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Abstract

Pepper culture is economically very important worldwide, although it is very sensitive to sub-
optimal conditions of water and high salinity. However, the tolerance to these stresses can be 
improved by the grafting technique. Previous studies of the Valencian Institute for Agricultural 
Research and the Polytechnic University of Valencia have been conducted to select pepper 
accessions that showed tolerance to both stresses, after which a further selection of them 
was used as rootstocks to find physiological mechanisms of tolerance and to increase its 
agronomic profit. However, after all these studies, the available information in this regard is 
still scarce. Therefore, the objectives of this thesis were to: i) screen new tolerant pepper 
accessions under high salt concentrations and suboptimal water conditions, to increase the 
availability of tolerant genotypes to be used in future breeding programmes, with the final aim 
of obtaining new and improved tolerant rootstocks; ii) identify the short-term physiological 
mechanisms of water stress tolerance of a tolerant accession (A25) used as a rootstock; iii) 
identify the physiological mechanisms of short-term tolerance to salinity of a new tolerant 
hybrid rootstock (NIBER®); and iv) find the main molecular pathways of salinity tolerance of 
a tolerant accession (A25) compared to a sensitive one (A6) by a transcriptomic approach. 

After conducting these studies, we firstly found a positive relationship between pho-
tosynthetic capacity and growth maintenance in plants that were tolerant to water or salt 
stress, both grafted or ungrafted; indeed, based mainly on this relationship, we selected 
accessions A34 and A31 as tolerant to salt and water stress, respectively. In addition, we 
were able to demonstrate that the main role of proline under salinity and water scarcity is 
not linked herein to the drop in osmotic potential; on the contrary, we identified different 
protective roles that, together with other antioxidant protective molecules such as phenols, 
contribute to the tolerance of pepper plants to these environmental stresses. Moreover, 
hydrogen peroxide, a reactive oxygen species, was found to play important roles in the 
antioxidant capacity of pepper, working as a signalling molecule under salinity stress. Fur-
thermore, the drop in abscisic acid concentration and its signalling deregulation were also 
shown to maintain stomatal aperture and thus the growth of the scion when grafted onto 
tolerant rootstocks and ungrafted accessions under high salt concentration conditions. It 
was also demonstrated that a limitation of Na+ transport to leaves, as well as a more efficient 
transport and accumulation of K+ in roots and leaves, are essential to reach ion homeostasis 
and, thus, tolerance in pepper plants grafted onto tolerant rootstocks. Finally, the study 
of the molecular pathways of tolerance was a useful tool to confirm the physiological and 
agronomical behaviour of a pepper accession previously classified as tolerant, although 
new mechanisms were also found. The differentially expressed genes found were linked 
to hormonal signalling, plant growth and development, photoprotection, regulation of ion 
transporters and ROS detoxification.



 

El pimiento es un cultivo muy importante a nivel mundial, pero es sensible a la falta de agua 
y a la salinidad. No obstante, se puede mejorar la tolerancia mediante la técnica del injerto. 
El Instituto Valenciano de Investigaciones Agrarias y la Universidad Politécnica de Valencia 
han realizado estudios previos para seleccionar accesiones de pimiento tolerantes a am-
bos estreses, utilizando después una selección de ellos como portainjertos para estudiar 
los mecanismos fisiológicos de tolerancia y aumentar la rentabilidad de su producción. Sin 
embargo, después de todos estos estudios, la información disponible es limitada. En este 
sentido, los objetivos que se han planteado en esta tesis doctoral fueron: i) seleccionar 
nuevas accesiones tolerantes de pimiento a la salinidad y escasez de agua, para aumentar 
la disponibilidad de genotipos tolerantes y usarlos en futuros programas de mejora, con el 
objetivo final de obtener nuevos portainjertos con una tolerancia mejorada; ii) identificar 
a corto plazo los mecanismos fisiológicos de tolerancia al estrés hídrico de una accesión 
tolerante (A25) usada como portainjerto; iii) identificar a corto plazo los mecanismos fisio-
lógicos de tolerancia a la salinidad de un nuevo portainjerto híbrido tolerante (NIBER®); iv) 
encontrar los principales mecanismos moleculares de tolerancia a la salinidad de una acce-
sión tolerante (A25) respecto a una sensible (A6) desde el punto de vista transcriptómico.

Una vez realizados estos ensayos, en primer lugar, pudimos relacionar positivamente la 
capacidad fotosintética y el mantenimiento del crecimiento en plantas tolerantes a estrés 
hídrico y salino, tanto sin injertar como injertadas; de hecho, basándonos principalmente 
en esta relación, seleccionamos las accesiones A34 y A31 como tolerantes a estrés salino 
e hídrico, respectivamente. Además, demostramos que el papel principal de la prolina en 
los estreses estudiados no está ligado a la bajada de potencial osmótico; sin embargo, se 
identificaron funciones protectoras de este aminoácido que, junto a otras moléculas antioxi-
dantes como los fenoles, contribuyen en el pimiento a aumentar la tolerancia. Igualmente 
importante es el peróxido de hidrógeno, que se relacionó con la capacidad antioxidante 
en pimiento, funcionando como molécula señalizadora en estrés salino. Asimismo, la ba-
jada de ácido abscísico y la modificación de la expresión de genes relacionados han sido 
también relevantes en condiciones de estrés salino para mantener la apertura estomática 
y, por consiguiente, el crecimiento en plantas sin injertar e injertadas sobre portainjertos 
tolerantes. Se demostró también que la limitación del transporte de Na+ a hojas, así como 
el transporte y acumulación eficiente de K+ en raíces y hojas, son esenciales para alcanzar 
la homeostasis iónica y por tanto la tolerancia en pimientos injertados sobre portainjertos 
tolerantes. Para finalizar, el estudio de las rutas moleculares fue una herramienta útil para 
confirmar el comportamiento fisiológico y agronómico de una accesión de pimiento previa-
mente clasificada como tolerante a la salinidad, descubriendo además nuevos mecanismos 
no referenciados hasta el momento. Los genes diferencialmente expresados encontrados 
estaban relacionados con la señalización hormonal, el crecimiento y desarrollo de las plantas, 
la fotoprotección, la regulación de los transportadores de iones y la detoxificación de ROS. 

Resumen



El pimentó és un cultiu molt important mundialment, però és sensible a la falta d’aigua i 
la salinitat. No obstant això, es pot millorar la tolerància mitjançant la tècnica de l’empelt. 
L’Institut Valencià d’Investigacions Agràries i  la Universitat Politècnica de València han fet 
estudis previs per a seleccionar accessions de pimentó tolerants a tots dos estressos i a 
continuació, una selecció d’entre elles es va utilitzar per a estudiar els mecanismes fisiològics 
de tolerància i augmentar la rendibilitat de la seua producció. No obstant això, després de 
tots aquests experiments, la informació encara és limitada. En aquest sentit, els objectius que 
s’han plantejat en aquesta tesi doctoral van ser: i) seleccionar noves accessions tolerants de 
pimentó a la salinitat i la falta d’aigua, per a augmentar la disponibilitat de genotips tolerants 
i usar-los en futurs programes de millora, amb l’objectiu final d’obtindre nous portaempelts 
amb una tolerància millorada; ii) identificar a curt termini els mecanismes fisiològics de tole-
rància a l’estrès  hídric d’una accessió tolerant (A25) usada com portaempelt; iii) identificar 
a curt termini els mecanismes fisiològics de tolerància a la salinitat d’un nou portaempelt 
híbrid tolerant (NIBER®); iv) trobar els principals mecanismes moleculars de tolerància a la 
salinitat d’una accessió tolerant (A25) respecte a una sensible (A6) des d’un punt de vista de 
la transcriptòmica.

Després de realitzar aquests assajos, en primer lloc, vam poder relacionar positivament la 
capacitat fotosintètica i el manteniment del creixement en plantes tolerants a l’estrès hídric i 
salí, tant sense empeltar com empeltades; de fet, basant-nos principalment en aquesta relació, 
vam seleccionar les accessions A34 i A31 com tolerants a l’estrès salí i hídric, respectivament. 
A més a més, vam demostrar que el paper principal de la prolina en els estressos estudiats 
no està lligat a la baixada de potencial osmòtic; en canvi, es van identificar diferents funcions 
protectores d’aquest aminoàcid, que, junt a altres molècules antioxidants com els fenols, 
contribueixen en el pimentó a combatre’ls. Igualment important és el peròxid d’hidrogen, que 
es va relacionar amb la capacitat antioxidant del pimentó, funcionant com a molècula senya-
litzadora a l’estrès salí. Així mateix, la baixada d’àcid abscísic i la modificació de l’expressió de 
gens relacionats de la seua senyalització han sigut també rellevants en condicions d’estrès 
salí per a mantindre l’obertura estomàtica i per tant el creixement en plantes sense empeltar i 
empeltades amb portaempelts tolerants. Es va demostrar també que la limitació del transport 
de Na+ a les fulles, així com el transport i l’acumulació eficient de K+ a les arrels i les fulles, 
són essencials per a aconseguir l’homeòstasi iònica i per tant la tolerància en pimentons 
empeltats damunt portaempelts tolerants. Per concloure, l’estudi de les rutes moleculars va 
ser un instrument útil per a confirmar el comportament fisiològic i agronòmic d’una accessió 
de pimentó prèviament classificada com a tolerant, descobrint a més nous mecanismes no 
trobats fins ara. Els gens diferencialment expressats trobats estaven relacionats amb la se-
nyalització hormonal, el creixement i el desenvolupament de les plantes, la fotoprotecció, la 
regulació dels transportadors de ions i la detoxificació de ROS.

Resum
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Introduction

Chapter 1

1.1. General Aspects of Capsicum sp. 

Capsicum sp. is a genus of the family Solanaceae that comprises more than 90 genera 
and 2500 species, and some play an important role in agriculture, like some species of 
the genus Solanum spp. (Ramchiary and Kole, 2019). Although it is distributed world-
wide, it is thought to be native from the tropics and subtropics of America (Mongkolporn 
and Taylor, 2011). Data suggest that it was the first spice crop to be domesticated and 
cultivated around 6,000 thousand years ago (Ramchiary and Kole, 2019).

This genus, commonly named pepper, chile, chilli, ají or paprika, comprises around 31 
species; five are called C. annuum L., C. baccatum L., C. chinense Jacq., C. frutescens 
L. and C. pubescens Ruiz & Pavón and have been domesticated  (Bojórquez-Quintal 
et al., 2014). The diversity of Capsicum sp. fruit is very high, with a wide variety of 
typologies, colours and pungency (Figure 1.1.). Depending on the region it is possible 
to find specific fruit types. 

Of all these species, C. annuum is the most important crop both economically and 
due to the nutritional value of its fruit (Bojórquez-Quintal et al., 2012), which have a 
high content of antioxidant compounds, fibre, carbohydrates and vitamin A (Navarro 
et al., 2006; Condés Rodríguez, 2017; Gisbert-Mullor et al., 2020). 

Section 1.1. General Aspects of Capsicum sp.
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Figure 1.1. Fruit diversity of the  
genus Capsicum sp.
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1.2. Economic Importance

Pepper production has increased considerably in the last 24 years from 2.7 to 40.9 
million tonnes, as its cultivated area, which has grown by almost 28% (1994-2018; 
FAOSTAT). Of all production, the fruit grown to be consumed fresh have increased the 
most. The continent that produces the most pepper to be consumed fresh and dry is 
Asia, with the 65% and 72% of the total production, respectively. In Europe, pepper 
production as fresh fruit is bigger, with 11% compared to 4% for dry fruit. The continent 
with smallest pepper production is Oceania (Figure 1.2.).

Furthermore, fresh pepper was cultivated in 2018 in 128 countries worldwide, 
whereas pepper used as dried fruit was produced in 70 countries. Mainland China 
plays an important role in pepper production and is the first and second to produce 
fresh and dry fruit, respectively. In Spain, the majority of pepper production is for fresh 
fruit, and is the fifth most important country in the world (Table 1.1.). 

Section 1.2. Economic Importance

Figure 1.2. Percentage of production  
of pepper fruits consumed fresh (A)  
and dry (B) (2018; FAOSTAT).
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Table 1.1. Production in thousands of tonnes of the world’s top 10 most productive countries of fresh or dried 
pepper fruit (2018; FAOSTAT).

Fresh fruit Dry Fruit

Country Production  
(thousand tonnes)

Country Production  
(thousands of tonnes)

China, mainland 12,354.83 India 1,233.61

Mexico 1,957.92 China, mainland 248.24

Turkey 1,787.04 Thailand 158.15

Indonesia 1,268.16 Ethiopia 141.04

Spain 1,002.72 Pakistan 129.14

USA 846.15 Bangladesh 119.17

Nigeria 715.15 Myanmar 92.13

Egypt 524.28 Vietnam 83.76

Republic of Korea 330.98 Ghana 69.10

Italy 317.93 Ivory Coast 65.02

In Spain, the total cultivated surface of pepper has not increased in the last 10 years, 
but production and yield did by 17% and 23%, respectively (2007-2017; MAGRAMA). 
As a result, efficiency and productivity have notably improved. The region with the 
biggest area and most production assigned to pepper is Andalusia (South of Spain). 
In fact only this community sustains two thirds of the total pepper production (2017; 
MAGRAMA). The Valencian Community is the fifth most productive region in Spain, and 
contributes 4.7% to pepper production.
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1.3. Pepper Production Challenges 

Farming production has increased notably in recent for almost all crops in order to 
cover the world population’s food demands. However, this has been linked with more 
pressure for ecosystems and the environment (FAO, 2018), which contributes to a new 
climate change scenario. With this situation, the risk of suffering biotic and/or abiotic 
stresses has increased, which reduces crop production and fruit quality. Depending 
on the crop and its location, plants are susceptible to specific types of stress. With 
pepper, drought, salt, extreme temperatures and different types of pathogens reduce 
fruit production and quality (Erickson and Markhart, 2002; De Pascale et al., 2003; 
Condés Rodríguez, 2017; Aidoo et al., 2018).

1.3.1. Biotic Stress
Biotic stress in plants is caused by specific living organisms, including viruses, bacte-
ria, fungi, nematodes, insects, arachnids, or even other plants. These agents directly 
compete for the same nutrients as plants, diminish plant vigour and increase the risk 
of death (Singla and Krattinger, 2016). In fact pathogens reduce global crop production 
by 15% (Onaga and Wydra, 2016), as well as both pre- and post-harvest yields. 

Several authors have demonstrated that pepper is very susceptible to soil-borne 
pathogens, especially Phytophthora capsici, Verticillium dahlia and Meloidogyne spp. 
(root-knot nematode) (Morra and Bilotto, 2006; Gisbert et al., 2010). This type of 
disease is drastically enhanced due to long-term intensive agriculture, which implies 
enormous economic loss (Wang et al., 2019), stunted growth, and yield and leaf mod-
ifications (Figure 1.3.).

Figure 1.3. Pepper plants affected (A) and 
unaffected (B) by the fungus P. capsici.

A B
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Pepper has been considered susceptible to more than 60 different virus species, 
depending on the region (Kenyon et al., 2014). Among the symptoms of viruses on 
plants are mild leaf chlorosis or severe leaf curl, plant stunning, necrosis, dieback or 
even death (Ramchiary and Kole, 2019). The most important genera are Potyvirus, 
Cucumovirus, Tospovirus, Tobamivus and Begomovirus, which induce similar symp-
toms. Thus extra research is necessary to determine them (Ramchiary and Kole, 2019).

Insects, or arthropods in general, are also major constraints of pepper production. 
There is a wide variety of species that can attack pepper, including thrips (Frankliniel-
la occidentalis), aphids (Myzus persicae, Aphis gossypii), whiteflies (Bemisia tabaci, 
Trialurodes vaporariorum), red spider mite (Tetranychus urticae), broad mite (Poly-
phagotarsonemus latus), beet armyworm (Spodoptera exigua) or fruit borer (Heliothis 
armigera) (Figure 1.4.) (Condés Rodríguez, 2017). The mechanisms of growth and 
survival in plants depend on specific species, but they generally cause growth and 
pepper production drop, and are vectors of different virus species (Amari et al., 2008; 
Kenyon et al., 2014).

A

C

B

Figure 1.4. Upper (A), underside (B)  
and detail of a nymph (C) of leaves infected  
by T. vaporariorum.
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In general, increasing bacterial diversity in soil, soil solarisation, using resistant root-
stocks, phytosanitary products or employing natural enemies are some of the strategies 
that are now available to reduce the incidence of all these pests and illnesses (Fun-
derburk et al., 2000; Morra and Bilotto, 2006; Lee et al., 2007; Rekanovic et al., 2007; 
Ros et al., 2008; Wang et al., 2019).

1.3.2. Abiotic Stress
Plants as sessile organisms live constantly in a changing environment that are often 
unfavourable and stressful for plants, and reduce growth and development. Of all 
stresses, abiotic stress is the major cause of declining yields (50% in major crops) 
(Tuteja, 2007). There are many different types of abiotic stresses responsible for crop 
decrease, such as drought, high salt concentrations or heavy metals, extreme tem-
peratures or little availability of some nutrients. Under field conditions, they  do not 
act independently, but combined, which increases the level of difficulty when they are 
being studied (Mittler, 2006).

Pepper normally requires tropical and semiarid climates for optimum production, 
which aggravates unfavourable water scarcity and quality conditions (Bojórquez-Quin-
tal et al., 2012). Besides, a wide variability of daily temperatures reduces marketable 
production, and the optimum temperature is 25°C (Pyshnaya et al., 2016; Condés 
Rodríguez, 2017). Therefore, water, salt and extreme temperature stresses are the 
main problems for pepper production.

a. Salt Stress
It is estimated that around 20% of all irrigated land is affected by salt (45 million ha), 
which reduces the world crop production. In the Mediterranean Basin, it is considered 
the main cause of desertification, where only in Spain 3% of the total irrigated land 
is considered to be severely affected by salt stress (Machado and Serralheiro, 2017).

This stress is a multifaceted phenomenon, in which natural causes are normally 
responsible for primary salinity and human intervention of secondary salinity from 
overusing non-renewable natural sources and incorrect drainage systems (Vargas et 
al., 2018). Accumulation of salt in soil is a problem not only for the environment and 
plants, but is also a socio-economic problem, with major crop losses and reduced 
quality water for human intake (Vargas et al., 2018; Zaman et al., 2018).

In this scenario, plants have developed a series of mechanisms to tolerate this 
condition, normally classified as halophytes or glycophytes depending on the ability 
to tolerate permanent high salt stress conditions or not (300-500 mM of NaCl), re-
spectively. Most plants grown in agriculture are considered glycophytes, but not all 
species have the same degree of tolerance. By way of example, the majority of veg-
etable species are considered moderately sensitive (i.e. tomato, eggplant or potato), 
but can also be sensitive (i.e. carrot) and moderately tolerant (i.e. zucchini) (Ayers and 
Westcot, 1985). Many authors have classified pepper as moderately sensitive, sensitive 
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or highly susceptible (Ayers and Westcot, 1985; Bojórquez-Quintal et al., 2014), which 
notably lowers yields and growth when plants are exposed to irrigation water with 
electrical conductivity above 4.4 dS/m (De Pascale et al., 2003). The effects on pepper 
plants are diverse, including stunted growth and production, and the appearance of 
BER (Blossom End Root) on fruits during the period with the highest fruit growth rate 
(Figure 1.5.) (Rubio et al., 2009; Pyshnaya et al., 2016).

Figure 1.5. Marketable (A) and non-marketable 
pepper fruit affected by BER under salt stress 
conditions (B).

A

B
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b. Water Stress
Population growth has increased water use, which combined with the global climate change 
situation, has diminished both water quality and availability (Odlare, 2014). Irrigated agri-
culture is a major water consumer and represents about 60% of total human water use. So 
in general terms, crops must face either less irrigation water (water deficit) or even total 
lack of water (drought) under water stress conditions (Pardo, 2010). By ensuring water 
availability and maximising its sustainable use, and by improving plant tolerance, production 
can be enhanced (Rouphael et al., 2008a; Patanè et al., 2011). 

In areas like the Mediterranean Basin, where most horticultural species are grown, 
little irrigation decreases crop production (Patanè et al., 2011). Indeed water stress 
decreases 39% of the marketable tomato plant yields (Patanè and Cosentino, 2010), 
43% for mini-watermelon (Rouphael et al., 2008a) or 29% for eggplant (Kirnak et al., 
2002). Bell pepper is considered one of the most susceptible horticultural plants to 
water stress given its large transpiring leaf area and high stomatal conductance (Delfine 
et al., 2001; De Pascale et al., 2003). Nonetheless, flowering and fruit development are 
the most critical development stages (Anjum et al., 2012). Decreasing water availability 
in pepper by reducing or stopping irrigation has negative consequences for leaf area 
and biomass and also for marketable fruit production, as this stress also makes the 
presence of BER more noticeable in apical pepper fruit parts (Delfine et al., 2001; De 
Pascale et al., 2003; Condés Rodríguez, 2017; Sezen et al., 2019).

c. Other Abiotic Stresses of Economic Importance in Pepper Cultivation
Although salt and water stress have long been studied, it is possible to find other relevant 
stresses that currently contribute to major crop losses worldwide which often act in synergy 
to acerbate negative effects (Prasad et al., 2008; Pardo, 2010; Zandalinas et al., 2018). In 
pepper cultivation, typical summer high temperatures frequently appear after anthesis and 
negatively influence the pollination of flowers and, consequently, limit reproductive devel-
opment and yield (Pagamas and Nawata, 2008). Temperatures over 36/27°C (day/night) 
reduce seed production, induce abnormal seeds and reduce pepper fruit weight (Pagamas 
and Nawata, 2007). Furthermore, the physiological disease called BER, which is mentioned 
above, can be aggravated in water and salt stress, and normally needs to be combined with 
high temperatures and low relative humidity to appear in fruit (Condés Rodríguez, 2017).

Accumulation of heavy metals in soil is a relevant problem worldwide that nega-
tively affects plants and human health. In pepper plants, the accumulation of different 
heavy metals, such as cadmium (Cd), copper (Cu), nickel (Ni) or lead (Pb), in tissues 
has been studied, and reduces fruit growth and production (Barut, 2019; Desoky et al., 
2019). Hence it is important to find solutions that diminish accumulation in both plants 
and soil, and consequently in the food chain.

Inefficient nutrition in pepper plants also disturbs normal growth, particularly when 
essential nutrients such as nitrogen (N), potassium (K) or phosphorus (P) are not added 
at sufficient concentrations (Medina-Lara et al., 2008; Urrea-López et al., 2014).

Section 1.3. Pepper Production Challenges
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1.4. Tolerance to Salt Stress in Plants:  
Physiology and Genetics

Plants affected by soil or water salinization pass through two main types of phases that 
modulate stress responses. Immediately after roots have been exposed to a threshold 
sodium chloride (NaCl) concentration (normally 40 mM of NaCl) the osmotic phase 
starts, and is characterised by the osmotic effect of ions outside roots, that block water 
from entering root cells and cause plant dehydration (Munns and Tester, 2008). As a 
result, cell expansion and elongation diminish, as do plant growth and leaf expansion 
(Isayenkov and Maathuis, 2019). However, negative effects due to toxic accumulation 
of ions are not yet present. This first phase may last from a few hours to several days 
depending on the degree of plant tolerance and salt concentration (Munns, 2002). Fur-
thermore, the physiological processes altered in this phase are not specific to salinity, 
but are linked with water stress as no toxic effect due to a high salt concentration has 
yet been found (Munns, 2002; Carillo et al., 2011).

When concentrations reach toxic levels, the ionic phase starts, in which ions are 
toxic for plants and normally accumulate in old leaves (Munns and Tester, 2008). Con-
sequently, photosynthesis is generally affected, along with the level of carbohydrates, 
enzymatic activity and growth (Chaves et al., 2009). In this phase, the mechanisms 
that enhance extrusion and block influx of toxic ions (essentially Na+ and Cl-), compart-
mentalization and synthesis of organic compounds are essential for plants to tolerate 
salt stress (Munns and Tester, 2008). 

Increased salt concentration not only affects all the aforementioned  physiological 
processes, but also alters hormone signalling and synthesis, and produces reactive 
oxygen species (ROS) by oxidative stress. 

1.4.1. Plant Growth and Development
One of the first effects in plants affected by salt stress is stunted plant growth. Osmotic 
and ionic stresses reduce crop biomass and production by lowering water uptake and 
through the injury of cells located in transpiring leaves. Nonetheless, the lowering 
growth rate is unequal in both phases. Osmotic stress generally has an instantaneous 
and more prominent effect on growth than ionic stress (Munns and Tester, 2008). 
Consequently, maintaining the plant growth rate, the root to shoot ratio, the leaf area 
or root morphology are signals of plant tolerance that have been widely confirmed by 
several authors in different species (Acosta-Motos et al., 2017).

At the cellular level, osmotic stress disturbs many processes related to cell division, 
such as the regulation and progression of the cell cycle, the number of dividing cells, 
and even cell death in root tips and leaves (West et al., 2004; Ogawa et al., 2006). Cells 
exposed to salt stress pass firstly through a quiescent phase (QP) in which growth 
stops, followed by growth recovery at lower rates than under control conditions; the 
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duration of this QP and later recovery depend mainly on sensitivity to salt stress, salt 
concentration and plant organs (Julkowska and Testerink, 2015). Several types of 
cyclins (CYCB1;2, CycB1;1, CycA2;1, CDC2a), Forkhead-associated domains (FHA) 
or antioxidant enzymes are some regulators described in the bibliography that are 
transient or permanently affected (Burssens et al., 2000; West et al., 2004; Zhou et 
al., 2007; Banu et al., 2009).

Maintenance of cellular size is also compromised when salt blocks water from 
entering cells. A well studied cellular component that directly influences cell division, 
elongation and morphology under salt and osmotic stress is cell wall (Koiwa, 2009). 
Overexpression of aquaporins, expansins and microtubules contributes to cell wall 
expansion by turgor maintenance, cell wall relaxation and the guide patterning of 
cellulose microfibrils, respectively (Cabañero and Carvajal, 2007; Koiwa, 2009; Geilfus 
et al., 2010; Julkowska and Testerink, 2015). Likewise, the composition of the carbo-
hydrate and protein components of cell walls improves in salt-tolerant plants by the 
expression of a wide variety of genes; e.g. cellulose (CSLD5, CesA) (Zhu et al., 2010; 
Li et al., 2017), pectin (PME, PMEI) (Chen et al., 2018) or lignin (COMT, CCOMT, PAL) 
(Zagorchev et al., 2014; Le Gall et al., 2015).

1.4.2. Ion Homeostasis
It is thought that the ions responsible for salt stress, normally Na+ and Cl-, enter roots 
passively by the symplast or apoplast via the epidermis and root cortex due to the 
ion gradient and osmotic pressure. The main mechanism by which they enter remains 
unclear today. After going into roots, they rapidly move to the xylem and reach pho-
tosynthetic tissues to cause extensive critical damage. The ability to efficiently stop 
such ions from entering inside cells, favour expulsion from the cytoplasm and compart-
mentalise into non-toxic organelles may improve tolerance to salt shock. Depending on 
the transported ions, different candidate genes have been discovered and analysed.

After plants have come into contact with NaCl, how Na+ is sensed remains unclear, 
but it is known that it passively enters by the negative potential membrane of cells. 
As a result, symplastic uptake is theoretically assumed by non selective cation chan-
nels (NSCCs). High affinity K+ transporters (HKTs), Arabidopsis K+ transporter (AKT1), 
high-affinity K+ uptake transporter (HAK) or even aquaporins have been considered 
possible candidates for Na+ uptake in roots (Fig. 1.6.) (Assaha et al., 2017). 

Favouring Na+ extrusion is a possible plant mechanism to reduce the Na+ concentra-
tion in the cytoplasm, where it is toxic. Along this line, the SOS pathway (SALT OVERLY 
SENSITIVE) has been broadly studied. Component SOS1 of this pathway is a trans-
membrane Na+/H+ antiporter that was firstly proposed to require the interaction with 
complex SOS2/SOS3 to be active by phosphorylation, which improves the K+/Na+ ratio 
in the cytoplasm (Fig. 1.6.) (Shi et al., 2000; Yue et al., 2012). SOS1 antiporter activity 
regulation is, nonetheless, not as simple as was primarily proposed as other signals, 
such as phosphatidic acid or Mitogen-Activated Protein Kinase 6 (MPK6), have been 
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considered as regulators (Ji et al., 2013). This pathway cannot be considered broadly 
expressed, rather in specific tissues and in the whole plant context as Na+ expulsion 
could be a disadvantage for neighbour cells (Zhu, 2003). In this vein, it is expressed 
together with other key transporters like HKT1 in xylem loading in roots, Na+ extrusion 
to the external medium, accumulation in xylem parenchyma cells and recirculation from 
photosynthetic tissues to phloem vessels (Pardo, 2010; Assaha et al., 2017).
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Figure 1.6. Transport of Na+ in a plant cell 
under salt stress conditions. Yellow represents 
antiporters Na+/H+; orange denotes the passive 
transporters of Na+; red depicts H+ pumps. 
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It is also worth mentioning that compartmentation in non-toxic organelles is 
also key for tolerance. The Na+/H+ transporters in vacuoles (NHX1-4) and endosomes 
(NHX5-6) can regulate the concentration of cytoplasmic K+ and Na+ under control 
and saline conditions, respectively, and can control pH homeostasis and vesicular 
trafficking (Figure 1.6.) (Bassil et al., 2012; Gálvez et al., 2012). Many authors have 
demonstrated that overexpression of NHX genes improves salt tolerance in species 
like tomato, pepper or Nicotiana tabacum (Zhang et al., 2008; Gálvez et al., 2012; Bulle 
et al., 2016). Regulation of vacuolar NHXs antiporters is mediated by SOS2 (Tuteja, 
2007; Ji et al., 2013).

In a hydrated form, Na+ and and potassium (K+) structurally and chemically share 
lots of similarities, which may lead to a cotransport of both cations by K+ transporters 
when salt is present at high concentrations (Golldack et al., 2003; Takahashi et al., 
2007). It is generally assumed that only K+ is an essential nutrient that takes part in 
many physiological and biochemical processes in plants, which means that Na+ entrance 
negatively affects plant development (Isayenkov and Maathuis, 2019). Maintaining the 
K+/Na+ ratio in roots and leaves is, thus, especially relevant to achieve tolerance and 
improve growth (Ghars et al., 2008; Tiwari et al., 2010). 

Although Na+ is the most studied ion, many species like Vitis vinifera or Citrus 
sp. show a better Na+ exclusion strategy than chloride (Cl-), with more detrimental 
effects on plants (Walker et al., 2004; Hossain et al., 2016). Nevertheless, in annual 
and vegetable species like pepper, Cl- has a minor toxic effect due to its lesser con-
tribution to reduce osmotic potential and photosynthesis (Penella et al., 2015). Even 
if Cl- is an essential micronutrient involved in many activities under control conditions, 
it may replace major macronutrient anions (NO3

-, SO4
-, Pi) and organic anions at high 

concentrations when it is transported, which thus disturbs anion homeostasis (Teakle 
and Tyerman, 2010). In this situation, mechanisms are necessary that regulate the 
entrance, extrusion and compartmentation of Cl- with the coordinated activity of slow 
anion channels (SLAC), Cl- channels (CLC), aluminium-activated malate transporters 
(ALMT) or nitrate transporters (NRT), among others (Wu and Li, 2019).

Finally, it is noteworthy that correct calcium (Ca2+) concentration regulation in cells 
has been largely demonstrated to improve multiple stresses, including salt stress, 
by the regulation of multiple transporters in plants, such as SOS3 (or CBL4), PIP2 or 
NSCC activity (Ji et al., 2013; Byrt et al., 2017). Therefore, if Ca2+ is imbalanced after 
NaCl addition, plants may present increased sensitivity to salt stress as this cation is 
a very important secondary messenger implied in many activities (see Section 1.5.2. 
for more information).

1.4.3. Water Relations
After salt addition, soil water potential lowers in the osmotic stress phase and leads 
to the declined water uptake. Plants must consequently also decrease water 
potential (ψW) to improve water uptake through roots to avoid death. Apart from ψW, 
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hydraulic conductivity (Kh) affects the water movement rate and regulates water relations 
under salt stress because a decrease in roots can lower not only the delivery of salty water 
to shoots, but also the water potential (Negrão et al., 2017). These two components are not 
the only parameters affected by salt stress, but also the osmotic (ψs) and pressure (ψP) 
potential or the relative water content (RWC) of different organs (Navarro et al., 2003; 
Hegazi et al., 2017). The incorrect adjustment of water levels in plants, thus, lowers the 
volume of water in the vacuole and the cytoplasm of cells, and stops cell expansion, elon-
gation and division, stomatal opening or abscisic acid accumulation (Negrão et al., 2017).

If plants need to maintain growth and development, they employ different mecha-
nisms to lower the water potential and to consequently improve water uptake. These 
mechanisms are not normally specific for salt stress, but to all abiotic stresses, which 
implies a disequilibrium in water balance, like water stress or extreme temperatures 
(Rhodes, 2004). One of the most widely studied is the synthesis of small organic 
compounds, generally called osmolytes, osmoprotectants or compatible solutes that 
normally accumulate in the cytosol or cytoplasmic organelles (Rhodes, 2004). They 
include proline, glycine betaine and sugars (e.g. trehalose), which are the most widely 
studied ones in salt stress. They all have the ability to lower ψs and allow water uptake 
(Hasanuzzaman et al., 2013). Studying the expression level of the main synthesis and 
degradation genes for these molecules has drawn the attention of different research 
groups. With proline, Δ-1-pyrroline-5-carboxylate synthase (P5CS), and Δ1-Pyrro-
line-5-carboxylate reductase (P5CR) are the most important biosynthetic genes, along 
with proline dehydrogenase (PDH) and ∆1-pyrroline-5-carboxylate dehydrogenase 
(P5CDH) degradative genes. Hence they are pivotal to maintain correct proline accu-
mulation and to ensure salt stress tolerance (Huang et al., 2013b; Singh et al., 2014). 
The role of osmolytes includes not only improved water potential and water intake, 
but also decreased ROS accumulation or improved lipid peroxidation and membrane 
integrity (Banu et al., 2009; Tiwari et al., 2010). 

Even if osmolyte accumulation is an advantage for plant tolerance to abiotic stress-
es, the energy costs that synthesis and accumulation imply may be detrimental for 
plant growth. Indeed they may not improve growth, but avoid wilting and ion toxicity, 
which would allow survival under salt stress for longer periods (Munns, 2005). This 
is why plants sometimes choose to invest in the accumulation of non-compatible 
solutes like ions in non-toxic organs rather than the synthesis of compatible solutes 
(Bojórquez-Quintal et al., 2014; Theerawitaya et al., 2020) to help turgor pressure of 
cells (Navarro et al., 2003).

1.4.4. Reactive Oxygen Species (ROS) Scavenging
In addition to primary effects (osmotic and ionic stress), salt stress may cause sec-
ondary stresses like oxidative stress (Pang and Wang, 2008), which lead to ROS 
accumulation. This involves deleterious effects to proteins, lipids, carbohydrates and 
nucleic acids, as well as increased programmed cell death (Lin et al., 2006). When salt is 
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present at high concentration, ROS generation grows and may even cause death. It has 
been largely demonstrated that, contrarily, a low ROS concentration, especially H2O2, 
can work as signalling molecules and improve tolerance to several abiotic stresses, 
including a high salt concentration (Dat et al., 2000; Zhu et al., 2016). 

Studying ROS scavenging mechanisms has been considered by a broad range 
of studies to elucidate detailed information about how it takes place in plant cells 
and which molecules are responsible. Indeed catalase (CAT; EC 1.11.1.6), superoxide 
dismutase (SOD; EC 1.15.1.1), ascorbate peroxidase (APX; EC 1.11.1.11) and peroxidase 
(POX; 1.11.1.7) have been the most frequently studied antioxidant enzymes under 
salt stress. Among all enzymatic scavengers, SOD is the most effective one, which 
constitutes the first line of defence against environmental stresses. It generates H2O2 
from O2

-. Then other enzymes like APX, CAT or POX detoxify H2O2 into other non-toxic 
molecules (Yang and Guo, 2018). For instance, pepper plants increase the expression 
of peroxidase CaPO2 and SOD activity under salt, improving its tolerance (Aktas et 
al., 2012; Choi and Hwang, 2012) and tobacco plants improve the activity of APX and 
CAT enzymes (Badawi et al., 2004; Al-Taweel et al., 2007). In many cases, antioxidant 
enzymes simultaneously modulate other activities, as is the case of SOD and APX, 
which are responsible for cell wall formation during salt stress in Arabidopsis thaliana 
(Shafi et al., 2015).

The production of proline and glycinebetaine, which decrease lipid peroxidation 
(Banu et al., 2009); ascorbic acid (AsA), the main antioxidant in plants (Shalata and 
Neumann, 2001; Hernández et al., 2017); or phenolic compounds, which function as 
hydrogen donators (Salah et al., 2011; Pérez-Labrada et al., 2019), are some of the 
main non-enzymatic molecules found in tolerant stressed plants. In pepper, AsA and 
proline have been associated with better tolerance to salt stress (Penella et al., 2016).

1.4.5. Phytohormones
Phytohormone levels are another point of stress regulation that plays specific roles 
depending on the type and duration of stress, as well as the development stage and 
tissues. In any case, hormones must always be considered when we attempt to eluci-
date plants’ mechanisms of tolerance. 

In salt stress, abscisic acid (ABA) has long since been considered an essential 
hormone to regulate adaptive responses to salt stress. Its accumulation is triggered 
by the differential expression of key genes of biosynthetic and degradative pathways, 
like 9-cis-epoxycarotenoid  dioxygenase 3 (NCED3), Arabidopsis aldehyde oxidase 3 
(AAO3) and ABA-deficient 1 (ABA1) (Barrero et al., 2006; Geilfus et al., 2018). However, 
its activation and signalling under salt stress by genes like Sucrose non fermenting 
Kinase-1-Related protein kinase 2s (e.g. SnRK2.6), 2C protein phosphatases (PP2Cs) 
(e.g. ABI1, ABI2), SRM1, CAMTAs or DREBLP1 (Ohta et al., 2003; Boudsocq et al., 2004; 
Hong and Woo, 2005; Wang et al., 2015; Krzywińska et al., 2016; Büyük et al., 2019) 
are even more important than ABA concentration for proper functioning. In line with 
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this, ABA controls stomatal closure and reduces transpiration, which are key to avoid 
dehydration in plant cells (Niu et al., 2019) (see Section 1.5.5. for more information), but 
also modulates wax deposition, proline biosynthesis or ion homeostasis (Mills et al., 
2001; Ohta et al., 2003; Sripinyowanich et al., 2013; Farhoudi and Saeedipour, 2018). 
Even if they all help to salt tolerance, they may compromises plant growth and limit 
crop production (Farhoudi and Saeedipour, 2018).

Other hormones have also been associated with playing relevant roles by mediating 
salt stress responses. Jasmonates (JA) act as inductors of salt stress tolerance when 
conjugated as methyl jasmonate (MeJa) or isoleucine jasmonate (IleJa). Studying genes 
like JA carboxyl methyltransferase (JMT) or jasmonate amino acid synthetase 1 (JAR1) 
may be of interest (Ali and Baek, 2020). By external applications, these active forms 
improve growth and chlorophyll content in pepper (Sedigheh et al., 2013) or growth and 
ROS scavenging in wheat (Qiu et al., 2014). Auxins, on the other hand, normally de-
creases after salt addition because plants cannot face it (Sakhabutdinova et al., 2003; 
Zörb et al., 2013), which means that increasing the IAA concentration or auxin-related 
genes improves salt tolerance (Wang et al., 2009; Guo et al., 2018). Other hormones, 
like gibberelins or brassinosteroids, also decrease under salt stress conditions. Their 
expression generally involves growth and improves development, but in some cases 
signalling mechanisms have not yet been completely elucidated (Ryu and Cho, 2015).

1.4.6. Photosynthesis
One of the primary processes affected by salt or water stress is photosynthesis. When 
salt accumulates in roots after salinity addition, it induces osmotic stress, decreases 
water uptake and causes dehydration, as explained above. Consequently, plants limit 
water relations and carbon assimilation by stomata closure (defined as stomatal limi-
tations). Stomata actively control CO2, O2 and H2O exchanges with the medium, which 
means that stomata regulation improve photosynthesis and carbon fixation, which 
results in better growth and yield (Liu et al., 2014). In both salt and water stresses, sto-
matal movement is closely connected to ABA accumulation, a critical point of stomatal 
closure regulation in several plants, such as carnation, tomato or citrus (Gómez-Cade-
nas et al., 2002; Kwon et al., 2019; Poór et al., 2019). Albeit not very well documented, 
the genetic control of stomata plays a central role. Genes like guard cell slow anion 
channel-associated (SLACs) and SLAC homologues (SLAHs) have been proposed in 
tomato plants to be candidate genes (Liu et al., 2014).

Apart from stomatal limitations, it is possible to also find in plants non-stomatal 
limitations, characterised by the toxic accumulation of Na+ and Cl- ions in photosyn-
thetic tissues which, in turn, inhibit carbon assimilation (Stępień and Kłbus, 2006; Pan 
et al., 2020). Such limitations in salt stress include the reduced activity of Calvin cycle 
enzymes, the disruption of chlorophyll biosynthesis, increased ROS creation in pho-
tosystems by electron transport chain constraints, and less efficient functioning and 
integrity of photosynthetic apparatus that leads to the inactivation of photosystems 
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and CO2 fixation (Parida et al., 2003; Stępień and Kłbus, 2006; Kalaji et al., 2011; Hand 
et al., 2017; Sasi et al., 2018; Poór et al., 2019; Pan et al., 2020).  

A large number of mechanisms are available in plants to reduce non-stomatal lim-
itations and improve salt stress tolerance. The correct transport of imbalanced ions 
by different transporters like sodium hydrogen antiporter (NhaD)-type carriers, the 
Na+/Pi symporter anion transporter (PHT), bile acid: sodium symporter family protein 
(BASS), the K+/H+ antiporter KEA family or McsS-Like (MSL2 and MSL3) are possible 
candidates for maintaining Na+, K+ and Cl- homeostasis in the chloroplast (Aranda-Sicilia 
et al., 2012; Wilson et al., 2014; Zhao et al., 2016; Pan et al., 2020). Other mechanisms 
that contribute to improve non-stomatal limitations are the regulation of photosynthetic 
electron transport efficiency, improved PSI cyclic electron transport (Wu et al., 2019) 
or the protection of thylakoid membranes, Rubisco and PSII extrinsic proteins by the 
action of compatible osmolytes like glycinebetaine (Ahanger et al., 2014).

Section 1.4. Tolerance to Salt Stress in Plants: Physiology and Genetics
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1.5. Tolerance to Water Stress in Plants:  
Physiology and Genetics

Water stress responses and mechanisms of tolerance are very similar to those de-
scribed in salt stress conditions because in both cases it is possible to find osmotic 
stress that restricts water uptake. However with high salinity, water is found in soil, 
but plants cannot uptake it due to ion accumulation in root cells. This situation is often 
termed “physiological drought” (Lisar et al., 2012). With water scarcity, the origin of 
the stress is not the marked accumulation of toxic ions, but a difficulty to obtain water 
because this molecule is scarce or nonexistent. 

