N ’s, as well as the Monte Carlo estimates with 100, 000 realizations.

t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.150000 0.150000 0.150000 0.150000 0.150000 0.150000 0.149969

0.2 -0.0560256 -0.0560256 -0.0560256 -0.0560256 -0.0560256 -0.0560256 -0.0559303
0.4 -0.274510 -0.274510 -0.274510 -0.274510 -0.274510 -0.274510 -0.274442
0.6 -0.507193 -0.507193 -0.507193 -0.507193 -0.507193 -0.507193 -0.507183
0.8 -0.758494 -0.758494 -0.758494 -0.758494 -0.758494 -0.758494 -0.758386
1.0 -1.03813 -1.03814 -1.03814 -1.03814 -1.03814 -1.03814 -1.03799
1.2 -1.36655 -1.3666 -1.36661 -1.36661 -1.36661 -1.36661 -1.36748
1.4 -1.78648 -1.78703 -1.78715 -1.78718 -1.78718 -1.78718 -1.79147

Table 3. Approximations of the expectation of the solution (3.1)–
(3.2) to the random Hermite differential equation (1.2) using the
Fröbenius method, for different orders of truncation N and Monte
Carlo (MC) simulation. Example 5.3.

t N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 MC
0 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000833333 0.000831451

0.2 0.000773883 0.000773883 0.000773883 0.000773883 0.000773883 0.000773883 0.000776030
0.4 0.000596974 0.000596974 0.000596974 0.000596974 0.000596974 0.000596974 0.000597567
0.6 0.000665335 0.000665336 0.000665336 0.000665336 0.000665336 0.000665336 0.000664739
0.8 0.00514877 0.00514884 0.00514884 0.00514884 0.00514884 0.00514884 0.00519014
1.0 0.0343588 , 0.0343611 0.0343612 0.0343613 0.0343613 0.0343613 0.0345285
1.2 0.163114 0.163173 0.163181 0.163182 0.163182 0.163182 0.163717
1.4 0.645706 0.646805 0.647026 0.647070 0.647077 0.647079 0.647087

Table 4. Approximations of the variance of the solution (3.1)–(3.2)
to the random Hermite differential equation (1.2) using the Fröbenius
method, for different orders of truncation N and Monte Carlo (MC)
simulation. Example 5.3.

Example 5.4. In this last example, we consider Hermite’s equation (1.2), with
coefficient A ∼Weibull(a, b) (a is the scale parameter and b is the shape parameter)
and initial conditions Y0 ∼ Uniform(0.1, 0.2) and Y1 = −1, where A and Y0 are
assumed to be independent. The moments of the Weibull distribution are well-
known: E[Am] = amΓ(1+m/b), where Γ is the Gamma function. Using this formula,
one can estimate the ratio ‖Am+1‖2/‖Am‖2 (we use 2-norms instead of 4-norms
because of the independence, see Remark 4.1). By Stirling’s formula, Γ(x + 1) ∼
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√
2πx(x/e)x as x→∞, it is easy to obtain, by direct computations, that

‖Am+1‖2

‖Am‖2

∼ a

(
2

b

) 1
b

m
1
b .

That is, p = 1/b, H = a(2/b)1/b and η = ‖A‖2 = a
√

Γ(1 + 2/b). We analyze
the mean square convergence of the series defined by (3.1)–(3.2). We show the
approximations of the variance of X(t), V[X(t)], for orders of truncation N =
25, 26, 27, scale parameter a = 1 and shape parameters b = 2/3, 1/2, 1/3. Notice
that, for b = 2/3, we have p = 3/2 < 2, so convergence on the whole real line is
expected by the theoretical results. For b = 1/2, we have that p equals the threshold
2 for convergence: the series defined by (3.1)–(3.2) only converges in a small interval

around 0, given by (−2/
√
H, 2/

√
H) = (−1/2, 1/2). Finally, for b = 1/3, we have

p = 3 > 2, therefore the series given by (3.1)–(3.2) is not expected to converge for
any t 6= 0. The numerical results are presented in Tables 5, 6 and 7. They agree
with our theoretical discussion about the convergence domain. The results of the
Monte Carlo simulation using 100, 000 realizations are also shown for validation.