Plants optimise their physiology, genetics and metabolism to better optimise water 
uptake and use, and are generally classified into two different groups: stress avoidance 
and tolerance. In water stress avoidance, plants have developed a series of modifica-
tions, such as deeper root systems, modifications to their life cycle, reduced stomatal 
conductance, water accumulating in specialised cells or diminished leaf area. In water 
stress tolerance, plants have no special modifications to cope with this stress, but 
can change water relations, as well as physiological and biochemical processes like 
photosynthesis, membrane structure and stomatal aperture (Bray, 2001; Chaves et al., 
2003; Lisar et al., 2012). The latter is the case of most agronomical species, including 
Capsicum sp.

1.5.1. Plant Growth and Development
It is a fact that after water deficit begins, plant growth and production decrease. In-
deed, a reduction in the amount of water uptake by roots is one of the primary effects, 
followed by root damage (Zeiger and Taiz, 2010). Hence root growth immediately slows 
down and disturbs the root/shoot ratio (Manoj and Uday, 2007). Nonetheless, aerial 
tissues are even more affected as leaf area, plant height and aerial biomass (Gómez-
del-Campo et al., 2002; Ge et al., 2012). 

Cell walls are in charge of regulating the hydration level and cellular shape. Con-
trolling the biosynthesis, transport and incorporation of cell wall polysaccharides, such 
as cellulose, pectins or hemicelluloses in roots by specific genes, has been demon-
strated in wheat seedlings, whose degree of drought tolerance varies (Piro et al., 
2003). Balsamo et al. (2015) demonstrated by several Arabidopsis thaliana mutants 
that the composition of hemicellulose and pectins in leaves plays an important role in 
leaf biomechanical properties against cellular deformations in water stress treatment.

Cell wall expansion is even more relevant than its composition. Water stress tol-
erance can be achieved by modifying cell wall elasticity by either making them more 
elastic by turgor maintenance or decreasing elasticity to lower ψW with minimal leaf 
water loss (García et al., 2007; Martínez et al., 2007; Miranda-Apodaca et al., 2018; 
Al-Yasi et al., 2020). Controlling the expression of key genes (e.g. expansins) has been 
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reported to play key roles in cell wall expansion, cell shape and growth (Lü et al., 2013; 
Liu et al., 2019).

The cell cycle is also modified with osmotic stress in plants. After water deficit, 
tomato embryos decreased the accumulation of β-tubulin, DNA synthesis of phase S 
and the number of cells in the division phase, which were reactivated after rehydration 
(De Castro et al., 2000). Via changes in microtubule cytoskeleton dynamics, Brassica 
napus plants can improve tolerance to water stress (Bagniewska-Zadworna, 2008).

1.5.2. Ion Homeostasis
Even if water stress does not involve the accumulation of toxic ions as in salt stress, it 
also disturbs plant mineral nutrition and unbalances ion homeostasis. Cell water defi-
cit promotes ion accumulation and destabilises macromolecules, despite compatible 
osmolytes being able to prevent their interaction to protect cell components (Lisar et 
al., 2012). 

Independently of passive ion accumulation due to less water content, the active dis-
equilibrium of some ions under suboptimal water conditions has been widely studied in 
osmotic stress. One of the most relevant ions is calcium (Ca2+), a secondary messenger 
that implies many processes under osmotic stress like growth and development, ABA 
synthesis and signalling, ROS detoxification, stomatal movement or fruit quality (Suzuki 
et al., 2003; Jiang et al., 2013; Wang et al., 2013; Naeem et al., 2018). This ion also plays 
important roles in a variety of signal transduction pathways, including calcium-sensing 
proteins, calcium-dependent protein kinases (CDPK), cyclin-dependent-kinase (CDK), 
calcineurin B-like (CBL), calmodulin (CaM) or calmodulin-binding transcription factor 
(CAMTA), among others (Chung et al., 2004; Li et al., 2014b; Cui et al., 2018). Expres-
sion of CaCDPK3 in pepper plants has, for example, been demonstrated to improve 
tolerance to drought (Chung et al., 2004).

Water availability restrictions decrease nutrients, mainly nitrogen (N) which, in turn, 
affects growth (Lisar et al., 2012). Disruption N-metabolism, by reducing key enzymes 
like nitrate reductase (NR, EC 1.6.6.1), glutamine synthetase (GS, EC 6.3.1.2) of gluta-
mate dehydrogenase (GDH, EC 1.4.1.2), can disrupt photosynthesis and carbohydrate 
metabolism (Garg et al., 1998; Xu and Zhou, 2006).

Water stress conditions have also been reported to unbalance potassium (K+) levels, 
which leads to minor growth and osmotic adjustment in sensitive plants (Damon et al., 
2011). K+ participates in broad functions in plants (reviewed in Ahanger et al., 2014), 
but its role in the aperture of stomata by the regulation of K+ channels (e.g. KAT1, KAT2 
or GORK) is particularly important (Li and Assmann, 2009). According to Zahoor et 
al. (2017), increasing the K+ concentration by external applications in photosynthetic 
tissues improves both photosynthesis, by higher stomatal conductance, and carbon 
assimilation which, in turn, spells improved tolerance to water stress.

Section 1.5. Tolerance to Water Stress in Plants: Physiology and Genetics
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1.5.3. Water Relations
The most remarkable event under water stress conditions is blocked water intake in 
plants because it causes dehydration and reduced growth. Most vegetative plants are 
unable to tolerate water contents below 60-30%, but some particular exceptions are 
found (Chen et al., 2020). The ability to lower ψW under water scarcity conditions has 
been generally accepted as a tolerance mechanism, for both this stress and osmotic 
stress in general (see Section 1.4.3. for more information). However in extreme cases, 
a reduction in stomatal conductance (gs), hydraulic conductivity (Kh) or ψW can avoid 
the cavitation of large vessels, which thus means a reduced xylem system (Saliendra 
et al., 1995). It has been demonstrated that maintaining k by reducing the area of 
xylem vessels can contribute to tolerance in pepper plants (Guijarro-Real et al., 2014).

By osmotic adjustment, the ψs can lower and, thus, permit water uptake. In salt 
stress, osmotic adjustment can be accomplished by either ion accumulation in non-toxic 
organelles or the synthesis and accumulation of neutral compounds, generally called 
compatible osmolytes (see Section 1.4.3. for more information). In water stress, only 
compatible osmolytes contribute to osmotic regulation. Proline and glycine betaine 
are among the most studied compatible osmolytes in horticultural species like pepper 
plants, and a positive correlation appears between the concentration and tolerance to 
water stress (Santos-Díaz and Ochoa-Alejo, 1994; Anjum et al., 2012). It must be point-
ed out that looking for expression of their biosynthetic and degradative enzymes is an 
important point of studying water stress tolerance (Porcel et al., 2004; Lv et al., 2007).

By the overexpression of aquaporins in the plasma membrane and intracellular mem-
branes, it is possible to maintain water relations. They mediate the transport of water 
and other small molecules in cells, and maintain water relations during water scarcity 
periods (Rao and Chaitanya, 2016). According to Sahitya et al. (2019), for example by the 
overexpression of PIP1-1 and PIP1-2 in tolerant pepper cultivar KCa-4884, it is possible 
to improve water stress tolerance, associated with improved hydraulic conductivity and 
photosynthesis.

1.5.4. Reactive Oxygen Species (ROS) Scavenging
The balance between ROS production and scavenging in plant cells is what distinguish-
es a tolerant and a sensitive plant, controlled by the ROS gene network (see Section 
1.4.4. for more information). Prolonged and severe water deficit periods end in oxidative 
damage through the overproduction of ROS molecules, as with many other abiotic and 
biotic stresses. This, in turn, leads to a reduced photosynthesis machinery via altered 
stomatal regulation (Miller et al., 2010).

The ability to scavenge them by enzymatic and non-enzymatic molecules is a deter-
minant in suboptimal water conditions, as it is under salt stress conditions. Regarding 
enzymatic antioxidants, as already explained, most plants use SOD to scavenge O2

-, 
one of the most detrimental ROS species, although other enzymes are also critical. 
According to  Hu et al. (2010), SOD and APX activities increase with drought and heat 
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stress in a tolerant pepper cultivar. Choi and Hwang (2012) demonstrated the role of 
peroxidase CaPO2 in ROS scavenging with drought and salt stress tolerance in the 
Nockwang cultivar.

In non-enzymatic compounds, similar results have been found with both water 
and salt stress, which lead to modification of proline, glycinebetaine, sugars, AsA and 
phenolic compounds, which are the most studied ones. Improved tolerance occurs 
when they accumulate in tissues, as many studies have corroborated in pepper and 
other species (del Amor et al., 2010; Shafiq et al., 2014).

1.5.5. Phytohormones
On the signalling pathway, to sense water deficit many hormones are implicated either 
direct or indirectly. However, ABA has been widely proposed as the main hormone 
implicated in water scarcity and drought tolerance. Its specific roles can be elucidat-
ed by studying the regulation of either its biosynthetic and degradative key enzymes 
(NCED) or its signalling cascade (PYR, PYL, PP2C, SnRK2) (Pardo, 2010; Bhaskara et 
al., 2012), which has been as well described in salt stress (see Section 1.4.5. for more 
information). If ABA performs crucial functions in salt stress tolerance, its role under 
suboptimal water conditions is even more important as plants must cope with a sud-
den lowering of water content with precise stomata control to avoid excess water by 
transpiration. Short-term stomata closure includes the action of the ABA signalling 
pathway through the action of SnRK2.6 (open stomata 1; OST1) which, in turn, controls 
the activity of ion channels like slow anion channel-associated 1 (SLAC1) and inward 
rectifying K+ channel (KAT1 and KAT2) (Li and Assmann, 2009; Sreenivasulu et al., 2012). 
If osmotic stress is maintained in the long term, high ABA accumulation levels can be 
detrimental for growth and development by impairing photosynthesis. Moreover, ROS 
accumulation and compatible osmolytes (Dubois and Inzé, 2020), as well as lignin and 
wax biosynthesis (Macková et al., 2013; Li et al., 2020), are long-term responses that 
depend on the ABA concentration and signalling. 

Increased ethylene biosynthesis has also been found under different biotic and 
abiotic stresses, including water deficit. It is believed that important roles lead to stress 
acclimation. Different studies have concluded that ethylene limits stomata closure by 
inhibiting the ABA signalling pathway (Tanaka et al., 2005; Chen et al., 2013). Besides 
this function, ethylene response factors (ERFs) like TERF1 also play a role in plant 
defence against water stress by the enhanced expression of antioxidant enzymes like 
catalase or glutathione peroxidase in tobacco plants (Zhang et al., 2016).

Jasmonates, along with salicylic acid, have been widely proposed as candidates to 
modulate root to shoot signalling after water stress. It has been demonstrated in tomato 
mutants that their synthesis is highly related to ABA biosynthesis (Muñoz-Espinoza 
et al., 2015). They can mitigate negative effects by the modulation of photosynthesis 
and stomatal conductance, growth and development, ion transport or nitrate reductase 
activity (Li and Assmann, 2009; Ahanger et al., 2014). 

Section 1.5. Tolerance to Water Stress in Plants: Physiology and Genetics
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1.5.6. Photosynthesis
Photosynthetic machinery is very sensitive to a drop in the relative water content of 
plant cells, which negatively affects growth and crop production (Ge et al., 2012; Sa-
hitya et al., 2019). As with salt stress (see Section 1.4.6. for more information), a lower 
photosynthesis rate is attributed to both stomatal and non-stomatal limitations (called 
metabolic impairment). Short-term photosynthetic limitations are related mostly to 
stomatal conductance (gs) which, in turn, negatively arrests carbon assimilation and 
affects transpiration and gas exchange (Bray, 2001). By controlling ABA concentration 
and signalling, together with other hormones and ion transporters, the degree of sto-
ma closure can be efficiently regulated, and water stress tolerance may improve. The 
role of the specific molecules that interconnect several pathways seems pivotal, as 
is OST1, which are very important in the connection between ABA signalling and the 
control of ion transporters, such as SLAC1 and QUAC1, in Arabidopsis thaliana guard 
cells (Mustilli et al., 2002; Imes et al., 2013).

Metabolic impairment is even more relevant than stomata limitations to improve 
photosynthesis in plants by the misregulation of the activity of key enzymes like su-
crose phosphate synthase (SPS), nitrate reductase or Rubisco (Rao and Chaitanya, 
2016). Rubisco has long since been considered the most critical point of regulation in 
the physiology of water-stressed plants in many species, such as subterranean clover, 
alfalfa or Pistacea lentiscus (Medrano et al., 1997; Aranjuelo et al., 2010; Galmés et al., 
2011). Its activity is down-regulated by low CO2 and Rubisco concentrations and the 
increased concentration of tight-binding inhibitors, among others (Galmés et al., 2011).  

Limited photosynthesis by water stress leads to excessive light excitation and 
photooxidation, which reduce the maximum quantum yield of PSII (Fv/Fm) and enhance 
ROS accumulation. By lowering the electron transport chain rate, improving the PSI 
cyclic electron flow, avoiding chlorophyll degradation, scavenging ROS and synthesising 
xanthophylls or compatible osmolytes, plants can diminish negative effects and are 
more tolerant to water stress (Li et al., 2006; Hu et al., 2010; Upadhyaya et al., 2012; 
Zivcak et al., 2013, 2014). Improving the biosynthesis of some components of plants, 
such as wax and lignins, can act as important defence mechanisms against excessive 
non-stomatal transpiration, which may help water accumulation (Zhong et al., 2020). 
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1.6. How to Improve Tolerance to Abiotic Stresses in  
Crop Plants: The Role of Grafting

One of the biggest challenges for agriculture and scientific research is developing 
new efficient strategies to improve the growth, development and commercial pro-
duction of plants. Both biotic and abiotic stressful conditions have been exacerbated 
in recent decades due to a new climate change scenario, including several that were 
minor problems some time ago; for instance, high concentrations of heavy metals and 
salts in water and soil, variation in water regimes or extreme temperatures. Thanks to 
the effort of public and private research, now it is possible to find different solutions, 
although all cases involve limitations.

One possibility is the application of different natural or synthetic molecules or 
organisms that are beneficial in tolerant plants and are used to improve tolerance in 
sensitive ones. These applications are generally employed with leaves and internally, 
they move through the whole plant to reach the most vulnerable tissues. Among the 
most widely used molecules to ameliorate the negative effects of salt and water stress 
are hormones (e.g. ABA, IAA, salicylic acid) (Yildirim et al., 2007; Kaya et al., 2010; Li 
et al., 2014a), polyamines (e.g. putrescine, spermidine) (Shu et al., 2012; Khoshbakht 
et al., 2018), compatible osmolytes (e.g. proline, glycinebetaine) (Mäkelä et al., 1999; 
Kaya et al., 2007), nutrients (e.g. Ca2+, K+) (Amjad et al., 2014; Naeem et al., 2018) and 
antioxidant compounds (e.g. AsA) (Dolatabadian et al., 2008). With time the use of 
biostimulants is becoming important, defined by du Jardin (2015) as “any substance 
or microorganism applied to plants with the aim to enhance nutrition efficiency, abiotic 
stress tolerance and/or crop quality traits, regardless of its nutrients content”. Even if 
beneficial effects have been described, the wide variety of biostimulants and no ac-
curate legal framework in force make their study, use and the determination of their 
specific functions difficult (Tanou et al., 2017). 

Enhancing plant tolerance by selecting specific loci of interest in plants by the breeding 
technique has been broadly used, which studies the intra- and interspecies variation of 
the desired characteristics, and are crucial for use in new tolerant cultivars. By classical 
breeding, important advances have been made in the last century (Ashraf, 2010) to either 
find tolerant cultivars to specific stresses or cross homozygous tolerant plants to obtain 
hybrids with enhanced characteristics. Nonetheless, due to the efforts and time invested 
in this technique, in recent decades important advances have been made in what is called 
genetic breeding (Hanin et al., 2016). In this case, different genetic engineering techniques 
are used to obtain tolerant plants in order to introduce one or several genes associated 
with stress-responsive pathways (Lisar et al., 2012). For example, pepper plants displayed 
increased tolerance to salt and water stress by the inoculation of genes TaNHX2 of wheat 
or a chlCu/Zn SOD of tomato with Agrobacterium tumefaciens (Chatzidimitriadou et al., 
2009; Bulle et al., 2016). Even if important advances have been made in this field, we are 

Section 1.6. How to Improve Tolerance to Abiotic Stresses in Crop Plants: The Role of Grafting
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still far from using them under real field conditions given the complexity of mechanisms of 
tolerance, the large quantity of genes involved and poor legal-social acceptation.

1.6.1. Grafting in Vegetables
An eco-friendly alternative technique that more attention has been paid with time is 
grafting. It was defined by Bie et al. (2017) as “the art of joining together two plant parts (a 
rootstock and a scion) by means of tissue regeneration, in which the resulting combination 
of plant parts achieves physical reunion and grows as a single plant”. Even if it is a millenary 
technique in woody plants, interest in vegetables has increased since the beginning of the 
last century (Kubota, 2017). Nowadays, the use of grafting is generalised worldwide and is 
employed more and more on a commercial scale to improve production in many situations. 
Asia is the continent with the largest cultivated area of grafted vegetables as only South 
Korea and Japan produced 700 billion grafted seedlings in 2009. In European countries, 
Spain heads the list with the most grafted seedlings for crop production (Lee et al., 2010).

Different grafting techniques are available on the market, and depend mainly on 
crops, although tube grafting is performed in most Cucurbitaceae and Solanaceae 
crops (Figure 1.7.). Although most commercial growers perform hand grafting, it is 
possible to find machines that automatically does this to improve efficiency and costs 
(Chang et al., 2012). After grafting, the joining generally needs 7-14 days for the wound 
to heal and be acclimated to transplantation to the field. 

Growers use rootstocks in plants for the main objectives of improving growth and 
commercial production when subjected to most biotic or abiotic constraints. The 
number of studies carried out in grafted plants to improve the tolerance, growth and 
production of plants is quite extensive, and many provide detailed information about 
the acquired physiological and molecular mechanisms of grafted plants compared to 
non-grafted or self-grafted plants (Rouphael et al., 2008b; López-Marín et al., 2013). 
Improved tolerance has been achieved in the stress that starts in roots, such as salt 
stress (Penella et al., 2013, 2015, 2016, 2017a), water deficit (Penella et al., 2014a, 
2014b), heavy metal toxicity (Rouphael et al., 2008b), low phosphorus concentration 
(Albacete et al., 2015; Martínez-Andújar et al., 2017) or soil-borne diseases (Burelle 
et al., 2009). However, it is possible to improve stress that arrives directly to the scion, 
such as extreme temperatures stress (López-Marín et al., 2013; Aidoo et al., 2018) or 
pathogens like Bemisia tabacci (Žanić et al., 2017, 2018). 

In pepper, using tolerant rootstocks improves commercial production, as well as 
the number of fruits under salt and water stress (Penella et al., 2013; López-Marín et 
al., 2017). This practice can reduce unmarketable yield; indeed Penella et al. (2016) 
demonstrated, for example, that using rootstock A25 improved marketable yields up 
to the 40% compared to non-grafted plants, and reduced BER incidence in fruit from 
the 49% to 19%. Even if the physiological and molecular mechanisms of tolerance of 
grafted plants subjected to salt and water stresses have been well studied in plants 
like tomato or cucumber, information is still scarce in pepper. 
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Figure 1.7. Pepper grafted seedlings by the tube 
grafting technique before being transplanted in the 
field. The lower part is the rootstock and the upper 
part represents the variety. The grafting joining is 
usually held with a grafting clip.

Section 1.6. How to Improve Tolerance to Abiotic Stresses in Crop Plants: The Role of Grafting
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Under salt stress, for example, the use of tolerant pepper rootstocks has demon-
strated that, on the one hand, it limits the transport of toxic ions to the scion and, 
on the other hand, it favours retrieval transport from the phloem to the roots. In both 
scenarios, ionic stress is alleviated in shoots and protects photosynthetic tissues (Gi-
uffrida et al., 2013; Penella et al., 2015, 2017a). Na+ ions are expelled from the root cells 
of rootstocks or, on the contrary, accumulate in non-toxic organelles, by the expression 
of several genes (e.g. SOS1, HKT1;1 or NHX1), as Huang et al. (2013a) proposed for 
pumpkin-tolerant rootstocks. Cl-, on the contrary, has been demonstrated to play a 
secondary role in contributing to ion toxicity in the high NaCl concentration scenario in 
grafted pepper plants and has, thus, been less studied (Penella et al., 2015). Accumula-
tion of both ions and compatible osmolytes in roots also favours the lowering of both ψW 
and ψs which, linked with vigorous root systems of tolerant rootstocks, improve water 
use efficiency (WUE) and osmotic adjustment under water or salt stresses conditions 
(Kumar et al., 2017; Penella and Calatayud, 2018).

Long-distance transport of ABA from rootstocks to photosynthetic tissues has 
been proposed as a short-term mechanism of tolerance in relation to photosynthesis 
preservation, which decreases gs and improves antitranspirant activity in several spe-
cies when present at a high concentration (reviewed by Pérez-Alfocea et al., 2011). 
In grafted cucumber plants, for example, enhanced ABA concentrations in roots and 
transport to leaves, as well as increased ABA-biosynthesis and signalling gene ex-
pressions in roots (NCED2, ABCG22, PP2C, SnRK2.1), seem to play important roles in 
preserving water status by stomata closure during the first 24 h of salt addition (Niu et 
al., 2019) or 7 days after water deficit starts (Liu et al., 2016b). Avoiding shoot toxicity 
and water flow maintenance through plants under salt and water stress, respectively, 
preserve long-term photosynthetic relations at high rates in tolerant pepper grafted 
plants (López-Marín et al., 2017; Penella et al., 2017a), which promotes the interchange 
of CO2, O2 and H2O and, thus, avoids stomatal aperture limitations. Nevertheless, how 
short- or long-term ABA responses and gene expressions are linked with better toler-
ance are still to be elucidated in pepper species.

Grafting can also modify the signalling of other hormones in rootstock-scion inter-
actions to improve tolerance to stress in many species. However, in peppers specific 
studies have not yet been conducted until the present. A well-studied vegetable is 
tomato, in which cytokinins (CK) have been demonstrated to play important roles in 
salt stress tolerance as less transport of CK from roots to shoots, and greater degra-
dative enzyme cytokinin oxidase (CKX) activity, increase sensitivity in plants; on the 
contrary, tolerant grafted plants maintain CK at higher levels, which improves growth, 
and reduce leaf senescence (Albacete et al., 2008, 2009). Hormones like auxins (e.g. 
IAA) and ethylene also play key roles in this interaction, and are positive and negative 
regulators of tolerance of grafted tomato plants to water scarcity, respectively (Can-
tero-Navarro et al., 2016). In this vein, genes like ACC deaminase for ethylene or iaaM 
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and iaaH for auxins have been proposed as important genes to be taken into account 
to assess the regulation of such hormones (Ghanem et al., 2011).

Non-stomatal limitations, such as Rubisco activity, improve in the scion when they 
are grafted onto tolerant rootstocks. Yang et al. (2015) demonstrated that bottle gourd 
rootstock, under salt stress conditions, improved Rubisco activity in watermelon plants 
by overexpressing key genes related to the regeneration of this enzyme (e.g. TPI, FBPA, 
SBPase, PRK), together with improved chlorophyll b content, which enhanced photo-
synthetic capacity by stomatal opening and restored PSII efficiency. Maintaining high 
Rubisco content levels and activity requirements, as well as N metabolism activation 
to transform nitrate into amino acids by the action of several enzymes (e.g. GOGAT, 
GS, GDH, NR, NiR), have been demonstrated in cucumber, tomato and pepper graft-
ed onto tolerant rootstocks (Liu et al., 2013; Sánchez-Rodríguez et al., 2013; Penella  
et al., 2014b).

Oxidative damage, caused by impaired photosynthesis and photooxidation in the 
scion, can be alleviated by using more robust rootstocks. Enhanced enzymatic anti-
oxidant activities, such as CAT, APX, SOD or PRX, have been widely demonstrated 
to improve salt and water stresses tolerance in the grafted scion in many vegetable 
species, including pepper (Penella et al., 2016; Zhang et al., 2019). Accumulation of 
molecules such as polyamines, AsA or proline have been described to improve ROS 
scavenging in grafted tolerant plants (Penella et al., 2016; Sánchez-Rodríguez et al., 
2016), which reduce the peroxidative damage of lipid membranes (Penella et al., 2015). 
Despite physiological mechanisms having been widely described, the molecular mech-
anisms of ROS detoxification and its regulation in grafted plants still remain unclear. 
Liu et al. (2016a) have demonstrated in watermelon under control conditions that 
the codificant genes for glutathione S-transferases, ascorbate oxidase, peroxidase 
or some pentatricopeptide repeat (PPR) proteins, are up-regulated when plants are 
grafted onto tolerant rootstocks in relation to self-grafted plants, which are proposed 
as possible mechanisms to improve oxidative damage and, thus, tolerance when abi-
otic stresses start. 

Therefore, the advantages of the grafting technique are generally very well-doc-
umented in the bibliography, which is why its use in vegetable species has grown in 
recent decades. It is also worth mentioning the main limiting factors that reduce the ef-
fectiveness of such technique. Of all those proposed in the bibliography, compatibility 
between scion and rootstock is one of the most important, which reduces crop pro-
duction and even leads to plant death. It is possible to successfully join two plants 
from different species, or even from different genera, such as  cucumber (Cucumis 
sativus) onto luffa (Luffa cylindrica) (Liu et al., 2016b), tomato (Solanum lycopersicum) 
onto related wild species (Solanum habrochaites) (Venema et al., 2008), cucumber 
or mini-watermelon (Citrullus lanatus) onto the hybrid Cucurbita maxima x Cucurbita 
moschata (Rouphael et al., 2008b, 2008a) or eggplant (Solanum melongera) onto So-
lanum incanum (Gisbert et al., 2011). Nonetheless, not all vegetables have interspecific 

Section 1.6. How to Improve Tolerance to Abiotic Stresses in Crop Plants: The Role of Grafting
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compatibility, as with pepper (C. annuum), for which it is possible to find a variable 
degree of compatibility even with different cultivars of the same species. On the con-
trary, using rootstocks from other species of the same genus, such as C. chinense or 
C. baccatum, or other related genera like Solanum sp. seriously diminish compatibility 
(Penella et al., 2017b). This fact complicates finding tolerant rootstocks in C. annuum 
in relation to other vegetables, which is why it is so important to find new genetic 
resources of the same species by screening semi-cultivated and wild accessions that 
can be used as rootstocks, and in future breeding programmes (Penella et al., 2013, 
2014b). Additionally, using the double grafted plants technique has demonstrated 
improvements in other species to graft joining  and better grafted plant development 
(Kawaguchi et al., 2008; San Bautista et al., 2011).

It is important to also evaluate economic losses linked with the fact that grafted 
plants need the double amount of germinated seeds and double seedling maintenance 
until the time grafting takes place. It is also necessary to resort to specialised people 
or machinery to successfully develop graft joining and to monitor environmental pa-
rameters, such as temperature and relative humidity, to succeed in this process (Lee 
et al., 2010). In general terms, all these factors can double the price per plant. How-
ever, encouraging results demonstrate that grafting under biotic and abiotic stresses 
result in net benefits compared to non-grafted plants (Djidonou et al., 2013; Rysin and 
Louws, 2015).
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Previous studies conducted in the Horticulture department of the Valencian Institute 
of Agriculture Research (IVIA) and the Vegetable Production Department of the Pol-
ytechnic University of Valencia (UPV) demonstrated the genetic diversity of a series 
of pepper accessions when faced with abiotic stresses following a physiological and 
agronomical approach (Penella et al., 2013, 2014b). Some tolerant accessions were 
used as rootstocks and evaluated agronomically and physiologically under salt or water 
stress (Penella et al., 2014a, 2015, 2016, 2017a). Even if all this information contributes 
to a better understanding of the mechanisms of tolerance of pepper rootstocks, some 
behaviours remain unclear and unknown when this doctoral thesis began. We decided 
to also address a new genetic approach as the information on the molecular pathways 
of tolerant pepper accessions that confer scions tolerance has not been explored in-
depth in the literature to date. By taking all this together, the main objectives of this 
work are:

1. Screening new pepper accessions of the germplasm bank of the Institute of Con-
servation and Improvement of the Valencian Agrodiversity (COMAV) at high salt 
concentrations and under suboptimal water conditions to find new tolerant root-
stocks and use them in breeding programmes (Chapter 2).

2. Identifying the short-term physiological tolerance mechanisms of an accession, 
previously classified as tolerant, under water stress conditions when used as a 
rootstock (Chapter 3).

3. Identifying the short-term physiological mechanisms of salinity tolerance of a new 
hybrid rootstock (NIBER®) that has been previously classified as tolerant to a high 
salt concentration based on agronomical approaches (Chapter 4).

4. Looking for the main molecular pathways of salt stress tolerance of a tolerant 
accession compared to a sensitive one by a transcriptomic approach (Chapter 5).

Section 1.7. Thesis Objectives
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2.1. Abstract

New sources of water stress and salinity tolerances are needed for crops grown in 
marginal lands. Pepper is considered one of the most important crops in the world. 
Many varieties belong to the genus Capsicum spp., and display wide variability in 
tolerance/sensitivity terms in response to drought and salinity stress. The objective 
was to screen seven salt/drought-tolerant pepper accessions to breed new cultivars 
that could overcome abiotic stresses, or be used as new crops in land with water and 
salinity stress. Fast and effective physiological traits were measured to achieve the 
objective. The present study showed wide variability of the seven pepper accessions 
in response to both stresses. Photosynthesis, stomatal conductance and transpiration 
reduced mainly under salinity due to stomatal and non-stomatal (Na+ accumulation) 
constraints and, to a lesser extent, in the accessions grown under water stress. A 
positive relationship between CO2 fixation and fresh weight generation was observed 
for both stresses. Decreases in Ψs and ΨW and increased proline were observed only 
when accessions were grown under salinity. However, these factors were not enough 
to alleviate salt effects and an inverse relation was noted between plant salt tolerance 
and proline accumulation. Under water stress, A31 was the least affected and A34 
showed the best tolerance to salinity in terms of photosynthesis and biomass. 

Additional keywords:  
osmotic potential;  
photosynthesis; proline;  
salinity ions; water potential.

Abbreviations used:  
AN (maximum net CO2 fixation rate);  
AN/Ci (instantaneous carboxylation efficiency);  
Ci (substomatal CO2 concentration);  
DW (dry weight); E (transpiration);  
ETc (evapotranspiration); FW (fresh weight);  
gs (stomatal conductance to water vapour);  
Ψs (osmotic potential); ΨW (water potential). 

Section 2.1. Abstract



48

Chapter 2. Physiological changes of pepper accessions in response to salinity and water stress

2.2. Introduction

With the global scarcity of water resources and increased of salinity in water and soil, 
these abiotic stresses constitute major limiting factors in plant growth and, conse-
quently, agriculture productivity is decreasing (Bray et al., 2000). 

Plant responses to water and salinity stresses are complex and involve adaptive 
changes and/or deleterious effects (De Oliveira et al., 2013). The outcomes of both 
stress types on plant performance are diverse, but have some points in common. The 
main effect when plants start becoming stressed is the reduced water content in their 
tissue, and therefore the closure of leaf stomatal complexes takes place. Consequently, 
transpiration (Bray et al., 2000) and/or photosynthesis may decrease through reduced 
osmotic potential in the soil solution, which involves reduced water potential (Bo-
jórquez-Quintal et al., 2014; Penella et al., 2014a, 2015, 2016). If salinity stress occurs, 
a specific ionic effect appears, mediated by the accumulation of toxic ions in cellular 
tissues (De Pascale et al., 2003) with imbalances between nutrients (Hasanuzzaman et 
al., 2013). All these factors have adverse effects on both plant growth and development 
at physiological and biochemical levels (Munns & James, 2003).

Plants have evolved mechanisms to overcome salinity and water deficit that al-
low them to perceive incoming stresses and to regulate their metabolic functions. In 
general, one of the important pathways to enhance water stress and salt tolerance is 
through osmotic adjustment (OA), in which leaf turgor remains necessary for stomatal 
opening and, thus, sustains photosynthesis and growth (Huang et al., 2010; Nio et 
al., 2011). Besides, various types of compatible solutes accumulate, such as sugars, 
proline, gycinebetaine or potassium, among others (Munns et al., 1979; Morgan, 1992; 
Nio et al., 2011), and can increase. These compounds can be added to the list of the 
non-enzymatic antioxidants that plants need to counteract the inhibitory metabolic 
effects of reactive oxygen species (ROS) provoked by stress (Gill & Tuteja, 2010; Penella 
et al., 2014a, 2016). They also play a role in both the stabilisation of enzymes and pro-
teins and the protection of membrane integrity (Patade et al., 2012). Salt tolerance may 
arise from the ability to tolerate osmotic stress, from mechanisms of salt exclusion or 
from intercellular ion compartmentalisation (Munns & Tester, 2008). These mechanisms 
are not normally exclusive, so plants can combine some of these strategies at the same 
time (Chaves et al., 2003). Furthermore, tolerance levels may vary between species 
(Munns, 2002) and within cultivars of the same species (Chartzoulakis & Klapaki, 2000). 

Understanding the tolerance mechanisms that occur at the whole plant level has 
implications for screening and distinguishes plants that are tolerant to salinity and water 
stress (Munns, 2002). In the climate change scenario, new sources of salt and water 
stress tolerance are needed for the crops grown in areas with salinity and scarcity 
water problems. This available genotypic variability in terms of tolerance to abiotic 
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stresses can provide plant species with a breeding opportunity to obtain better yields 
and production, and good fruit quality.

Pepper is a member of the family Solanaceae and is considered one of the most 
important crops in the Mediterranean area, where water shortage and salinity are major 
problems that limit productivity (Penella et al., 2013, 2014b). Many crops belong to the 
genus Capsicum spp., and display wide genetic variability (Aktas et al., 2006). Pepper 
has been classified from moderately sensitive to sensitive under salinity and water 
stress conditions (Tanji & Kielen, 2002; Penella et al., 2015). In fact, some studies have 
reported reduced seedling growth with 50 mM concentration of NaCl (Chartzoulakis & 
Klapaki, 2000; De Pascale et al., 2003). Sometimes pepper has been described as one 
of the most susceptible crops to water stress, mainly due to its large transpiring leaf 
surface and high stomatal conductance of water vapour (Alvino et al., 1994; Delfine 
et al., 2002). Consequently, pepper plants are particularly sensitive to water stress at 
flowering and fruit setting (Bosland & Votava, 2000). However, not all Capsicum genus 
cultivars have the same sensitivity to abiotic stresses (Penella et al., 2013, 2014b; 
Aktas et al., 2006). Therefore, the study and identification of the tolerance level and 
mechanisms of different pepper genotypes are immensely important to breed new 
cultivars that can overcome abiotic stresses, or be used as new crops in land with 
drought and salinity problems to help extend the cultivated property. For pepper, very 
rare information about genotype variability in terms of its behaviour under salinity and 
water stress is available.

Different physiological markers have been proposed as key traits to select salt and 
water stress tolerance. Our most recent works evaluated several pepper accessions. 
We selected some of them as a source of tolerance to salinity and water stress (Penella 
et al., 2013, 2014b) using gas exchange as a useful technique to differentiate tolerance 
and susceptibility to these stresses. 

In the present study, we tested new accessions of Capsicum annuum L. for them 
being the most economically important species from the Capsicum genus in the Med-
iterranean climate. Accessions selection was made according to previous results 
(Penella et al., 2013; 2014b). To evaluate their behaviour under salinity and water 
stresses, we studied the physiological mechanisms that underlie tolerance strategies 
using efficient parameters to identify which pepper accessions are tolerant to salt and/
or water stress to be use in marginal areas and/or in breeding programmes. Further, 
we describe the physiological parameters roles and discussing the possibility of using 
them as selection criteria for cast salt and water stress genotypes with tolerance. As 
predictive screening parameters to salinity and water stresses in these seven new 
pepper accessions, we measured photosynthesis (AN), stomatal conductance (gs), 
inner carbon (Ci), water potential (ΨW), osmotic potential (ΨS), proline content, ion 
concentrations and biomass and their relationships.

Section 2.2. Introduction
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2.3. Material and methods

2.3.1. Plant material 
The C. annuum accessions used herein were Numex X (A31), Numex sandia type 2 
(A32), Numex conquistador type 2 (A33), BGV-11814 (A34), BGV-4349 (A35), SIURIYA 
600 (A36) and KAPIYA UV (A37). A numerical code for each accession is indicated in 
brackets. All the accessions used in the present study belong to the COMAV Institute 
collection (Universitat Politècnica de València, Valencia, Spain). Seeds were germinated 
in moistened perlite at 28ºC under greenhouse conditions. Seedlings were transferred 
to 15 L pots that contained coconut coir fibre (Cocopeat, Projar Co., Spain) in a heated 
polyethylene greenhouse on 10 April 2016 in the Instituto Valenciano de Investigaciones 
Agrarias (IVIA, Valencia, Spain). Plants were drip–irrigated with Hoagland’s No. 2 nutrient 
solution containing (all in mM): 14 NO3

-, 1.0 H2PO4
-, 2.0 SO4

2-, 1.0 NH4
+, 16.0 K+, 4.0 Ca2+ 

and 2.0 Mg2+. Micronutrients were also provided (all in mM): 15 Fe2+, 10 Mn2+, 5 Zn2+, 30 
B3+, 0.75 Cu2+ and 0.6 Mo6+) (Maynard & Hochmuth, 2007). The electrical conductivity 
(EC) of the nutrient solution was 1.4 dS/m and pH 6.1. The greenhouse conditions in 
this period varied between 16ºC and 25ºC and from 50% to 70% of relative humidity.

After 15 days in pots, plants were divided into three groups for the control, saline 
and water stress treatments. Salinity treatment began by adding NaCl (60 mM) to the 
irrigation solution to reach an EC of 6.8 dS/m. Drip irrigation was applied based on es-
timations of weekly crop evapotranspiration (ETc) (Allen et al.,1998), even though the 
nutrient saline solution was allowed to drain freely from pots and the control drainage 
was controlled from 10% to 20% depending on solar radiation. Water stress treatment 
began by reducing the volume of irrigation water to 60% of the control. The volume of 
each irrigation and the number of irrigations were scheduled to maintain drainage at 
between 10% and 20% (depending on solar radiation).

Eight plants per accession were used in each treatment. Physiological measure-
ments were taken 1 month after the salinity and water deficit treatments began on 
fully expanded mature leaves (third or fourth leaf from the shoot apex) and completed 
in 1 day.

2.3.2. Biomass
All the plants were harvested immediately after physiological parameters were meas-
ured. Aerial parts and roots were separated and their fresh weight (FW) was recorded. 
They were dried at 70°C for 72 h in a laboratory oven and then weighed for the dry 
weight (DW) determinations. Salt and water tolerance efficiencies (Fischer & Wood, 
1981) were calculated according to the formulae: (DWstress/DWcontrol)*100, where 
DWstress and DWcontrol are total dry weight (aerial and root) of each genotype under 
the stress (water or salinity) or control conditions.



51

2.3.3. Photosynthesis measurements
Maximum net CO2 fixation rate (AN, mmol CO2/m2·s), stomatal conductance to water 
vapour (gs, mol H2O/m2·s) transpiration rate (E, mmol H2O/m2·s) and substomatal CO2 
concentration (Ci, mmol CO2/mol (air)) were measured at the steady state under condi-
tions of saturating light (1000 mmol/m2·s), 400 ppm CO2 and 23-25ºC leaf temperature 
cuvette with a LI-6400 (LI-COR, Nebraska, USA). Parameter AN/Ci was calculated as 
instantaneous carboxylation efficiency. Gas exchange measurements were taken on the 
third or fourth leaf from the shoot apex from 9 am to 11 am (GMT). One measurement 
per plant was taken, and eight different plants were used (n=8) for each treatment 
and accession. 

2.3.4. Water relations
The osmotic potential of leaf sap (Ψs in MPa) was measured by an osmometer (Digital 
osmometer Vapro 5520, Wescor, USA). Leaves were tightly wrapped in aluminium foil, 
frozen in liquid nitrogen and stored at -80ºC. After thawing, sap was collected by cen-
trifuging at 8,000 rpm at 4ºC and placed in the osmometer (modified from Callister et 
al., 2006). Osmolyte content (mmol/kg) was converted into MPa using the Van’t Hoff 
equation (Penella et al., 2014a). Leaf water potential (Ψw in MPa) was measured on 
the leaves sampled with a Schlolander pressure chamber (Wescor Model 600, PMS 
Instruments, Albany, USA). Two independent determinations were made on each rep-
licate and plant, obtained from six plants per treatment and combination for Ψs and Ψw.

2.3.5. Proline determination
Proline content (mg/g DW) was determined as described by Bates et al. (1973). Leaf and 
root dried pepper tissue (0.02 g) was ground in 3% sulphosalicylic acid, the homogenate 
was centrifuged at 8,000 rpm for 5 min, filtered, and 0.60 mL of glacial acetic acid and 
0.70 mL of ninhydrin reagent (2.5 g ninhydrin in 600 mL glacial acetic acid and 40 mL 6 
N phosphoric acid) were added to an aliquot of the supernatant. The reaction mixture 
was boiled for 1 h at 100ºC, and readings were recorded at a wavelength of 520 nm 
in a spectrophotometer. Proline determination was made for n=4 for each treatment 
and accession.

2.3.6. Sodium and chloride ions analysis
The leaves and roots collected for n=4 samples of each treatment and accession were 
dried at 70ºC for 4 days. Dried samples (0.1-0.2 g) were burnt in a muffle furnace for 
12 h at 550ºC. Ions were extracted with 2% nitric acid in an ultrasonic bath for 30 min 
at 4ºC. Na+ concentration was measured by an atomic absorption spectrometer (A 
Analyst 200, Perkin Elmer).

The chloride concentration (Cl-) in the dry plant material was extracted with 0.1 
N HNO3 in 10% (v/v) acetic acid and was determined by potentiometric titration with 
AgNO3 in a chloride analyzer (Sherwood, MKII 926). 

Section 2.3. Material and methods
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The results for both ions were expressed as [Na+] or [Cl-] salt stress/[Na+] or [Cl-] 
control for n=6 independent samples in leaves and roots.

2.3.7. Statistical analysis
The layouts of the experiments took a completely randomised design. Data of each 
accession for treatments (control, water and salinity stress) were subjected to one-
way ANOVA`s. The mean comparisons were made using Fisher’s least significance 
difference (LSD) test at p<0.05. The data of (DWstress/DWcontrol)*100 (Arcsin X½ 
transformation) and [Na+] or [Cl-] salt stress/[Na+] or [Cl-] were subjected to a one-way 
ANOVA with genotype as the variability factor, and the means comparisons Fisher’s 
least significance difference (LSD) test at p<0.05 was applied.

The data obtained in some measurement parameters were subjected to line-
ar regression and analyses to identify the relationships between the physiological  
parameters.
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2.4. Results

2.4.1. Biomass
The first step in this experiment was to detect the phenotypical variations regarding water 
and salinity tolerance in these seven pepper accessions. The pepper accessions grown 
under stress and control conditions showed significant differences in DW (Fig. 2.1.A). 
A31 and A32 were the accessions with the highest DW values under the control treat-
ment. Both stresses significantly decreased parameter DW in all the accessions. Salinity 
generated the lowest DW biomass in all the accessions. Under drought, A31 showed 
the minor decrease and under salinity A34 stood out. The salt and drought tolerance 
indices were also determined to distinguish between sensitive or tolerant accessions 
(Fig. 2.1.B). Under water stress, A31 stood out with 72% and A36 obtained the lowest 
value with 46% inhibition, while the other accessions displayed similar values. Regarding 
salinity, A34 showed the higher percentage (53% compared to its control), and the rest 
exhibited values of around 24-39%.
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Figure 2.1. Total dry weight (A) and salt and 
water tolerance efficiencies (B) calculated as 
(DWstress/DWcontrol)*100 of pepper accessions 
after 1 month under water stress and under 
NaCl (60 mM) supplied to the nutrient solution. 
Different letters in (A) indicate significant 

differences at p<0.05 (LSD test) according to 
ANOVA, with treatments and accessions as the 
variability factors. In (B) for each histogram bar, 
the value is significantly different at p<0.05 (LSD 
test) to its control. Data are the mean for n=8 
plants and SE. 
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2.4.2. Photosynthetic parameters
The leaf CO2 assimilation rate (Fig. 2.2.A), stomatal conductance (Fig. 2.2.B) and tran-
spiration (Fig. 2.2.C) were strongly reduced in pepper accessions exposed to salinity 
and in minor extends under water stress compared to controls. Under water stress 
A31 obtained the higher values of AN, gS and E without significant differences with its 
control; A36 gave the lowest values. The accession A34 showed the minor decrease of 
gas exchange parameters compared with the rest of pepper accessions under salinity 
but showed significant differences with its control. 
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2.4.3. Relation between photosynthesis and fresh weight
The data showed a positive relationship between AN and FW (AN= 0.0392FW + 8.914; 
r2= 0.678; p<0.05) for all the values (Fig. 2.3.A). In the water stress group, A31 ob-
tained the highest FW and photosynthesis values, and A36 gave the lowest ones. In 
the salinity group, A34 presented the highest biomass and the greatest increase in 
photosynthesis, while A35 displayed the worst behaviour. 

2.4.4. Instantaneous carboxylation efficiency
Under control conditions, instantaneous carboxylation efficiency, expressed as AN/Ci 
(Fig. 2.3.B), displayed the highest values, while the lowest values were obtained under 
the salinity treatment for all the studied pepper accessions. Under salinity, A37 was 
the accession with the greatest decrease in this parameter following A35 and A32. 
Under water stress, A36 gave the lowest AN/Ci value with significant differences with 
the rest of the accessions under drought and control plants.
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2.4.5. Water and osmotic potential 
Leaf ΨW drastically lowered in response to salinity and led to large significant differenc-
es in A32, A33, A34 and A35 compared to their controls (p<0.05) (Fig. 2.4.A). During 
the drought period, ΨW remained higher for all the accessions than those exposed to 
salinity. It was noteworthy that A37 obtained significantly different ΨW values compared 
to its control, but not contrary to salt stress, where values were the lowest compared 
to the other accessions.

Leaf Ψs decreased in response to salt treatment, but not under water stress 
(Fig. 2.4.B). The salt-induced decrease in Ψs was more pronounced in A35, followed by 
A34 and A36, compared to the rest, and Ψs was not modified under water stress, except 
in A31 and A32 where Ψs values were biggest compared to their controls.

A31 A32 A33 A34 A35 A36 A37
-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

Control 
Water stress 
Salt stress

ψ
W

 (M
Pa

)

A31 A32 A33 A34 A35 A36 A37
-2,5

-2,0

-1,5

-1,0

-0,5

0,0

ψ
S 

(M
Pa

)

de

f

cd

def

f

def
defdef

bc

defdef

b

def
def

a

def

b

ef
def

bc

cdf

cd

c

cdf
cdf

b

fg

cdf

ab

cdf
c

a

cd

a

df

cdf cd

g

cdf
cdf

c

f
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2.4.6. Proline concentration in leaves and roots
Proline leaf accumulation occurred under salt stress in all the accessions (Fig. 2.5.A), 
but was not observed under water stress. The greatest increase was observed for 
A37, followed by A33 and A35.

For a given population, the proline concentration in roots was lower compared 
to leaves (Fig. 2.5.B). Erratic proline behaviour in this organ was observed, where 
accession A33 showed the most marked increase in proline content under salinity 
stress, whereas A35 and A36 displayed a decrease. Under water stress, accessions 
maintained similar values to their controls, except for A37 for which a decrease was 
noted (Fig. 2.5.B).
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2.4.7. Sodium and chloride analysis 
Increases in Na+ and Cl- were observed in all the pepper accessions under the salinity 
condition (Fig. 2.6.). Under water stress, the values were similar to the control (data 
not shown). In roots, Na+ increased between 2-3.2-times were observed compared to 
its control values (Fig. 2.6.A). In leaves, Na+ increased less compared with root levels 
in all the pepper accessions, except for A35 where the Na+ leaf increase was 4.5-times 
than its control. Compared to the control, chloride accumulation (Fig. 2.6.B) was higher 
in leaves than in roots in some accessions (A34, A35 and A37), while the accession 
values for the rest were similar between roots and leaves.  

For both ions and organs, an increase in each accession showed significant differ-
ences compared to its control.
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2.5. Discussion

The pepper accessions shown in this experiment exhibited physiological differences 
in response to drought and salinity stress. In particular, we obtained photosynthesis 
values connected to biomass, which indicated the ability to cope with these stresses. 
Therefore, these accessions would be suitable to be grown in semi-arid or salinity lands 
and/or to be used in breeding programmes as a source of tolerance.

It is well-known that water and salinity stress reduces plant growth and that there 
are differences among cultivars with peppers (Aktas et al., 2006; Penella et al., 2013, 
2014b). According to our results, both stresses significantly suppressed the growth of 
pepper plants in dry weight terms, although their stress responses depended on the ac-
cession. It should be noted that among all accessions, A34 for salinity and A31 for water 
stress showed minor growth reduction; nevertheless, A31 under salinity experienced 
an important biomass reduction. However, the physiological, biochemical and genetics 
mechanisms involved in growth inhibition have not yet been well characterised (Misra 
et al., 2002; Munns & Tester, 2008; Noreen et al., 2010). Knowledge of plant certain 
capacities of cope with stress could be essential for characterising stress tolerance.

This differential growth of the seven pepper accessions under both stresses may 
have been due to a differential regulation of the distinct physiological attributes in-
volved in growth processes. Previous studies have demonstrated a positive relationship 
between photosynthetic capacity and growth in the plants grown under both salinity 
(Praxedes et al., 2010; Saleem et al., 2011; Penella et al., 2015; 2016) and water stress 
(Chaves et al., 2002; Abbad et al., 2004; Hassine et al., 2008; Del Amor et al., 2010). 
In spite of considerable reduction of carbon assimilation rate and biomass under both 
stresses for all accessions studied the genotype A31 under water stress showed the 
minor decrease for both physiological parameters showing not significant differences 
in AN and a biomass reduction of 29% respect its control plants. Under salinity stress, 
among all accessions, the genotype A34 exhibited the higher photosynthesis rate and 
its biomass experienced the minor reduction respect the rest of accessions.

Reduced photosynthesis can be caused by stomatal closure and/or non-stomatal 
inhibition, and the latter is associated with damage in photosynthetic machinery (Flexas 
et al., 2004). In our experiment, a high correlation between AN and gs was observed for 
all data (AN = 13.304 gs + 6.63, r2= 0.8579; p<0.05). This apparent linearity indicates 
that gs and AN reduced in a coordinated relation. This finding agrees with the interpre-
tations under water and salinity stress conditions made by several researchers (Cowan 
& Farquhar, 1977; Delfine et al., 2002; Filippou et al., 2014; Penella et al., 2015). The 
equation of the relationship between both parameters (AN vs. gs) did not pass through 
the origin. This fact indicates that stomatal closure occurred earlier than CO2 fixation 
(Delfine et al., 2002), although AN reduction was due mainly to stomata closure, the 

Section 2.5. Discussion
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partial inhibition of mesophyll conductance and/or photochemical efficiency cannot 
be ruled out. 

Decrease in AN/Ci indicates that both stresses affected the photosynthesis by met-
abolic limitations (Da Silva et al., 2011; Penella et al., 2015). The marked drop in AN/Ci 
occurred more drastically under the salt-stressed pepper accessions. Excessive Na+ 
and Cl- accumulation is harmful and may disrupt the integrity of chloroplasts and de-
crease photosynthetic capacity (Munns & Tester, 2008; Chaves et al., 2009; Rouphael 
et al., 2012; Penella et al., 2015). We observed how the accumulation of mainly Na+, and 
of Cl- to a lesser extent, occurred in the roots and leaves of all the pepper accessions. 
However, A35 stood out with the greatest Na+ accumulation in its leaves, affecting 
directivity to photosynthetic apparatus, which could cause the lowest AN, gs, E and 
FW (and DW) values. Under water stress, AN/Ci decreased to a lesser extent, which 
supports the notion that the major photosynthesis inhibition was mainly resulted from 
stomatal closure, and that A36 was the most affected genotype with the lowest growth 
and CO2 fixation.

Under the osmotic stress provoked by water and salt stress in the root medium, 
plants lowered leaf Ψs in an attempt to maintain water uptake (decrease Ψw) with a 
positive turgor, which is indispensable for cell growth and maintaining photosynthetic 
performance (Yadollahi et al., 2011; Penella et al., 2015, 2016). In order to face water 
loss, plants accumulate many compatible (organic) metabolites to increase tolerance 
against tissue dehydration (Yoshiba et al., 1997; Patakas et al., 2002). Proline accu-
mulation is believed to be one of the most important metabolites that are implied in 
osmotic adjustment. Moreover, several studies have attributed multiple roles to proline, 
such as signalling molecule that influences defence pathways, complex metabolic 
regulation and development processes, and protective compounds (see Szabados & 
Savouré, 2010). In our experiment, proline content increased considerably under the 
salinity conditions (from 29% for A34 to 64% for A37 compared with their controls), 
but not under water stress. When proline was taken as an osmolyte, the role it played 
to contribute to lower Ψs did not suffice under salinity (between 0.06 and 0.1MPa) to 
generate osmotic pressure (Smirnoff & Cumbes, 1989; Penella et al., 2015). Therefore, 
the increase in proline under salt stress was unable to explain the observed decrease in 
Ψs, while the relationship between them was very weak (r2= 0.027). Nevertheless, the 
largest proline amount observed in all the pepper accessions, except A34, was related 
with the greater salt sensitivity of these genotypes. These findings are consistent with 
the research reported for pepper into higher leaf proline in salt-sensitive genotypes 
(Penella et al., 2015), or for other species, such as wheat (Colmer et al., 2005), barley 
(Chen et al., 2007), or rice (Lutts & Guerrier, 1995). Moreover, proline or other compat-
ible solutes may protect plants by scavenging the oxygen-free radicals caused by salt 
stress (Huang et al., 2010; Penella et al., 2016), a role as signalling molecule, implicated 
in regulation and developmental processes, and should be considered a protective 
compound (see Szabados & Savouré, 2010). Under water stress, no changes were 
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observed in proline content respect to controls due to there were not differences in 
ΨW and Ψs was observed between treatments.

The adjustment of Ψs through inorganic salt-ion uptake is a strategy that implies a 
much lower energy cost for cells compared with the organic molecules synthesised in 
cells (Munns, 2002). Pepper accessions showed a better correlation between osmotic 
potential and Na+ levels in leaves (Ψs = -0.361 [Na+] – 0.9288; r2=0.666), but not for 
Cl- accumulation (data not shown). The decreased Ψs in the pepper accession leaves 
subjected to salt stress was largely the result of strong Na+ accumulation. This result 
was also observed by Chen et al. (2007) in barley genotypes, Abideen et al. (2014) in 
Phragmite karka, or Navarro et al. (2003) and Penella et al. (2015) in pepper plants. 

Overall, all the analysed physiological parameters, photosynthesis and stomatal 
conductance, can be reliable indicators of biomass under water and salinity stress. Both 
salinity and water stress lead to reduce photosynthesis, stomatal conductance and 
growth. The present study evidences a wide variability of the seven pepper accessions 
in response to both stresses, and in both drought and salinity treatments. Under our 
conditions, growth inhibition occurred under water stress, provoked mainly by stomatal 
closure, where A31 was the less affected, and A36 was the most sensitive one and 
also correlated with minor CO2 fixation and biomass. Under the salinity conditions 
applied in this experiment, our results showed that damage was greater compared 
with water stress. In this case, photosynthesis inhibition was due to the stomatal and 
non-stomatal effects caused by osmotic stress and toxic salt ion accumulation. Even 
with increased proline synthesis, the reduction in Ψs and ΨW was not enough to alleviate 
the salt effects. A34 was the most interesting accession due to its better tolerance 
to salinity with a major photosynthesis capacity, minor growth inhibition, but it had a 
lower proline concentration compared with A35, which suffered the worst adaptation. 
This genetic variation in response to both stresses can be exploited in pepper crops 
so they can be grown in marginal areas and/or in breeding programmes.

Section 2.5. Discussion
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3.1. Abstract

In vegetables, tolerance to drought can be improved by grafting commercial varieties 
onto drought tolerant rootstocks. Grafting has emerged as a tool that copes with 
drought stress. In previous results, the A25 pepper rootstock accession showed good 
tolerance to drought in fruit production terms compared with non-grafted plants and 
other rootstocks. The aim of this work was to study if short-term exposure to drought 
in grafted plants using A25 as a rootstock would show tolerance to drought now. To 
fulfil this objective, some physiological processes involved in roots (rootstock) and 
leaves (scion) of grafted pepper plants were analyzed. Pepper plants not grafted (A), 
selfgrafted (A/A), and grafted onto a tolerant pepper rootstock A25 (A/A25) were 
grown under severe water stress induced by PEG addition (-0.55 MPa) or under con-
trol conditions for 7 days in hydroponic pure solution. According to our results, water 
stress severity was alleviated by using the A25 rootstock in grafted plants (A/A25), 
which indicated that mechanisms stimulated by roots are essential to withstand stress. 
A/A25 had a bigger root biomass compared with plants A and A/A that resulted in bet-
ter water absorption, water retention capacity and a sustained CO2 assimilation rate. 
Consequently, plants A/A25 had a better carbon balance, supported by greater nitrate 
reductase activity located mainly in leaves. In the non-grafted and self-grafted plants, 
the photosynthesis rate lowered due to stomatal closure, which limited transpiration. 
Consequently, part of NO3

- uptake was reduced in roots. This condition limited water 
uptake and CO2 fixation in plants A and A/A under drought stress, and accelerated 
oxidative damage by producing reactive oxygen species (ROS) and H2O2; which were 
highest in their leaves, indicating great sensitivity to drought stress and induced mem-
brane lipid peroxidation. However, drought deleterious effects were slightly marked in 
plants A compared to A/A. To conclude, the A25 rootstock protects the scion against 
oxidative stress, which is provoked by drought, and shows better C and N balances 
that enabled the biomass to be maintained under water stress for short-term exposure, 
with higher yields in the field.

Additional keywords:  
drought, gas exchange, grafted, 
oxidative stress, pepper, 
rootstock, water relations.
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3.2. Introduction

In agriculture, drought stress is one of the most limiting factors for growing crops, main-
ly due to a poor plant carbon balance, which is largely dependent on photosynthesis 
(Flexas et al., 2009). This is associated with a significant drop in the leaf water potential 
and transpiration (Fahad et al., 2017) which, in turn, affect nutrient absorption. These 
restrictions make plants more susceptible to photo damage by increasing reactive 
oxygen species (ROS) that may damage the cellular membrane and other vital mole-
cules like DNA, lipids, and proteins (Fahad et al., 2017). Metabolic alterations in plants 
by drought lead to significant yield reductions, which imply major economic loss and 
affect global food security. Bearing in mind that most climate change scenarios predict 
a more drought incidences, it is necessary to increase food production to satisfy the 
population’s demand (Fahad et al., 2017).

The selection of tolerant genotypes is a considerable challenge to improve pro-
ductivity with limited water resources. Conventional plant breeding has had limited 
success at mitigating the effects of abiotic stress on plant productivity (Gilliham et al., 
2017; Lamaoui et al., 2018). This can be ascribed to both the complexity of traits and 
lack of appropriate selection tools (Ashraf and Foolad, 2007; Schwarz et al., 2010). In 
addition, it is very difficult to combine enhanced yields and superior product quality 
with tolerance to drought and other abiotic stresses (Finckh, 2008; Lammerts van 
Bueren et al., 2011).

Genetic transformation could prove a powerful tool in plant breeding (Borsani et al., 
2003; Cuartero et al., 2006; Martínez-Rodríguez et al., 2008). However, lack of public 
acceptance of genetic engineering clearly indicates the need for alternative strategies 
to enhance abiotic stress tolerance (Munns, 2002; Estañ et al., 2005). 

One possible solution to cope with abiotic stress and reduce production losses 
involves using graft technology (Rivero et al., 2003a; Colla et al., 2010; Savvas et 
al., 2010; Schwarz et al., 2010; Sánchez-Rodríguez et al., 2014). Some studies have 
demonstrated the efficiency of tolerant rootstocks in reducing the effects of drought 
on the scion by improving physiological performance and productivity through dif-
ferent approaches, like using a larger and vigorous root rootstock system capable 
of absorbing water and nutrients, and maintaining the root relative growth rate and 
leaf-relative water content more efficiently than non-grafted plants. This behavior has 
been observed in tomato (Sánchez-Rodríguez et al., 2012; Yao et al., 2016) and wa-
termelon (Chouka and Jebari, 1999; Alan et al., 2007; Rouphael et al., 2008). Another 
alternative is active osmotic adjustment as it can contribute to improve the uptake of 
more water mediated by the accumulation of a range of osmotically active molecules, 
as reported in pepper (Anjum et al., 2012; Penella et al., 2014b) and tomato (Yao 
et al., 2016) grafted plants. In addition, plants subjected to drought stress tend to 
overproduce ROS; the activation and/or modulation of an antioxidant defense system 
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plays an important role in conferring tolerance under drought and constitutes the first 
line of defense by reducing damage by lipid peroxidation in tomato grafted plants (Yao 
et al., 2016). The ability to limit water loss can help to maintain the photosynthesis rate 
and improve NO3

- assimilation in grafted plants under water deficit by allowing both 
plant growth and productivity (Rouphael et al., 2008; Sánchez-Rodríguez et al., 2013; 
Penella et al., 2014b).

Recently, the number of reports on grafting as a mean to improve tolerance to 
drought has increased in mainly tomato, watermelon and cucumber (Kumar et al., 
2017). Nevertheless, the use of rootstocks that tolerate abiotic stresses is lacking in 
pepper plants because available commercial rootstocks provide limited profits (Lee et 
al., 2010; Penella et al., 2014a; Kyriacou et al., 2017). Overall screenings to detect tol-
erant Capsicum plants are necessary to use them as rootstocks (Penella et al., 2014a).

In our previous experiments, after wide screening of Capsicum accessions, a 
drought-tolerant genotype was selected to be used as a rootstock. It was tested in 
productivity terms (A25 code) and showed an increase in marketable fruit of 118% 
versus nongrafted plants (Penella et al., 2017). 

Thus present work aimed to (i) determine if shortterm drought stress exposure of 
seedling grafted plants onto A25 could express its tolerance to determine the highest 
productivity (Penella et al., 2017); (ii) identify rootstock and scion physiological traits 
associated with drought tolerance to open up new strategies that improve crop perfor-
mance under limited water supply conditions. Very few studies on simultaneous changes 
in the rootstock/scion are available, but none about the perception of scions and root-
stock remodeling can be found (Li et al., 2014; Liu et al., 2016). To fulfill these objectives, 
we compared the behavior of photosynthetic, water relations, antioxidant mechanisms 
and oxidative index stress in non-grafted and self-grafted plants, and in those grafted 
onto a tolerant rootstock (A25), under drought stress and control conditions.

Section 3.2. Introduction
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3.3. Materials and methods

3.3.1. Experimental Site and Greenhouse Conditions
The experiment was conducted in a Venlo-type glasshouse located in Moncada (Va-
lencia, Spain; Latitude: 39.58951793357715, Longitude: -0.3955507278442383, 37 m 
above sea level) at the IVIA research institute.

During the experiments, plants were grown under natural light conditions with a 
maximum PAR of 1000 mmol m-2 s-1 (800–1,000 mmol m-2 s-1), a mean temperature of 
22°C (18–25°C) and a mean humidity of 60% (50–70%).

3.3.2. Plant Material and Management
Based on previous studies, a pepper accession of Capsicum annuum L. was used as 
a tolerant rootstock to water scarcity (code A25). Pepper cultivar “Adige” (code A) 
(Lamuyo type, Sakata Seeds, Japan) was used as a scion. Seeds were sown in March 
2016 in 54-hole seed trays filled with enriched substrate for germination. Three months 
after sowing, plants were grafted by the tube-grafting method (Penella et al., 2014b). 

Three weeks after grafting (June 2016), seedlings were removed from substrate, 
and their roots were cleaned before being placed in 5 L polyethylene pots covered with 
aluminum sheets. Pots were filled with a nutrient solution containing (in mmol L-1): 12.3 
NO3

-, 1.02 H2PO4, 2.45 SO4
2-, 3.24 Cl-, 0.6 NH4

+, 5.05 K+, 4.23 Ca2+, 2.55 Mg2+, 2.2 Na+ 
and micronutrients (15.8 mM Fe2+, 10.3 mM Mn2+, 4.2 mM Zn2+, 43.5 mM B+, 2.14 mM 
Cu2+), which were artificially aerated with an air pump. Electrical conductivity and pH 
were 2.14 dS m-1 and 6.7, respectively. Nutrient solution was added daily to compensate 
absorption. The water stress treatment was induced after a 7-day seedling acclimation 
in pots by adding 5% PEG 8000 (Sigma Co.) to the nutrient solution. The osmotic po-
tential of the solutions, measured by a vapor osmometer (Digital osmometer, Wescor, 
Logan, UT, United States), was -0.55 MPa for 5% PEG and -0.05 MPa for the control 
solution (0% PEG). 

The assay was based on three plant combinations: A (nongrafted plants of cultivar 
Adige), A/A (A grafted onto itself by showing the graft effect) and A/A25 (A grafted 
onto the A25 rootstock). The layout was completely randomized with four replications 
for each combination and six plants per replication. 

All the physiological measurements were taken 1, 2, 4, and 7 days after treatment 
began (DAT). Measurements were taken in fully and expanded mature leaves (third 
to fourth leaf from the shoot apex), and also in lateral roots for some physiological 
measurements. The layout was randomized with 12 measurements (three plants per 
replication) per plant combination and treatment for the gas exchange measurement, 
and with four measurements (one plant per replication) in the other analysis of the 
physiological parameters. Biomass determinations were made only on 7 DAT using the 
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plants that were not involved in the physiological measurements. Eight plants per plant 
combination and treatment were analyzed (two plants per replication).

3.3.3. Gas Exchange Measurements
The CO2 assimilation rate (AN, mmol CO2 m-2 s-1), stomatal conductance to water va-
por (gs, mol H2O m-2 s-1), and substomatal CO2 concentration (Ci, mmol CO2 mol-1 air) 
were measured with a portable LI-COR 6400 infrared gas analyzer (Li-Cor Inc., Unit-
ed States). Measurements were taken under saturating light conditions (1,000 mmol  
quanta m-2 s-1), with reference CO2 (400 mmol CO2 mol-1) at 24°C (24°C ± 2) and 75% 
relative humidity (75% ± 10). The fully expanded (third to fourth leaf from the apex) 
and non-detached leaves were used for the measurements taken from 09:00 h to 
11:00 h (UT C 01:00 h). 

3.3.4. Biomass Determination 
Root length and the fresh weight of roots and leaves were measured at the end of the 
experiment (7 DAT). Fresh roots and leaves were dried at 65°C for 72 h to determine 
dry weight. 

3.3.5. Water Relations
Relative water content (RWC) was measured by weighing leaves before and after a 
24 h rehydration with distilled water. Next they were dried at 65°C for 72 h and the 
measurement was repeated. RWC was determined by the equation RWC = (FW - DW)/
(TW - DW) / 100, where FW, DW, and TW are fresh weight, dry weight, and turgid 
weight, respectively.

The leaf water potential at pre-dawn (ΨW) was measured with a Schlolander pres-
sure chamber (Wescor Model 600, PMS Instruments, Albany, NY, United States) on 
detached fresh and mature leaves inside a greenhouse.

The osmotic potential of leaf sap (Ψs in MPa) was measured by an osmometer 
(Digital osmometer, Wescor, Logan, UT, United States). Leaves were detached, placed 
inside 1 mL tubes and quickly frozen at -20°C. After melting, sap was collected by 
centrifugation at 9,000 rpm for 1 min in 1.5 mL tubes to be used for the osmometer 
measurements. Osmolyte content (mmol kg-1) was converted into MPa by the Van’t 
Hoff equation.

3.3.6. Nitrate Reductase Activity
Nitrate reductase activity (Enzyme Code 1.7.1.1) was determined in vivo following the 
methods described by Hageman and Hucklesby (1971) and Jaworski (1971). Disks of 
1 cm diameter from mature fresh leaves or 1 cm root pieces were collected. Samples 
(0.2 g) were suspended in plastic vials containing 10 mL of 100 mM potassium phos-
phate buffer (pH 7.5), 1% (v/v) n-propanol and 100 mM KNO3. Plant samples were 
incubated in a water bath at 30°C for 60 min in the dark and placed in a boiling water 
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bath for 5 min to stop the enzymatic reaction. The nitrite released from plant material 
was determined colorimetrically at 540 nm (spectrophotometer PerkinElmer, Lambda 
25) by adding 0.02% (w/v) N-naphthyl-ethylenediamine and 1% (w/v) sulfanilamide. 
A standard curve with KNO2 was prepared to calculate the amount of NO2 contained 
in the samples.

3.3.7. Determination of DPPH Radical-Scavenging Capacity
Determination of radical scavenging capacity (RSA) was carried out by the 2,2-diphe-
nyl-1-picrylhydrazyl (DPPH) radical scavenging method, proposed by Brand-Williams 
et al. (1995) with modifications. First 0.1 g of sample (leaves and roots) was frozen in 
liquid nitrogen and stored at -80°C. Samples were ground by a mortar with the addition 
of 80% (v/v) methanol. After 12 h at 4°C in a mixer, samples were centrifuged for 10 min 
at 10,000 x g and 4°C. A 10 μL volume of sample and 990 μL of 0.065 mM DPPH were 
taken and incubated for 30 min in the darkness at room temperature. Absorbance was 
measured at 515 nm. The percentage of inhibition of the DPPH radical was measured 
by the equation: [(DPPH absorption - sample absorption)/DPPH absorption] x 100.

3.3.8. Total Phenolic Content Analysis
Total phenolic content was determined according to Koç et al. (2010) with modifica-
tions. The fresh leaf and root samples (0.1 g) were frozen in liquid nitrogen and stored 
at -80°C. They were mixed with 1.5 mL of extraction solution [50% (v/v) methanol 
and 1% (v/v) HCl]. Samples were extracted in a boiling bath at 80°C for 15 min. Then 
0.1 mL of root extract and 0.02 mL of leaf extract (diluted in 0.08 mL extraction solu-
tion) were mixed with 0.7 mL of Folin–Ciocalteu solution (Sigma-Aldrich®), diluted in 
the 1:10 proportion, and with 0.7 mL of 6% (w/v) Na2CO3. Samples were incubated at 
room temperature and in the darkness for 1 h before being subjected to absorbance 
measurement at 765 nm. Gallic acid was used as a standard.

3.3.9. Determination of Hydrogen Peroxide
H2O2 content was determined according to Sergiev et al. (1997) and Velikova et al. 
(2000) with slight modifications. First 0.25 g of FW (leaves and roots) was frozen in 
liquid nitrogen and conserved at -80°C. Samples were ground with a mortar and 2 mL 
of 0.1% (w/v) trichloroacetic acid (TCA). The homogenate was centrifuged at 10,000 
x g at 4°C for 8 min. With the root samples, 1 mL of the supernatant was added to 
0.5 mL of 100 mM potassium phosphate buffer (pH = 7) and 2 mL of 1 M KI. For another 
set of samples, 0.4 mL of leaves was diluted with 0.6 mL of 0.1% (w/v) TCA. Samples 
were incubated for 1 h at room temperature under dark conditions. Absorbance was 
measured at 390 nm. H2O2 content was given by a H2O2 standard curve.



73

3.3.10. Lipid Peroxidation Analysis
Lipid peroxidation was estimated through malondialdehyde (MDA) determinations by 
the thiobarbituric acid reaction, according to the protocol reported by Heath and Packer 
(1968), and modified in Dhindsa et al. (1981). First 0.1 g of sample (leaves and roots) 
was frozen in liquid nitrogen and kept at -80°C. Samples were ground with a mortar 
and 2 mL of 0.1% (w/v) TCA. Later the homogenate was centrifuged at 10,000 x g and 
4°C for 5 min. Afterward, 2 mL of reaction buffer (TCA 20% C TBA 0.5%) were added 
and heated at 95°C for 30 min. The non-specific background absorbance reading at 
600 nm was subtracted from the specific absorbance reading at 532 nm. 

3.3.11. Statistical Analysis
The experiment was completely randomized, and every time measurements were 
separately subjected to a two-way ANOVA (Statgraphics Centurion for Windows, Sta-
tistical Graphics Corp.), where plant combinations and treatments were the factors of 
the analyses. After verifying the significance of the interaction for each variable (data 
not shown), a one-way ANOVA was performed by joining the plant combination and 
treatment. Means were compared by the Fisher’s least significance difference (LSD) 
test at P < 0.05. There were no significant differences among replicates for each 
measured parameter.
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3.4. Results

3.4.1. Gas Exchange Measurements
At 24 h after PEG addition, AN dramatically dropped in the A plants, followed by the A/A 
plants compared to their control (Fig. 3.1.A), while plants A/A25 showed no significant 
differences between PEG treatment and the control. At the end of the experiment 
(7 DAT), all the plant combinations displayed significant differences with their control. 
The highest values went to the A/A25 control, followed by A/A25 PEG. The gs values 
(Fig. 3.1.B) changed significantly from the beginning of the experiment in all the plant 
combinations, when low gs values were recorded for plants A and A/A under PEG. 
Parameter Ci was higher in plants A and A/A under the PEG conditions on 4 DAT and 
7 DAT (Fig. 3.1.C), but showed no significant differences for plants A/A25.
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Figure 3.1. Net CO2 assimilation rate (AN; mmol CO2 
m-2 s-1) (A); leaf stomatal conductance (gs; mol H2O 
m-2 s-1) (B) and substomatal CO2 concentration (Ci; 
mmol CO2 mol-1 air) (C) in the non-grafted pepper 
plants (cultivar Adige, A), self-grated plants (A/A), 
and plants grafted onto A25 (A/A25) at 0% PEG 

(control) or 5% PEG (water stress). Measurements 
were taken on 1 DAT, 2 DAT, 4 DAT, and 7 DAT 
(days after treatment with PEG began). Data 
are the mean values for n = 12 ± SE. For each 
studied time, different letters indicate significant 
differences at P < 0.05 (LSD test).
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3.4.2. Biomass Parameters
At the end of the experiment (7 DAT), root length (Figure 3.2.A), root DW (Fig. 3.2.B), 
and leaf DW (Fig. 3.2.C) decreased, with significant differences in the A and A/A plants 
exposed to stress compared with their control treatments. The A/A25 plants exposed 
to PEG underwent changes in root DW, with a significant decrease compared to the 
control plants, which was not the case for the other biomass parameters (root length 
and leaf DW). Under the control conditions, the biomass parameters were higher in 
the A/A25 plants for the root traits compared with plants A and A/A.
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Figure 3.2. Root length (A), root dry weight (DW) 
(B), and leaf dry weight (C) in the non-grafted 
pepper plants (cultivar Adige, A), self-grated 
plants (A/A), and plants grafted onto A25 (A/A25) 
at 0% PEG (control) or 5% PEG (water stress). 
Measurements were taken at the end  

of the experiment, 7 days after treatment with 
PEG began (7 DAT). Data are the mean values  
for n = 8 ± SE. For each studied time, different 
letters indicate significant differences at P < 0.05 
(LSD test).
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3.4.3. Hydric and Osmotic Relations
During the experiment, the pepper plants under the control conditions maintained a 
constant leaf RWC (Fig. 3.3.) above a value of 95%. The presence of PEG in the nu-
trient solution provoked a reduction in RWC from 2 DAT, which became more evident 
on 7 DAT for the A plants, followed by the A/A plants. The RWC in the A/A25 plants 
exposed to drought stress remained stable with similar values in the control plants 
during the experiment.

The leaf water potential (ΨW) in the control plants did not show any significant dif-
ference for each measured time (Fig. 3.4.). The A plants under PEG showed changes 
in ΨW after 24 h after exposure to stress (1 DAT), which remained stable on 2 DAT and 
4 DAT, when both had similar values. Then a sharp drop was observed on 7 DAT. In the 
A/A plants under the stress conditions, the drop in ΨW started on 2 DAT and reached 
a maximum decrease on 7 DAT. For the A/A25 plants under PEG, the ΨW values during 
the experiment were similar to the control plants.

The Ψs (Fig. 3.5.) lowered in relation to the exposure time to PEG. Within the first 
measured time frame (1 DAT), plants A and A/A displayed a drop in Ψs under the stress 
conditions, which was not found for plants A/A25. On 7 DAT, the maximal decrease 
was found for A, followed by plants A/A and A/A25.
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Figure 3.3. Effect of PEG addition at 0% (control) 
and 5% (water stress) on relative water content 
(RWC) on 1 DAT, 2 DAT, 4 DAT, and 7 DAT 
(days after treatment with PEG began) in the 
non-grafted pepper plants (cultivar Adige, A), 

self-grated plants (A/A), and plants grafted  
onto A25 (A/A25). Data are the mean values for  
n = 4 ± SE. For each studied time, different  
letters indicate significant differences at P < 0.05 
(LSD test).
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Figure 3.4. Leaf water potential (MPa) in the 
non-grafted pepper plants (cultivar Adige, A), 
self-grated plants (A/A), and plants grafted onto 
A25 (A/A25) after addition of 0% PEG addition 
(control) and 5% PEG on 1 DAT, 2 DAT, 4 DAT,  

and 7 DAT (days after treatment with PEG began). 
Data are the mean values for n = 4 ± SE. For each 
studied time, different letters indicate significant 
differences at P < 0.05 (LSD test).

Figure 3.5. Leaf osmotic potential (MPa) in the 
non-grafted pepper plants (cultivar Adige, A), 
self-grated plants (A/A), and plants grafted onto 
A25 (A/A25) after addition of 0% PEG (control) 
and 5% PEG on 1 DAT, 2 DAT, 4 DAT, and 7 DAT 
(days after treatment with PEG began).  

Data are the mean values for n = 4 ± SE. For each 
studied time, different letters indicate significant 
differences at P < 0.05 (LSD test). The absence of 
letters on 2 DAT means no significant difference 
for both factors (plant and treatment).
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3.4.4. Nitrate Reductase Activity
Nitrate reductase activity (NR) was higher in leaves (Fig. 3.6.A) than in roots (Fig. 3.6.B). 
In general terms, the opposite behavior was observed between both organs in activity 
terms during the experiment, with higher values in leaves that matched the lower values 
in roots for each time and plant combination. In leaves (Fig. 3.6.A), NR dramatically 
lowered 24 h after adding PEG to the A plants, but this decrease in the A/A plants was 
less marked compared with the A plants. On 2 DAT, the A/A plants underwent a sharp 
drop in NR activity under water stress, and the A/A25 plants underwent a reduction 
only on 7 DAT. In roots (Fig. 3.6.B), NR activity increased in all the pepper plant com-
binations under drought stress compared with the control plants from 1 DAT to 2 DAT. 
Afterward, activity lowered until 7 DAT, when the lowest values were obtained in the 
A/A25 plants, followed by A/A and finally A.
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Figure 3.6. Nitrate reductase activity (NR) in 
the leaves (A) and roots (B) of the non-grafted 
pepper plants (cultivar Adige, A), self-grated 
plants (A/A), and plants grafted onto A25 (A/
A25) under the control conditions (0% PEG) and 

at 5% PEG on 1 DAT, 2 DAT, 4 DAT, and 7 DAT 
(days after treatment with PEG began). Dates 
are the mean values for n = 4 ± SE. For each 
studied time, different letters indicate significant 
differences at P < 0.05 (LSD test).
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3.4.5. DPPH-Radical Scavenging Activity
The leaves of the plants grown under drought stress displayed an increasing percentage 
of inhibition of the DPPH radical (Fig. 3.7.A). For the A plants under PEG, the increase 
was recorded earlier (1 DAT), whereas DPPH-RSA started from 4 DAT in A/A and A/A25. 
For the plants under drought stress on 7 DAT, maximum activity was found for the A 
plants followed by A/A, with minor activity for A/A25. DPPH-RSA was higher in leaves 
than in roots (Fig. 3.7.). In roots, major activity was exhibited on 1 DAT and 2 DAT in the 
plants exposed to PEG (Fig. 3.7.B). Afterward no significant differences were found in 
activity among treatments.
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Figure 3.7. Percentage of inhibition of DPPH 
radical in the leaves (A) and roots (B) of the 
non-grafted pepper plants (cultivar Adige, A), 
self-grated plants (A/A), and plants grafted onto 
A25 (A/A25) under the control conditions (0% 
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3.4.6. Total Phenolic Content
An increase in phenolic content was observed during the experiment in the leaves of 
the plants exposed to drought stress (Fig. 3.8.A). The most marked phenolic increase 
was found for plants A in the PEG treatment, with significant differences shown on 
4 DAT and 7 DAT compared to the control plants. In roots (Fig. 3.8.B), phenolic contents 
were 10-fold lower than in leaves, and values were similar among treatments, except 
for the A/A plants under drought stress at 2 DAT, when a sharp drop was observed.
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Figure 3.8. Changes in phenolic content in the 
leaves (A) and roots (B) of the non-grafted 
pepper plants (cultivar Adige, A), self-grated 
plants (A/A), and plants grafted onto A25 (A/
A25) under the control conditions (0% PEG) and 
5% PEG on 1 DAT, 2 DAT, 4 DAT, and 7 DAT (days 

after treatment with PEG began). Data are the 
mean values for n = 4 ± SE. For each studied time, 
different letters indicate significant differences at 
P < 0.05 (LSD test). In (B), the absence of letters 
on 7 DAT means no significant difference for both 
factors (plant and treatment).
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3.4.7. H2O2 Concentration
The hydrogen peroxide level in leaves (Fig. 3.9.A) increased after exposing plants to 
drought stress from 4 DAT to 7 DAT, which was emphasized mainly in plants A and 
A/A with significant differences compared to the control plants. In roots (Fig. 3.9.B), 
the H2O2 concentration was approximately 10-fold lower than in leaves. The maximum 
concentrations for all the plant combinations were recorded on 2 DAT. At the end of the 
experiments, no significant differences were observed between plants and treatments.
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Figure 3.9. Hydrogen peroxide concentration in 
the leaves (A) and roots (B) of the non-grafted 
pepper plants (cultivar Adige, A), self-grated 
plants (A/A), and plants grafted onto A25 (A/
A25) under the control conditions (0% PEG) and 
5% PEG on 1 DAT, 2 DAT, 4 DAT, and 7 DAT (days 

after treatment with PEG began). Data are the 
mean values for n = 4 ± SE. For each studied time, 
different letters indicate significant differences at 
P < 0.05 (LSD test). In (B), the absence of letters 
on 7 DAT means no significant difference for both 
factors (plant and treatment).
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3.4.8. Lipid Peroxidation
The MDA concentration in leaves increased with time from 2 DAT (Fig. 3.10.A). As a 
result, the highest MDA levels were found in the A plants, followed by the A/A plants 
under drought stress, and the A/A25 plants on 7 DAT. In roots (Fig. 3.10.B), lipid per-
oxidation increased and followed this trend in leaves during the experiment. On 7 DAT, 
the highest values were recorded for pepper plants A and A/A under drought stress.
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Figure 3.10. Malondialdehyde content (MDA) of 
the leaves (A) and roots (B) of the non-grafted 
pepper plants (cultivar Adige, A), self-grated 
plants (A/A), and plants grafted onto A25 (A/
A25) under the control conditions (0% PEG) 

and 5% PEG on 1 DAT, 2 DAT, 4 DAT, and 7 DAT 
(days after treatment with PEG began). Data 
are the mean values for n = 4 ± SE. For each 
studied time, different letters indicate significant 
differences at P < 0.05 (LSD test).
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3.5. Discussion

In this experiment, we observed numerous changes in the biochemical and physiolog-
ical processes during the short drought stress treatment, which were provoked by the 
addition of 5% PEG. These processes were involved in the perception and transduction 
of stress in the scion depending on the employed rootstock. We found that pepper 
plants with the A25 rootstock (A/A25) displayed greater tolerance to drought stress 
in this short-term experiment, as indicated by the effects on the scion in terms of bi-
omass conservation, photosynthesis and RWC maintenance, lower lipid peroxidation 
and greater NR activity in leaves compared with the non-grafted and self-grafted 
pepper plants. The fact that the scion (A) suffered less drought stress was related to 
the better tolerance of root parts (A25), which encompassed the greater vigor root 
system and the lower H2O2 concentration, lipid peroxidation and NR activity. These 
results indicated that scion performance is largely dependent on the tolerance of roots 
to drought stress, although the root to shoot communication involved in scion pepper 
stress responses is largely unknown.

In whole-plant terms, the effect of abiotic stresses is usually noticed as a reduction 
in photosynthesis and growth, and is associated with alterations in carbon and nitro-
gen metabolism (Loggini et al., 1999; García-Mata and Lamattina, 2001). To support 
this idea, in our experiment drought stress negatively affected the aboveground mass 
production in the non-grafted and self-grafted pepper plants. The least biomass loss 
was found in the pepper plants of the Adige variety, grafted onto the A25 rootstock, 
which have been previously defined as tolerant, while Adige has been described as 
drought-sensitive (Penella et al., 2017). Different drought stress effects were observed 
for the growth parameters in both roots and leaves; the growth inhibition of roots (DW) 
was lower (a reduction of 19% in A, 11% in A/A and 13% in A/A25 compared to their 
controls) versus leaves at a low osmotic potential of the solution (a reduction of 40% 
in A, 31% in A/A and a non-effect in A/A25). This result indicated that leaf growth was 
more sensitive to drought stress compared to roots, except for A/A25 where the effect 
of PEG was not detected in leaves. This differential response in the growth inhibition 
between roots and leaves under drought stress (in our results for plants A and A/A) has 
been observed by several authors (Westgate and Boyer, 1985; Sharp et al., 1994; Hsiao 
and Xu, 2000). It resulted in a sudden reduction of ΨW in roots, which allowed water to 
enter. Then solutes had to enter to prevent dilution and maintain the osmotic forces 
needed for growth. On the contrary in leaves, osmotic adjustment occurs by slowly 
limiting their expansion (Hsiao and Xu, 2000). Beyond the biophysical aspect, there is 
compelling evidence that ABA accumulation under drought stress plays a pivotal role 
by inhibiting shoot growth, as in plants A and A/A, while a minor effect is observed in 
roots (Sharp et al., 1994). Nevertheless, the behavior of plants A/A25 did not match 
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these results. Currently, we have no plausible explanation for this. All these results sug-
gest that scion growth is largely dependent on rootstock tolerance to drought stress. 