t N = 25 N = 26 N = 27 MC
0 0.000833333 0.000833333 0.000833333 0.000830033

0.2 0.000802005 0.000802005 0.000802005 0.000813572
0.4 0.000687696 0.000687696 0.000687696 0.000669479
0.6 0.00122022 0.00122022 0.00122022 0.0012146
0.8 0.00975692 0.00975692 0.00975692 0.0103762
1.0 0.0559536 0.0559536 0.0559536 0.0541698
1.2 0.233081 0.233081 0.233081 0.233012
1.4 0.830763 0.830763 0.830763 0.827578

Table 5. Approximations of the variance of the solution (3.1)–(3.2)
to the random Hermite differential equation (1.2) using the Fröbenius
method, for b = 2/3, different orders of truncation N and Monte Carlo
(MC) simulation. Example 5.4.

t N = 25 N = 26 N = 27 MC
0 0.000833333 0.000833333 0.000833333 0.000838800

0.2 0.000818187 0.000818187 0.000818187 0.000824624
0.4 0.000691749 0.000691749 0.000691749 0.000690404
0.6 238750 489177 1.00245× 106 0.00361506
0.8 1.05641× 1018 6.85769× 1018 4.45158× 1019 0.0275597
1.0 6.82155× 1027 1.08386× 1029 1.72173× 1030 0.121455

Table 6. Approximations of the variance of the solution (3.1)–(3.2)
to the random Hermite differential equation (1.2) using the Fröbenius
method, for b = 1/2, different orders of truncation N and Monte Carlo
(MC) simulation. Example 5.4.
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t N = 25 N = 26 N = 27 MC
0 0.000833333 0.000833333 0.000833333 0.000827802

0.1 3.67222× 1032 6.87049× 1034 1.38863× 1037 0.000927809
0.2 4.95578× 1062 1.48136× 1066 4.78402× 1069 0.00105165
0.3 2.05526× 1080 3.11183× 1084 5.09011× 1088 0.00104901

Table 7. Approximations of the variance of the solution (3.1)–(3.2)
to the random Hermite differential equation (1.2) using the Fröbenius
method, for b = 1/3, different orders of truncation N and Monte Carlo
(MC) simulation. Example 5.4.

6. Conclusions and perspectives

In this paper we have studied Airy, Hermite and Laguerre differential equations
with random inputs. Using the Fröbenius method, the mean square stochastic solu-
tion has been constructed in the form of a random power series. The main goal has
been to weaken the usual hypothesis of boundedness for the equation coefficient,
so that the class of its probability distributions is enlarged to those having cer-
tain growth of the moments. In particular, we include the probability distributions
having finite moment-generating function around the origin.

More research on these methods should be carried out in the future. For instance,
the solution to the random Legendre differential equation still requires boundedness
of the equation coefficient [8, 14]. In the general case of second-order linear differ-
ential equations [9, 10], all the equation coefficients are taken as bounded random
variables. It would be interesting to generalize the theoretical discussion therein to
allow unbounded distributions. This is the aim of our current efforts.
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[5] Cortés, J.-C., Jódar, L., Camacho, J., Villafuerte, L. (2010). Random Airy type differential
equations: Mean square exact and numerical solutions. Comput. Math. Appl. 60(5): 1237–
1244. DOI: 10.1016/j.camwa.2010.05.046.
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[7] Cortés, J.-C., Jódar, L., Company, R., Villafuerte, L. (2015). Laguerre random polynomials:
definition, differential and statistical properties. Utilitas Mathematica 98: 283–295.

[8] Calatayud, J., Cortés, J.-C., Jornet, M. (2019). Improving the approximation of the first and
second order statistics of the response stochastic process to the random Legendre differential
equation. Mediterr. J. Math. 16(3): 68. DOI: 10.1007/s00009-019-1338-6.

[9] Calatayud, J., Cortés, J.-C., Jornet, M., Villafuerte, L. (2018). Random non-autonomous sec-
ond order linear differential equations: mean square analytic solutions and their statistical
properties. Adv. Differ. Equ. 2018(392): 1–29. DOI: 10.1186/s13662-018-1848-8.

[10] Calatayud, J., Cortés, J.-C., Jornet, M. (2018). Some Notes to Extend the Study on Random
Non-Autonomous Second Order Linear Differential Equations Appearing in Mathematical Mod-
eling. Mathematical and Computational Applications 23(4): 76–89. DOI: 10.3390/mca23040076.
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