The growth reductions mediated by drought stress evidence a series of changes in 
various biochemical processes, such as photosynthesis (Urban et al., 2017). Net CO2 
assimilation decreased suddenly 24 h after adding PEG to A, followed by plants A/A, 
while A/A25 maintained similar AN values to the control up to 48 h (2 DAT); afterward AN 
significantly lowered until the end of the experiment, but values were higher in A/A25 
than in A and A/A under PEG, with sustained photosynthetic activity during drought 
(Rouphael et al., 2008; Penella et al., 2014b). These results agree with previous findings 
in which grafting onto a tolerant rootstock improved the photosynthesis performance 
of plants under drought stress (Schwarz et al., 2010; Penella et al., 2014b). In A/A25, 
the decrease in AN on 4 DAT and 7 DAT was accompanied by a significant decrease in 
stomatal conductance, although the decline in gs occurred earlier than the reduction 
in CO2 fixation (1 DAT and 2 DAT). We could assume that stomata closure probably 
did not limit CO2 acquisition by leaves under drought stress within the first two time 
frames (Delfine et al., 2002). The decrease and the subsequent maintenance of the 
intercellular CO2 concentration (Ci) in A/A25 under drought stress (compared to the 
A/A25 control plants) implied that stomatal limitations were responsible mainly for 
the reduction in AN by drought stress (Delfine et al., 2002; Rouphael et al., 2008). In 
plants A and A/A under drought stress, the drastic decline of AN was in line with the 
strong stomata closure from the beginning to the end when time measurements were 
taken (more marked in the A plants). However, Ci suddenly lowered on 1 DAT, 2 DAT, 
and 4 DAT, with a significant increase at the end of the experiment compared to the 
controls, which implies the existence of stomata and non-stomatal limitations related 
with changes in the cellular carbon metabolism, which can affect the growth mediated 
by reducing the biochemical capacity for carbon assimilation and utilization (Flexas 
et al., 2004; Reddy et al., 2004; He et al., 2009). All this was true, except for plants A/
A25, which showed no significant differences between plants under the control and 
PEG conditions (7 DAT). 

Apart from the discussed changes in carbon assimilation, drought stress may affect 
several nitrogen metabolism stages (Feller and Vaseva, 2014; Penella et al., 2014b) by 
inducing visible effects on biomass. One important step is the assimilation of nitrate 
into organic compounds. The activity of the first enzyme involved in this process, 
NR, was negatively influenced by drought; nitrogen assimilation is also coordinated 
with carbon assimilation as photosynthesis is required for NR activation (Kaiser and 
Huber, 2001). Nitrate reduction is sensitive to stomatal resistance and gs decreases 
in plants under drought stress to preserve water loss when not only AN drops, but NR 
also becomes less active (Kaiser and Huber, 2001; Yousfi et al., 2012; Penella et al., 
2014b). In relation to this coordination between NR activity and AN, we observed a 
quick decrease in NR of the A plant leaves 24 h after inducing drought stress, and after 
48 h in the A/A plants, while the A/A25 plants preserved their activity until 4 DAT. At 
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the end of the experiment, the A plants, followed by A/A, did not show any NR activity 
and gs dropped, while A/A25 maintained 64% enzyme activity and sustained gs com-
pared to the control. Some nonstomatal effects, such as reduced nitrate availability in 
plants, could inhibit NR gene transcription and decrease the stability of NR-mRNAs or 
post-translational factors, including inactivation through protein phosphorylation, and 
the induction of proteases could rapidly occur by decreasing NR activity as a result 
of drought stress (Ferrario et al., 1995; Lillo et al., 2004; Correia et al., 2005). In most 
herbaceous plants, NO3

- assimilation takes place predominantly in leaves (Scheurwa-
ter et al., 2002). Accordingly, NR activity was greater in leaves than roots in all the 
plant combinations and treatments in our study. Nevertheless, the greatest root-NR 
activity was observed under drought stress, and maximum activities were displayed 
for the A plants, followed by the A/A plants, where lower leaf NR seemed to be partly 
compensated by an increase in root NR (Lexa and Cheeseman, 1997; Penella et al., 
2014b). Drought stress can decrease nitrate uptake by roots. Besides, the transfer of 
NO3

- to leaves can be limited by stomata closure. Thus transpiration (data not shown) 
diminished as part of nitrate can reduce in roots. This happened in plants A and A/A 
as A/A25 had a higher root NR on 1DAT and 2DAT, be it to a lesser extent, because the 
higher gs allowed NO3

- transport to leaves for its reduction. This role of NR in leaves 
and roots under drought stress has been observed in grafted pepper (Penella et al., 
2014b), pea (Lexa and Cheeseman, 1997) or wheat plants (Yousfi et al., 2012). 

The decrease in Ψs during the PEG treatment could be a consequence of less water 
content in tissue and/or through the active osmotic adjustment involving the net ac-
cumulation of a range of osmotically active molecules in response to a drop in the ΨW 
in their environment. In pepper, short-term exposure with different osmotic potentials 
of the nutrient solution (Navarro et al., 2003; Martínez-Ballesta et al., 2004; Silva et 
al., 2008) showed that the decrease in ΨW was not compensated by a reduction in 
Ψs and, as a result, the osmotic adjustment was negligible. According to our results, 
the decrease in the leaves of ΨW, Ψs and stomatal conductance in the PEG treatment 
showed that water uptake could not balance water loss and decreased RWC, along with 
there being fewer biochemical functions in A and A/A. This could indicate that osmotic 
adjustment was insignificant. Nevertheless, RWC was maintained in A/A25 with PEG 
addition, which could indicate an osmotic adjustment at the end of the experiment, 
when ΨW remained constant and Ψs decreased. Similar results have been obtained by 
Penella et al. (2014b). A deep root system and higher root biomass have shown as 
beneficial effects for acquiring water (Koevoets et al., 2016), and could be one of the 
reasons for the unchanged RWC values in the A/A25 plants noted throughout the ex-
periment. They suggest a typical conservative water strategy (Tardieu and Simonneau, 
1998; García-Sánchez et al., 2010; Sade et al., 2012; Penella et al., 2016). This would 
lead to more drought tolerance and would allow photosynthesis preservation, improved 
absorption, upward transfer and NO3

- accumulation in leaves. Similar results have been 
shown in the susceptible tomato scion “Josefina” grafted onto drought stress-tolerant 

Section 3.5. Discussion
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“Zarina” rootstocks (Sánchez-Rodríguez et al., 2013). However, the acclimation rate 
and drought stress duration are key factors that can influence depending on plant 
varieties and/or age. 

This limited water uptake and CO2 uptake in plants A and A/A under PEG conditions 
accelerated oxidative damage by producing ROS (Asada, 1999). Hydrogen peroxide 
is one type of ROS produced as a result of the dismutation of the superoxide radical, 
and a higher concentration damages both the cell and the whole plant to result in lipid 
peroxidation and membrane injury (Sairam and Srivastava, 2001). In the non-grafted 
tomato plants (Rivero et al., 2003b), a major increase in H2O2 was observed under 
thermal shock stress compared with the grafted plants. In A, and to a lesser extent in 
the A/A pepper plants, drought stress caused excessive H2O2 accumulation in leaves, 
as well as high lipid peroxidation compared with the A/A25 plants and their controls. 
This result suggests that H2O2 in leaves is largely dependent on the adaptability of roots 
to drought stress. This effect has been observed in cucumber plants grafted onto fig 
leaf gourd (Cucumis ficifolia) or onto luffa (Luffa cylindrical), where a significantly low 
H2O2 concentration alleviated membrane lipid peroxidation at high temperature (Li et 
al., 2014) compared with non-grafted plants. The authors attributed this reduction to 
increased CO2 assimilation and ROS-scavenging activity. In roots, the maximum H2O2 
concentration was observed on 2 DAT for the A-PEG and A/A25-control plants, but its 
concentration was 10-fold lower than in leaves. Afterward, levels lowered in this organ, 
whose concentration in leaves was “amplified.” As a result of increasing H2O2, the MDA 
concentration was seen to be enhanced in both roots and leaves, with less lipid per-
oxidation damage in roots. A lower H2O2 concentration in A/A25 could be due to less 
ROS production or to the more efficient detoxification of this compound (Rivero et al., 
2003b). Antioxidant activity was evaluated by the effect of the extracted samples on 
the DPPH radical. Under the PEG conditions and at the end of the experiment, plants 
A/A25 showed the least radical scavenging activity, which indicates that the alleviation 
of oxidative stress occurred to a lesser extent in the A/A25 plants compared with the 
greatest activity in the A plants, followed by the A/A plants. In response to drought 
stress, plants can accumulate a wide range of antioxidants, including phenolic com-
pounds (Keleş and Öncel, 2002). Phenolic compounds exhibit antioxidant activity by 
inactivating lipid free radicals or preventing the decomposition of hydroperoxides into 
free radicals (Pokorny, 2001). Our results showed that with PEG addition, the synthesis 
of phenols increased, but the most marked rise took place in the A plants, followed by 
A/A and A/A25. Even though the stimulation of antioxidant activity in plants A and A/A 
occurred simultaneously with higher phenol concentrations under drought conditions, 
an imbalance between ROS generation and scavenging systems might have occurred 
as the highest H2O2 and MDA levels was confirmed.

According to these results, grafting itself (A/A plants) has a slightly positive effect 
on the physiological parameters measured under drought stress compared with the A 
plants, probably due to enhanced endogenous hormone production as a result of the 
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grafting per se incision, which may influence the transport of hormones between roots 
and the scion that, in turn, could alter weak responses (Aloni et al., 2008; Savvas et 
al., 2011; Orsini et al., 2013).

3.6. Conclusion

To conclude, our results suggest that plants A/A25 were more tolerant to drought stress 
given the response made in several physiological processes in the short term, which 
were maintained for 7 days under water stress, and even beyond this time given better 
fruit production (Penella et al., 2017). Growth preservation in plants A/A25 after PEG 
addition was associated with maintained CO2 assimilation and partly open stomata, 
which allowed water uptake and preserved RWC. The conservative water strategy 
involved minor oxidative stress as demonstrated by the lower H2O2 concentration and 
diminished membrane lipid peroxidation. These results could be attributed to the ca-
pacity to maintain shoot growth by the root system’s conservative tolerance traits under 
drought stress. Consequently, the grafting of commercial cultivars onto drought-tolerant 
rootstock(s) such as A/A25 can be considered a valid strategy to improve drought 
stress tolerance. Nevertheless, other mechanisms, like the hormone signalling cascade 
(Cantero-Navarro et al., 2016) or the mobility of genetic components (Haroldsen et al., 
2012), which were not contemplated herein, could also explain the improved drought 
tolerance of these grafted plants, and should be studied in future works.

Section 3.6. Conclusion
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4.1. Abstract

In pepper crops, rootstocks that tolerate salt stress are not used because available 
commercial rootstocks offer limited profits. In this context, we obtained the hybrid 
NIBER®, a new salinity-tolerant rootstock that has been tested under real salinity 
field conditions for 3 years with 32%-80% higher yields than ungrafted pepper plants. 
This study aimed to set up the initial mechanisms involved in the salinity tolerance 
of grafted pepper plants using NIBER® as a rootstock to study root-shoot behavior, 
a basic requirement to help develop efficient rootstocks. Gas exchange, Na+/K+, to-
tal antioxidant capacity, nitrate reductase activity, ABA, proline, H2O2, phenols, MDA 
concentration and biomass were measured in ungrafted plants of cultivar Adige (A), 
self-grafted (A/A), grafted onto NIBER® (A/N) and reciprocal grafted plants (N/A), all 
exposed to 0 mM and 70 mM NaCl over a 10-day period. Salinity significantly and 
quickly decreased photosynthesis, stomatal conductance and nitrate reductase, but 
was lower in A/N plants compared to A, A/A and N/A. A/N plants showed decreases 
in the Na+/K+ ratio, ABA content and lipid peroxidation activity. This oxidative damage 
alleviation in A/N was probably due to an enhanced H2O2 level that activates antioxi-
dant capacity to cope with salinity stress, and acts as a signal molecule rather than a 
damaging one by contributing a major increase in phenols and, to a lesser extent, in 
proline concentration. These traits led to a minor impact on biomass in A/N plants under 
salinity conditions. Only the plants with the NIBER® rootstock controlled the scion by 
modulating responses to salinity.

Additional keywords:  
antioxidant capacity; graft; H2O2; 
pepper; photosynthesis; rootstock

Section 4.1. Abstract
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4.2. Introduction

New scenarios due to climatic change are affecting crop yield and quality. In this 
context, salinity is one of the most important environmental factors that limits plant 
growth, productivity, quality and the increasing demand for food crops (Ashraf, 2004; 
Srivastava and Kumar, 2015). More than 20% of cultivated land worldwide is affected 
by salt stress and this amount is increasing daily (Srivastava and Kumar, 2015). At the 
same time, the global population is expected to reach 9 billion by 2050. Thus increas-
ing of agriculture productivity will be needed to meet food demands (Shelden and 
Roessner, 2013). To achieve the increased food production under salinity conditions, 
it is necessary to identify naturally occurring genetic variations within a crop species 
by screening varieties, wild genotypes and landraces that could provide salt tolerance 
(Roy et al., 2011). 

Pepper is an important crop that grows in most countries on our planet, and cov-
ers 1.93 million ha of crop-growing surface area (Penella and Calatayud, 2018). As 
a spice and fruit, the world’s pepper production was 34 million tons in 2017 (Penella 
and Calatayud, 2018). Generally speaking, commercial pepper varieties need friable, 
well-drained, sandy loam soil with a pH of 6.5–7.5 for optimum production. Salt content 
in soil and irrigation water should be low. There are reports of a salinity resistance 
threshold of 1.5 dS m−1, below which no effect on growth occurs, and a 14% drop in 
biomass production per additional 1 dS m−1 has been reported (Maas, 1973). Pepper 
and Capsicum annuum species in particular are highly susceptible to salt stress by 
showing blossom end rot (BER), lower yields and more unmarketable fruits (Penella et 
al., 2015). Physiological changes have been analyzed in pepper under salt stress like 
membrane permeability and water channel activity alterations, ion imbalance, reduced 
total photosynthesis and stomatal conductance, and increasing reactive oxygen species 
production, which modify the carbon balance required to maintain both productivity 
and growth (Penella and Calatayud, 2018).

To minimize salinity damage in pepper crops, graft technology is an agronomic 
practice that can improve plant tolerance by using rootstocks capable of reducing the 
negative effect of external stress on the scion. In addition, grafted plants can avoid the 
problem associated with the “building or design” of tolerant varieties due to complexity 
of salinity traits and lack of practical selection tools; one example is genetic markers, 
which have made these tasks slow and inefficient (Flowers, 2004; Ashraf and Foolad, 
2007; Schwarz et al., 2010). Grafting can combine suitable commercial fruit quality char-
acteristics and high production of a scion and tolerance traits to environmental factors 
from rootstock by working together like a single plant. Nevertheless, rootstocks that 
tolerate salt stress are not used in pepper plants because available commercial root-
stocks offer limited profits (Lee et al., 2010; Penella et al., 2013; Kyriacou et al., 2017).
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There is a need to perform rigorous screenings to find Capsicum plants that tolerate 
salt stress so they can be used as pepper rootstocks. In this context, we screened 
physiological and phenotypically characterized accessions of pepper from gene banks 
before selecting those for their tolerance to salinity and then using them as rootstocks 
in grafted pepper plants (Penella et al., 2013, 2015; López-Serrano et al., 2017; Penella 
and Calatayud, 2018). The obtained results have allow to confirm that the tolerance to 
salinity of these grafted plants was expressed by maintaining scions presenting better 
physiological performance and, consequently, by increasing yields (Penella et al., 2015, 
2016, 2017). Afterward, a classic breeding program was applied to salinity-tolerant 
pepper accessions (C. annuun x C. annuun) have allowed obtain more uniform hybrids in 
terms of germination, growth and highest vigor to be used as rootstocks under salinity 
conditions. One of them, NIBER®, has been tested under real salinity field conditions 
for several years (Calatayud et al., 2016) with higher yields (range of 32%-80%) than 
ungrafted plants and other commercial pepper rootstocks.

The aim of the present work was to evaluate the early physiological response of a 
tolerant rootstock under salt stress conditions using the hybrid NIBER®. To date, in-
formation about the initial mechanisms involved in the tolerance to of grafted pepper 
plants remains limited. The initial evaluation of root-shoot to physiological evolution is 
a basic requirement to help develop improved efficient rootstocks with the ability to 
cope with salinity and to ensure a better understanding of the response mechanisms 
of grafted pepper plants to imbalanced salinity. 

To fulfill this objective, we compared the relative tolerance responses of ungrafted, 
self-grafted, grafted and reciprocal grafted pepper plants under both control and salin-
ity conditions. Gas exchange, proline, phenols, hydrogen peroxide, radical scavenging 
capacity and nitrate reductase activity were measured in the leaves of all the pepper 
plants combinations. Na+/K+, Cl- concentration and ABA levels were determined in both 
leaves and roots; in addition we analyzed the growth to acquire information to identify 
the mechanisms by which the NIBER® rootstock enhances tolerance to salinity. 

Section 4.2. Introduction
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4.3. Material and methods

4.3.1. Plant material 
A new hybrid pepper salinity-tolerant rootstock, NIBER® (Capsicum annuum x C. 
annuum) (abbreviated herein as N), and the salt-sensitive pepper cultivar ‘Adige’ (ab-
breviated as A) (Lamuyo type, Sakata Seeds, Japan), were used as either a scion or 
rootstock. Four plant combinations were herein used: ungrafted A plants (A), self-graft-
ed A plants (A/A), A grafted onto N (A/N) and N grafted onto A (N/A). The seeds of A 
and N were sown in 96 seedling trays filled with a peat-based substrate for germination 
early in March. After 2 months, the grafted plant combinations were performed by the 
tube-grafting method (Penella et al., 2015). They were maintained in a chamber with 
relative humidity above 95% and air temperature around 28-29 °C for a 4-6 day period 
(Penella et al., 2014). The grafted plants were then removed from the humidity chamber 
and placed in a greenhouse until transplanted. The ungrafted (A) plants were sown 2 
weeks later to obtain plants with a similar biomass to that of the grafted plants upon 
transplantation (10-12 development leaves). The plants obtained by the above-men-
tioned procedure were utilized in greenhouse experiments at the end of May.

4.3.2. Hydroponic greenhouse experiment
The root systems of the plants were washed to clean the substrate and plants were 
placed in 5 L polyethylene pots, which were previously covered with aluminum sheets. 
Pots were filled with a standard nutrient solution for pepper (Sonneveld et al., 1994) 
containing (in mmol L-1): 12.3 NO3

-, 1.02 H2PO4, 2.45 SO4
2-, 3.24 Cl-, 0.6 NH4

 +, 5.05 K+, 
4.23 Ca2+, 2.55 Mg2+, 2.2 Na + and micronutrients (15.8 µM Fe2+, 10.3 µM Mn2+, 4.2 µM 
Zn2+, 43.5 µM B+, 2.14 µM Cu2+), which were artificially aerated with an air pump. The 
electrical conductivity (EC) and pH of this nutrient solution were 1.7 dS m-1 and 6.5, 
respectively. Nutrient solution was added daily to compensate for uptake. After of 
leaving seedling plants for 7 days to acclimatize to pots, the salinity treatment was 
initiated by adding NaCl (70 mM) to the nutrient solution to obtain an EC of 8.5 dS m-1 
and a pH of 6.1.

While the experiment was underway, plants were grown in a Venlo-type greenhouse 
under natural light conditions (610-870 mmol m-2 s-1). Temperature and relative humidity 
ranges were 21-25ºC and 52-72%, respectively. 

The layout was a completely randomized design with four replications of six plants 
per combination (A, A/A, A/N and N/A).

All the physiological measurements were taken in days 1, 2, 4, 7 and 10 after the 
salt treatment (DAT) had started, except for ABA concentration and nitrate reductase 
activity, which were measured on 1DAT and 10DAT, and ion determination on 10DAT. 
Measurements were taken in fully and expanded mature leaves (3rd-4th leaf from the 
shoot apex) and in lateral roots for Na+/K+, Cl- and ABA. They were taken in random 
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order in three plants per replication (12 measurements per plant combination and treat-
ment) for the gas exchange measurement, and in four plants (1 plant per replication) 
in the other analysis of the physiological parameters. 

4.3.3. Ion determination
Leaves and roots were dried in a laboratory oven at 70°C for 72 h before being burnt 
in a muffle furnace for 12 h at 550ºC. Ions were extracted with 2% nitric acid in an 
ultrasonic bath for 30 min at 40ºC. The Na+ and K+ concentrations were measured 
by ICP emission spectrometry (iCAP 6000, Thermo Scientific, Cambridge, UK). The 
chloride concentration (Cl-) in the dry plant material was extracted with 0.1 N HNO3 in 
10% (v/v) acetic acid and was determined by potentiometric titration with AgNO3 in a 
chloride analyzer (Sherwood, MKII 926, Cambridge, UK).

4.3.4. Gas exchange measurements
The CO2 assimilation rate (AN, μmol CO2 m-2 s-1) and stomatal conductance (gs, mol H2O 
m-2 s-1) were determined on fully expanded leaves (3rd-4th leaf from the apex) in the 
steady state under saturating light conditions (1000 μmol m-2 s-1) and with 400 ppm 
CO2 by a LI-6400 infrared gas analyzer (LI-COR, Nebraska, USA) at 24ºC (24 ± 2ºC) 
and 65% relative humidity (65 ± 10%). The gas exchange measurements were taken 
from 9 am to 11 am (GMT). 

4.3.5. Abscisic acid analysis
The thoroughly ground leaves and roots (about 0.1 mg fresh weight) on 1DAT and 
10DAT were suspended in 80% methanol-1% acetic acid containing internal standards, 
and were mixed by shaking for 1 h at 4ºC. The extract was kept a 20ºC overnight and 
was then centrifuged. The supernatant was dried in a vacuum evaporator.  The dry 
residue was dissolved in 1% acetic acid and passed through a reverse phase column 
(HLB Oasis 30 mg, Waters), as described in Seo et al. (2011). The final residues were 
dried and dissolved in 5% acetonitrile-1% acetic acid and hormones were separated 
by UHPLC with a reverse Accucore C18 column (2.6 µm, 100 mm long; Thermo Fisher 
Scientific) with a 2-55% acetonitrile gradient containing 0.05% acetic acid at 400 µL/
min for 21 min.

Abscisic acid (ABA) was analyzed by a Q-Exactive mass spectrometer (Orbitrap 
detector, Thermo Fisher Scientific) by targeted Selected Ion Monitoring (tSIM; capillary 
temperature 300ºC, S-lens RF level 70, resolution 70.000) and electrospray ionization 
(spray voltage 3.0 kV, heater temperature 150ºC, sheath gas flow rate 40 µL/min, 
auxiliary gas flow rate 10 µL/min) in the negative mode.

The concentration of ABA in the extracts were determined using embedded calibration 
curves and the Xcalibur 4.0 and TraceFinder 4.1 SP1 programs. The internal standards for 
the quantification of all the different plant hormones were deuterium-labeled hormones.

Section 4.3. Material and methods
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4.3.6. Nitrate reductase activity
Nitrate reductase activity (NR) in leaves (Enzyme Code 1.7.1.1) was determined in vivo 
on 1DAT and 10DAT following the methods described by Hageman and Hucklesby 
(1971) and Jaworski (1971). Discs (1 cm in diameter) were collected from mature fresh 
leaves. Samples (0.2 g of fresh weight) were suspended in plastic vial containing 10 mL 
of 100 mM potassium phosphate buffer (pH 7.5), 1% (v/v) n-propanol and 100 mM KNO3. 
Plant samples were incubated in a water bath at 30°C for 60 min in the dark and placed 
in a boiling water bath for 5 min to stop the enzymatic reaction. The nitrite released 
from the plant material was determined colorimetrically at 540 nm (spectrophotometer 
PerkinElmer, Lambda 25) by adding 0.02% (w/v) N-Naphthyl-ethylenediamine and 1% 
(w/v) sulfanilamide. A standard curve with KNO2 was prepared to calculate the amount 
of NO2 contained in the samples. NR activity was expressed as a percentage of NR in 
the salt treatment versus the control on 1DAT and 10DAT.

4.3.7. Proline determination
Proline content was determined as described by Bates et al. (1973). Dry leaves (20 mg) 
were ground in 3% sulfosalicylic acid, the homogenate was filtered, and glacial acetic 
acid and ninhydrin reagent were added to an aliquot of the filtrate. The reaction mix-
ture was boiled at 100ºC for 1 h, and readings were taken in a spectrophotometer at 
a wavelength of 520 nm. 

4.3.8. Total phenolic content
Total phenolic content was determined according to Koç et al. (2010) with modifica-
tions. Fresh leaf samples (0.1 g) were frozen in liquid nitrogen and stored at -80°C. 
They were mixed with 1.5 mL of extraction solution (50% (v/v) methanol and 1% (v/v) 
HCl). Samples were extracted in a boiling bath at 80°C for 15 min. Next 0.02 mL of 
the leaf extracts (diluted in 0.08 mL extraction solution) were mixed with 0.7 mL of 
Folin–Ciocalteu solution (Sigma-Aldrich®), and diluted at the proportion of 1:10, and 
0.7 mL of 6% (w/v) Na2CO3. Samples were incubated at room temperature and in the 
dark for 1 h before being subjected to absorbance measurements at 765 nm. Gallic 
acid was used as a standard.

4.3.9. Hydrogen peroxide determination  
H2O2 content was determined according to Sergiev et al. (1997) and Velikova et al. (2000) 
with slight modifications (López-Serrano et al., 2019). First 0.25 g of fresh leaves was 
frozen in liquid nitrogen and kept at -80°C. Samples were ground in a mortar and 2 mL 
of 0.1 % (w/v) trichloroacetic acid (TCA). The homogenate was centrifuged at 10,000 g 
and 4°C for 8 min. Then 0.4 mL of the supernatant was diluted with 0.6 mL of 0.1% (w/v) 
TCA. Finally, 0.5 mL of 100 mM potassium phosphate buffer (pH= 7) and 2 mL of 1 M of 
KI were added. Samples were incubated for 1 h at room temperature and in the dark and 
absorbance was measured at 390 nm. H2O2 content was given by a H2O2 standard curve.
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4.3.10. Lipid peroxidation determination
Lipid peroxidation was estimated by malondialdehyde (MDA) determinations using a 
thiobarbituric acid reaction, according to the protocol reported by Heath and Packer 
(1968) and modified in Dhindsa et al. (1981). First 0.1 g of fresh leaves was frozen in 
liquid nitrogen and kept at -80°C. Samples were ground in a mortar and 2 mL of 0.1% 
(w/v) TCA. Later the homogenate was centrifuged at 10,000 g and 4°C for 5 min. 
Afterward, 2 mL of reaction buffer (TCA 20% + TBA 0.5%) were added and heated 
at 95°C for 30 min. The non specific background absorbance reading at 600 nm was 
subtracted from the specific absorbance reading at 532 nm. 

4.3.11. DPPH radical-scavenging capacity
Radical scavenging capacity (RSA) was determined by the 2,2-Diphenyl-1-picrylhydrazyl 
(DPPH) radical scavenging method, proposed by Brand-Williams et al. (1995) with modi-
fications. Namely, 0.1 g of fresh leaves was frozen in liquid nitrogen and stored at -80°C. 
Samples were ground in a mortar with the addition of 80% (v/v) methanol. After 12 h at 
4°C in a mixer, samples were centrifuged for 10 min at 10,000 g and 4°C. A 10-µL volume 
of sample and 990 µL of 0.065 mM DPPH were taken and incubated for 30 min in the 
dark at room temperature. Absorbance was measured at 515 nm. The percentage of 
the inhibition of the DPPH radical was measured by this equation: [(DPPH absorption – 
Sample absorption)/ DPPH absorption] x 100 (López-Serrano et al., 2019).

4.3.12. Biomass measurements
Roots and stems length and total dry weight of biomass (roots+leaves+stems) were 
measured at the end of the experiment (10DAT). The plants were dried at 65º C for 
72 h to determine dry weight.

4.3.13. Statistical analysis
The results were subjected to a two-way ANOVA analysis (Statgraphics Centurion for 
Windows, Statistical Graphics Corp.) with treatment and plant combinations used as 
factors of the analyses. Each time of measurement (DAT) was separately analyzed. In all 
the parameters where the interaction was significant, the plant combinations and treat-
ment were analyzed together by a one-way ANOVA. In the case of biomass parameters 
(root length, stem length and total dry biomass), interaction was not significant, but 
the genotype was, so a one-way ANOVA was performed separating both treatments. In 
the case on nitrate reductase, since the values were referenced by the percentage of 
salt with respect to control, one-way ANOVA considering only the plant combinations 
was carried out. Means were compared by the Fisher’s least significance difference 
(LSD) test at P < 0.05. No significant differences were found among the four replicates 
for each measured parameter.

Section 4.3. Material and methods
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4.4. Results

4.4.1. Ions determination
The Na+/K+ ratio at the end of experiment (10DAT) was higher in roots than in leaves 
for all the plant combinations and treatments (Fig. 4.1.). In leaves, Na+/K+ significantly 
decreased (P<0.05) in the A/N plants under salt applications (Fig. 4.1.A). Under the 
control conditions of leaves, A/N showed a decrease with significant differences with 
N/A (Fig. 4.1.A). In the root compartment (Fig. 4.1.B), the Na+/K+ values increased in 
all the plant combinations under salt treatment. Na+/K+ were significantly higher in the 
ungrafted (A) and N/A plants, and the lower values were measured in A/N with signif-
icant differences. In the control treatment, all grafting combinations had significantly 
lower Na+/K+ values compared to the ungrafted plants (Fig. 4.1.B).

The Cl- concentration in both leaves and roots (Fig. 4.1.C-D) increased with NaCl 
addition in all the plant combinations, although the Cl- concentration was higher in roots. 
The highest Cl- levels in leaves were obtained for N/A plants (Fig. 4.1.C), whereas no 
significant differences were found among all the plant combinations in roots (Fig. 4.1.D). 
In the control treatment, no significant differences appeared among the plant combi-
nations in both leaves and roots (Fig. 4.1.C-D).

Figure 4.1. The Na+/K+ ratio (A, B) and Cl- 

concentration (C, D) in the leaves and roots 
of ungrafted pepper plants (cultivar Adige, A), 
self-grafted (A/A), A grafted onto N (A/N) and 
N grafted onto A (N/A) after addition of NaCl 

at 0 mM (Control) and 70 mM (Salt) for 10-day 
exposures. Data are the mean values for n=4. In 
each plant combination, different letters indicate 
significant differences at P < 0.05 (LSD test). 
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4.4.2. Photosynthesis rate and stomatal conductance
Figs. 4.2. and 4.3. showed the changes along the experiment for AN (Fig. 4.2.A-D) and 
gs (Fig. 4.3.A-D) under control and salt treatment. The photosynthetic rate (Fig. 4.2.) 
significantly dropped in all the plants (P < 0.05) in response to salt stress and reached 
null values at the end of experiment, except for A/N (Fig. 4.2.C) where the AN values 
were higher with significant differences between salt and the control conditions from 
4DAT to 10DAT.

Figure 4.2. The net CO2 assimilation rate (AN; µmol 
CO2 m-2 s-1) of ungrafted pepper plants (cultivar 
Adige, A) (A), self-grated plants (A/A) (B), A grafted 
onto N (A/N) (C) and N grafted onto A (N/A) (D) 
after addition of NaCl at 0 mM (Control) and 70 

mM (Salt). Measurements were taken on 1DAT, 
2DAT, 4DAT, 7DAT and 10DAT (days after treatment 
with NaCl began). Data are the mean values for 
n=12. For each study time, different letters indicate 
significant differences at P < 0.05 (LSD test).

Section 4.4. Results
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A drop in gs under salt treatment was observed in all the plants with almost total 
stomatal closure (Fig. 4.3.). A minor drop in gs was noted for A/N plants under salt 
stress showing the highest values of gs respect the other salt-plant combinations with 
a significant difference at the end of experiment (Fig. 4.3.C).

Figure 4.3. Leaf stomatal conductance (gs; mol 
H2O m-2 s-1) of the ungrafted pepper plants (cultivar 
Adige, A) (A), self-grated plants (A/A) (B), A grafted 
onto N (A/N) (C) and N grafted onto A (N/A) (D) 
after addition of NaCl at 0 mM (Control) and 70 

mM (Salt). Measurements were taken on 1DAT, 
2DAT, 4DAT, 7DAT and 10DAT (days after treatment 
with NaCl began). Data are the mean values for 
n=12. For each study time, different letters indicate 
significant differences at P < 0.05 (LSD test).
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4.4.3. ABA analysis
After 1DAT and 10DAT, the average ABA concentration values (Fig. 4.4.) were higher 
in leaves than in roots. In leaves, significantly higher ABA concentrations were found 
under salinity conditions compared to the control ones in all the plant combinations 
(Fig. 4.4.A, C). Under the salinity conditions, the minimum ABA values in leaves went 
to A/N plants (Fig. 4.4.A, C). In roots (Fig. 4.4.B, D), the ABA levels were different de-
pending on both plant combinations and salt time exposure. On 1DAT, the maximum 
values were found for A and A/N plants (Fig. 4.4.B). However on 10DAT, the highest 
ABA values were analyzed in A and A/A plants (Fig. 4.4.D). 

Figure 4.4. ABA contents (ng ABA g-1 DW) in the 
leaves (A, C) and roots (B, D) of the ungrafted 
pepper plants (cultivar Adige, A) (A), self-grated 
plants (A/A) (B), A grafted onto N (A/N) (C) and N 
grafted onto A (N/A) (D) after addition of NaCl at 
0 mM (Control) and 70 mM (Salt). Measurements 

were taken on 1DAT and 10DAT (days after 
treatment with NaCl began). Data are the mean 
values for n=4. For each plant combination 
and time, different letters indicate significant 
differences at P < 0.05 (LSD test). 

Section 4.4. Results
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4.4.4. Percentage of nitrate reductase activity in the salt treatment vs. the control
On 1DAT and 10DAT, the effect of salt addition induced reduction in the percentage 
of NR activity in leaves compared to their respective control in all plants combinations 
(Fig. 4.5.). Nevertheless, in A/N the reduction was lower compared to other plants 
combinations with significant differences observed between them both 1DAT and 
10DAT (Fig. 4.5.).

Figure 4.5. Nitrate reductase activity expressed 
as a percentage compared to its control (% vs. 
control) in the leaves of the ungrafted pepper 
plants (cultivar Adige, A) (A), self-grated plants 
(A/A) (B), A grafted onto N (A/N) (C) and N 
grafted onto A (N/A) (D) after addition of NaCl at 

0 mM (Control) and 70 mM (Salt). Measurements 
were taken on 1DAT and 10DAT (days after 
treatment with NaCl began). Data are the mean 
values for n=4. For each plant combination 
and time, different letters indicate significant 
differences at P < 0.05 (LSD test). 
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4.4.5. Proline analysis
The proline concentration in leaves (Fig. 4.6.) was always higher under salinity com-
pared to the control condition from 1DAT to 10DAT. The maximum proline values 
appeared on 7DAT in all the plant combinations. Afterward the drop in concentration 
became more marked in A/N (Fig. 4.6.C) and N/A (Fig. 4.6.D) until 10DAT, but with 
higher values compared to A and A/A. 

Figure 4.6. Proline concentration (mg Pro g-1 
DW) in the leaves of ungrafted pepper plants 
(cultivar Adige, A) (A), self-grated plants (A/A) (B), 
A grafted onto N (A/N) (C) and N grafted onto A 
(N/A) (D) after addition of NaCl at 0 mM (Control) 
and 70 mM (Salt). Measurements were taken on 

1DAT, 2DAT, 4DAT, 7DAT and 10DAT (days after 
treatment with NaCl began). Data are the mean 
values for n=4. For each study time, different 
letters indicate significant differences at P < 0.05 
(LSD test).

Section 4.4. Results
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4.4.6. Total phenols analysis
The phenol concentrations in leaves under the salinity conditions (Fig. 4.7.) were higher 
with significant differences for all the plant combinations compared to the controls on 
each day after the start of treatment application. From 1DAT to 7DAT, A/N (Fig. 4.7.C) 
was the plant combination with the highest phenol concentrations compared to other 
plant types. The lowest phenol levels were found for N/A plants (Fig. 4.7.D).

Figure 4.7. Changes in phenolic content (mg GA 
g-1 FW) in the leaves of ungrafted pepper plants 
(cultivar Adige, A) (A), self-grated plants (A/A) (B), 
A grafted onto N (A/N) (C) and N grafted onto A 
(N/A) (D) after addition of NaCl at 0 mM (Control) 
and 70 mM (Salt). Measurements were taken on 

1DAT, 2DAT, 4DAT, 7DAT and 10DAT (days after 
treatment with NaCl began). Data are the mean 
values for n=4. For each study time, different 
letters indicate significant differences at P < 0.05 
(LSD test).
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4.4.7. H2O2 determination
The hydrogen peroxide concentration in the A plant leaves (Fig. 4.8.) increased after 
salt exposure (Fig. 4.8.A) on 1DAT. In the other plant combinations, the increase in 
H2O2 was observed on 2DAT (except for A/N plants). A/N plants (Fig. 4.8.C) showed 
the highest H2O2 concentration, which increased from 2DAT to 7DAT, after which time 
the H2O2 levels remained constant until 10DAT.

Figure 4.8. Hydrogen peroxide concentration 
(nmol H2O2 g-1 FW) in the leaves of ungrafted 
pepper plants (cultivar Adige, A) (A), self-grated 
plants (A/A) (B), A grafted onto N (A/N) (C) and N 
grafted onto A (N/A) (D) after addition of NaCl at 
0 mM (Control) and 70 mM (Salt). Measurements 

were taken on 1DAT, 2DAT, 4DAT, 7DAT and 
10DAT (days after treatment with NaCl began). 
Data are the mean values for n=4. For each 
study time, different letters indicate significant 
differences at P < 0.05 (LSD test).

Section 4.4. Results
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4.4.8. Lipid peroxidation
The MDA concentration in leaves (Fig. 4.9.) was higher in all the plant combinations 
under the salinity conditions and increased during the exposure time. At the end of 
experiment (10DAT), A/N plants (Fig. 4.9.C) displayed the smallest differences between 
control and salt stress compared to the other plants, followed for A/A (Fig. 4.9.A), N/A 
(Fig. 4.9.D) and A (Fig. 4.9.A), with the highest lipid peroxidation levels for salt treatment. 

Figure 4.9. Malondialdehyde (MDA) content 
(nmol MDA g-1FW) in the leaves of ungrafted 
pepper plants (cultivar Adige, A) (A), self-grated 
plants (A/A) (B), A grafted onto N (A/N) (C) and N 
grafted onto A (N/A) (D) after addition of NaCl at 
0 mM (Control) and 70 mM (Salt). Measurements 

were taken on 1DAT, 2DAT, 4DAT, 7DAT and 
10DAT (days after treatment with NaCl began). 
Data are the mean values for n=4. For each 
study time, different letters indicate significant 
differences at P < 0.05 (LSD test).
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4.4.9. DPPH-Radical Scavenging Activity
The leaves of the plants grown under salt stress obtained an increased percentage of 
inhibition radical DPPH compared to their control plants (Fig. 4.10.). Maximum activity 
was found for A/N (Fig. 4.10.C) plants on 7DAT and 10DAT under the salinity conditions. 

Figure 4.10. Percentage of inhibition of DPPH 
radical in the leaves of ungrafted pepper plants 
(cultivar Adige, A) (A), self-grated plants (A/A) (B), 
A grafted onto N (A/N) (C) and N grafted onto A 
(N/A) (D) after addition of NaCl at 0 mM (Control) 
and 70 mM (Salt). Measurements were taken on 

1DAT, 2DAT, 4DAT, 7DAT and 10DAT (days after 
treatment with NaCl began). Data are the mean 
values for n=4. For each study time, different 
letters indicate significant differences at P < 0.05 
(LSD test).

Section 4.4. Results
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4.4.10. Biomass measurements
At the end of the experiment (10DAT), the root length (Fig. 4.11.A), the shoot length 
(Fig. 4.11.B) and the total dry weight (Fig. 4.11.C) were significantly higher in A/N under 
salinity conditions compared to all other plant combinations. Under control condition, 
the highest root length was measured in A/N and N/A, however for the other biomass 
parameters significant differences were not observed between plant combinations.

Figure 4.11. Root length (A), stem length (B) and 
total dry weigh (roots + stem + leaves) (C) of the 
ungrafted pepper plants (cultivar Adige, A), self-
grated plants (A/A), A grafted onto N (A/N) and 
N grafted onto A (N/A) after addition of NaCl at 
0 mM (Control) and 70 mM (Salt). Measurements 
were taken on 10DAT (days after treatment 

with NaCl began). Data are the mean values for 
n=4. For each plant combination and treatment, 
different letters indicate significant differences 
at P < 0.05 (LSD test). Not significant differences 
for stem length and total dry weight under control 
conditions are denoted with the absence of the 
letters above the bars.
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4.5. Discussion

Vegetable grafting is an effective technique in increasing salt tolerance (Colla et al., 
2010). Some rootstocks, mainly hybrids for tomato, melon and cucumber, have demon-
strated tolerance to salinity (Colla et al., 2006; Savvas et al., 2011; Huang et al., 2013). 
To date, grafting onto pepper rootstocks has not been a feasible solution to cope with 
salinity given the unsatisfactory performance of available rootstocks (Kyriacou et al., 
2017; Penella and Calatayud, 2018). In previous field studies conducted under water 
salinity conditions, the hybrid NIBER®, obtained for that purpose, has been demonstrat-
ed as an effective rootstock in overcoming salinity and improved production compared 
to ungrafted or other commercial rootstocks (Calatayud et al., 2016). The high yield 
obtained under the salinity conditions has been reported in other grafted vegetables, 
such as melon, watermelon or cucumber, grafted onto the hybrid Curbita maxima x C. 
moschata (Romero et al, 1997; Alan et al., 2007; Colla et al., 2012), or tomato grafted 
onto S.  lycopersicum x S. habrochaites (Savvas et al., 2009). These findings demon-
strate that grafting directly and positively affects plant production. 

For many crops, a significant factor that contributes to salinity tolerance is the ability 
to manage concentrations of toxic ions inside plants (Munns and Tester, 2008). Of all 
the different strategies, the capacity of salt ions exclusion and/or retention in roots, 
better maintenance of potassium homeostasis, or compartmentation of salt ions in the 
vacuole are available (Fernández-García et al., 2004; Colla et al., 2010). Moreover in 
grafted plants, the graft itself can act as a barrier to limit salt ions from the rootstock to 
the scion (Edelstein et al., 2011). In this study, the Cl- concentration under salinity did 
not show any significant differences among the plant combinations in roots, and only 
N/A-leaves exhibited the highest Cl- levels on 10DAT. This result suggests that the graft 
effect itself does not act as a selective barrier to limit Cl- movement from root to leaves 
by showing a uniform Cl- concentration-distribution between root and leaves. Similar 
results were obtained by Edelstein et al. (2011) in melon grafted onto pumpkin. Further 
Cl- accumulation exceeded that of Na+ in all the plant combinations. This agrees with 
the results obtained by Navarro et al. (2002) in ‘Orlando’, and also with Chartzoulakis 
and Klapaki (2000) in ‘Sonar’ pepper varieties or in grafted pepper plants (Penella et 
al. 2015). A higher external Cl- concentration could be linked to a major passive uptake 
root component, these might occur when the membrane potential is less negative than 
Cl- equilibrium potential allowing for a passive influx and a very slightly active Cl- uptake 
system (Altman and Mendel, 1973; Skerrett and Tyerman, 1994). However, for many 
vegetables like cucumber, melon, watermelon, tomato, eggplant and pepper, Na+ ion 
is the primary cause of ion-specific damage (Tester and Davenport, 2003; Varlagas et 
al., 2010, Penella et al., 2015). Na+ is largely a result of its capacity to compete with K+ 
for essential binding sites for cellular function; moreover, regulation of ion homeostasis 
and selectivity of Na+/K+ discrimination are closely linked to a lower Na+ concentration 

Section 4.5. Discussion
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and its relation to salt tolerance (Volkmar et al., 1998; Munns and Tester, 2008). The 
significant depletion of the Na+/K+ ratio occurred only in the plants grafted onto N (A/N 
plants) in both leaves and roots to reduce the Na+ load due to a higher K+ concentra-
tion and/or lower Na+ uptake compared to another plant combinations. Furthermore, 
the Na+/K+ ratios in roots undergoing the salinity treatment were higher compared 
with leaves (average of all plant combinations Na+/K+ was 24 fold higher in roots than 
leaves), regardless of the plant combination. The lowest Na+ concentration in leaves 
to favor K+ levels could be due to Na+ retention and accumulation in roots (Edelstein et 
al., 2011). Grafted plants had a higher K+ content, which is apparently related to higher 
salt tolerance showing lower inhibited extent of stem and root and plant growth under 
salinity conditions (Zhu et al., 2008; Huang et al., 2009; Colla et al., 2010, Nawaz et al. 
2016) as just occurred in A/N plants in contrast to the other plant combination. In fact 
in the tomato-grafted plants, salt tolerance was associated with K+, but not with Na+ 
concentration (Albacete et al., 2009). 

The lowest foliar Na+/K+ ratio in the grafted A/N plants could possibly diminish the 
phytotoxic effect of salinity on photosynthesis (Ruiz et al,. 2005), facilitating the main-
tainance of growth (Rouphael et al., 2012). The net CO2 assimilation rate dropped in all 
the plant combinations under the salinity conditions, and this decrease was accompa-
nied by a significant reduction in stomatal conductance. A/N plants showed a higher 
AN than the self-grafted (A/A), non grafted (A) and reciprocal self-grafted (N/A) plants 
and the correlation analysis suggest that total DW was positively related with AN (R2 
= 0.886 at 10DAT) indicating that plant growth was directly linked to photosynthesis. 
These results agree with previous findings which revealed that tolerant rootstocks 
can improve photosynthesis performance and growth under the salt treatment (Moya 
et al., 2002; Massai et al., 2004; He et al., 2009, Rouphael et al., 2012). However, gs 
significantly decreased and more markedly compared to AN, with values close to zero 
and reduced plants’ ability to supply CO2 to the photosynthetic apparatus (Piñero et 
al., 2014). These results coincide with another finding which showed that gs was very 
sensitive to salt stress (Jiang et al., 2006; He et al., 2009); although the least stoma-
tal closure at the end of experiment was observed in A/N plants under the salinity 
conditions. A decrease in gs has been observed in melon-, cucumber-, pepper- and 
tomato-grafted plants in response to salinity when tolerant rootstocks were also used 
(He et al., 2009; Rouphael et al., 2012; Penella et al., 2015). 

According to our results, salinity induced ABA accumulation, which could cause 
stomatal closure (Zhu, 2001; Finkelstein et al., 2002), regardless of the root genotype 
(Holbrook et al., 2002). In our experiment, the ABA concentration in leaves affected gs 
and a linear correlation was found for both parameters on 1DAT and 10DAT (R2= 0.84 
and 0.90, respectively). This observation falls in line with the results for sweet pepper 
under salinity stress observed by Piñero et al. (2014). The A/N plant leaves showed 
a lower ABA concentration with higher stomatal opening, but the reciprocal grafted 
N/A plants exhibited a similar ABA concentration to plants A/A and A. This situation 
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indicates that the ABA levels in leaves were dependent on rootstock. There is evidence 
to show that a reduction in gs is associated with an increased in ABA in roots prior to a 
detectable increase in leaf ABA (Davies and Zhang, 1991). The relation between both 
parameters was consistent on 1DAT (R2= 0.72), but not on 10DAT (R2= 0.40), accord-
ing to our results. It is possible that the control of stomata conductance for a longer 
time (10DAT) was exerted by leaf metabolic activity (leaf water status, change in ion 
transport or transpiration stream) rather than by the ABA produced by roots, and/or 
ABA could be synthesized in leaves (Munns and Cramer, 1996; Holbrook et al., 2002; 
Manzi et al., 2017). 

Nitrate reductase is sensitive to gs and becomes less active when the stomata are 
closed (Kaiser and Huber, 2001; Yousfi et al., 2012) limiting the assimilation of nitrate 
into organic compounds inducing visible effects on biomass (López-Serrano et al., 
2019). In this study, we observed diminished NR activity versus its control on 1DAT and 
10DAT in all the plant combinations. However, only A/N plants maintained 50% (1DAT) 
and 30% (10DAT) enzyme activity, and both sustained the highest gs and growth. This 
trend has been observed in pepper-, tomato- and cucumber-grafted plants in earlier 
studies (Liu et al., 2013; Penella et al., 2015, Ruiz et al., 2005). 

The low photosynthesis rate increased ROS formation in a very early response 
stage (Formentin et al., 2018). The accumulation of an excessive ROS level may react 
with proteins, DNA and lipids, which could lead to redox imbalance and oxidative 
stress to cause metabolic dysfunction (Gill and Tuteja, 2010; Hossain et al., 2015). To 
prevent ROS oxidative damage, plants up-regulate antioxidant enzymes and molecules 
to strike a balance between the formation rate and ROS removal (Munns and Tester, 
2008). Salt-induced ROS are predominantly represented by H2O2 (Pang and Wang, 
2008). Although H2O2 has been described to play a signaling role to plant processes 
related with abiotic stress acclimation in the last decade: antioxidative defense, up-/
down-regulation of ABA, promotion of gibberellic acid biosynthesis or improvement of 
the K+/Na+ ratio in seedlings (Kim et al., 2008; Shu et al., 2016; Formentin et al., 2018; 
Niu et al., 2018). Furthermore, H2O2 has been considered a second messenger as it 
mediates adaptive responses to abiotic stress (Neill et al., 2002; Yu et al., 2003; Liu et 
al., 2010; Baxter et al., 2014; Hossain et al., 2015). H2O2 accumulation has also been 
found to precede signaling activation, or has even been found to be the consequence 
of signaling (Hossain et al., 2015). Under our salinity conditions, all the plant combina-
tions increased the H2O2 concentration to show significant differences with its control. 
Particularly in A/N plants, H2O2 levels were the highest (with significant differences) 
compared to other plant combinations. The increased H2O2 in A/N plants has been 
associated with higher total antioxidant capacity and lower lipid peroxidation, with a 
less marked effect on the photosynthetic system (Zandalinas et al., 2016). In tomato, 
an enhanced H2O2 level has been found to modulate the expression of stress and to 
up the defense genes related with antioxidant capacity (Zhou et al., 2014). A, A/A and 
N/A plants showed minor antioxidant capacity (and significant differences with A/N 
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plants) and a major MDA concentration, which tends to show greater lipid peroxida-
tion in salt-sensitive than salt-tolerant cultivars under salt stress (Zhu et al., 2008; 
Penella et al., 2015) thereby inhibiting biomass production (MDA concentration-total 
DW, R2= 0.70 at 10DAT). These results indicate that H2O2 could be positively used by 
A/N plants to activate antioxidant capacity to help fight against salt stress (Hossain 
et al., 2015) by acting as a signal molecule rather than a damaged plant system (Bose 
et al., 2014; Rejeb et al., 2015; Formentin et al., 2018). Other molecules like proline 
and phenols could work well for salinity protection (Parida and Das, 2005; Ashraf and 
Foolad, 2007; Szabados and Savouré, 2010). Some studies suggest that proline may 
play a role as an enzyme-stabilizing agent under NaCl stress (Demir and  Kocaçaliskan, 
2001), reduce peroxidative damage to lipid membranes due to salt-dependent oxida-
tive stress (Huang et al., 2009), and play an important role as a compatible osmolyte 
(Szabados and Savouré, 2010). AN-enhanced proline biosynthesis has been described 
to help prevent photosynthetic apparatus damage (Ashraf et al., 2008). The increase in 
proline (2-fold times) herein observed was detected in the plant combination in which 
N was used as both a scion and rootstock compared to plants A or A/A. These results 
could indicate that N is implicated in more proline transport from roots to leaves for A/N 
plants by contributing to proline accumulation in leaves and/or could stimulate proline 
synthesis in N/A plant leaves (An et al., 2013). Although proline metabolism has long 
since been studied in several crops, very little is known about the signaling pathways, 
biosynthesis, degradation and transport that regulate stress-induced accumulation, 
and this knowledge is vital to develop plants for stress tolerance (Kishor et al., 2005; 
Szabados and Savouré, 2010). 

Another metabolic process to be associated with tolerance responses to salinity 
stress in plants involves phenolic compounds (Parida and Das, 2005). Increasing pheno-
lic content has been correlated with salt stress tolerance in watermelon plants grafted 
onto squash (Evrenosoğlu et al., 2010) or in tomato-grafted plants (Ali and Ismail, 2014). 
Phenol compounds help avoid ROS formation, display antioxidant action and protect the 
photosynthetic apparatus (Harborne and Williams, 2000). According to our results, a 
significant increase in total phenols was detected in A/N plants under salinity treatment 
compared to the other plant combinations, which coincides with antioxidant capacity 
stimulation, minor lipid peroxidation formation and higher photosynthetic rates. 

Grafting is an integrative reciprocal process in which both the scion and rootstock 
can influence salt tolerance (Etehadnia et al., 2008). The importance of root charac-
teristics in regulating salinity has been documented mainly in terms of the role in the 
control of toxic ions, water uptake, biomass and molecules signaling from root to leaves 
that modulate plant responses to salinity (Albacete et al., 2009; He et al., 2009; Colla 
et al., 2010; Niu et al., 2018; Penella and Calatayud, 2018). In contrast, other authors 
(Santa-Cruz et al., 2002; Chen et al., 2003; Zhu et al., 2008) have suggested that salt 
tolerance in grafted plants is attributed to the scion genotype. This might be due to 
either differences in the salt tolerance of both the rootstock and scion used in the ex-
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periments or the applied salinity dose (Huang et al., 2013). In this study, the reciprocal 
graft (N/A) was done to examine whether plant tolerance to salinity can be helped by 
the rootstock or scion. In response to salinity N/A plants showed dramatically reduced 
photosynthesis and biomass, similarly to that obtained in A plants and A/A, which was 
associated with other physiological factors like greater stomatal resistance and higher 
ABA leaf concentration, minor phenol levels and lower antioxidant activities with major 
lipid peroxidation. These results suggest that A roots are less able to adapt to changes 
under salinity. Similar results have been found in cucumber grafted onto luffa under 
drought stress (Liu et al., 2013) or in cucumber grafted onto pumpkin under salinity 
(Huang et al., 2013), where reciprocal grafted plants showed no salinity tolerance. 
However, different tolerant mechanisms to cope with salinity can be used in grafted 
plants (Colla et al., 2010).

This work has led to a better understanding of the response mechanisms of grafted 
plants to imbalanced salinity. We demonstrate that the new pepper rootstock, NIBER®, 
could influence scion behavior by preserving its plant physiology performance and 
growth. The time-course analysis showed that the reduction in ABA leaf content in 
the plants grafted on to NIBER® under salinity allowed to keep stomata open, strike 
an appropriate photosynthesis balance and lead to NR activation. The increases in 
endogenous H2O2 in these plants acted as a signaling molecule by activating the de-
fense mechanism (increase in total antioxidant capacity, proline and phenols), which 
tips the balance to ROS scavenging. The least damage caused to the metabolism in the 
plants grafted onto NIBER® was strengthened to maintain ion homeostasis in relation 
to the ability to lower the Na+/K+ ratio, all which mitigating the reduction of the biomass 
imposed by salt stress. This ability is a cost-effective trait of salt tolerance in plants.
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5.1. Abstract

Background: 
Pepper is one of the most cultivated crops worldwide, but is sensitive to salinity. This 
sensitivity to salinity is dependent on varieties and our knowledge about how they 
can face such stress is limited. Thus, a physiological and transcriptomic analysis was 
carried out to study mechanisms of tolerance. Tolerant and sensitive accessions, re-
spectively called A25 and A6, were grown for 14 days under control conditions and 
irrigated with 70 mM of NaCl.  Biomass, photosynthetic parameters, ion concentration 
and differentially expressed genes were analysed. 

Results: 
Transcriptomic changes between the accessions under both control and stress con-
ditions could explain the physiological behaviour of A25 by improved growth (e.g. 
expansins), starch metabolism (e.g. BAM1), ion homeostasis (e.g. CBL9, HAI3, BASS1), 
photosynthetic protection (e.g. FIB1A, TIL, JAR1) and antioxidant activity (e.g. PSDS3, 
SnRK2.10). In addition, misregulation of ABA and other stress signalling genes would 
appear crucial to explain the different sensitivity to NaCl in both accessions. 

Conclusions: 
After analysing the physiological behaviour and transcriptomic results, we have con-
cluded that A25 accession utilizes different strategies to cope better salt stress, being 
ABA-signalling a pivotal point of regulation. It has also been established a network of 
genes that could cooperate in the defence response to salinity in pepper plants. 

Additional keywords:  
Abscisic Acid; Growth;  
Ion homeostasis; Photosynthesis, 
Salt stress; Tolerance; Pepper.

We sincerely thank Javier Forment 
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Abbreviations:

7DAT, 7 days after 
treatment;  
14DAT, 14 days after 
treatment;  
ABA, abscisic acid; 
AN, CO2 fixation rate; 
AKT1, Arabidopsis K+ 
transporter 1;  
BAM1, beta-amylase 1; 
BAM5, beta-amylase 5;  
BASS1, sodium bile acid 
symporter family;  
CAMTA5, calmodulin-
binding transcription 
activator 5;  
CBL9, calcineurin B-like 
protein 9;  
CCB3, Cofactor 
assembly, complex C 
(B6F);  
CcdA, Cytochrome c 
biogenesis protein family;  
CDC2, Cell division 
control 2;  
CEL5, cellulase 5; 
CER1, eceriferum 1; 
Ci, substomatal CO2 
concentration;  
CSD1, copper/zinc 
superoxide dismutase 1;  
CSLE1, cellulose 
synthase-like E1;  
CYP38, cyclophilin 38;  
DEG, differentially 
expressed gene;  
DW, dry weight;  
E, transpiration rate;  
EC, electrical 
conductivity;  

EXLB1, expansin-like B1;  
EXPA4, expansin A4; 
EXPA13, expansin A13;  
FIB1A, Fibrillin 1A;  
FW, fresh weight;  
gs, stomatal conductance 
to water vapour;  
HAB1, hypersensitive  
to ABA1;  
HAI3, highly ABA-induced 
PP2C protein 3;  
J8, Chaperone  
DnaJ-domain 
superfamily protein;  
JA, jasmonate;  
JAR1, jasmonate 
resistant 1;  
KASI, 3-ketoacyl-acyl 
carrier protein synthase I; 
LACS2, long-chain  
acyl-CoA synthetase 2;  
MIOX1, myo-inositol 
oxygenase 1; 
MIOX5, myo-inositol  
oxygenase 5;  
NDHG, NADH, 
ubiquinone/
plastoquinone 
oxidoreductase, chain 6; 
OCT4, organic cation/
carnitine transporter 4;  
PHT1;4, phosphate 
transporter 1;4;  
PME1, Pectin 
methylesterase 1; 
PMEI13, plant invertase/
pectin methylesterase 
inhibitor superfamily 
protein;  
PORA, protochlorophyllide 
oxidoreductase A;  

PP2C, protein 
phosphatase 2C;  
PPD1, photosystem II 
reaction centre PsbP 
family protein;  
PRX66, peroxidase 66; 
PRX71, peroxidase 71;  
PSII, photosystem II; 
PSAE-2, photosystem I 
subunit E-2;  
PSAG, photosystem I 
subunit G;  
PSAO, photosystem I 
subunit O;  
PSBP-1, photosystem II 
subunit P-1;  
RH, relative humidity;  
ROS, reactive oxygen 
species;  
SnrK2.5, SNF1-related 
protein kinase 2.5; 
SnRK2.10, SNF1-related 
protein kinase 2.10;  
SPDS3, spermidine 
synthase 3;  
TIL, temperature-
induced lipocalin;  
TROL, thylakoid 
rhodanese-like protein; 
TT4, chalcone and 
stilbene synthase  
family protein;  
TTA1, Class I heat shock 
protein, putative/Titania 1;  
TUB8, tubulin beta 8; 
WS6D, o-acyltransferase 
(WSD1-like) family 
protein;  
XK-1, Xylulose kinase-1.
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5.2. Background

Pepper (Capsicum annuum L.) is one of the most important cultivated horticultural 
species worldwide. Production has increased over the last 20 years from 17 to 36 
million tons, and the cultivated area has expanded by about 35% [1]. However, sev-
eral stresses still significantly affect peppers, which decrease yields and fruit quality. 
The most important stress is biotic, but peppers are also affected by some abiotic 
stresses. One of the most relevant ones is salt stress as pepper plants are considered 
moderately sensitive, sensitive or highly susceptible [2, 3]. The source of a high salt 
concentration that affects plants may be either soil or irrigation water [4]. Some studies, 
such as [5], have observed that dry weight and marketable yield decreased by 46% 
and 25%, respectively, when pepper plants were exposed to an electrical conductivity 
of water of 4.4 dS m-1.

The root is the first organ affected by the accumulation of toxic ions like Na+ and 
Cl- [3], which firstly exert osmotic stress and later ionic stress when ions exceed the 
toxic threshold [6]. These ions also move rapidly to photosynthetic organs and cause 
several negative effects. Indeed salt accumulation in plant tissues provokes changes 
in the physiological metabolism, such as nutritional imbalances, and generates reactive 
oxygen species (ROS), among other physiological disorders [7, 8] that lead to reduce 
biomass and crop production. However, some species are able to deal with these 
negative effects and can be tolerant to salt stress. To reach this condition, a complex 
network of genes related to salt tolerance is necessary [9], which modify physiological 
and biochemical plant responses.

In agricultural species, growers have always tended to select genotypes with in-
creased commercial production, commonly linked to improved tolerance to specific 
stresses. As a result, it is now possible to find a wide diversity of accessions that differs 
in terms of grades of tolerance to stresses. In the case of pepper, several authors have 
demonstrated that the severity of negative effects depends on the variety [10–13]. 

This intraspecies variation may be a source of information to find factors like genes, 
proteins or metabolites related to tolerance, which can be used in, for example, conven-
tional breeding programmes or genetic engineering technologies [9], or to be employed 
as tolerant rootstocks in grafted plants [14, 15].

Several articles can be found about transcriptomic studies that deal with under-
standing the genetic mechanisms responsible for the tolerance of pepper plants to 
different stresses, such as heat stress, chilling or leaf curl virus [16–19]. On the other 
side, some authors have studied specific genes related to salinity tolerance in pepper 
[20–22], but the genetic programmes that are differentially expressed in tolerant and 
sensitive pepper plants when salt stress is present have not yet been studied in-depth.

Consequently, this study compared two pepper accessions previously classified by 
us as tolerant (A25) and sensitive (A6) to salt stress after analysing a series of physio-

Section 5.2. Background
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logical and agronomical parameters [11, 23]. This study included the measurements of 
plant biomass, photosynthesis and ions uptake to evaluate physiological traits, as well 
as a transcriptomic assay, by microarrays, to elucidate the genetic programmes that 
were expressed and are responsible for tolerance to salt stress. This analysis could 
reveal the underlying mechanisms in pepper to cope with salinity stress and open up 
new strategies to improve crop performance under salinity conditions. 
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5.3. Results

5.3.1. Biomass
In order to evaluate whether plants maintained the same growth rate after NaCl treat-
ment, dry biomass was measured in both roots and aerial organs at 14DAT. Under 
the control conditions, both accessions obtained higher values compared to the salt 
stress conditions (Fig. 5.1.). Nevertheless, growth under the control conditions differed 
between accessions as A25 obtained higher values. The tolerant A25 accession better 
maintained both aerial and root dry weight under salt stress conditions compared to 
A6 accession at the end of the experiment (14DAT). 
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Fig. 5.1. Dry weight of the aerial part (A) and  
the root zone (B), in the accessions A6 and 
A25, under control and salt stress (70 mM NaCl) 
conditions. Measurements were taken at the end 

of the experiment (14DAT). Data are the mean 
of 6 replicates and the error bars belong to the 
standard deviation. Different letters indicate 
significant differences at P<0.05 (LSD test). 
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5.3.2. Gas Exchange Measurements
As photosynthesis is one of the first processes affected after salt stress addition, 
it is very important to evaluate its different parameters and how they progress with 
exposure time. In this experiment, AN, gs, Ci and E were analysed at 7DAT and 14DAT 
(Fig. 5.2.). At the first measurement time (7DAT), A25 showed no significant differences 
in AN and Ci (Fig. 5.2.A, C) between the control and salt stress conditions. Conversely, 
gs and E decreased in the stressed plants (Fig. 5.2.B, D) but, compared to A6, the 
photosynthetic parameters in A25 were better maintained as A6 obtained the lowest 
values of them all.

At the end of the experiment (14DAT) under the control conditions, a better re-
sponse was observed in stomatal conductance and transpiration with the tolerant 
accession A25 (Fig. 5.2.B, D), unlike AN and Ci, which remained unchanged (Fig. 5.2.A, 
C). Under the salt stress conditions, the situation differed due to the drop in the pho-
tosynthetic parameters, whose values significantly fell in the two studied accessions 
to similar values, with no significant differences noted between them. 
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Fig. 5.2. CO2 fixation rate (AN, µmol CO2 m-2 s-1)  
(A), stomatal conductance to water vapour 
(gs, mol H2O m-2 s-1) (B), substomatal CO2 
concentration (Ci, µmol CO2 mol -1 air) (C) and 
transpiration rate (E, mmol H2O m-2 s-1) (D) under 
control and salt stress (70 mM NaCl) conditions. 

Measurements were taken after 7 days (7DAT) 
and 14 days (14DAT) of the experiment. Data 
are the mean of 5 replicates and the error bars 
belong to the standard deviation. For each 
studied time, different letters indicate significant 
differences at P<0.05 (LSD test). 



131

5.3.3. Ion Determination
Exposure to high NaCl concentrations disrupts ion homeostasis in plant cells. Thus 
the evaluation of the ion concentration in different tissues after exposure to stress 
was crucial for this experiment. For this purpose, Na+, K+ and Cl- concentrations were 
measured at the end of the experiment (14DAT) in leaves (Fig. 5.3.A, C, E) and roots 
(Fig. 5.3.B, D, F). With Na+ (Fig. 5.3.A, B), the concentration rose when plants were 
subjected to salt stress. It is worth mentioning that the levels in roots were higher 
than leaves for both accessions and treatments, especially in A25, which showed more 
accumulation compared to A6. 
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Fig. 5.3. Na+ (A, B), K+ (C, D) and Cl- concentration 
(E, F) in leaves (A, C, E) and roots (B, D, F) in the 
accessions A6 and A25 under control and salt 
stress (70 mM) conditions. Measurements were 

taken at the end of the experiment (14DAT). Data 
are the mean of 6 replicates and the error bars 
belong to the standard deviation. Different letters 
indicate significant differences at P<0.05 (LSD test). 
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Regarding the K+ concentration (Fig. 5.3.C, D), the main accumulation took place in 
roots where the concentration was higher than in leaves. Nonetheless, this concen-
tration dropped in the salt stress treatment, except in the roots of the A25 accession, 
where it maintained. In addition, K+ levels were higher in A25 under salt stress in both 
leaves and roots.

Lastly, a higher Cl- concentration was detected under the salt conditions in all the 
studied organs and accessions compared to the control (Fig. 5.3.E, F). However, the 
concentration in the A25 accession under salt stress rose in roots and lowered in leaves 
compared to A6. Under the control conditions, no significant differences were found 
in any of the studied organs.

5.3.4. Transcriptomic Expression Results
A microarray experiment analysis was performed to know the transcriptomic changes 
that could explain the sodium chloride resistance of the A25 accession.  

Under the control conditions when the A25 accession was compared to A6, 196 
and 315 genes were up- and down-regulated, respectively (Fig. 5.4.A, B). Of all these 
genes, it is important to highlight the up-regulated genes related to cell wall biosyn-
thesis and expansion (PMEI13, TUB8, EXPA13, XK-1, PME1, CEL5, CSLE1), wax and 
fatty acid biosynthesis (KASI, LACS2), cell division (CDC2), vitamin transport (BASS1), 
ABA-signalling (SnRK2.10, TINY2 and ERD4) and photosynthesis (PSBP-1). The genes 
related to the formation of cellular barriers, such as lignins (PRX71, PRX66) and waxes 
(WS6D, CER1), were down-regulated in A25 compared to A6. The down-regulation of 
the genes involved in stress protection (CAMTA5, JAR1, CBL9) and photosynthesis 
(NDHG, CCB3) (Table 5.1., 5.2.; Additional file 1) was noteworthy.
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Fig. 5.4. Overlap of the up-regulated (A, C) 
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Table 5.1. Summary of the specific differentially expressed genes after 14DAT in the comparison A25/A6  
in leaves subjected to control conditions. It is represented both the up (FC>1) and down-regulated genes 
(FC<1), as well as the fold change (FC) and the adjusted P-value obtained for each gene (significant 
differences were considered when P<0.05). Genes without abbreviation are represented with “-“.

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

DNA-directed RNA polymerase subunit beta 
(Protein of unknown function. DUF642)

- 3.1 8.80E-03 CA01g20890 AT3G08030

Pectin lyase-like superfamily protein - 2.3 6.00E-03 CA00g70080 AT3G07820

Expansin A13 EXPA13 2.3 0.05 CA04g04060 AT3G03220

Rubisco methyltransferase family protein - 1.9 9.18E-03 CA08g02430 AT1G24610

Plant invertase/pectin methylesterase 
inhibitor superfamily protein

PMEI13 1.9 0.04 CA03g15820 AT5G62360

cation/hydrogen exchanger 14 CHX14 1.4 0.02 CA06g25650 AT1G06970

Tubulin beta 8 TUB8 1.4 0.02 CA06g25000 AT5G23860

Peroxidase superfamily protein - 0.7 0.03 CA00g44710 AT2G37130

GDSL-like Lipase/Acylhydrolase  
superfamily protein

- 0.7 0.04 CA10g03820 AT5G45960

Eceriferum 1 CER1 0.7 0.02 CA01g27070 AT1G02205

Photosystem I assembly protein YCF3 0.6 0.01 CA00g81520 ATCG00360

Calcineurin B-like protein 9 CBL9 0.6 0.04 CA01g33680 AT5G47100

O-acyltransferase (WSD1-like) family protein WSD6 0.6 0.02 CA00g64820 AT3G49210

Cytochrome P450. family 86. subfamily A. 
polypeptide 8

CYP86A8 0.6 0.04 CA08g07320 AT2G45970

Beta-amylase 5 BAM5 0.6 0.02 CA07g12430 AT4G15210

Rubisco methyltransferase family protein LSMT-L 0.5 0.01 CA11g04070 AT1G14030

Cellulose synthase family protein CEV1 0.5 0.01 CA01g20250 AT5G05170

Pectin lyase-like superfamily protein - 0.5 0.03 CA09g01850 AT3G53190

Jasmonate resistant 1 JAR1 0.4 1.45E-03 CA08g08190 AT2G46370

Calmodulin-binding transcription activator 5 CAMTA5 0.3 1.46E-03 CA01g14110 AT4G16150

Section 5.3. Results
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Table 5.2. Summary of the common differentially expressed genes after 14DAT in the comparison A25/A6 in leaves subjected to control and salt stress 
conditions. It is represented both the up (FC>1) and down-regulated genes (FC<1), as well as the fold change (FC) and the adjusted P-value obtained for 
each gene (significant differences were considered when P<0.05). Genes without abbreviation are represented with “-“.

Full name Short name Control NaCl C. annuum code A. thaliana code

FC P-value FC P-value

Cell division control 2 CDC2 13.6 9.57E-05 6.9 1.15E-03 CA12g18420 AT3G48750

Xylulose kinase-1 XK-1 11.5 6.96E-06 11.0 1.48E-05 CA12g08890 AT2G21370

Sodium Bile acid symporter family BASS1 7.1 7.34E-03 22.0 2.28E-04 CA09g06260 AT1G78560

SNF1-related protein kinase 2.10 SnRK2.10 3.6 3.20E-04 4.0 1.78E-04 CA08g14400 AT1G60940

Pectin methylesterase 1 PME1 2.5 3.37E-05 2.7 2.15E-05 CA03g36990 AT1G53840

Early-responsive to dehydration stress protein (ERD4) ERD4 2.4 5.47E-04 2.0 4.87E-03 CA08g02700 AT1G30360

Photosystem II subunit P-1 PSBP-1 2.1 1.34E-04 2.3 4.80E-05 CA07g07930 AT1G06680

3-ketoacyl-acyl carrier protein synthase I KASI 2.0 0.02 4.2 1.49E-04 CA01g00840 AT5G46290

3-ketoacyl-acyl carrier protein synthase I KASI 2.0 0.02 4.2 1.49E-04 CA01g00830 AT5G46290

Cellulase 5 CEL5 1.7 3.86E-03 2.0 4.59E-04 CA11g09950 AT1G22880

Integrase-type DNA-binding superfamily protein TINY2 1.7 3.86E-03 2.0 4.59E-04 CA08g04820 AT5G11590

Long-chain acyl-CoA synthetase 2 LACS2 1.6 3.86E-03 1.9 6.64E-04 CA08g18140 AT1G49430

Cellulose synthase like E1 CSLE1 1.5 0.02 1.5 0.02 CA05g16620 AT1G55850

ERD (early-responsive to dehydration stress)  
family protein

- 0.7 0.03 0.7 0.03 CA06g26780 AT4G02900

Peroxidase 71 PRX71 0.6 4.03E-04 0.6 2.18E-04 CA12g06550 AT5G64120

Peroxidase 71 PRX71 0.5 1.49E-03 0.7 0.04 CA12g06580 AT5G64120

Eceriferum 1 CER1 0.5 0.03 0.5 0.05 CA01g19130 AT1G02205

Peroxidase 66 PRX66 0.4 1.25E-04 0.6 0.01 CA03g16810 AT5G51890

Xyloglucan endotransglucosylase/hydrolase 7 XTH7 0.3 1.13E-05 0.4 3.30E-05 CA02g24640 AT4G37800

NADH:ubiquinone/plastoquinone oxidoreductase, chain 6 NDHG 0.3 1.05E-03 0.4 9.44E-03 CA08g09370 ATCG01080

Cofactor assembly, complex C (B6F) CCB3 0.1 6.96E-06 0.1 2.04E-05 CA02g03840 AT5G36120
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The response of each accession to salt stress (NaCl/Control) was very different as only 
13 up- and 3 down-regulated genes were commonly expressed (e.g. CSD1, MIOX1) 
(Fig. 5.4.C, D). In relation to A25 accession 78 and 31 genes were specifically expressed 
(Fig. 5.4.C, D). The genes related to defence against stress (JAR1, CAMTA5, CBL9, 
HAB1), the cell wall (MIOX5, EXLB1), polyamine biosynthesis (SPDS3), photoprotec-
tion (FIB1A) and starch degradation (BAM1) were up-regulated (Table 5.3.; Additional 
file 2). Conversely, the photosynthesis-related genes (PSAG, PSAO, PORA, CYP38) and 
a phosphatase PP2C related to ABA signalling (HAI3) were significantly repressed. For 
the A6 accession, 33 and 25 specific up- and down-regulated genes were respectively 
found (Fig. 5.4.C, D), in which the genes related to cell expansion (EXPA4), photosyn-
thesis (PSBP-1, TROL, PSAE-2) and starch degradation (BAM5) were down-regulated 
(Table 5.4.; Additional file 2). As a result of all this, the observed transcriptomic re-
sponse to salt stress was more robust in our tolerant accession.

We also analysed the A25 transcriptome compared to A6 under salt stress condi-
tions. The comparison revealed 95 up- and 107 down-regulated genes, which were 
also differentially expressed under the control conditions (Fig. 5.4.A, B). However, A25 
specifically showed for the stress conditions that 53 genes were up- and 40 genes 
were down-regulated. (Fig. 5.4.A, B). The genes related to chaperones (J8, TTA1), 
photosynthesis (CcdA), ion homeostasis (OCT4, PHT1;4; TIL), cell expansion (EXPA4), 
flavonoid biosynthesis (TT4) and ABA signalling (SnrK2.5) were up-regulated, while 
the  genes involved in photosynthesis (PPD1, PORA) and wax biosynthesis (CER1) were 
down-regulated (Table 5.5.; Additional file 1). 

Section 5.3. Results
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Table 5.3. Summary of the common differentially expressed genes after 14DAT in the comparison NaCl/
Control in leaves in the accession A25. It is represented both the up (FC>1) and down-regulated genes 
(FC<1), as well as the fold change (FC) and the adjusted P-value obtained for each gene (significant 
differences were considered when P<0.05). 

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Expansin-like B1 EXLB1 6.1 4.10E-02 CA01g06350 AT4G17030

Calmodulin-binding transcription activator 5 CAMTA5 4.3 7.05E-03 CA01g14110 AT4G16150

Beta-amylase 1 BAM1 2.7 0.05 CA03g02770 AT3G23920

Calcineurin B-like protein 9 CBL9 2.7 2.25E-03 CA01g33680 AT5G47100

Hypersensitive to ABA1 HAB1 2.3 0.02 CA08g03850 AT1G72770

Jasmonate resistant 1 JAR1 2.1 0.01 CA08g08190 AT2G46370

Myo-inositol oxygenase 5 MIOX5 2.0 0.04 CA12g20180 AT5G56640

Fibrillin 1A FIB1A 1.7 0.04 CA02g18750 AT4G04020

Spermidine synthase 3 SPDS3 1.6 0.05 CA03g19440 AT5G53120

Highly ABA-induced PP2C protein 3 HAI3 0.7 0.04 CA06g24830 AT2G29380

Cyclophilin 38 CYP38 0.5 0.05 CA02g29500 AT3G01480

Photosystem I subunit G PSAG 0.5 0.02 CA07g20940 AT1G55670

Photosystem I subunit O PSAO 0.4 0.04 CA06g22830 AT1G08380

Protochlorophyllide oxidoreductase A PORA 0.1 0.04 CA10g00480 AT5G54190

Table 5.4. Summary of the common differentially expressed genes after 14DAT in the comparison NaCl/
Control in leaves in the accession A6. It is represented both the up (FC>1) and down-regulated genes 
(FC<1), as well as the fold change (FC) and the adjusted P-value obtained for each gene (significant 
differences were considered when P<0.05). 

Full name Short name FC P-value C. annuum 
code

A. thaliana 
code

Cellulose synthase-like D3 CSLD3 3.9 6.06E-03 CA01g07920 AT3G03050

Expansin A4 EXPA4 0.7 0.04 CA02g18410 AT2G39700

Beta-amylase 5 BAM5 0.7 0.03 CA07g12420 AT4G15210

Photosystem II subunit P-1 PSBP-1 0.7 0.04 CA07g07930 AT1G06680

Thylakoid rhodanese-like protein TROL 0.5 0.04 CA08g08250 AT4G01050

Photosystem I subunit E-2 PSAE-2 0.5 0.04 CA06g28140 AT2G20260

Beta-amylase 5 BAM5 0.5 6.63E-03 CA07g12430 AT4G15210
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Table 5.5. Summary of the specific differentially expressed genes after 14DAT in the comparison A25/
A6 in leaves subjected to salt stress conditions. It is represented both the up (FC>1) and down-regulated 
genes (FC<1), as well as the fold change (FC) and the adjusted P-value obtained for each gene (significant 
differences were considered when P<0.05). 

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Temperature-induced lipocalin TIL 3.39 1.01E-03 CA07g02210 AT5G58070

Chaperone DnaJ-domain superfamily 
protein

J8 2.7 3.92E-03 CA00g87730 AT1G80920

Chalcone and stilbene synthase family 
protein

TT4 2.4 0.03 CA05g17040 AT5G13930

Organic cation/carnitine transporter4 OCT4 2.18 5.81E-03 CA07g18590 AT3G20660

Temperature-induced lipocalin TIL 1.87 0.03 CA09g18430 AT5G58070

Class I heat shock protein, putative 
(DUF1423)/ Titania 1

TTA1 1.7 7.81E-03 CA04g04530 AT1G14740

SNF1-related protein kinase 2.5 SnRK2.5 1.5 0.04 CA12g16870 AT5G63650

Expansin A4 EXPA4 1.42 0.02 CA02g18410 AT2G39700

Cytochrome c biogenesis protein family CcdA 1.42 0.04 CA07g18200 AT5G54290

Phosphate transporter 1;4 PHT1;4 1.4 0.04 CA03g05830 AT2G38940

Photosystem II reaction center PsbP 
family protein

PPD1 0.69 0.04 CA01g31620 AT4G15510

Eceriferum 1 CER1 0.69 0.01 CA00g87940 AT1G02205

Protochlorophyllide oxidoreductase A PORA 0.15 0.02 CA10g00480 AT5G54190

Section 5.3. Results
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5.4. Discussion

In this work, we analysed gene expression in two pepper accessions, one tolerant (A25) 
and another sensitive (A6), which displayed different growth and behaviour under salt 
stress conditions [11, 23]. Several sections below explain the main processes affected 
by this complex gene regulation network in response to salinity stress. 

5.4.1. Hormonal Signalling
Hormone signalling and biosynthesis have been considered an essential point of the 
regulation of plant tolerance or susceptibility [24]. Accordingly, our results uncover 
many of the genes involved in jasmonates (JAs) and abscisic acid (ABA) synthesis, 
degradation or signalling that could explain the behaviour of the analysed accessions. 

Jasmonates are key elements in the regulation of a wide range of processes when 
different abiotic stresses are present [25–27]. However, they need to be conjugated 
with a series of compounds to be active [28].  We found that gene jasmonate resistant 
1 (JAR1) was up-regulated when salt stress and control were compared in the A25 
accession, but it was absent in A6. This gene catalyses the formation of an active jas-
monyl-isoleucine (JA-Ile) conjugate. Several authors have demonstrated by external 
applications that JAs improve the activity of different antioxidant enzymes, growth and 
development, photosynthetic activity and Na+ homeostasis [25, 29, 30]. 

Hormone ABA is well-known to play a central role in tolerance to different abiotic 
stresses as it performs a wide variety of functions in plant growth and development, it 
regulates plant water balance by stomata opening, and it plays a crucial role in osmotic 
stress tolerance [31]. Increasing ABA concentration and signalling are wide responses 
of the tolerance described by several authors, which favours stomata closure and, 
thus, avoids excess transpiration. However, this fact also compromises plant growth 
as it diminishes photosynthetic activity [24, 32]. In our experiment, we found several 
DEGs in A25 described as regulators of ABA, or are regulated by ABA signalling (HAB1, 
ERD4, CAMTA5, Tiny2, CBL9, Snrk2.5, Snrk2.10, HAI3) and, thus, play a central role in 
controlling tolerance.

Of all the ABA-related genes found in A25, one of the most relevant ones was the 
up-regulated gene hypersensitive to ABA1 (HAB1). HAB1 encodes a functional type 2C 
protein phosphatase (PP2C) and has been reported as a positive or negative regulator 
of ABA signalling, depending on the splice variant [33, 34]. Overexpression of this gene 
has been reported, in fact, that leads to a minor or major ABA sensitivity, modifying 
stomata opening and gene expression [34, 35].

A family of transcription factors, which has been reported to be regulated by 
ABA and plays an important role in stress tolerance, is the Calmodulin-binding tran-
scription activators family (CAMTA) [36]. It has been demonstrated that the CAMTA 
family can bind to the promoters of different members of the dehydration-responsive- 
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element-binding (DREB) transcription factors family and modulate the stress response 
[37]. In our case, we found the up-regulation of CAMTA5 genes and DREB mem-
ber TINY2 in the A25 accession, which may indicate that both genes enhanced the 
response to salt stress by improving growth, development, the expression of stress-re-
sponsive genes or ABA-mediated stomatal closure [38–41].

5.4.2. Biomass and Cell Growth
Salt stress negatively affects cell growth and plant biomass. However, greater biomass 
conservation is considered a sign of tolerance [42–45]. In this study, and at 14DAT, a 
better maintenance of root and aerial biomass was found in A25 compared to the A6 
accession under the salt stress conditions. Biomass preservation is usually associated 
with the differential expression of a wide variety of genes related to cell growth and 
division, some of which were identified in this experiment. One of these genes is an 
ABA-related gene called ERD4 (early-responsive to dehydration 4), which was up-reg-
ulated in the A25/A6 comparison under both the control and salt stress conditions. 
This gen has been described in the bibliography as being overexpressed in tolerant 
transgenic A. thaliana plants when salt is added [46].

Proper progress through the cell division cycle is also very important for correct 
growth. We found an up-regulated gene in both treatments in the A25/A6 comparison, 
called cell division control 2 (CDC2), which regulates the G1/S and G2/M transitions 
in mitosis [47]. It has been demonstrated that abiotic stresses, such as drought, can 
negatively affect CDC2 activity [48]. As the expression in the A25 accession was 6.91-
fold higher in salt stress, cell division rhythm improved.

Cell growth is also determined by cell expansion, which may be restricted by salt 
stress [49]. An important family of genes related to this function is expansins, which 
are responsible for the non-enzymatically loosening and extension of plant cell walls 
[50]. The analysis of the expression of these genes is crucial to determine how stress 
affects plant growth. An increased expression of the expansin genes was found in the 
A25 accession under salt stress compared to the control or the A6 accession. This 
finding suggests that A25 improved cell wall expansion and turgor, which may lead to 
better growth and development, as other authors have already demonstrated [51, 52].

5.4.3. Starch Degradation
Abiotic stresses may also affect starch content as it may be remobilised to release 
energy, sugars, carbon and derived metabolites when photosynthesis is limited [53]. 
Soluble sugars may interact with hormones, genes and proteins, especially those relat-
ed to photosynthetic metabolism, by regulating diverse pathways [54]. Consequently, 
growth and development are highly dependent on plant efficiency by metabolising 
starch. In this study, β-amylase 1 (BAM1) was found to be up-regulated only under 
the salt stress conditions in the A25 accession. Under osmotic and salt stress, several 
authors have demonstrated that this chloroplastic gene is responsible for transitory 
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starch degradation in guard and mesophyll cells of mature leaves [55, 56], which sug-
gests similar roles in A25. 

5.4.4. Ion Homeostasis
When plants come into contact with salt, it is crucial to maintain ion homeostasis to 
avoid toxic accumulation. Plants cope with this situation by different mechanisms 
that can contribute to salt tolerance, some of which are very well documented in the 
bibliography [8, 57].

One of the most important and abundant cations in plants cells is K+, which de-
creases under salt stress conditions because of replacement with Na+. So maintaining 
the K+/Na+ ratio plays a very important role in salt stress tolerance and is considered 
a biomarker [8, 15]. The enhanced K+ homeostasis in the A25 accession in both or-
gans would seem to indicate that A25 possessed some mechanism to keep K+ inside 
cells; one possible candidate that could explain it is AKT1, a passive transporter that 
specifically introduces K+ into root and mesophyll cells [58, 59]. Thus we detected 
the up-regulation of the negative regulator of ABA signalling CBL9 (calcineurin B-like 
protein 9) and the down-regulation of positive regulator HAI3 (Highly ABA-Induced 
3) in the A25 accession under salt stress conditions [60]. These genes play opposite 
roles in the regulation of AKT1 as CBL9 is a positive regulator [61], and HAI3 could be 
a repressor as this gene presents a high homology to HAI2 [62, 63].

The accumulation of Cl- ions and especially Na+ in pepper plant tissues, performs 
diverse physiological functions [14, 15]. When Na+ reaches toxic levels, plants may lower 
the influx into cells and improve efflux and compartmentalisation in other organelles 
where ions are not toxic [6]. In our experiment, we found that Na+ was accumulated 
in the roots of both accessions after 14DAT. As this accumulation was especially pro-
nounced in A25, and root biomass had improved compared to the A6 seedlings, this 
effect could be associated with compartmentalisation in vacuoles or other organelles, 
as other authors have already demonstrated [3, 64]. Despite the negative effect on 
plant growth deriving from its toxic effect, accumulation of ions under salinity can 
help to maintain the turgor pressure of plants [14, 65]. The adjustment of the osmotic 
potential through inorganic ion uptake implies a much lower energy cost than that 
conferred by the organic molecules synthesised in cells [66].

With leaves, Na+ was equally accumulated in both accessions, but biomass improved 
only in A25, a cue that Na+ management was diverse in both pepper accessions. In line 
with this, we noticed that ion transport in leaves was closely linked to the protection of 
chloroplasts in A25 as we found some related genes. One of these genes was BASS1 
(bile acid/sodium symporter 1), which was up-regulated in the control and salt stress 
treatments in the A25/A6 comparison. This gene, which encodes a symporter of Na+ 
and pantoate, a precursor of Vitamin B5, played a double role in A25: on the one hand, 
it conferred protection from Na+ toxicity in chloroplasts to conserve photosynthesis 
responses; on the other hand, the pantothenate cycle was promoted [67, 68]. We also 
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found the gene TIL (temperature-induced lipocalin), which was up-regulated in A25 
compared to A6 under salinity stress, which can avoid excess Na+ and Cl- accumulation 
in chloroplasts by protecting chlorophyll b degradation in this way [69]. 

An up-regulated gene found in the A25/A6 comparison under the salt stress condi-
tions was OCT4 (organic cation/carnitine transporter 4), which lowered the concentration 
of toxic Na+ in the cytoplasm by accumulating in vacuoles. This family of genes is respon-
sible for the symport of Na+ and organic molecules like carnitine [70, 71]. So it would play 
an important role in osmotic balance through ionic homeostasis in our tolerant accession.

5.4.5. Photoprotection
When plants come into contact with salt stress, one of the primary affected processes 
is photosynthesis. The photosynthetic parameters herein analysed reflected that only 
A25 maintained them at 7DAT compared to the control conditions, although both ac-
cessions were equally affected by the end of the experiment. These reasons suggest 
that A25 kept the plant’s photosynthetic capacity levels high for longer times [72]. In 
addition, some genes which possessed functions to protect photosynthesis were dif-
ferentially expressed in both accessions. In line with this, we found the up-regulation 
of ABA-related gene fibrillin 1A (FIB1A) in the A25 NaCl/control, which suggests that 
fibrillin was accumulated in chloroplasts and, consequently, improved protection and 
efficiency of PSII [73]. Together with FIB1A, other previously explained genes contrib-
uted to photoprotection, such as TIL, BASS1 or JAR1.

5.4.6. ROS Scavenging
When photosynthesis is disturbed by salt stress, a series of secondary effects is 
detected, such as oxidative stress, which may lead reactive oxygen species (ROS) to 
toxic levels [74]. The ability to reduce the quantity of all these molecules by efficient 
ROS-scavenging mechanisms is vital for acquiring tolerance. In this study, we found 
up-regulated antioxidant mechanisms in both accessions, some of which were specific 
of A25. Of them, one of the most relevant ones was the up-regulation of gene SPDS3 
(spermidine synthase 3), which catalyses the formation of spermidine, a polyamine that 
improves multiple processes in plants, such as ROS scavenging, the K+/Na+ ratio and 
PSII efficiency by protecting thylakoid membranes and chlorophyll content [75–77]. To 
support the role of polyamines in salt stress and ROS homeostasis, we also found an-
other up-regulated gene in A25, called sucrose non-fermenting 1-related protein kinase 
2-10 (SnRK2.10), which regulates the gene expression, protein level and/or enzymatic 
activity of several ROS-related enzymes, and is also involved in H2O2 accumulation and 
ascorbate cycle regulation in A. thaliana [78]. 

5.4.7. Conclusions
After analysing the physiological parameters and DEGs of both accessions, we conclude 
that different tolerance strategies simultaneously took place in the A25 accession after 
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exposure to salt stress, with ABA-signalling being a pivotal point of regulation, and an 
important network was established between different genes to reveal the complex 
response induced by salinity. These results provide valuable results about salt stress 
mechanisms of an important crop like pepper. It is noteworthy that we also found 
several genes that probably contributed to tolerance, but their functions have not yet 
been discovered. Therefore, an in-depth study into all these genes could be interesting 
to conduct future research.
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5.5. Methods

5.5.1. Plant Material
Based on previous studies [11, 23], two accessions of C. annuum were selected de-
pending on their grade of tolerance to salt stress: code A6 was sensitive and code 
A25 was tolerant. 

Seeds were sown in 104-hole seed trays filled with enriched substrate for germi-
nation. When plants had 6-8 real leaves, they were placed in 5-litre polyethylene pots 
covered with aluminium sheet (roots were previously cleaned of substrate). Pots were 
filled with a nutrient solution containing (in mmol L-1) 12.3 NO3

-, 1.02 H2PO4, 2.45 SO4
2-, 

3,24 Cl-, 5.05 K+, 4.23 Ca2+, 2.55 Mg2+ and micronutrients (15.8 µM Fe2+, 10.3 µM Mn2+, 
4.2 µM Zn2+, 43.5 µM B+ and 1.4 µM Cu2+), which was artificially aerated. The electrical 
conductivity (EC) and pH of this nutrient solution were 1.7 dS m−1 and 6.5, respectively. 
The nutrient solution was added daily to compensate for absorption. After 14 days of 
plant acclimation, salt stress was induced by the addition of NaCl 70 mM by replacing 
the plant pot solution to obtain an EC of 8.5 dS m−1 and a pH of 6.1. The layout design 
was completely randomised with 10 plants per accession and treatment.

During the culture and experiment, plants were grown in a greenhouse at the Pol-
ytechnic University of Valencia (UPV, Valencia, Spain) under natural light conditions 
(800-1,000 µmol m-2 s-1), with a temperature range of 18-25°C and 50-70% relative 
humidity (RH).

All the parameters were measured 14 days after stress induction, except in the 
photosynthetic parameters, where measurements were taken after 7 days (7DAT) and 
14 days (14DAT) of treatment. 

5.5.2. Biomass Determination
Six replications per accession and treatment were harvested at the end of the exper-
iment (14DAT) for the biomass parameters. Aerial organs and roots were separated 
and weighed (FW). Immediately afterwards, they were dried by placing them in an 
oven at 65°C for 72 h. After this time, everything was weighed again to determine dry 
weight (DW).

5.5.3. Gas Exchange Measurements
CO2 fixation rate (AN, µmol CO2 m-2 s-1), stomatal conductance to water vapour (gs, mol 
H2O m-2 s-1), substomatal CO2 concentration (Ci, µmol CO2 mol -1 air) and transpiration 
rate (E, mmol H2O m-2 s-1) were measured with a portable LI-COR 6400 (Li-Cor Inc.) 
infrared gas analyser at 7DAT and 14DAT. Measurements were taken under saturating 
light conditions (1,000 µmol quanta m-2 s-1), reference CO2 of 400 µmol CO2 mol-1, on 
fully expanded leaves (3rd-4th leaf from the apex) at a cuvette temperature of 24°C and 
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75% RH. Measurements were taken from 09:00 h to 12:00 h (UT+01:00). The layout 
was randomised with five replications per accession and treatment.

5.5.4. Ion Determination
Six replications per accession and treatment of leaves and roots were collected and 
dried at 65°C for 72 h at the end of the experiment (14DAT). Dried samples were ground 
with a mortar and used for the ionic analysis.

With Na+ and K+, samples (0.2 g for leaves, 0.1 g for roots) were burnt in a muffle 
furnace for 12 h at 550°C. Ions were extracted with 2% nitric acid in an ultrasonic bath 
for 30 min at 40°C. Na+ and K+ concentrations were measured by an ICP emission 
spectrometry (iCAP 6000, Thermo Scientific. Cambridge, England, UK). 

The chloride concentration (Cl-) in the dry plant material (0.125 g) was extracted 
with 0.1 N HNO3 in 10% (v/v) acetic acid and was determined by potentiometric titration 
with AgNO3 in a chloride analyser (Sherwood, MKII 926).

5.5.5. Extraction and Quality Measurement of Total RNA
Three replications of leaves per treatment and accession were frozen in liquid nitrogen 
immediately after harvest and conserved at -80°C at 14DAT. At the time of RNA ex-
traction, samples were ground to a fine powder with a mortar and liquid nitrogen. Total 
RNA was extracted using the MACHEREY-NAGEL NucleoSpin® RNA kit. Approximately 
0.1 g was weighed, and RNA was obtained following the protocol “RNA purification from 
cultured cells and tissue” by the producer; DNase treatment was used to remove DNA 
from samples and was acquired from the same producer. Total RNA was eluted in 50 
µL of RNAse-free water and was immediately aliquoted and conserved at -80°C. The 
total RNA samples with 260/280 and 260/230 ratios > 2 (measured by a NanoDrop 
ND1000) and RNA integrity (RIN) value > 7.0 (measured by the Agilent 5067-1511 Bi-
oanalyzer 2100 System) were used for microarray hybridisation.

5.5.6. Microarray Hybridisation 
The RNA extracted from the leaf samples was prepared for microarray hybridisation at 
the Genomic Service of the IBMCP Institute (Instituto de Biología Molecular y Celular 
de Plantas) in Valencia (Spain) by Agilent technologies. cDNA synthesis and labelling 
on Agilent Tomato microarrays were carried out using the Agilent One Colour RNA 
Spike-in Kit and the Agilent Low Input Quick Amp Labeling Kit. Microarray hybridisation 
and washing were next performed with the Agilent Gene Expression Hybridization kit 
and Gene Expression Wash Buffers. Agilent microarray 4*44k (Agilent G2519F) was 
selected for hybridisation (reference AMADID 22270 Tomato). Microarray scanning was 
done with a GenePix 4000B (Axon Molecular Devices, Sunnyvale, USA) and data were 
extracted by the Agilent Feature Extraction software, version 9.5.1. 
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5.5.7. Microarray Data Analysis
The obtained spot intensity values were analysed on the Babelomics 5 platform [79]. 
Firstly, raw data were normalised, which consisted in a background correction, resca-
ling all the microarrays to a unique final distribution and reshaping data to a suitable 
distribution. At this point, data were transformed from tomato probes to pepper and 
Arabidopsis thaliana genes by the Bioinformatics service at the IBMCP Institute in Va-
lencia (Spain) to then take the average among all the probes of the same pepper gene. 
Raw data were then separated into categories (accession and treatment) and analysed 
by a class comparison test. All the differentially expressed genes (DEGs) of the class 
comparison, both up- and down-regulated, were described as their orthologue of A. 
thaliana by the database of Araport 11.

5.5.8. Statistical Analysis
The experiment layout was a completely randomised design. The data from the bi-
omass, gas exchange measurements and nutritional analyses were subjected to a 
two-way ANOVA (Statgraphics Centurion XVI for Windows, Statistical Graphics Corp.), 
where both accession and treatment were considered to be the factors of the analysis. 
With the photosynthesis parameters, 7DAT and 14DAT were analysed independently. As 
the interaction between both factors was significant, a one-way ANOVA was performed 
by joining both factors of the two-way ANOVA. Ulterior comparisons were made using 
Fisher’s least significance difference (LSD) test at P<0.05 with the same software.

All the statistical analyses of the microarrays were done using the Babelomics plat-
form. Different treatments of the same accession (Salt/Control) and distinct accessions 
of the same treatment (A25/A6) were compared by a Limma test to compare genes, 
and a Benjamini and Hochberg test was run to reduce the false discovery rate. The 
adjusted P-value was selected at 0.05.
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5.7. Supplementary Information

Additional file 1. Table S1-S6. Total differentially expressed genes when A25 and A6 
accessions are compared, in both control and salt stress conditions.

Table S1. Specific differentially expressed genes after 14DAT in the comparison A25/A6 in leaves subjected 
to control conditions. It is represented only up-regulated genes (FC>1). It is represented the fold change 
(FC) and the adjusted P-value obtained for each gene (significant differences were considered when 
P<0.05). Genes without abbreviation are represented with “-“.

Full name Short 
name

FC P-value C. annuum  
code

A. thaliana  
code

C2H2 and C2HC zinc fingers  
superfamily protein

TT1 5.9 6.94E-03 CA12g20170 AT1G34790

ChaC-like family protein - 4.6 8.73E-04 CA12g18980 AT5G26220

DNA-directed RNA polymerase subunit 
beta (Protein of unknown function. 
DUF642)

- 3.1 8.80E-03 CA01g20890 AT3G08030

Pathogenesis-related thaumatin 
superfamily protein

- 2.8 0.01 CA03g32740 AT1G73620

Phosphate-responsive 1 family protein EXO 2.7 5.22E-03 CA00g36520 AT4G08950

Mob1/phocein family protein MOB1-like 2.6 0.02 CA01g08350 AT5G45550

Major facilitator superfamily protein - 2.6 0.03 CA03g02690 AT2G33280

Basic pathogenesis-related protein 1 PRB1 2.4 3.44E-03 CA01g31060 AT2G14580

Ribosomal protein L12/ ATP-dependent 
Clp protease adaptor protein ClpS  
family protein

- 2.3 7.10E-04 CA09g00270 AT3G06040

Pectin lyase-like superfamily protein - 2.3 6.00E-03 CA00g70080 AT3G07820

Expansin A13 EXPA13 2.3 0.05 CA04g04060 AT3G03220

Peptidemethionine sulfoxide reductase 1 PMSR1 2.1 5.28E-03 CA03g25350 AT5G61640

UDP-N-acetylglucosamine (UAA) 
transporter family

- 2.1 0.03 CA01g19370 AT1G12600

Pre-mRNA-processing protein 40A PRP40A 2.0 0.04 CA00g84420 AT1G44910

Sieve element occlusion  
amino-terminus protein

SEOR1 2.0 0.05 CA11g08750 AT3G01680

Formate dehydrogenase FDH 2.0 0.03 CA02g29530 AT5G14780

Serine racemase SR 2.0 0.01 CA01g34140 AT4G11640

Rubisco methyltransferase family protein - 1.9 9.18E-03 CA08g02430 AT1G24610

Plant invertase/pectin methylesterase 
inhibitor superfamily protein

PMEI13 1.9 0.04 CA03g15820 AT5G62360

Alpha-galactosidase 1 AGAL1 1.8 4.88E-03 CA05g06220 AT5G08380

Section 5.7. Supplementary information. Table S1
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Full name Short 
name

FC P-value C. annuum  
code

A. thaliana  
code

Heavy metal transport/detoxification 
superfamily protein

- 1.8 0.01 CA03g22080 AT5G50740

Chloroplast RNA-binding protein 33 CP33 1.8 0.04 CA00g33110 AT3G52380

NADH dehydrogenase 3 NAD3 1.8 0.03 CA07g05040 ATMG00990

UDP-Glycosyltransferase  
superfamily protein

- 1.8 0.02 CA05g17400 AT4G14090

Ubiquitin-conjugating enzyme19 UBC19 1.8 0.05 CA11g10540 AT3G20060

Lsd one like 1 LOL1 1.8 0.04 CA00g77830 AT1G32540

Glycosyl hydrolase family protein - 1.8 4.31E-03 CA11g15500 AT5G20950

C2H2-like zinc finger protein - 1.8 0.02 CA11g19180 AT3G45260

PTEN 2 PEN2 1.7 0.03 CA02g14740 AT3G19420

WEB family protein (DUF827) - 1.7 0.05 CA06g04300 AT2G40480

Zinc finger (C3HC4-type RING finger) 
family protein

- 1.7 0.02 CA06g09820 AT3G54780

Glyoxal oxidase-related protein - 1.7 0.04 CA07g00290 AT3G57620

Peptide transporter 1 PTR1 1.7 0.02 CA00g00870 AT3G54140

ELM2 domain protein - 1.7 0.02 CA06g18500 AT1G26580

Phloem protein 2-B10 PP2-B10 1.7 0.04 CA05g19940 AT2G02360

ChaC-like family protein - 1.7 1.27E-03 CA01g30410 AT5G26220

BUB1-related (BUB1: budding uninhibited 
by benzymidazol 1)

BUBR1 1.7 0.03 CA04g23550 AT2G33560

RNA polymerase Rpb7 N-terminal 
domain-containing protein

- 1.7 0.03 CA07g01190 AT1G06790

Yeast autophagy 18 B-like protein ATG18B 1.7 0.01 CA07g01370 AT4G30510

Homocysteine methyltransferase 2 HMT2 1.7 7.66E-03 CA03g07080 AT3G63250

Acyl carrier protein 4 ACP4 1.7 0.02 CA03g31150 AT4G25050

FASCICLIN-like arabinogalactan 1 FLA1 1.7 0.04 CA07g20370 AT5G55730

Uroporphyrinogen decarboxylase HEME1 1.7 0.03 CA10g01670 AT3G14930

Mitochondrial import inner membrane 
translocase subunit Tim17/Tim22/Tim23 
family protein

MEE67 1.6 0.03 CA11g16140 AT3G10110

Hydroxyproline-rich glycoprotein  
family protein

- 1.6 3.21E-03 CA00g67160 AT2G18910

Basic helix-loop-helix (bHLH) DNA-
binding superfamily protein

- 1.6 0.03 CA02g24530 AT2G22760

Protein kinase superfamily protein - 1.6 3.58E-03 CA02g18990 AT5G38260

NB-ARC domain-containing disease 
resistance protein

RPP13 1.6 9.47E-03 CA09g07300 AT3G46530
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Full name Short 
name

FC P-value C. annuum  
code

A. thaliana  
code

Glutathione S-transferase THETA 1 GSTT1 1.6 2.93E-03 CA01g02960 AT5G41210

RNA methyltransferase family protein - 1.6 0.02 CA07g21530 AT5G64150

Histone superfamily protein HTB1 1.6 0.02 CA03g10400 AT1G07790

C3H4 type zinc finger protein - 1.6 0.02 CA11g19800 AT4G32600

Concanavalin A-like lectin protein kinase 
family protein

- 1.6 0.02 CA03g00560 AT5G10530

S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein

- 1.6 0.02 CA01g23950 AT1G26850

Early nodulin-like protein 17 ENODL17 1.6 0.03 CA02g27870 AT5G15350

Tetratricopeptide repeat (TPR)-like 
superfamily protein

EMB3101 1.6 0.05 CA07g09730 AT1G05600

Subtilase family protein ARA12 1.6 0.05 CA01g03820 AT5G67360

Nucleoside diphosphate kinase 2 NDPK2 1.5 2.94E-03 CA06g20240 AT5G63310

ASF1 like histone chaperone SGA2 1.5 0.03 CA11g00080 AT1G66740

Cyclopropyl isomerase CPI1 1.5 0.02 CA12g20380 AT5G50375

Plant invertase/pectin methylesterase 
inhibitor superfamily protein

- 1.5 0.01 CA01g33230 AT5G62350

Tetratricopeptide repeat (TPR)-like 
superfamily protein

- 1.5 0.05 CA04g20670 AT3G15200

Transducin family protein / WD-40 repeat 
family protein

MSI2 1.5 0.05 CA08g19320 AT2G16780

Hypothetical protein - 1.5 0.02 CA02g25480 AT3G50370

Mitochondrial glycoprotein family protein - 1.5 0.04 CA03g32230 AT1G15870

Calcium dependent protein kinase 1 CPK1 1.5 0.02 CA12g07790 AT5G04870

MATE efflux family protein - 1.5 0.02 CA07g00340 AT5G52450

Ribosomal protein L18e/L15  
superfamily protein

- 1.5 0.05 CA06g19960 AT1G70600

Translation protein SH3-like  
family protein

- 1.5 0.04 CA10g21320 AT1G57860

Serine carboxypeptidase-like 42 scpl42 1.5 0.01 CA04g13000 AT5G42240

NAD(P)-linked oxidoreductase 
superfamily protein

ATB2 1.5 5.87E-03 CA03g04090 AT1G60710

CLK4-associating serine/ 
arginine-rich protein

- 1.5 0.05 CA02g11010 AT4G36980

Proliferating cell nuclear antigen 2 PCNA2 1.5 0.02 CA06g25030 AT2G29570

RING/U-box superfamily protein - 1.4 0.01 CA03g37160 AT3G14250

RNA-dependent RNA polymerase  
family protein

- 1.4 0.05 CA00g76620 AT2G19930

Cation/hydrogen exchanger 14 CHX14 1.4 0.02 CA06g25650 AT1G06970

Section 5.7. Supplementary information. Table S1
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Full name Short 
name

FC P-value C. annuum  
code

A. thaliana  
code

NAD(P)-linked oxidoreductase 
superfamily protein

- 1.4 0.03 CA01g31480 AT4G33670

Alpha/beta-Hydrolases  
superfamily protein

- 1.4 0.01 CA02g11330 AT5G38520

Major facilitator superfamily protein - 1.4 0.04 CA03g20620 AT5G17010

MATE efflux family protein - 1.4 0.03 CA10g01710 AT3G23550

NB-ARC domain-containing disease 
resistance protein

- 1.4 2.07E-03 CA06g00580 AT3G46730

Tubulin beta 8 TUB8 1.4 0.02 CA06g25000 AT5G23860

DNA topoisomerase, type IA, core - 1.4 0.03 CA00g58410 AT2G32000

F-box/associated interaction  
domain protein

- 1.4 0.03 CA04g18470 AT1G43005

F-box family protein - 1.4 0.02 CA00g67750 AT3G06240

Alpha/beta-Hydrolases  
superfamily protein

- 1.3 0.05 CA03g36870 AT3G14360

GDSL-like Lipase/Acylhydrolase 
superfamily protein

- 1.3 0.01 CA02g12860 AT5G45670

Zinc ion binding / nucleic acid  
binding protein

- 1.3 0.03 CA04g12090 AT2G01050

SNF7 family protein VPS2.1 1.3 9.91E-03 CA09g17000 AT2G06530

Early nodulin-like protein 9 ENODL9 1.3 0.03 CA07g19480 AT3G20570

Long-chain fatty alcohol dehydrogenase 
family protein

- 1.3 0.02 CA03g04850 AT4G28570

Alkaline-phosphatase-like family protein - 1.3 0.04 CA00g81180 AT2G22530

NB-ARC domain-containing disease 
resistance protein

- 1.3 0.04 CA01g33820 AT4G27220

Cysteine-rich RECEPTOR-like kinase CRK8 1.3 0.04 CA00g15340 AT4G23160

NAD(P)-binding Rossmann-fold 
superfamily protein

- 1.3 0.05 CA01g02470 AT4G11410

Damaged DNA binding 2 DDB2 1.3 0.01 CA00g57630 AT5G58760

Methionine aminopeptidase 1D MAP1D 1.3 0.04 CA02g25570 AT4G37040

TolB protein-like protein - 1.2 0.05 CA06g01340 AT4G01870

Glycoside hydrolase family 28 protein / 
polygalacturonase (pectinase)  
family protein

- 1.2 0.02 CA00g36190 AT2G33160

NC domain-containing  
protein-like protein

- 1.2 0.02 CA02g19070 AT3G02700

SET domain-containing protein CLF 1.2 0.04 CA00g89910 AT2G23380
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Table S2. Specific differentially expressed genes after 14DAT in the comparison A25/A6 in leaves subjected 
to control conditions. It is represented only down-regulated genes (FC<1). It is represented the fold change 
(FC) and the adjusted P-value obtained for each gene (significant differences were considered when 
P<0.05). Genes without abbreviation are represented with “-“.

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

ADP-ribosylation factor family protein TTN5 0.8 0.05 CA07g08910 AT2G18390

NB-ARC domain-containing disease 
resistance protein

RPP13 0.8 0.03 CA12g20470 AT3G46530

BTB/POZ domain with WD40/YVTN 
repeat-like protein

- 0.8 0.04 CA00g75010 AT4G30940

Glutamine-tRNA ligase, putative / 
glutaminyl-tRNA synthetase. putative / 
GlnRS

OVA9 0.8 0.05 CA11g00840 AT1G25350

Uncoupling protein 2 UCP2 0.8 0.02 CA09g10550 AT5G58970

ACT domain-containing protein ACR9 0.8 0.03 CA05g18730 AT2G39570

Receptor kinase 3 RK3 0.8 0.05 CA03g00160 AT4G21380

SKP1 interacting partner 4 SKIP4 0.8 0.04 CA08g07070 AT3G61350

C2H2-like zinc finger protein - 0.8 0.04 CA10g15040 AT3G45260

ARM repeat superfamily protein LFR 0.8 0.05 CA03g06500 AT3G22990

Phosphofructokinase family protein - 0.8 0.02 CA12g18280 AT1G76550

Tubby like protein 2 TLP2 0.8 0.04 CA04g07310 AT2G18280

BPS1-like protein - 0.8 0.04 CA08g14490 AT1G22030

ARID/BRIGHT DNA-binding  
domain-containing protein

- 0.8 0.03 CA12g15060 AT3G43240

Disease resistance protein  
(TIR-NBS-LRR class)

- 0.8 0.05 CA12g19890 AT5G17680

O-fucosyltransferase family protein - 0.8 0.04 CA00g52440 AT1G20550

Cytochrome P450. family 72, subfamily A. 
polypeptide 15

CYP72A15 0.8 0.02 CA01g32190 AT3G14690

Translocase inner membrane subunit 17-2 TIM17-2 0.8 0.05 CA05g05170 AT2G37410

Ferritin 2 FER2 0.8 0.05 CA05g15360 AT3G11050

Tobamovirus multiplication protein Cand3 0.8 0.03 CA02g11960 AT3G59090

Transmembrane protein - 0.7 0.05 CA01g21710 AT5G55570

Plastid transcriptionally active 16 PTAC16 0.7 0.04 CA06g04680 AT3G46780

UDP-glucosyl transferase 71D1 UGT71D1 0.7 0.05 CA05g18350 AT2G29730

F-box protein 2 FBX2 0.7 0.05 CA11g14780 AT5G21040

Methyltransferase - 0.7 0.04 CA08g12050 AT5G01710

Receptor kinase 3 RK3 0.7 8.59E-03 CA01g08140 AT4G21380

Section 5.7. Supplementary information. Table S2
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Terpene synthase 21 TPS21 0.7 8.59E-03 CA09g15240 AT5G23960

Translation initiation factor SUI1  
family protein

- 0.7 0.05 CA07g19530 AT1G54290

Endoplasmic reticulum oxidoreductins 1 ERO1 0.7 0.02 CA00g72080 AT1G72280

Heme binding protein - 0.7 0.05 CA01g22320 AT3G62370

Granulin repeat cysteine protease  
family protein

RD21B 0.7 0.04 CA12g16580 AT5G43060

Protein phosphatase 2C family protein - 0.7 0.02 CA04g12930 AT1G43900

Ca(2 )-dependent nuclease family protein AtCaN2 0.7 0.04 CA00g93270 AT2G40410

RNA processing FACTOR RPF1 0.7 8.59E-03 CA00g82510 AT1G12700

F-box family protein - 0.7 0.03 CA03g32370 AT5G07610

Kinase superfamily with octicosapeptide/
Phox/Bem1p domain-containing protein

- 0.7 0.03 CA07g00400 AT5G57610

Nuclear factor Y. subunit A1 NF-YA1 0.7 0.03 CA06g10300 AT5G12840

DNAse I-like superfamily protein - 0.7 0.03 CA02g28970 AT3G63240

Class II aminoacyl-tRNA and biotin 
synthetases superfamily protein

NS1 0.7 0.02 CA03g23760 AT4G17300

Zinc finger protein 2 ZFP2 0.7 0.03 CA00g69610 AT5G57520

Tetratricopeptide repeat (TPR)-like 
superfamily protein

- 0.7 0.03 CA04g09580 AT4G21065

ARM repeat superfamily protein RST1 0.7 0.04 CA02g29940 AT3G27670

Aluminium activated malate transporter 
family protein

- 0.7 0.03 CA00g64590 AT4G00910

Transducin/WD40 repeat-like  
superfamily protein

EMB2757 0.7 0.03 CA00g84410 AT4G29860

UDP-Glycosyltransferase  
superfamily protein

UGT84A2 0.7 0.04 CA09g18160 AT3G21560

PLAC8 family protein - 0.7 0.01 CA10g14920 AT2G37110

Leucine-rich repeat (LRR) family protein - 0.7 0.05 CA10g18520 AT5G21090

S-locus lectin protein kinase family 
protein

- 0.7 0.02 CA02g17410 AT1G11410

Peroxidase superfamily protein - 0.7 0.03 CA00g44710 AT2G37130

ENTH/VHS/GAT family protein - 0.7 0.02 CA08g06090 AT4G32760

Glucose-1-phosphate adenylyltransferase 
family protein

CYT1 0.7 0.03 CA03g13750 AT2G39770

GDSL-like Lipase/Acylhydrolase 
superfamily protein

- 0.7 0.04 CA10g03820 AT5G45960
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

TLD-domain containing nucleolar protein - 0.7 0.04 CA12g12170 AT4G39870

Zinc finger (C3HC4-type RING finger) 
family protein

- 0.7 0.04 CA00g95920 AT3G45560

CAAX protease self-immunity protein - 0.7 0.04 CA00g50240 AT2G35260

Phototropic-responsive NPH3  
family protein

- 0.7 0.04 CA07g12540 AT3G22104

Copia-like polyprotein/retrotransposon - 0.7 0.02 CA01g15740 AT1G21280

Polynucleotidyl transferase. ribonuclease 
H-like superfamily protein

- 0.7 0.02 CA00g25010 AT5G42965

F-box/LRR protein - 0.7 0.02 CA05g00740 AT5G63520

Transmembrane protein - 0.7 0.02 CA01g01230 AT5G60000

Splicing endonuclease 1 SEN1 0.7 0.03 CA06g23700 AT3G45590

S-adenosylmethionine synthetase 2 SAM-2 0.7 0.01 CA00g62160 AT4G01850

Nuclear factor Y, subunit A5 NF-YA5 0.7 0.02 CA12g14730 AT1G54160

Sucrose transporter 4 SUT4 0.7 0.03 CA04g17270 AT1G09960

Putative AT-hook DNA-binding family 
protein

- 0.7 0.02 CA12g15570 AT5G49700

Pyruvate orthophosphate dikinase PPDK 0.7 0.04 CA01g23570 AT4G15530

Ubiquitin-specific protease 15 UBP15 0.7 0.04 CA07g16320 AT1G17110

Ubiquitin-like superfamily protein - 0.7 0.03 CA03g02960 AT2G43210

Receptor like protein 7 RLP7 0.7 0.02 CA09g12200 AT1G47890

Phosphoenolpyruvate carboxykinase 1 PCK1 0.7 0.01 CA04g17220 AT4G37870

Alpha/beta-Hydrolases  
superfamily protein

- 0.7 0.02 CA02g05520 AT5G16120

Eceriferum 1 CER1 0.7 0.02 CA01g27070 AT1G02205

UDP-glycosyltransferase 73B4 UGT73B4 0.7 0.04 CA09g18040 AT2G15490

AP2/B3-like transcriptional factor  
family protein

VRN1 0.7 0.03 CA04g19550 AT3G18990

Fibrillin 1A FIB1A 0.7 0.04 CA02g18750 AT4G04020

RAB geranylgeranyl transferase beta 
subunit 1

RGTB1 0.7 0.02 CA03g31010 AT5G12210

C2H2-like zinc finger protein DOT5 0.7 0.03 CA00g88960 AT1G13290

Sensitivity to red light reduced  
protein (SRR1)

SRR1 0.7 0.03 CA00g43180 AT5G59560

Ankyrin repeat family protein - 0.6 0.04 CA01g32270 AT1G03670

P-loop containing nucleoside triphosphate 
hydrolases superfamily protein

- 0.6 0.03 CA06g10000 AT5G58370

Section 5.7. Supplementary information. Table S2
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

CCCH-type zinc finger protein with ARM 
repeat domain-containing protein

OXS2 0.6 4.63E-03 CA03g36600 AT2G41900

RHOMBOID-like protein 3 RBL3 0.6 0.02 CA03g16240 AT5G07250

Senescence regulator (Protein of 
unknown function. DUF584)

- 0.6 0.02 CA02g18230 AT1G11700

Homeobox 7 HB-7 0.6 0.04 CA01g00300 AT2G46680

NagB/RpiA/CoA transferase-like 
superfamily protein

- 0.6 0.03 CA12g08460 AT3G07300

Hypothetical protein (DUF810) - 0.6 0.04 CA03g04710 AT2G33420

Phytochromobilin:ferredoxin 
oxidoreductase, chloroplast / 
phytochromobilin synthase (HY2)

HY2 0.6 0.04 CA01g13000 AT3G09150

Photosystem I assembly protein YCF3 0.6 0.01 CA00g81520 ATCG00360

Cytochrome P450, family 72,  
subfamily A, polypeptide 15

CYP72A15 0.6 0.02 CA00g98060 AT3G14690

Seven in absentia of Arabidopsis 2 SINAT2 0.6 0.01 CA01g11670 AT3G58040

Eukaryotic aspartyl protease family 
protein

- 0.6 0.01 CA00g75560 AT3G20015

Concanavalin A-like lectin protein kinase 
family protein

- 0.6 0.01 CA04g04250 AT5G06740

Calcineurin B-like protein 9 CBL9 0.6 0.04 CA01g33680 AT5G47100

Nuclear factor kappa-B-binding protein - 0.6 0.01 CA02g31340 AT5G13950

Cytochrome P450, family 71, subfamily B, 
polypeptide 35

CYP71B35 0.6 0.03 CA12g05210 AT3G26310

O-acyltransferase (WSD1-like)  
family protein

WSD6 0.6 0.02 CA00g64820 AT3G49210

Terpene synthase 21 TPS21 0.6 0.02 CA12g05180 AT5G23960

Cytochrome P450, family 86, subfamily A, 
polypeptide 8

CYP86A8 0.6 0.04 CA08g07320 AT2G45970

Beta-amylase 5 BAM5 0.6 0.02 CA07g12430 AT4G15210

General regulatory factor 12 GRF12 0.6 0.04 CA10g13730 AT1G26480

Inositol monophosphatase family protein FBP 0.6 7.00E-03 CA12g11990 AT1G43670

Calcium-binding EF-hand family protein - 0.6 0.04 CA03g18530 AT4G38810

Transcription factor-like protein - 0.6 0.03 CA12g00150 AT3G14880

Germin-like protein 5 GLP5 0.6 0.04 CA08g13340 AT1G09560

Protein-tyrosine phosphatase-like, PTPLA PAS2 0.6 8.77E-03 CA05g02070 AT5G10480

Phloem protein 2-B10 PP2-B10 0.6 2.27E-04 CA12g20010 AT2G02360
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Leucine-rich repeat protein kinase  
family protein

- 0.6 0.03 CA09g17210 AT1G72460

Terpene synthase 21 TPS21 0.6 0.04 CA03g18030 AT5G23960

Endoplasmic reticulum-type  
calcium-transporting ATPase 3

ECA3 0.6 0.04 CA10g17960 AT1G10130

Sugar transporter protein 7 STP7 0.6 8.73E-04 CA03g12450 AT4G02050

Protein kinase superfamily protein NCRK 0.6 0.04 CA11g18840 AT2G28250

F-box and associated interaction 
domains-containing protein

- 0.6 0.04 CA02g11640 AT1G11620

Glycosyl hydrolase family 35 protein - 0.6 0.02 CA10g07090 AT2G16730

IBR domain-containing protein ARI8 0.6 0.03 CA08g00300 AT1G65430

Elongator complex protein - 0.6 0.04 CA02g23490 AT2G18410

Late embryogenesis abundant (LEA) 
hydroxyproline-rich glycoprotein family

- 0.6 0.01 CA01g01610 AT2G46150

Core-2/I-branching beta-1,6-N-
acetylglucosaminyltransferase  
family protein

- 0.6 0.03 CA11g00740 AT1G68390

Cytochrome P450, family 94, subfamily B, 
polypeptide 2

CYP94B2 0.6 0.02 CA02g30770 AT3G01900

Lysophosphatidyl acyltransferase 5 LPAT5 0.6 0.01 CA08g18340 AT3G18850

RING/U-box superfamily protein - 0.6 0.01 CA02g00170 AT4G30370

Homeodomain-like transcriptional 
regulator

- 0.6 0.01 CA05g15200 AT5G58900

P-loop containing nucleoside triphosphate 
hydrolases superfamily protein

KINESIN-
13A

0.6 4.39E-03 CA05g18020 AT3G16630

Zinc transporter 5 precursor ZIP5 0.6 0.03 CA10g19490 AT1G05300

D-isomer specific 2-hydroxyacid 
dehydrogenase family protein

- 0.6 0.04 CA03g34810 AT1G79870

Cytochrome P450, family 82, subfamily C, 
polypeptide 4

CYP82C4 0.6 0.01 CA10g18220 AT4G31940

Trehalose phosphatase/synthase 11 TPS11 0.6 0.02 CA07g00130 AT2G18700

MAP kinase 20 MPK20 0.6 6.83E-03 CA07g15380 AT2G42880

NAD(P)-binding Rossmann-fold 
superfamily protein

- 0.6 5.22E-03 CA12g22560 AT3G46170

Mitochondrial substrate carrier  
family protein

BAC2 0.6 0.02 CA06g16670 AT1G79900

Kinase family with leucine-rich repeat 
domain-containing protein

- 0.6 7.69E-05 CA04g03150 AT1G35710

Section 5.7. Supplementary information. Table S2
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Calcium-dependent lipid-binding (CaLB 
domain) family protein

C2 0.6 7.69E-05 CA12g11530 AT3G17980

Vamp/synaptobrevin-associated  
protein 27-2

VAP27-2 0.6 7.02E-03 CA08g11200 AT1G08820

Alpha/beta-Hydrolases  
superfamily protein

- 0.6 0.04 CA05g18360 AT4G02340

Histone superfamily protein - 0.6 0.04 CA04g15730 AT5G10980

ZIM-like 1 ZML1 0.6 5.92E-03 CA04g15250 AT3G21175

Mitochondrial F0-ATPase subunit 9 ATP9 0.6 0.04 CA01g30670 ATMG01080

Mitochondrial ribosomal protein S14 RPS14 0.6 0.02 CA10g05440 AT2G34520

SET domain group 37 SDG37 0.6 0.02 CA06g12160 AT2G17900

Nitrate transporter 1.7 NRT1.7 0.6 0.03 CA11g05750 AT1G69870

Transducin/WD40 repeat-like  
superfamily protein

- 0.6 0.02 CA03g03170 AT5G56190

F-box family protein - 0.5 8.51E-03 CA11g20210 AT3G06240

Transmembrane protein - 0.5 5.07E-04 CA04g04190 AT1G65720

Metallopeptidase M24 family protein - 0.5 0.04 CA08g13170 AT1G09300

Ribosomal protein L31e family protein - 0.5 0.02 CA00g85720 AT2G19740

Non-specific phospholipase C2 NPC2 0.5 0.02 CA01g12500 AT2G26870

Trichome birefringence-like 38 TBL38 0.5 0.01 CA02g11220 AT1G29050

Dynein light chain type 1 family protein - 0.5 5.87E-03 CA09g15090 AT5G20110

Yellow stripe like 2 YSL2 0.5 0.02 CA03g20380 AT5G24380

Leucine-rich repeat receptor-like protein 
kinase family protein

- 0.5 0.02 CA05g13330 AT4G08850

Transmembrane proteins 14C - 0.5 0.05 CA10g20280 AT3G57280

BAK1-interacting receptor-like kinase 1 BIR1 0.5 0.03 CA00g75620 AT5G48380

Major facilitator superfamily protein - 0.5 0.01 CA01g27680 AT5G19640

Rubisco methyltransferase family protein LSMT-L 0.5 0.01 CA11g04070 AT1G14030

BTB and TAZ domain protein 1 BT1 0.5 0.03 CA06g19860 AT5G63160

Transducin/WD40 repeat-like  
superfamily protein

- 0.5 0.03 CA02g13530 AT5G45760

Homeodomain-like superfamily protein RVE8 0.5 0.03 CA10g14780 AT3G09600

TatD related DNase - 0.5 0.02 CA06g02600 AT3G52390

Transcription elongation factor - 0.5 0.02 CA00g00620 AT5G47920

Cytochrome C assembly protein CCB203 0.5 7.24E-03 CA02g26520 ATMG00960

DUF4228 domain protein - 0.5 9.85E-03 CA02g25370 AT5G67620
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

RecA DNA recombination family protein RECA2 0.5 8.59E-03 CA05g20060 AT2G19490

Cellulose synthase family protein CEV1 0.5 0.01 CA01g20250 AT5G05170

Neurogenic locus notch-like protein - 0.5 0.03 CA08g10440 AT4G14746

ARM repeat superfamily protein - 0.5 0.01 CA02g24200 AT3G03440

Tetratricopeptide repeat (TPR)-like 
superfamily protein

- 0.5 0.01 CA07g04400 AT1G80130

Alpha/beta-Hydrolases  
superfamily protein

- 0.5 0.02 CA04g06250 AT1G66900

Hercules receptor kinase 2 HERK2 0.5 0.04 CA06g10660 AT1G30570

Terpenoid cyclases/Protein 
prenyltransferases superfamily protein

- 0.5 0.01 CA08g16380 AT3G25810

F-box family protein MEE66 0.5 0.03 CA01g31560 AT2G02240

Tudor/PWWP/MBT superfamily protein - 0.5 8.70E-03 CA06g21350 AT3G03140

Aluminium induced protein with YGL and 
LRDR motifs

AILP1 0.5 0.02 CA01g24020 AT5G19140

CLEC16A-like protein - 0.5 0.04 CA07g06430 AT3G28430

Beta-galactosidase 8 BGAL8 0.5 0.03 CA02g16380 AT2G28470

Rubber elongation factor protein (REF) - 0.5 0.02 CA03g08410 AT3G05500

Pectin lyase-like superfamily protein - 0.5 0.03 CA09g01850 AT3G53190

AAA-type ATPase family protein - 0.5 6.70E-03 CA06g20340 AT1G02890

NAD(P)-binding Rossmann-fold 
superfamily protein

- 0.5 0.01 CA12g16290 AT3G55310

CRINKLY4 related 3 CCR3 0.5 0.01 CA00g47510 AT3G55950

SHI-related sequence 5 SRS5 0.5 0.03 CA04g06890 AT1G75520

DNA repair protein RadA-like protein - 0.4 6.44E-03 CA03g35970 AT5G50340

DNAJ heat shock family protein - 0.4 2.23E-03 CA08g06460 AT5G25530

O-methyltransferase family protein - 0.4 0.02 CA06g05520 AT4G35160

DEAD/DEAH box RNA helicase  
family protein

FANCM 0.4 0.01 CA04g09250 AT1G35530

Quinone reductase family protein - 0.4 7.34E-03 CA06g25220 AT5G58800

ARM repeat protein interacting with ABF2 ARIA 0.4 0.03 CA09g08790 AT5G19330

Mitovirus RNA-dependent  
RNA polymerase

- 0.4 0.04 CA11g07030 AT2G07749

Seed maturation protein - 0.4 0.02 CA03g07450 AT3G22490

Transducin/WD40 repeat-like  
superfamily protein

AtATG18a 0.4 2.10E-03 CA01g30560 AT3G62770

Section 5.7. Supplementary information. Table S2
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Jasmonate resistant 1 JAR1 0.4 1.45E-03 CA08g08190 AT2G46370

NPK1-related protein kinase 3 NP3 0.4 0.02 CA01g24590 AT3G06030

Receptor-like protein kinase 4 RLK4 0.4 0.02 CA08g07410 AT4G00340

Mental retardation GTPase  
activating protein

- 0.4 0.02 CA02g23130 AT5G16030

NAC domain containing protein 1 NAC1 0.4 0.04 CA07g21470 AT1G56010

Pseudouridine synthase family protein - 0.4 0.02 CA03g21840 AT5G51140

Peroxisomal adenine nucleotide carrier 1 PNC1 0.4 0.01 CA00g43860 AT3G05290

NAD(P)-binding Rossmann-fold 
superfamily protein

- 0.4 9.89E-03 CA12g22690 AT3G46170

Sulfite exporter TauE/SafE family protein - 0.4 3.78E-03 CA09g01690 AT2G36630

Protein phosphatase 2C family protein - 0.4 6.70E-03 CA05g20050 AT3G02750

Cytochrome P450 superfamily protein - 0.4 0.04 CA12g16400 AT1G66540

Hypothetical protein (DUF1639) - 0.3 9.61E-04 CA00g58480 AT1G55340

Histidine kinase-. DNA gyrase B-, and 
HSP90-like ATPase family protein

NOV 0.3 0.02 CA03g00360 AT4G13750

Calmodulin-binding transcription  
activator 5

CAMTA5 0.3 1.46E-03 CA01g14110 AT4G16150

Cytochrome P450 superfamily protein - 0.2 5.08E-04 CA06g19760 AT5G08250

CCT motif family protein - 0.2 0.01 CA03g19650 AT5G53420

P-loop containing nucleoside triphosphate 
hydrolases superfamily protein

- 0.2 5.51E-03 CA04g14480 AT1G01910

Homeodomain-like superfamily protein - 0.2 6.15E-04 CA01g08210 AT5G45580

LOB domain-containing protein 42 LBD42 0.2 0.02 CA11g01060 AT1G68510

Undecaprenyl pyrophosphate synthetase 
family protein

cPT4 0.1 6.57E-05 CA10g14100 AT5G58770
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Table S3. Specific differentially expressed genes after 14DAT in the comparison A25/A6 in leaves subjected 
to salt stress conditions. It is represented only up-regulated genes (FC>1). It is represented the fold change 
(FC) and the adjusted P-value obtained for each gene (significant differences were considered when 
P<0.05). Genes without abbreviation are represented with “-“.

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Hypothetical protein - 6.5 0.03 CA03g15370 AT4G26450

Alpha/beta-Hydrolases  
superfamily protein

- 4.5 2.29E-03 CA09g00860 AT2G36290

Tetratricopeptide repeat (TPR)-like 
superfamily protein

- 4.0 0.05 CA05g17010 AT1G04770

Sterol-4alpha-methyl oxidase 1-1 SMO1-1 3.6 0.02 CA01g11080 AT4G12110

Temperature-induced lipocalin TIL 3.4 1.01E-03 CA07g02210 AT5G58070

Myotubularin-like phosphatases  
II superfamily

MTM1 2.7 0.05 CA12g05660 AT3G10550

Chaperone DnaJ-domain  
superfamily protein

J8 2.7 3.92E-03 CA00g87730 AT1G80920

Formyltransferase pde194 2.6 0.04 CA02g24050 AT1G66520

Basic chitinase HCHIB 2.5 0.01 CA03g31390 AT3G12500

Peptidase S41 family protein - 2.4 9.44E-03 CA06g09990 AT3G57680

Chalcone and stilbene synthase  
family protein

TT4 2.4 0.03 CA05g17040 AT5G13930

Proteolysis 6 PRT6 2.2 0.04 CA10g14530 AT5G02310

Catalytic LigB subunit of aromatic  
ring-opening dioxygenase family

LigB 2.2 0.03 CA08g00170 AT4G15093

Organic cation/carnitine transporter4 OCT4 2.2 5.81E-03 CA07g18590 AT3G20660

P-loop containing nucleoside triphosphate 
hydrolases superfamily protein

- 2.2 0.02 CA03g22090 AT5G35970

WUSCHEL related homeobox 4 WOX4 2.1 9.28E-04 CA04g18420 AT1G46480

Non-structural protein - 2.0 0.02 CA09g11810 AT1G03180

Serine/arginine-rich splicing factor-like 
protein, putative

SC35 1.9 0.01 CA04g08840 AT5G64200

DA1-related protein 4 DAR4 1.9 4.37E-03 CA02g02530 AT5G17890

Sulfotransferase 12 SOT12 1.9 0.02 CA11g03250 AT2G03760

Auxin efflux carrier family protein PIN3 1.9 0.03 CA05g08660 AT1G70940

Ubiquitin-like superfamily protein - 1.9 0.03 CA12g01310 AT4G05230

Temperature-induced lipocalin TIL 1.9 0.03 CA09g18430 AT5G58070

3’-5’ exonuclease domain-containing 
protein / K homology domain-containing 
protein / KH domain-containing protein

- 1.8 7.99E-03 CA03g36100 AT2G25910

Section 5.7. Supplementary information. Table S3
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

DNA/RNA polymerases  
superfamily protein

ORF158 1.8 4.65E-03 CA00g76850 ATMG00860

Class I heat shock protein, putative 
(DUF1423)

TTA1 1.7 7.81E-03 CA04g04530 AT1G14740

General transcription factor group E6 GTE6 1.7 0.04 CA05g10620 AT3G52280

Magnesium transporter, putative 
(DUF803)

- 1.6 0.01 CA11g12750 AT1G34470

Phosphoribosyltransferase family protein - 1.6 0.03 CA07g15420 AT2G42910

Nudix hydrolase homolog 17 NUDT17 1.6 0.02 CA12g02260 AT2G01670

Inorganic pyrophosphatase 1 PS2 1.6 0.02 CA03g36140 AT1G73010

Serine hydroxymethyltransferase 3 SHM3 1.5 0.02 CA12g18510 AT4G32520

SNF1-related protein kinase 2.5 SNRK2.5 1.5 0.04 CA12g16870 AT5G63650

HCO3- transporter family - 1.5 0.04 CA01g22650 AT3G62270

HCO3- transporter family - 1.5 0.04 CA01g22660 AT3G62270

Ubiquitin-specific protease 12 UBP12 1.5 0.05 CA05g19150 AT5G06600

Ferritin 4 FER4 1.4 0.01 CA05g09460 AT2G40300

Profilin 1 PRF1 1.4 0.04 CA11g20130 AT2G19760

Aspartic proteinase A1 APA1 1.4 0.04 CA07g11500 AT1G11910

THUMP domain-containing protein - 1.4 0.03 CA11g10530 AT5G12410

Expansin A4 EXPA4 1.4 0.02 CA02g18410 AT2G39700

Cytochrome c biogenesis protein family CcdA 1.4 0.04 CA07g18200 AT5G54290

NHL domain-containing protein - 1.4 0.03 CA11g07390 AT1G23890

SGNH hydrolase-type esterase 
superfamily protein

- 1.4 0.03 CA06g19700 AT5G62930

Transmembrane protein - 1.4 0.03 CA06g27190 AT1G67020

Phosphate transporter 1;4 PHT1;4 1.4 0.04 CA03g05830 AT2G38940

BCL-2-associated athanogene 6 BAG6 1.4 0.04 CA08g07920 AT2G46240

Tetratricopeptide repeat (TPR)-like 
superfamily protein

TPR4 1.4 0.04 CA03g04290 AT1G04530

Nucleoporin interacting component 
(Nup93/Nic96-like) family protein

- 1.4 0.05 CA05g04820 AT2G41620

Trichome birefringence-LIKE 36 TBL36 1.3 0.04 CA12g06670 AT3G54260

GATA transcription factor 1 GATA1 1.3 0.02 CA03g02360 AT3G24050

Zinc induced facilitator-like 1 ZIFL1 1.3 0.04 CA10g22410 AT5G13750

Zinc finger C-x8-C-x5-C-x3-H type  
family protein

- 1.3 0.05 CA08g14890 AT1G10320
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Table S4. Specific differentially expressed genes after 14DAT in the comparison A25/A6 in leaves subjected 
to salt stress conditions. It is represented only down-regulated genes (FC<1). It is represented the fold 
change (FC) and the adjusted P-value obtained for each gene (significant differences were considered when 
P<0.05). Genes without abbreviation are represented with “-“.

Full name Short  
name

FC P-value C. annuum 
code

A. thaliana 
code

ABC transporter family protein ABCF1 0.8 0.03 CA11g17940 AT5G60790

NAD(P)-binding Rossmann-fold 
superfamily protein

- 0.8 0.02 CA08g11450 AT5G06060

Arogenate dehydratase 2 ADT2 0.7 0.01 CA11g14180 AT3G07630

Alpha/beta-Hydrolases  
superfamily protein

- 0.7 0.03 CA08g05220 AT5G11650

Squalene epoxidase 3 SQE3 0.7 0.04 CA02g07240 AT4G37760

Cyclin-D1-binding protein - 0.7 0.03 CA11g00110 AT1G22970

Subtilase family protein - 0.7 0.02 CA10g14810 AT3G14240

Photosystem II reaction center PsbP 
family protein

PPD1 0.7 0.04 CA01g31620 AT4G15510

Eceriferum 1 CER1 0.7 0.01 CA00g87940 AT1G02205

Protein kinase superfamily protein - 0.7 0.02 CA11g07190 AT1G24030

S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein

CCoAOMT1 0.7 8.97E-03 CA02g14470 AT4G34050

Protein kinase superfamily protein CDL1 0.7 0.01 CA10g11900 AT5G02800

Alternative oxidase 1A AOX1A 0.6 0.02 CA09g09850 AT3G22370

Glycosyl hydrolase superfamily protein - 0.6 0.02 CA11g17020 AT2G27500

O-Glycosyl hydrolases family 17 protein - 0.6 0.01 CA10g21610 AT1G64760

Hypothetical protein (DUF1997) - 0.6 2.29E-03 CA02g01000 AT5G39530

SPFH/Band 7/PHB domain-containing 
membrane-associated protein family

- 0.6 0.01 CA03g20940 AT4G27585

Multidrug resistance-associated  
protein 14

ABCC10 0.6 0.05 CA03g19050 AT3G59140

Transmembrane amino acid transporter 
family protein

- 0.6 0.01 CA04g10860 AT5G15240

Pentatricopeptide (PPR)  
repeat-containing protein

- 0.6 0.01 CA12g07360 AT5G04810

Dimethylallyl. adenosine tRNA 
methylthiotransferase

- 0.5 8.05E-03 CA04g19040 AT4G33380

Hypothetical protein - 0.5 8.05E-03 CA06g09500 AT1G64870

RING-box 1 RBX1 0.5 5.71E-03 CA09g17140 AT5G20570

BSD domain-containing protein - 0.5 3.19E-03 CA04g17350 AT1G10720

Section 5.7. Supplementary information. Table S4
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Full name Short  
name

FC P-value C. annuum 
code

A. thaliana 
code

Auxin efflux carrier family protein PILS1 0.5 0.04 CA04g23480 AT1G20925

NHL domain-containing protein - 0.5 0.02 CA11g07380 AT1G70280

Allantoinase ALN 0.5 2.36E-03 CA02g15930 AT4G04955

4-phosphopantetheine 
adenylyltransferase

COAD 0.5 9.25E-04 CA06g04390 AT2G18250

4-phosphopantetheine 
adenylyltransferase

COAD 0.5 9.25E-04 CA00g94400 AT2G18250

2-oxoglutarate (2OG) and Fe(II)-
dependent oxygenase superfamily protein

- 0.5 9.25E-04 CA12g07770 AT4G23340

Major facilitator superfamily protein - 0.5 3.52E-02 CA02g06500 AT4G36790

RNA-binding KH  
domain-containing protein

- 0.5 2.36E-03 CA06g26010 AT3G13230

Auxin efflux carrier family protein PLS3 0.4 0.01 CA04g23470 AT1G76520

Gamma-glutamyl hydrolase 1 GGH1 0.4 0.04 CA07g16860 AT1G78660

Protein kinase family protein THE1 0.4 0.02 CA10g00440 AT5G54380

Zinc-binding alcohol dehydrogenase 
family protein

- 0.3 2.18E-04 CA12g18000 AT5G42250

Alpha/beta-Hydrolases  
superfamily protein

- 0.3 6.24E-03 CA11g14470 AT3G09690

Alpha/beta-Hydrolases  
superfamily protein

- 0.2 3.65E-04 CA05g18260 AT4G02340

GATA transcription factor 17 GATA17 0.1 0.02 CA12g21330 AT3G16870

Protochlorophyllide oxidoreductase A PORA 0.1 0.02 CA10g00480 AT5G54190
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Table S5. Common differentially expressed genes after 14DAT in the comparison A25/A6 in leaves subjected to control and salt stress 
conditions. It is represented only up-regulated genes (FC>1). It is represented the fold change (FC) and the adjusted P-value obtained for 
each gene (significant differences were considered when P<0.05). Genes without abbreviation are represented with “-“.

Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value  
NaCl

C. annuum  
code

A. thaliana 
code

Oxidoreductase family protein - 17.8 8.49E-07 2.5 7.68E-03 CA01g05600 AT4G17370

Cell division control 2 CDC2 13.6 9.57E-05 6.9 1.15E-03 CA12g18420 AT3G48750

Xylulose kinase-1 XK-1 11.5 6.96E-06 11.0 1.48E-05 CA12g08890 AT2G21370

SNF2 domain-containing protein / helicase  
domain-containing protein

PIE1 10.4 4.48E-06 23.3 6.59E-07 CA04g21650 AT3G12810

NAD(P)-binding Rossmann-fold superfamily protein - 10.1 1.76E-03 38.6 4.84E-05 CA05g12020 AT5G06060

Polynucleotidyl transferase. ribonuclease H-like superfamily 
protein

- 7.4 4.20E-04 8.6 2.49E-04 CA07g17410 AT3G15140

Sodium Bile acid symporter family BASS1 7.1 7.34E-03 22.0 2.28E-04 CA09g06260 AT1G78560

SKU5 similar 5 SKS5 6.7 2.71E-07 6.3 3.31E-07 CA12g17970 AT1G76160

Cytochrome P450, family 706, subfamily A, polypeptide 4 CYP706A4 5.0 5.71E-05 3.6 4.34E-04 CA00g86940 AT4G12300

Hypothetical protein - 4.9 2.35E-04 5.8 1.17E-04 CA00g88030 AT5G43680

tRNA modification GTPase - 4.4 8.28E-03 4.3 0.01 CA04g15120 AT1G78010

NAD(P)-binding Rossmann-fold superfamily protein SDR2 3.6 0.02 4.8 6.19E-03 CA06g14350 AT3G51680

SNF1-related protein kinase 2.10 SnRK2.10 3.6 3.20E-04 4.0 1.78E-04 CA08g14400 AT1G60940

Adenine phosphoribosyltransferase-like protein, putative 
(DUF2358)

- 3.5 6.94E-03 4.6 1.96E-03 CA08g10760 AT3G04890

Hydroxyproline-rich glycoprotein family protein EXT-like 3.5 1.58E-06 3.6 1.64E-06 CA07g19920 AT4G26750

Hypothetical protein (DUF674) - 3.1 2.12E-05 3.2 2.55E-05 CA06g18830 AT3G09110

Section 5.7. Supplem
entary inform

ation. Table S5
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value  
NaCl

C. annuum  
code

A. thaliana 
code

Ternary complex factor MIP1 leucine-zipper protein  
(Protein of unknown function, DUF547)

- 3.0 3.56E-04 1.8 0.05 CA02g25660 AT4G37080

5’-3’ exonuclease family protein - 3.0 1.05E-03 3.4 6.27E-04 CA03g33080 AT1G18090

Glutaredoxin family protein - 3.0 6.26E-03 5.1 2.74E-04 CA10g20020 AT3G57070

Signal peptide peptidase-like 1 SPPL1 2.9 7.65E-04 2.8 1.15E-03 CA03g17890 AT4G33410

CAP (Cysteine-rich secretory proteins, Antigen 5, and 
Pathogenesis-related 1 protein) superfamily protein

- 2.5 2.10E-03 2.0 0.02 CA01g31110 AT3G19690

Disease resistance protein (CC-NBS-LRR class) family - 2.5 2.10E-03 2.0 0.02 CA00g93700 AT5G35450

Pectin methylesterase 1 PME1 2.5 3.37E-05 2.7 2.15E-05 CA03g36990 AT1G53840

Protein kinase superfamily protein - 2.4 0.01 2.4 0.02 CA12g16510 AT1G53050

Early-responsive to dehydration stress protein (ERD4) ERD4 2.4 5.47E-04 2.0 4.87E-03 CA08g02700 AT1G30360

Syntaxin of plants 61 SYP61 2.4 3.42E-05 2.3 5.84E-05 CA12g17160 AT1G28490

Ribosomal protein L7/L12 domain-containing protein - 2.4 6.57E-05 2.3 8.88E-05 CA06g01410 AT1G70190

AMP-dependent synthetase and ligase family protein AAE11 2.4 4.38E-04 1.9 6.24E-03 CA02g20380 AT1G66120

Alba DNA/RNA-binding protein - 2.3 6.98E-03 2.0 0.03 CA03g01910 AT3G07030

ACT domain repeat 6 ACR6 2.3 0.02 2.3 0.02 CA08g06080 AT3G01990

Importin alpha isoform 1 IMPA-1 2.3 0.02 2.3 0.02 CA04g15350 AT3G06720

Minichromosome instability 12 (mis12)-like protein MIS12 2.2 8.89E-03 2.0 0.02 CA03g29160 AT5G35520

Disease resistance protein (CC-NBS-LRR class) family - 2.2 3.31E-05 2.2 4.80E-05 CA00g73250 AT5G35450

Protein phosphatase 2C family protein APD6 2.1 1.01E-03 2.2 7.62E-04 CA10g07130 AT4G38520

Homoserine kinase HSK 2.1 2.75E-03 1.8 0.01 CA00g97170 AT2G17265

Photosystem II subunit P-1 PSBP-1 2.1 1.34E-04 2.3 4.80E-05 CA07g07930 AT1G06680
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value  
NaCl

C. annuum  
code

A. thaliana 
code

Alpha-L-fucosidase 1 FUC1 2.0 3.10E-04 1.8 1.15E-03 CA00g64130 AT2G28100

3-ketoacyl-acyl carrier protein synthase I KASI 2.0 0.02 4.2 1.49E-04 CA01g00840 AT5G46290

3-ketoacyl-acyl carrier protein synthase I KASI 2.0 0.02 4.2 1.49E-04 CA01g00830 AT5G46290

Ubiquitin-conjugating enzyme 10 UBC10 2.0 0.02 1.9 0.04 CA03g19120 AT5G53300

Hyaluronan / mRNA binding family - 2.0 3.29E-05 1.9 8.76E-05 CA01g33750 AT4G16830

Adenine nucleotide alpha hydrolases-like  
superfamily protein

- 2.0 0.02 2.0 0.03 CA09g05970 AT3G53990

NAD(P)-linked oxidoreductase superfamily protein PLR1 2.0 0.01 2.0 0.01 CA03g20520 AT5G53580

RING/FYVE/PHD zinc finger superfamily protein - 2.0 2.75E-03 1.7 0.02 CA03g30050 AT3G47550

Tetratricopeptide repeat (TPR)-like superfamily protein - 2.0 0.02 2.1 0.01 CA12g15360 AT2G40720

Flocculation protein (DUF1296) - 1.9 0.02 2.2 9.43E-03 CA05g09200 AT3G07660

HAL2-like protein HL 1.9 7.65E-04 1.9 1.15E-03 CA02g16270 AT5G54390

Hypothetical protein - 1.9 2.09E-04 2.0 1.23E-04 CA12g00990 AT1G12020

S-locus lectin protein kinase family protein B120 1.9 1.25E-04 1.4 0.02 CA09g03210 AT4G21390

Importin alpha isoform 1 IMPA-1 1.9 3.31E-03 1.9 4.64E-03 CA06g00340 AT3G06720

Monofunctional riboflavin biosynthesis protein RIBA 3 RIBA3 1.9 4.13E-03 1.7 0.01 CA11g13410 AT5G59750

Phototropic-responsive NPH3 family protein - 1.8 6.70E-03 1.9 5.81E-03 CA03g34080 AT3G15570

Ribonuclease H2 subunit C-like protein - 1.8 2.23E-03 1.6 0.01 CA00g50550 AT2G39440

Plant invertase/pectin methylesterase inhibitor superfamily VGDH1 1.8 3.01E-03 1.8 3.20E-03 CA06g27340 AT2G47030

Isopropylmalate dehydrogenase 2 IMD2 1.8 6.57E-05 1.6 3.53E-04 CA11g00650 AT1G80560

With no lysine (K) kinase 6 WNK6 1.8 0.02 2.0 0.01 CA00g64570 AT3G18750

Cytochrome P450, family 706, subfamily A, polypeptide 6 CYP706A6 1.8 3.01E-04 1.6 9.28E-04 CA00g86950 AT4G12320

Nucleotide-diphospho-sugar transferases  
superfamily protein

PGSIP8 1.8 2.43E-04 1.9 6.27E-05 CA06g12360 AT4G16600

Section 5.7. Supplem
entary inform
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value  
NaCl

C. annuum  
code

A. thaliana 
code

Cellulase 5 CEL5 1.7 3.86E-03 2.0 4.59E-04 CA11g09950 AT1G22880

Integrase-type DNA-binding superfamily protein TINY2 1.7 3.86E-03 2.0 4.59E-04 CA08g04820 AT5G11590

CAP (Cysteine-rich secretory proteins, Antigen 5, and 
Pathogenesis-related 1 protein) superfamily protein

- 1.7 1.05E-03 1.6 2.46E-03 CA02g07880 AT5G66590

Long-chain acyl-CoA synthetase 2 LACS2 1.6 3.86E-03 1.9 6.64E-04 CA08g18140 AT1G49430

Protein kinase superfamily protein - 1.6 2.51E-03 1.4 0.04 CA09g14790 AT2G07180

DUF1685 family protein - 1.5 1.05E-03 1.5 2.96E-03 CA02g13520 AT2G42760

Late embryogenesis abundant protein LEA27 1.5 0.01 1.7 4.69E-03 CA08g07780 AT2G46140

Plant transposase (Ptta/En/Spm family) - 1.5 7.34E-03 1.5 8.05E-03 CA10g05500 AT3G30200

Annexin 1 ANNAT1 1.5 0.01 1.5 0.03 CA00g85100 AT1G35720

Pectin lyase-like superfamily protein - 1.5 7.28E-03 1.5 0.0076476 CA07g21080 AT5G19730

Zn-dependent exopeptidases superfamily protein - 1.5 0.05 1.6 0.04 CA11g01260 AT5G20660

Zn-dependent exopeptidases superfamily protein - 1.5 0.05 1.6 0.04 CA11g01250 AT5G20660

General regulatory factor 11 GRF11 1.5 2.75E-03 1.7 7.32E-04 CA04g15570 AT1G34760

Hypothetical protein - 1.5 0.01 1.7 3.19E-03 CA01g22430 AT1G26750

Hypothetical protein - 1.5 2.19E-04 1.6 1.28E-04 CA00g43890 AT1G54920

FAD-binding Berberine family protein - 1.5 0.03 1.6 0.02 CA03g20190 AT1G30760

RHOMBOID-like 1 RBL1 1.5 2.91E-03 1.6 1.03E-03 CA06g04920 AT2G29050

Late embryogenesis abundant (LEA) hydroxyproline-rich 
glycoprotein family

- 1.5 0.04 1.7 0.01 CA00g60460 AT2G01080

Cellulose synthase like E1 CSLE1 1.5 0.02 1.5 0.02 CA05g16620 AT1G55850

Transducin/WD40 repeat-like superfamily protein - 1.5 0.04 1.6 0.02 CA09g01910 AT5G03450
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value  
NaCl

C. annuum  
code

A. thaliana 
code

Subtilase family protein ARA12 1.4 5.02E-03 1.4 7.99E-03 CA01g33340 AT5G67360

Transferring glycosyl group transferase - 1.4 0.02 1.6 2.74E-03 CA03g30800 AT3G23760

Pentatricopeptide repeat (PPR-like)  
superfamily protein

- 1.4 0.02 1.5 6.60E-03 CA11g01190 AT3G21470

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein

DMR6 1.4 0.02 1.5 6.60E-03 CA05g08790 AT5G24530

Hypothetical protein - 1.4 0.02 1.5 6.60E-03 CA03g07990 AT2G47485

APO RNA-binding protein (DUF794) APO1 1.4 0.02 1.5 5.24E-03 CA01g03450 AT1G64810

Extra-large G-protein 1 XLG1 1.4 6.20E-03 1.4 0.01 CA02g26040 AT2G23460

Ribosomal protein S3Ae - 1.4 0.04 1.4 0.0273687 CA03g07130 AT4G34670

P-loop containing nucleoside triphosphate hydrolases 
superfamily protein

- 1.4 0.02 1.4 0.02 CA02g03140 AT4G04180

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein

DMR6 1.4 0.02 1.5 8.78E-03 CA07g07070 AT5G24530

Dual specificity protein phosphatase (DsPTP1)  
family protein

SEX4 1.4 0.01 1.5 2.88E-03 CA12g05430 AT3G52180

Male gametophyte defective 1 MGP1 1.4 1.92E-03 1.2 0.05 CA00g54070 AT2G21870

Major facilitator superfamily protein - 1.3 0.03 1.3 0.03 CA00g85190 AT3G45710

TolB protein-like protein - 1.3 0.05 1.3 0.05 CA06g00090 AT4G01870

Y-family DNA polymerase H POLH 1.3 0.04 1.3 0.04 CA01g16510 AT5G44740

Shortage in chiasmata 1 SHOC1 1.3 0.03 1.4 8.05E-03 CA03g17760 AT5G52290

Pathogenesis-related thaumatin superfamily protein - 1.2 0.05 1.4 4.79E-03 CA08g19030 AT4G38670
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Table S6. Common differentially expressed genes after 14DAT in the comparison A25/A6 in leaves subjected to control and salt stress 
conditions. It is represented only down-regulated genes (FC<1). It is represented the fold change (FC) and the adjusted P-value obtained for 
each gene (significant differences were considered when P<0.05). Genes without abbreviation are represented with “-“.

Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value NaCl C. annuum  
code

A. thaliana 
code

Golgin family A protein - 0.8 0.02 0.8 0.02 CA05g01550 AT4G22320

B-box type zinc finger protein with CCT  
domain-containing protein

- 0.8 0.01 0.8 8.97E-03 CA03g08890 AT2G47890

Mutator transposase MUDRA protein - 0.8 0.02 0.8 0.01 CA03g17550 AT5G15685

Receptor like protein 33 RLP33 0.8 0.03 0.8 0.03 CA00g91270 AT3G05660

Uncharacterized protein family (UPF0016) - 0.8 0.01 0.7 4.79E-03 CA10g17910 AT1G25520

DNAJ heat shock N-terminal domain-containing protein OWL1 0.8 0.02 0.8 0.03 CA01g05000 AT2G35720

Glycosyl hydrolases family 32 protein - 0.8 0.02 0.8 0.03 CA03g15480 AT1G62660

ATPase family associated with various cellular  
activities (AAA)

EMB1968 0.7 0.01 0.7 5.81E-03 CA00g68930 AT1G21690

Calcium ion-binding protein - 0.7 0.04 0.6 3.19E-03 CA02g14070 AT4G12700

Global transcription factor group A2 GTA2 0.7 0.03 0.6 2.29E-03 CA04g10530 AT4G08350

Glucose-6-phosphate dehydrogenase 2 G6PD2 0.7 0.03 0.7 0.02 CA00g82040 AT5G13110

ERD (early-responsive to dehydration stress) family protein - 0.7 0.03 0.7 0.03 CA06g26780 AT4G02900

K-box region and MADS-box transcription factor  
family protein

AP3 0.7 0.04 0.7 0.03 CA04g21160 AT3G54340

UDP-glucosyl transferase 76E2 UGT76E2 0.7 7.59E-03 0.6 1.35E-03 CA10g13310 AT5G59590

2-aminoethanethiol dioxygenase. putative (DUF1637) - 0.7 7.28E-03 0.7 0.02 CA03g29170 AT1G18490

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 
superfamily protein

- 0.7 0.01 0.7 0.04 CA03g05480 AT1G06620
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value NaCl C. annuum  
code

A. thaliana 
code

Remorin family protein - 0.6 0.02 0.6 9.43E-03 CA03g17720 AT3G48940

Yellow stripe like 1 YSL1 0.6 4.63E-03 0.6 2.36E-03 CA01g00350 AT4G24120

Condensin-2 complex subunit H2-like protein HEB2 0.6 9.47E-03 0.7 0.04 CA12g21380 AT3G16730

NAC domain containing protein 76 NAC076 0.6 3.96E-04 0.6 4.84E-05 CA06g25420 AT4G36160

P-loop containing nucleoside triphosphate hydrolases 
superfamily protein

- 0.6 0.03 0.6 0.01 CA04g02500 AT1G65810

P-loop containing nucleoside triphosphate hydrolases 
superfamily protein

- 0.6 0.02 0.7 0.04 CA03g09750 AT1G03030

Actin cytoskeleton-regulatory complex pan-like protein - 0.6 5.65E-03 0.7 0.03 CA07g19110 AT1G50660

Chaperonin 60 beta CPN60B 0.6 2.07E-03 0.5 6.26E-05 CA03g34990 AT1G55490

Cadherin EGF LAG seven-pass G-type receptor,  
putative (DUF3527)

- 0.6 0.04 0.4 3.19E-03 CA03g04560 AT2G33360

Heat shock transcription factor A6B HSFA6B 0.6 6.89E-03 0.7 0.04 CA06g08710 AT3G22830

GATA transcription factor 26 GATA26 0.6 0.01 0.5 2.29E-03 CA06g12750 AT4G17570

Trypsin family protein - 0.6 0.02 0.6 0.03 CA02g09960 AT2G35155

O-acyltransferase (WSD1-like) family protein FOP1 0.6 4.63E-03 0.6 2.76E-03 CA00g64780 AT5G53390

C2H2 and C2HC zinc fingers superfamily protein ZAT11 0.6 8.55E-03 0.5 3.33E-03 CA11g13540 AT2G37430

Peroxidase 71 PRX71 0.6 4.03E-04 0.6 2.18E-04 CA12g06550 AT5G64120

Alpha/beta-Hydrolases superfamily protein - 0.6 8.73E-04 0.6 1.96E-03 CA02g23610 AT5G38220

Peroxisomal membrane 22 kDa (Mpv17/PMP22)  
family protein

- 0.6 2.69E-04 0.6 9.69E-04 CA07g18040 AT1G52870

Trigalactosyldiacylglycerol 1 ABCI14 0.6 3.97E-04 0.6 1.25E-03 CA00g77030 AT1G19800

Leucine-rich receptor-like protein kinase family protein HAE 0.6 0.02 0.6 0.02 CA12g11720 AT4G28490

CA-responsive protein - 0.6 1.82E-03 0.6 1.68E-03 CA03g36280 AT1G17665
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value NaCl C. annuum  
code

A. thaliana 
code

HXXXD-type acyl-transferase family protein - 0.6 0.01 0.6 0.04 CA05g05020 AT3G26040

Transmembrane protein - 0.6 1.19E-03 0.6 3.31E-03 CA01g05330 AT5G18250

RING/U-box superfamily protein XERICO 0.6 1.01E-03 0.6 1.02E-03 CA09g13850 AT2G04240

NSP-interacting kinase 3 NIK3 0.6 2.52E-03 0.5 2.50E-03 CA11g08110 AT1G60800

Squamosa promoter binding protein-like 3 SPL3 0.6 0.03 0.5 0.01 CA02g15200 AT2G33810

Isopropyl malate isomerase large subunit 1 IIL1 0.6 4.59E-03 0.5 4.69E-03 CA03g04320 AT4G13430

Ribosomal protein L1p/L10e family - 0.6 9.47E-03 0.5 1.97E-03 CA05g06180 AT3G58660

Single hybrid motif superfamily protein - 0.5 1.03E-03 0.5 4.21E-04 CA06g17040 AT1G52670

DNAse I-like superfamily protein - 0.5 1.49E-03 0.7 0.02 CA08g00190 AT1G43760

ALG6. ALG8 glycosyltransferase family - 0.5 1.16E-04 0.5 6.05E-05 CA02g23360 AT5G38460

Peroxidase 71 PRX71 0.5 1.49E-03 0.7 0.04 CA12g06580 AT5G64120

E3 ubiquitin-protein ligase, putative (DUF177) - 0.5 1.14E-04 0.5 3.30E-05 CA02g03790 AT3G19800

Lactate/malate dehydrogenase family protein - 0.5 2.07E-04 0.6 4.65E-03 CA12g04980 AT5G58330

IQ-domain 18 IQD18 0.5 8.55E-03 0.3 5.45E-05 CA10g05830 AT1G01110

Alpha/beta-Hydrolases superfamily protein - 0.5 3.66E-05 0.5 5.45E-05 CA10g13180 AT5G36210

Haloacid dehalogenase (HAD) superfamily protein - 0.5 6.64E-04 0.6 9.03E-03 CA03g21900 AT3G58830

Serine-rich protein-like protein - 0.5 1.03E-03 0.5 4.19E-04 CA09g13860 AT5G55980

Alpha/beta-Hydrolases superfamily protein - 0.5 0.03 0.1 1.82E-05 CA05g18250 AT4G02340

Structural maintenance of chromosomes flexible  
hinge domain protein

- 0.5 3.38E-04 0.6 3.60E-03 CA12g07740 AT3G11760

Eceriferum 1 CER1 0.5 0.03 0.5 0.05 CA01g19130 AT1G02205

UDP-glucosyl transferase 85A2 UGT85A2 0.5 6.12E-06 0.5 2.55E-05 CA07g06270 AT1G22360

UDP-Glycosyltransferase superfamily protein UGT85A1 0.5 6.12E-06 0.5 2.55E-05 CA04g15390 AT1G22400
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value NaCl C. annuum  
code

A. thaliana 
code

Senescence-associated family protein. putative (DUF581) - 0.4 2.35E-04 0.5 1.02E-03 CA04g15090 AT1G78020

Pentapeptide repeat-containing protein - 0.4 8.59E-06 0.4 3.01E-06 CA01g04750 AT1G12250

Putative lysine decarboxylase family protein - 0.4 4.12E-05 0.5 1.43E-04 CA07g20100 AT1G50575

Ferric reduction oxidase 6 FRO6 0.4 4.68E-06 0.6 8.76E-05 CA08g13530 AT5G49730

Peroxidase 66 PRX66 0.4 1.25E-04 0.6 0.01 CA03g16810 AT5G51890

RS2-interacting KH protein RIK 0.4 4.05E-05 0.5 7.36E-04 CA02g01240 AT3G29390

Chaperone DnaJ-domain superfamily protein DJC82 0.4 1.84E-03 0.4 9.69E-04 CA08g12000 AT3G05345

Hypothetical protein - 0.4 6.64E-04 0.4 6.74E-04 CA09g03150 AT2G40955

Protein kinase superfamily protein IBS1 0.4 2.46E-06 0.5 4.80E-05 CA03g29720 AT1G18670

Indole-3-butyric acid response 1 IBR1 0.4 2.35E-04 0.5 2.73E-03 CA05g01470 AT4G05530

Leucine-rich repeat protein kinase family protein - 0.4 0.01 0.3 8.69E-03 CA04g03240 AT3G47570

Ankyrin repeat family protein - 0.4 3.42E-05 0.4 4.96E-05 CA08g01500 AT2G01680

Terpenoid cyclases/Protein prenyltransferases  
superfamily protein

GA1 0.4 7.91E-04 0.5 0.02 CA01g32990 AT4G02780

Xyloglucan endotransglucosylase/hydrolase 7 XTH7 0.3 1.13E-05 0.4 3.30E-05 CA02g24640 AT4G37800

RNA-binding (RRM/RBD/RNP motifs) family protein - 0.3 3.49E-04 0.3 4.15E-04 CA08g06390 AT2G27790

Carboxyl terminus of HSC70-interacting protein CHIP 0.3 5.15E-04 0.5 8.59E-03 CA06g26430 AT3G07370

Uridine-ribohydrolase 1 URH1 0.3 1.55E-04 0.3 2.00E-04 CA09g00730 AT2G36310

Nuclear factor kappa-B-binding protein - 0.3 2.99E-04 0.6 0.04 CA02g31330 AT5G13950

Chaperone (DUF2930) HCF208 0.3 5.04E-04 0.4 5.48E-03 CA03g16400 AT5G52110

Trichome birefringence-like 19 TBL19 0.3 2.75E-03 0.4 0.02 CA02g08060 AT5G15900
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value NaCl C. annuum  
code

A. thaliana 
code

LRR and NB-ARC domains-containing disease  
resistance protein

- 0.3 0.02 0.3 0.03 CA11g19950 AT3G14460

Leucine-rich repeat protein kinase family protein - 0.3 1.77E-05 0.4 1.84E-04 CA08g02880 AT4G34220

RHO guanyl-nucleotide exchange factor 12 ROPGEF12 0.3 9.64E-05 0.3 4.80E-05 CA03g34780 AT1G79860

Tetratricopeptide repeat (TPR)-like superfamily protein - 0.3 3.13E-05 0.3 1.82E-05 CA00g87070 AT4G16835

Acyl-CoA N-acyltransferases (NAT) superfamily protein - 0.3 7.41E-07 0.3 3.31E-07 CA11g07200 AT1G24040

Phosphatidic acid phosphohydrolase 2 PAH2 0.3 7.46E-07 0.4 7.48E-06 CA00g67090 AT5G42870

Maternal effect embryo arrest 12 MEE12 0.3 2.47E-05 0.3 8.15E-05 CA11g15340 AT2G02955

Diacylglycerol kinase family protein LCBK2 0.3 2.76E-06 0.3 1.64E-06 CA08g07600 AT2G46090

Plasma membrane intrinsic protein 1;5 PIP1;5 0.3 4.03E-04 0.4 4.37E-03 CA03g12700 AT4G23400

NADH:ubiquinone/plastoquinone oxidoreductase, chain 6 NDHG 0.3 1.05E-03 0.4 9.44E-03 CA08g09370 ATCG01080

Phospholipase C 2 PLC2 0.3 3.42E-05 0.5 4.57E-03 CA10g08530 AT3G08510

PIF1 helicase - 0.3 5.78E-04 0.3 9.28E-04 CA02g21240 AT5G28780

Microtubule-associated protein 65-2 MAP65-2 0.2 2.10E-03 0.2 9.63E-04 CA07g19910 AT4G26760

UBX domain-containing protein - 0.2 6.23E-06 0.3 2.45E-05 CA08g04530 AT4G00752

Zinc finger protein 4 ZFP4 0.2 6.42E-04 0.2 1.97E-04 CA05g07400 AT1G66140

1-aminocyclopropane-1-carboxylate synthase 4 ACS4 0.2 9.53E-06 0.3 2.55E-05 CA07g05340 AT2G22810

RNA-directed DNA polymerase  
(reverse transcriptase)-related family protein

- 0.2 2.26E-06 0.3 5.70E-06 CA10g03700 AT1G43730

ABC1 family protein - 0.2 9.24E-04 0.2 1.45E-03 CA01g09700 AT5G24810

Transmembrane protein - 0.2 2.76E-06 0.3 4.84E-05 CA12g03760 AT4G04190

Copine (Calcium-dependent phospholipid-binding  
protein) family

RGLG3 0.2 1.16E-04 0.3 3.46E-03 CA03g09720 AT5G63970
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Full name Short name FC  
Control

P-value 
Control

FC  
NaCl

P-value NaCl C. annuum  
code

A. thaliana 
code

Hypothetical protein - 0.2 4.49E-06 0.3 4.80E-05 CA06g17050 AT1G80180

Galactose mutarotase-like superfamily protein - 0.2 2.46E-06 0.1 1.64E-06 CA03g09520 AT3G47800

Zinc ion binding protein - 0.2 0.04 0.09 0.01 CA09g12230 AT4G13970

DNA-directed RNA polymerase family protein RPOC2 0.1 6.23E-06 0.2 5.45E-05 CA10g08960 ATCG00170

UDP-glucosyltransferase 73B2 UGT73B2 0.1 8.10E-07 0.2 3.01E-06 CA05g07050 AT4G34135

O-methyltransferase family protein - 0.1 2.35E-04 0.1 2.18E-04 CA02g04210 AT4G35160

Amino-terminal glutamine amidohydrolase - 0.09 7.41E-07 0.1 1.64E-06 CA05g01260 AT2G41760

Pentatricopeptide repeat (PPR) superfamily protein - 0.05 8.49E-07 0.08 3.01E-06 CA03g32750 AT3G18020

Cofactor assembly, complex C (B6F) CCB3 0.05 6.96E-06 0.06 2.04E-05 CA02g03840 AT5G36120
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Additional file 2: Table S7-S12. Total differentially expressed genes when NaCl and 
control conditions are compared, in both A25 and A6 accessions.

Table S7. Specific differentially expressed genes after 14DAT in the comparison NaCl/Control in leaves of 
A25 accession. It is represented only up-regulated genes (FC>1). It is represented the fold change (FC) and 
the adjusted P-value obtained for each gene (significant differences were considered when P<0.05). Genes 
without abbreviation are represented with “-“.

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Undecaprenyl pyrophosphate synthetase 
family protein

cPT4 9.1 1.02E-03 CA10g14100 AT5G58770

Expansin-like B1 EXLB1 6.1 0.04 CA01g06350 AT4G17030

Purine permease 11 PUP11 5.6 0.02 CA01g06760 AT1G44750

Cell wall / vacuolar inhibitor of 
fructosidase 1

C/VIF1 5.1 0.01 CA12g21170 AT1G47960

Calmodulin-binding transcription activator 
5

CAMTA5 4.3 7.05E-03 CA01g14110 AT4G16150

Transketolase family protein MAB1 4.1 0.02 CA11g14500 AT5G50850

Haloacid dehalogenase-like hydrolase 
(HAD) superfamily protein

- 3.8 0.04 CA03g07690 AT2G32150

Homeodomain-like superfamily protein - 3.7 0.01 CA01g08210 AT5G45580

RmlC-like cupins superfamily protein - 3.6 0.03 CA01g21540 AT5G39150

RmlC-like cupins superfamily protein - 3.6 0.03 CA03g05750 AT5G39180

Cytochrome P450 superfamily protein - 3.1 0.01 CA06g19760 AT5G08250

Nucleotide-diphospho-sugar transferases 
superfamily protein

IRX9-L 3.0 0.01 CA11g20390 AT1G27600

Histone deacetylase 3 HDA3 2.8 0.04 CA11g17720 AT3G44750

WRKY DNA-binding protein 23 WRKY23 2.8 0.01 CA01g22410 AT2G47260

Quinone reductase family protein - 2.8 9.74E-03 CA06g25220 AT5G58800

Beta-amylase 1 BAM1 2.7 0.05 CA03g02770 AT3G23920

Calcineurin B-like protein 9 CBL9 2.7 2.25E-03 CA01g33680 AT5G47100

Major facilitator superfamily protein - 2.6 6.19E-03 CA01g27680 AT5G19640

Rubisco methyltransferase family protein LSMT-L 2.6 6.19E-03 CA11g04070 AT1G14030

Nuclear factor Y, subunit A1 NF-YA1 2.5 0.04 CA01g20270 AT5G12840

F-box/RNI-like superfamily protein - 2.5 0.02 CA07g19460 AT3G58860

Uncharacterized protein family (UPF0114) - 2.5 0.02 CA01g09140 AT4G19390

Lactoylglutathione lyase / glyoxalase I 
family protein

GLYI7 2.3 0.04 CA03g31680 AT1G80160

Serine/arginine-rich splicing factor-like 
protein, putative

SC35 2.3 0.01 CA04g08840 AT5G64200
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Hypersensitive to ABA1 HAB1 2.3 0.02 CA08g03850 AT1G72770

ARM repeat superfamily protein - 2.2 0.01 CA06g12170 AT1G77600

Fumarylacetoacetase - 2.2 0.02 CA12g01110 AT1G12050

Hypothetical protein - 2.2 0.01 CA06g17050 AT1G80180

Jasmonate resistant 1 JAR1 2.1 0.01 CA08g08190 AT2G46370

RING/U-box superfamily protein SGR9 2.1 0.03 CA09g03170 AT5G02750

Myo-inositol oxygenase 5 MIOX5 2.0 0.04 CA12g20180 AT5G56640

RNA-binding (RRM/RBD/RNP motifs) 
family protein

SR34 2.0 0.02 CA00g67000 AT1G02840

HXXXD-type acyl-transferase family 
protein

- 2.0 0.01 CA00g56990 AT5G39090

DA1-related protein 4 DAR4 1.9 0.01 CA02g02530 AT5G17890

Calcium-binding EF-hand family protein - 1.9 0.02 CA03g18530 AT4G38810

AP2/B3-like transcriptional factor family 
protein

VRN1 1.9 9.74E-03 CA04g19550 AT3G18990

GDSL-like Lipase/Acylhydrolase 
superfamily protein

- 1.9 8.06E-03 CA10g03820 AT5G45960

Transmembrane amino acid transporter 
family protein

- 1.8 0.04 CA12g04200 AT5G15240

Endoplasmic reticulum oxidoreductins 1 ERO1 1.8 2.17E-03 CA00g72080 AT1G72280

Oxoglutarate/iron-dependent oxygenase - 1.8 0.01 CA02g08750 AT3G28490

Transcription factor-like protein ZW2 1.8 0.02 CA02g19080 AT1G58330

Transducin/WD40 repeat-like superfamily 
protein

- 1.8 0.02 CA04g14930 AT1G78070

Homeodomain-like transcriptional 
regulator

- 1.8 0.03 CA05g15200 AT5G58900

Homeobox 12 HB-12 1.8 0.02 CA08g08650 AT3G61890

Vamp/synaptobrevin-associated protein 
27-2

VAP27-2 1.8 0.02 CA08g11200 AT1G08820

P-loop containing nucleoside triphosphate 
hydrolases superfamily protein

KINESIN-
13A

1.8 0.01 CA05g18020 AT3G16630

Sec23/Sec24 protein transport family 
protein

- 1.8 0.03 CA04g00360 AT5G43670

Leucine-rich repeat protein kinase family 
protein

- 1.7 0.04 CA02g13990 AT5G45840

Transmembrane protein - 1.7 9.74E-03 CA06g27190 AT1G67020

Phosphate transporter traffic facilitator1 PHF1 1.7 0.05 CA12g05520 AT3G52190

Section 5.7. Supplementary information. Table S7
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Maternal effect embryo arrest 22 MEE22 1.7 0.04 CA02g03510 AT2G34780

Fibrillin 1A FIB1A 1.7 0.04 CA02g18750 AT4G04020

D-isomer specific 2-hydroxyacid 
dehydrogenase family protein

HPR3 1.7 0.05 CA01g30750 AT1G12550

Disease resistance protein (TIR-NBS-LRR 
class) family

- 1.6 0.02 CA00g95750 AT4G11170

Alpha/beta-Hydrolases superfamily 
protein

- 1.6 0.03 CA09g00850 AT2G36290

Diphthamide synthesis DPH2 family 
protein

- 1.6 0.05 CA06g13640 AT5G62030

Receptor like protein 7 RLP7 1.6 0.02 CA09g12200 AT1G47890

Ubiquitin-specific protease 15 UBP15 1.6 0.04 CA07g16320 AT1G17110

E3 ubiquitin-protein ligase - 1.6 0.01 CA01g17200 AT1G33490

BCL-2-associated athanogene 6 BAG6 1.6 0.01 CA08g07920 AT2G46240

Spermidine synthase 3 SPDS3 1.6 0.05 CA03g19440 AT5G53120

Splicing endonuclease 1 SEN1 1.6 0.04 CA06g23700 AT3G45590

Receptor like protein 6 RLP6 1.6 0.01 CA12g22850 AT1G45616

Uridine kinase-like 4 UKL4 1.5 0.02 CA10g01110 AT4G26510

Transmembrane protein - 1.5 0.02 CA04g04190 AT1G65720

2-oxoglutarate (2OG) and Fe(II)-
dependent oxygenase superfamily protein

- 1.5 0.03 CA09g00310 AT1G06620

2-oxoglutarate (2OG) and Fe(II)-
dependent oxygenase superfamily protein

- 1.5 0.03 CA09g00320 AT1G06620

Aldehyde dehydrogenase 7B4 ALDH7B4 1.5 0.04 CA03g35250 AT1G54100

RING/U-box superfamily protein - 1.5 0.04 CA10g21240 AT3G58030

Phosphatidic acid phosphohydrolase 2 PAH2 1.4 0.02 CA00g67090 AT5G42870

Kinase superfamily with octicosapeptide/
Phox/Bem1p domain-containing protein

- 1.4 0.04 CA07g00400 AT5G57610

Nuclear factor Y, subunit A1 NF-YA1 1.4 0.05 CA06g10300 AT5G12840

O-methyltransferase 1 OMT1 1.4 0.04 CA03g21170 AT5G54160

Pumilio 1 PUM1 1.4 0.05 CA06g24760 AT2G29200

Kinase family with leucine-rich repeat 
domain-containing protein

- 1.3 0.03 CA04g03150 AT1G35710

Calcium-dependent lipid-binding (CaLB 
domain) family protein

C2 1.3 0.03 CA12g11530 AT3G17980

Octicosapeptide/Phox/Bem1p family 
protein

- 1.3 0.04 CA01g31360 AT5G64430

Cysteine-rich RECEPTOR-like kinase CRK8 1.3 0.04 CA09g02690 AT4G23160
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Table S8. Specific differentially expressed genes after 14DAT in the comparison NaCl/Control in leaves of 
A25 accession. It is represented only down-regulated genes (FC<1). It is represented the fold change (FC) 
and the adjusted P-value obtained for each gene (significant differences were considered when P<0.05). 
Genes without abbreviation are represented with “-“.

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Methionine aminopeptidase 1D MAP1D 0.8 0.05 CA02g25570 AT4G37040

Pentapeptide repeat-containing protein - 0.7 0.04 CA01g04750 AT1G12250

Peptide transporter 3 PTR3 0.7 0.02 CA03g09480 AT5G46050

Adenylate kinase family protein - 0.7 0.05 CA09g18490 AT5G35170

Highly ABA-induced PP2C protein 3 HAI3 0.7 0.04 CA06g24830 AT2G29380

Leucine-rich repeat protein kinase family 
protein

- 0.7 0.04 CA02g09120 AT5G14210

Subtilase family protein - 0.7 0.02 CA10g14810 AT3G14240

Plant invertase/pectin methylesterase 
inhibitor superfamily protein

- 0.7 0.03 CA03g15860 AT5G62360

SAUR-like auxin-responsive protein family SAUR66 0.7 0.05 CA12g01640 AT1G29500

Serine/threonine protein kinase 2 S6K2 0.6 0.02 CA10g10590 AT3G08720

Amidase family protein - 0.6 0.03 CA11g15360 AT4G34880

ACT domain repeat 4 ACR4 0.6 0.02 CA00g55790 AT1G69040

Cyclophilin 38 CYP38 0.5 0.05 CA02g29500 AT3G01480

Early nodulin-like protein 17 ENODL17 0.5 0.01 CA02g27870 AT5G15350

Glutamyl-tRNA (Gln) amidotransferase 
subunit A (DUF620)

- 0.5 0.02 CA08g17110 AT3G19540

Phloem protein 2-B10 PP2-B10 0.5 0.03 CA05g19940 AT2G02360

Photosystem I subunit G PSAG 0.5 0.02 CA07g20940 AT1G55670

Plant invertase/pectin methylesterase 
inhibitor superfamily protein

- 0.5 0.05 CA03g15820 AT5G62360

Glyoxal oxidase-related protein - 0.5 0.02 CA07g00290 AT3G57620

Photosystem I subunit O PSAO 0.4 0.04 CA06g22830 AT1G08380

Ribosomal protein L12/ ATP-dependent 
Clp protease adaptor protein ClpS family 
protein

- 0.4 5.53E-03 CA09g00270 AT3G06040

lsd one like 1 LOL1 0.4 9.24E-03 CA00g77830 AT1G32540

Pre-mRNA-processing protein 40A PRP40A 0.4 0.02 CA00g84420 AT1G44910

ChaC-like family protein - 0.3 0.03 CA12g18980 AT5G26220

Ankyrin repeat family protein - 0.3 9.24E-03 CA03g14190 AT2G31820

Proteinase inhibitor I4, serpin (DUF716) - 0.3 0.04 CA01g11840 AT1G55240

Section 5.7. Supplementary information. Table S8
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Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

Germin 3 GER3 0.3 0.02 CA07g08820 AT5G20630

Germin 3 GER3 0.3 0.01 CA03g07830 AT5G20630

Trehalose-6-phosphate synthase TPS1 0.2 0.02 CA02g12830 AT1G78580

Oxidoreductase family protein - 0.2 3.98E-04 CA01g05600 AT4G17370

Protochlorophyllide oxidoreductase A PORA 0.1 0.04 CA10g00480 AT5G54190
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Table S9. Specific differentially expressed genes after 14DAT in the comparison NaCl/Control in leaves of 
A6 accession. It is represented only up-regulated genes (FC>1). It is represented the fold change (FC) and 
the adjusted P-value obtained for each gene (significant differences were considered when P<0.05). Genes 
without abbreviation are represented with “-“.

Full name Short 
name 

FC P-value C. annuum 
code

A. thaliana 
code

High affinity nitrate transporter 2.7 NRT2.7 7.9 0.04 CA02g00260 AT5G14570

Alpha/beta-Hydrolases superfamily 
protein

- 5.0 2.39E-03 CA05g18250 AT4G02340

Auxin efflux carrier family protein - 4.6 2.39E-03 CA04g23470 AT1G76520

Cellulose synthase-like D3 CSLD3 3.9 6.06E-03 CA01g07920 AT3G03050

Tyrosine transaminase family protein TAT7 3.5 5.13E-03 CA12g18900 AT5G53970

Alpha/beta-Hydrolases superfamily 
protein

- 3.3 0.03 CA11g14470 AT3G09690

Alpha/beta-Hydrolases superfamily 
protein

- 3.3 0.01 CA05g18260 AT4G02340

BUB1-related (BUB1: budding uninhibited 
by benzymidazol 1)

BUBR1 2.5 6.08E-03 CA04g23550 AT2G33560

Zinc-binding alcohol dehydrogenase 
family protein

- 2.5 6.14E-03 CA12g18000 AT5G42250

RING-box 1 RBX1 2.3 6.08E-03 CA09g17140 AT5G20570

Formin homolog 6 FH6 2.2 0.04 CA02g25170 AT5G67470

NSP-interacting kinase 3 NIK3 2.0 0.03 CA05g08950 AT1G60800

bZIP transcription factor family protein TGA7 2.0 0.04 CA12g13050 AT1G77920

4-phosphopantetheine 
adenylyltransferase

COAD 1.8 0.01 CA00g94400 AT2G18250

4-phosphopantetheine 
adenylyltransferase

COAD 1.8 0.01 CA06g04390 AT2G18250

2-oxoglutarate (2OG) and Fe(II)-
dependent oxygenase superfamily protein

- 1.8 0.01 CA12g07770 AT4G23340

Transmembrane amino acid transporter 
family protein

- 1.8 0.02 CA04g10860 AT5G15240

P-loop nucleoside triphosphate 
hydrolases superfamily protein with CH 
(Calponin Homology) domain-containing 
protein

- 1.8 0.04 CA01g02620 AT1G63640

Allantoinase ALN 1.8 0.03 CA02g15930 AT4G04955

Serine carboxypeptidase-like 42 scpl42 1.8 6.63E-03 CA04g13000 AT5G42240

Alpha-galactosidase 1 AGAL1 1.7 0.03 CA05g06220 AT5G08380

Cytochrome P450. family 76. subfamily G. 
polypeptide 1

CYP76G1 1.6 0.03 CA10g16230 AT3G52970

Section 5.7. Supplementary information. Table S9
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Full name Short 
name 

FC P-value C. annuum 
code

A. thaliana 
code

Microsomal glutathione s-transferase - 1.6 0.03 CA02g18880 AT1G65820

Multidrug resistance-associated protein 6 ABCC8 1.6 6.28E-03 CA00g70570 AT3G21250

Uncharacterized protein family (UPF0497) - 1.6 0.04 CA10g12480 AT2G28370

Protein kinase superfamily protein - 1.5 0.04 CA02g18990 AT5G38260

Pentatricopeptide repeat (PPR) 
superfamily protein

- 1.5 0.02 CA00g71780 AT3G08820

Alpha/beta-Hydrolases superfamily 
protein

- 1.5 0.01 CA08g05220 AT5G11650

Dentin sialophosphoprotein. putative 
(DUF1296)

- 1.5 0.05 CA12g15230 AT3G13990

Histone deacetylase-like protein - 1.5 0.02 CA10g08190 AT2G14825

Cyclin-D1-binding protein - 1.4 0.05 CA11g00110 AT1G22970

Cysteine-rich RECEPTOR-like kinase CRK8 1.4 0.04 CA00g15340 AT4G23160

Allantoate amidohydrolase AAH 1.3 0.03 CA02g09690 AT4G20070
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Table S10. Specific differentially expressed genes after 14DAT in the comparison NaCl/Control in leaves of 
A6 accession. It is represented only down-regulated genes (FC<1). It is represented the fold change (FC) 
and the adjusted P-value obtained for each gene (significant differences were considered when P<0.05). 
Genes without abbreviation are represented with “-“.

Full name Short 
name

FC P-value C. annuum 
code

A. thaliana 
code

S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein

- 0.7 0.04 CA02g30290 AT3G01660

Expansin A4 EXPA4 0.7 0.04 CA02g18410 AT2G39700

Beta-amylase 5 BAM5 0.7 0.03 CA07g12420 AT4G15210

Lipoyltransferase 2 LIP2 0.7 0.03 CA01g05290 AT1G04640

Photosystem II subunit P-1 PSBP-1 0.7 0.04 CA07g07930 AT1G06680

SOUL heme-binding family protein HBP5 0.7 0.01 CA09g15500 AT5G20140

Transmembrane protein - 0.7 0.03 CA01g21710 AT5G55570

Ribosomal protein L22 RPL22 0.7 0.04 CA11g09310 ATCG00810

Ribosomal protein L22 RPL22 0.7 0.04 CA08g01730 ATCG00810

Phloem protein 2-B10 PP2-B10 0.6 3.69E-03 CA12g20010 AT2G02360

Heme binding protein - 0.6 0.01 CA01g22320 AT3G62370

Enoyl-CoA hydratase/isomerase D ECHID 0.6 0.03 CA10g00450 AT1G60550

Pyridoxamine 5’-phosphate oxidase family 
protein

- 0.5 0.03 CA02g29200 AT2G04690

Inositol 1,3,4-trisphosphate 5/6-kinase 
family protein

ITPK1 0.5 0.01 CA03g22040 AT5G16760

RecA DNA recombination family protein RECA2 0.5 0.04 CA05g20060 AT2G19490

NB-ARC domain-containing disease 
resistance protein

RPP13 0.5 0.01 CA05g06820 AT3G46530

Thylakoid rhodanese-like protein TROL 0.5 0.04 CA08g08250 AT4G01050

Photosystem I subunit E-2 PSAE-2 0.5 0.04 CA06g28140 AT2G20260

Beta-amylase 5 BAM5 0.5 6.63E-03 CA07g12430 AT4G15210

3-ketoacyl-acyl carrier protein synthase I KASI 0.5 0.05 CA01g00840 AT5G46290

3-ketoacyl-acyl carrier protein synthase I KASI 0.5 0.05 CA01g00830 AT5G46290

Transducin/WD40 repeat-like superfamily 
protein

AtATG18a 0.4 0.01 CA01g30560 AT3G62770

SNF2 domain-containing protein / 
helicase domain-containing protein

PIE1 0.4 0.04 CA04g21650 AT3G12810

Receptor-interacting protein - 0.4 0.05 CA10g05770 AT4G21445

Transcription elongation factor - 0.4 6.63E-03 CA00g00620 AT5G47920

Section 5.7. Supplementary information. Table S10
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Table S11. Common differentially expressed genes after 14DAT in the comparison NaCl/Control in leaves of A25 and A6 accessions.  
It is represented only up-regulated genes (FC>1). It is represented the fold change (FC) and the adjusted P-value obtained for each gene 
(significant differences were considered when P<0.05). Genes without abbreviation are represented with “-“.

Full name Short name FC A25 P-value A25 FC A6 P-Value A6 C. annuum code A. thaliana code

Beta vacuolar processing enzyme BETA-VPE 8.5 3.98E-04 2.6 0.04 CA01g04690 AT1G62710

Amino acid permease 6 AAP6 3.2 8.06E-03 2.4 0.04 CA12g15790 AT5G49630

Myo-inositol oxygenase 1 MIOX1 3.0 0.01 2.4 0.04 CA06g16540 AT1G14520

Rhamnogalacturonate lyase family protein - 2.3 1.02E-03 1.9 6.06E-03 CA04g16980 AT1G09890

Peroxisomal membrane 22 kDa (Mpv17/PMP22) family protein - 2.3 0.02 2.0 0.05 CA10g03410 AT4G03410

Protein PIN-LIKES 1 PILS1 2.1 0.04 3.6 5.00E-03 CA04g23480 AT1G20925

Cytochrome P450. family 72, subfamily A. polypeptide 7 CYP72A7 1.9 0.05 2.0 0.04 CA07g07090 AT3G14610

FTSH protease 6 FTSH6 1.9 1.13E-03 1.7 5.13E-03 CA02g19050 AT5G15250

STRESS RESPONSE SUPPRESSOR 1 STRS1 1.8 0.02 2.1 9.17E-03 CA01g08040 AT1G31970

Pentatricopeptide repeat-containing protein At1g09220, 
mitochondrial 

- 1.6 0.01 1.6 0.02 CA06g00230 AT1G09220

Copper/zinc superoxide dismutase 1 CSD1 1.6 0.02 2.1 2.64E-03 CA01g25550 AT1G08830

IQ-domain 13 IQD13 1.6 0.03 1.6 0.03 CA06g08130 AT3G59690

tolB protein-related - 1.4 0.02 1.4 0.04 CA06g00090 AT4G01870
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Table S12. Common differentially expressed genes after 14DAT in the comparison NaCl/Control in leaves of A25 and A6 accessions.  
It is represented only down-regulated genes (FC<1). It is represented the fold change (FC) and the adjusted P-value obtained for each 
gene (significant differences were considered when P<0.05). Genes without abbreviation are represented with “-“.

Full name Short name FC A25 P-value A25 FC A6 P-value A6 C. annuum code A. thaliana code

1-aminocyclopropane-1-carboxylate synthase 4 ACS4 0.6 0.04 0.5 0.03 CA07g05340 AT2G22810

Poly (ADP-ribose) polymerase 3 PARP3 0.5 0.02 0.6 0.04 CA05g04960 AT5G22470

Hypothetical protein - 0.3 0.02 0.3 0.05 CA03g24300 AT5G50335

Section 5.7. Supplem
entary inform

ation. Table S12
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General Discussion

Chapter 6

Classical genetic crop breeding has been developed considerably in the last century 
to provide solutions to the farming challenges and troubles of the new scenario of 
climate change, although such solutions are not always efficient. Vegetable grafting 
has been promoted and consolidated in the last decades as an alternative environ-
mentally-friendly technique to face these issues (Colla et al., 2006; Rouphael et al., 
2008). Indeed, the advantages of using tolerant rootstocks have been widely described, 
which include improved yield stability and sustainability of intensive farming, enhanced 
tolerance to biotic and abiotic stresses, lower use of pesticides that contaminate the 
soil and water, and the ability to use the desired stress-sensitive scions grafted onto 
rootstocks with tolerance to stresses (Zhen et al., 2010; Pérez-Alfocea, 2015).

In the specific case of pepper, selecting the proper rootstock is not always achiev-
able due to incompatibility issues, even within the same species, which results in low 
availability of commercial rootstocks. Consequently, the use of grafting is more re-
stricted in pepper than in other species (see Section 1.6.1. of the introductory chapter 
for more information). However, when rootstocks are tolerant to stress and compatible 
with scions, fruit production is improved and economically profitable compared to 
ungrafted pepper plants (López-Marín et al., 2016). 

One way of increasing pepper genetic variability to favour the success and compat-
ibility of grafting is to find wild and semiwild accessions inside the Capsicum annuum 
species that tolerate and grow in extreme environments, since contributing to tolerance 
without adding any negative effect on the scion is the only requirement for rootstocks 
(King et al., 2010; Penella and Calatayud, 2018). To this end, we decided to explore the 
degree of tolerance to water and salt stress of several C. annuum accessions from the 
COMAV-UPV collection (Valencia, Spain) (Chapter 2). Among all the studied parame-
ters, photosynthesis and stomatal conductance were proposed as the most accurate 
ones to explain biomass differences, as reported in previous works (Rouphael et al., 
2012; Penella et al., 2013, 2014b). However, other parameters emerged as useful tools 
to determine tolerance, such as ψs and ψW, or accumulation of Na+ in the case of salt 
stress. In this screening experiment, A31 and A34 were the accessions classified as 
tolerant to water and salt stress, respectively, which have added genetic diversity to 
the selected tolerant accessions from previous works (Penella et al., 2013, 2014b). All of 
them were included in a breeding programme to obtain new tolerant hybrid rootstocks. 
Then, many of these hybrids were tested agronomically under real-field conditions of 
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water scarcity and high concentration of salts, obtaining significant and positive results 
compared to ungrafted scions or grafted onto tolerant accessions (data not shown in 
the present document).

Not only was important to find new genetic diversity but also to unravel the mech-
anisms of tolerance to salt and water stress of ungrafted accessions and grafted 
pepper plants. Thus, among all the tolerant rootstocks already selected in previous 
screening experiments, in this doctoral thesis we decided to thoroughly study one 
accession (A25) and one hybrid (NIBER®) previously categorised as tolerant to salt 
and water stress when used as rootstocks (Calatayud et al., 2016; Penella et al., 2016). 
One of the main objectives of the developed studies was to elucidate the physiological 
mechanisms of tolerance that scions aquire when grafted onto tolerant rootstocks, 
as well as the scion-rootstock interactions. Within this objective, A25 was studied 
as rootstock under suboptimal water conditions (Chapter 3) and hybrid NIBER® was 
studied as rootstock under salt stress conditions (Chapter 4), using a commercial 
variety as scion. Additionally, accession A25 was also compared with A6, previously 
described as sensitive to salt stress (Penella et al., 2013), with the aim of clarifying the 
main molecular pathways differentially expressed in A25 responsible for tolerance to 
high salinity stress, through a transcriptomic approach (Chapter 5).  

Focusing firstly on the impact of salt addition on plants, an important effect is the 
differential transport and accumulation of ions within the plant, mainly Na+ and Cl- 
(Isayenkov and Maathuis, 2019); the negative effects of salts are ameliorated by the 
improvement of ion homeostasis mechanisms, which are pivotal to reach tolerance and 
to maintain growth and development (Huang et al., 2013). With the aim of determining 
the effects of both ions in pepper plants, we decided to measure them in salt stress 
experiments. In all of them, both grafted and ungrafted pepper plants, Na+ was the 
main ion responsible for toxicity. Regarding Cl-, a greater concentration with respect 
to Na+ was required to provoke the same photosynthetic and oxidative damage. Sim-
ilar results have been found in previous studies in both grafted and ungrafted pepper 
plants (Chartzoulakis and Klapaki, 2000; Penella et al., 2015, 2017). 

Another important consequence of NaCl toxicity is the competition between Na+ 
and K+ for binding sites and transporters, which results in a decline in the concentration 
of K+ (Isayenkov and Maathuis, 2019); this is why we also measured this ion in the salt 
stress assays of this document. Indeed, we have herein demonstrated that better K+ ho-
meostasis under salt stress conditions was unfavourable for Na+ accumulation in plants 
and, thus, reduced its phytotoxic effects, as other authors have already demonstrated 
in other species (Stępień and Kłbus, 2006; Fan et al., 2011). Specifically, the ability to 
maintain or increase the concentration of K+ and decrease the Na+/K+ ratio of ungrafted 
A25 accessions and scions grafted onto NIBER® rootstocks, respectively, were thus 
signs of tolerance. Although Na+/K+ decreased when NIBER® was used as rootstock, 
the higher ratio in the roots with respect to the leaves in all plant combinations studied 
suggests that Na+ was accumulated mainly in the roots, as Rouphael et al. (2012) have 
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already demonstrated in grafted melon plants. In the specificic case of A25, where a 
transcriptomic research was conducted, we additionally found the up-regulation of 
potassium transporter AKT1 signalling, highly related to K+ transport, after comparing 
high-salt concentration and control conditions. We found the activation of CBL9 and 
the inactivation of HAI3 putative genes, in both cases related in previous studies to 
the degree of activation of AKT1 (Xu et al., 2006; Lee et al., 2007; Wu et al., 2018).

Abiotic stresses, either by water deficit or by the phytotoxic effect of salt ions, also 
have negative effets on photosynthesis, which limit plant growth and development, as 
well as other important processes in plants (He et al., 2009; López-Marín et al., 2017). 
Due to its importance, we monitored the gas exchange parameters in all the studies 
carried out in this document. Overall, we detected a better preservation in tolerant 
pepper plants, directly related to the maintenance of plant growth, as other authors 
have already detected in pepper (Penella et al., 2014a; López-Marín et al., 2017).

In the specific case of high salinity conditions, Na+ concentration in aerial organs 
has been previously demonstrated to have detrimental effects on photosynthetic 
activities and disrupt chloroplast integrity (Badawi et al., 2004; Munns and Tester, 
2008). As a result, it limits the transport of Na+ to the leaves and favours its release 
and accumulation in non-toxic organelles, which are pivotal to maintain photosytnhesis 
and stomatal conductance (Munns and Tester, 2008). The obtained results, presented 
in this document, confirm that the negative effects on photosynthetic parameters 
are largely aggravated due to the harmful effects of the accumulation of Na+ to toxic 
levels. In the ungrafted accession A25 (tolerant to salinity) treated with high salt con-
centration, a greater proportion of Na+ was accumulated in the roots with respect to 
A6 seedlings (sensitive to salinity). However, the accumulation of this ion in the leaves 
was similar in both accessions. After comparing differentially expressed genes between 
A25 and A6, we confirmed that the impact of Na+ toxicity on the leaves was unequal 
in both cases. Up-regulation of the BASS1 and TIL putative genes in A25 would have 
resulted in the symport extrusion of both pantoate and Na+ out of the chloroplast and 
the protection of this organelle and chlorophyll b, respectively, as Huang et al. (2018) 
and Abo-Ogiala et al. (2014) demonstated in Arabidopsis thaliana seedlings. Addition-
ally, up-regulation of the OCT4 putative gene in A25 would have accumulated it into 
non-toxic organelles as vacuoles, as has been previously reported (Küfner and Koch, 
2008). However, other up-regulated putative genes in the A25 accession after the 
comparison of salt and control conditions contributed to maintaining photosynthesis. 
We proposed the putative genes FIB1A, SPDS3 and JAR1, since previous studies have 
already demonstrated that they help in the protection of chloroplast and photosynthetic 
machinery and in the prevention of chlorophyll degradation (Yang et al., 2006; Ahmad 
et al., 2013; Khoshbakht et al., 2018). Furthermore, in line with the results obtained 
by Stępień and Kłbus (2006) in Cucumis sativus, we suggest that the reduced Na+/K+ 
ratio in both leaves (from the scion) and roots (from NIBER®) in grafted plants, with 
respect to other plant combinations, reduced the phytotoxic effect of Na+ on tissues, 
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which, in turn, improved photosynthesis and stomatal conductance. Consequently, all 
these improvements enhanced plant growth and development. 

It is equally important to study the negative effects of suboptimal conditions of 
water availability on photosynthesis, although grafting onto tolerant rootstocks can 
improve both gas exchange and marketable yield, as has been previously confirmed 
(Penella et al., 2014b; López-Marín et al., 2017). Specifically, in the water stress ex-
periments developed herein, we detected that the drop of photosynthesis (AN) was 
mainly related to stomatal limitations, since stomatal conductance (gs) and AN dimin-
ished in a coordinated relationship. However, we detected the lowest decrease of such 
parameters in the tolerant accession A31 and the scion grafted onto the A25 tolerant 
rootstock. Indeed, non-stomatal limitations were not affected in tolerant plants, since 
we did not find significant decreases in instantaneous carboxylation efficiency (AN/Ci) 
or accumulation of substomatal concentration of CO2 (Ci). Nevertheless, the regulation 
of stomatal aperture, which involves multiple mechanisms, is generally very important 
in the maintenance of photosynthesis under water stress conditions in many species 
(Dodd and Ryan, 2016).

One of the main regulation mechanisms of such stomatal aperture is mediated by 
the control of abscisic acid (ABA) (Fernando and Schroeder, 2016). Accumulation of 
this hormone is induced in different tissues under abiotic stresses, such as salt and 
water deficit, and it causes stomatal closure in photosynthetic tissues, prevents ex-
cessive transpiration and improves water use efficiency (Liu et al., 2016). However, if 
ABA homeostasis cannot be regulated after a long term period of stress, gas exchange 
is reduced and may restrict growth and development (Sreenivasulu et al., 2012; Ryu 
and Cho, 2015). Consequently, monitoring the behaviour of this hormone in plants can 
elucidate new mechanisms of tolerance in pepper plants, as was detected in some of 
the salt stress experiments conducted in this thesis. Firstly, in the experiment where 
NIBER® was used as rootstock, we observed a strong correlation between greater ABA 
concentration in both leaves and roots and the decrease in gs for all plant combina-
tions studied. Specifically, when NIBER® was used as rootstock, ABA concentration 
was lower in leaves and, thus, the stomatal closure was also lower (i.e., increase of 
gs), as has been previously noted in other tolerant plants (He and Cramer, 1996). Ad-
ditionally, the drop of ABA was observed to depend on the rootstock, since reciprocal 
grafting (i.e., using NIBER® as scion) exhibited levels similar to those of ungrafted and 
self-grafted plants. On the other hand, the A25 ungrafted accession, after compar-
ing salt and control conditions and A25 with sensitive accessions (A6), differentially 
expressed a series of putative genes (i.e., CAMTA5 or ERD4) that were linked to a 
misregulation of the ABA-signalling pathway. In fact, several studies have already 
demonstrated that the overexpression of such genes may confer plants tolerance to 
abiotic stresses and improve their biomass (Liu et al., 2009; Pandey et al., 2013). We 
also found that improved aerial and root biomass in the tolerant accession A25 was 
linked to the up-regulation of a series of putative genes related to cell expansion and 

Chapter 6. General Discussion
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division and the starch mobilisation pathway (i.e., CDC2, expansins or BAM1), previ-
ously described as essential for biomass maintenance (Valerio et al., 2011; Marowa et 
al., 2016; Qi and Zhang, 2020). Consequently, we can conclude that a disrupted ABA 
signalling or concentration could be related to greater tolerance.

In addition to the discussed changes in carbon assimilation, drought and salinity 
stresses may affect several nitrogen (N) metabolism stages (Feller and Vaseva, 2014; 
Penella et al., 2014a), which are tightly regulated by photosynthesis and stomatal 
closure (Kaiser and Huber, 2001). Tolerance is reached through the modulation of key 
enzymes related to N metabolism, which are important for biomass and production 
(Xu and Zhou, 2006). Among all of them, nitrate reductase (NR), the enzyme measured 
herein, is relevant in nitrate assimilation, although it is sensitive to water scarcity or 
increments of salt concentration in the water or the soil (Penella et al., 2014a, 2015). 
Therefore, the maintenance of the activity of such enzyme in the leaves of the scion 
grafted onto A25 or onto NIBER® was considered as a sign of tolerance, related to 
higher gs and AN preservation. In the case of non-tolerant grafted combinations, NR 
in the leaves stopped its activity almost completely. However, the observed higher 
NR activity in the roots compared with that in the leaves was a consequence of the 
inhibition of the transfer of NO3

− to the leaves, which can be limited by lower transpi-
ration, as has been previously described in the literature (Lexa and Cheeseman, 1997; 
Penella et al., 2014a).

Gas exchange and growth maintenance also requires the preservation of water 
content in plant cells and water uptake flow. Different mechanisms are available in 
plants to maintain water content and improve tolerance, which mainly depend on the 
type of stress, the duration of the stress and the studied species. Among these, the 
accumulation of compatible osmolytes and controlling the water uptake rate are the 
most common factors (Colla et al., 2010; Anjum et al., 2012). Therefore, in our ex-
periments, we focused on measuring a possible compatible osmolyte, the proline, 
and water movement by the water (ψW) and osmotic (ψs) potential. Comparing all the 
experiments developed herein, where ψs and ψW were measured, the major changes 
were found under salt stress rather than water stress conditions, although changes 
were found under both stresses. Likewise, under salt stress conditions, it was observed 
that the main compatible osmolyte responsible for the change in ψs was not proline, 
but the accumulation of Na+ in roots in the tolerant accessions and grafting combina-
tions studied. Such ion has been described in the literature to be accumulated inside 
non-toxic organelles, in order to avoid its toxic accumulation in the roots (Zhang et 
al., 2014) and to function as an osmolyte that decreases ψs without extra energy cost, 
unlike proline (Munns, 2002). 

Concerning the maintenance of water flow under suboptimal water conditions, 
improving water relations was not a relevant trait in the case of the screening for tol-
erant accessions, due to the small changes found in both ψs and ψW with respect to 
the control plants. However, the tolerant accession A25 used as rootstock conferred an 
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improved water status to the scion by the accumulation of solutes, which led to greater 
maintenance of RWC and ψW with respect to the control conditions. As a result, A25 
would have conferred the scion a better osmotic adjustment, as has been previously 
described (Penella et al., 2014a). On the other hand, ungrafted and self-grafted plants 
significantly decreased water uptake, which was not compensated by the accumulation 
of compatible osmolytes (low ψs), since both RWC and ψW decreased. 

The inhibition of gas exchange and the restriction of water uptake exacerbate the 
negative conditions of plants by increasing the oxidative damage, as a result of the 
imbalance between reactive oxygen species (ROS) generation and scavenging (Miller et 
al., 2010; Zulfugarov et al., 2011). Therefore, to evaluate the mechanisms that tolerant 
rootstocks used to reduce the oxidative stress, we developed two experiments with 
grafted plants to determine ROS damage and detoxification by the evaluation of the 
damage in lipid membranes, the synthesis of hydrogen peroxide (H2O2), the capacity 
to activate different antioxidant molecules (e.g., phenols) and total radical scavenging 
capacity. We concluded that different strategies were developed in grafted tolerant 
pepper plants to cope with oxidative stress after abiotic stresses started. 

On the one hand, under water stress conditions, we found lesser peroxidative 
damage of lipid membranes in plants grafted onto A25, which was accompanied by a 
lower accumulation of H2O2, ROS scavenging capacity and phenol content in the scion. 
Consequently, both oxidative damage and the antioxidative mechanisms were not 
up-regulated compared to ungrafted or self-grafted plants. Diminished photosynthetic 
capacity has been associated in previous studies with oxidative damage, since impaired 
CO2 fixation rate and stomatal closure enhance ROS production (Hu et al., 2010). Our 
results coincide with this fact, since plants grafted onto the A25 accession, with a 
better photosynthetic capacity, maintained lower levels of oxidative damage, which is 
a sign of tolerance. On the contrary, ungrafted and self-grafted plants showed impaired 
gas exchange and promoted ROS generation; despite the increase of ROS scavenging 
and phenol content, such increase was not enough to prevent the oxidative damage 
under water deficit conditions, resulting in severe biomass reduction.

A different strategy was proposed under salt stress conditions, where the reduction 
of lipid peroxidation was associated with improved ROS scavenging and increased 
phenol content when the scion was grafted onto the tolerant rootstock NIBER®. The 
accumulation of H2O2 observed in this plant combination was not associated with more 
oxidative damage but was suggested to play a role as a secondary messenger, helping 
in the activation of the antioxidant machinery. In fact, similar functions for H2O2 have 
already been proposed in rice (Formentin et al., 2018) and wheat (Liu et al., 2020) 
under salt stress conditions. Regarding proline, its role as a compatible solute has not 
been stated herein, since the accumulation we found in all plant combinations was not 
enough to cause a drop in ψs, as was mentioned above. However, the rise of the con-
centration of proline when NIBER® was used as rootstock with respect to other plant 
combinations suggests that it played other relevant roles. In this sense, several authors 
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have attributed diverse functions, such as enzyme-stabilizing agent, peroxidative dam-
age reduction or photosynthetic damage prevention (Demir and Kocaçalişkan, 2001; 
Ashraf et al., 2008; Huang et al., 2009), suggesting analogous functions herein. Lastly, 
although polyamine content was not measured in the present study, the up-regulation 
of related genes (SPDS3) in the ungrafted A25 accession when salt stress and control 
conditions were compared suggests that polyamine was playing a relevant role in the 
tolerance to oxidative damage, as has been reported in previous studies (Khoshbakht 
et al., 2018), although further information would be necessary to confirm it. 

Finally, it is a fact that grafting per se can modify and improve scion characteristics, 
as has been broadly described in the literature (Orsini et al., 2013; Ren et al., 2018). 
Therefore, we always introduced self-grafted plants as a double control to separate the 
grafting effects from the tolerant rootstock effects. In all our experiments presented 
in this document, we demonstrated that the use of self-grafted plants improves sci-
on characteristics under stress, despite the fact that these plant combinations were 
not vigorous enough to confer tolerance to the scion. Under water deficit conditions, 
self-grafted plants improved water uptake by better RWC and ψW, C and N balance and 
ROS detoxification. In the case of salt stress conditions, even if they improved Na+/K+ and 
NR activity, they were severely affected, since the photosynthetic and biomass attributes 
decreased to the levels of the ungrafted plants. Consequently, cutting and joining two 
plants together modifies a series of pathways that confer defence improvement to the 
scion. In the literature, hormone signalling transduction, starch and sucrose metabolism 
(Ren et al., 2018; Zhang et al., 2019) and stomatal movement (Orsini et al., 2013) have 
been modified under grafting conditions. However, using vigorous rootstocks significantly 
improves fruit production, biomass and tolerance compared to self-grafted plants (Estañ 
et al., 2004; Liu et al., 2014), as we also demonstrated in the present document.

To summarise all the above mentioned, we demonstrated that tolerance to salt and 
water stresses by using tolerant rootstocks is a complex phenomenon that implies the 
interconnection of multiple pathways to reach the state of tolerance. Although different 
mechanisms are important, the maintenance of photosynthesis and stomatal conduct-
ance, the drop of ABA content, the regulation of N metabolism and the differential 
expression of genes related to such parametes were proposed to be associated with 
biomass preservation in grafted pepper plants and ungrafted accessions. Likewise, 
increasing water uptake and flow was described as important mechanisms to improve 
tolerance. In the specific case of salt stress, the reduced transport of Na+ to aerial 
organs by preferential accumulation in rootstocks was proposed as an advantage, 
since it prevented the toxic accumulation of this ion in photosynthetic organs and 
organelles and favoured the osmotic adjustment. All these factors led to the reduc-
tion of the oxidative damage in grafted pepper plants and the assignment of a new 
role for H2O2 as a signalling molecule under the salt conditions studied here. All these 
mechanisms mentioned here allowed accessions and grafted plants to cope with salt 
and water stress.
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Chapter 7. Final Conclusions

Final Conclusions

Chapter 7

The knowledge that we have obtained in this doctoral thesis can be summarised in 
the following key points: 

1. New pepper accessions have been found to be tolerant to water and salt stresses, 
which can be added to the genetic pool of the previously selected tolerant acces-
sions to generate hybrids to be used as rootstocks. 

2. Tolerance to salt stress in grafted pepper plants or accessions is achieved by limita-
tion of Na+ transport to leaves, as well as more efficient transport and accumulation 
of K+ in roots and leaves, which are essential to accomplish ion homeostasis.

3. In grafted and ungrafted plants tolerant to water or salt stress, photosynthesis is 
more conservative and constitutes an essential parameter to determine tolerance. 

4. The tolerant pepper rootstocks show lower ABA concentrations in leaves under salt 
stress, and the genes related to ABA signalling are misregulated, which leads to 
enhanced stomatal aperture, transpiration and, thus, more biomass.

5. Hydrogen peroxide presents a dual role in tolerant grafted plants under water scar-
city and high salinity conditions: on the one hand, it contributes to oxidative damage 
and, on the other hand, it works as a secondary messenger with a considerable 
number of antioxidant signalling functions.

6. The drop in osmotic potential found in tolerant accessions and grafted plants to 
salinity and water scarcity is not linked with the increase in proline as a compatible 
osmolyte. The increase in proline is associated with a protective role.

7. Studying the molecular mechanisms of tolerance in tolerant pepper rootstocks under 
salt stress is used to confirm the previously found agronomical and physiological 
behaviour, and to unravel new molecular mechanisms hardly explored to date. All 
the differentially expressed genes were linked with hormonal signalling, growth and 
development, photoprotection, regulation of ion transporters and ROS detoxification.
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