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Abstract: In this paper, we propose an integral transform method for the numerical solution of
random mean square parabolic models, that makes manageable the computational complexity due to
the storage of intermediate information when one applies iterative methods. By applying the random
Laplace transform method combined with the use of Monte Carlo and numerical integration of the
Laplace transform inversion, an easy expression of the approximating stochastic process allows the
manageable computation of the statistical moments of the approximation.

Keywords: random mean square parabolic model; Laplace transform; numerical inverse Laplace
integration; numerical simulation; Monte Carlo method

1. Introduction

Since the seminal works [1,2], random uncertainty has gained presence in the mathematical
models as a way to fit better the real world. The parameters, coefficients and initial/boundary
conditions in real problems are subject to uncertainties, not only by error measurement but also
due to the lack of access to the measurement or the heterogeneity of the media; see [3,4] for
applications. However, successful approaches used to deal with deterministic problems are not
appropriated to manage random models. In particular, this occurs with iterative methods. The reason
is that in the solution of random models, it is not enough to provide the solution stochastic
process (s.p.), but also the computation of its statistical moments such as the expectation and
the variance. Iterative processes involve the storage of intermediate operational random calculus
becoming unmanageable. This motivates the search of alternative approaches allowing an easy
formal expression of the approximating s.p. solution making possible the computation of its statistical
moments. Integral transform method is an efficient approach dealing with both deterministic and
random partial differential models when they are combined with quadrature rules to approximate the
final infinite integral linked to the inverse integral transform solution [5,6]. Random uncertainty can be
modelled in several ways depending of the use of Brownian motion stochastic processes (s.p.’s) and Itô
calculus, or other s.p.’s and the mean square (m.s.) calculus [7]. We follow the m.s. approach because
of two main advantages, the first is that the m.s. approach coincides with the deterministic, when the
random model is supposed to be deterministic [8]. The second is that when an s.p. is m.s. close to
another one, then its expectation and its variance are also close [6].

The use of an integral transform needs to be combined with certain appropriate numerical
integration technique for the numerical inversion. The quadrature integration method should take
care of the oscillatory behaviour of the integrand, and it suggests avoiding Gaussian-quadrature rules
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used in [6]; see also [9–11]. Although the integral transform method has been mainly used for constant
coefficient partial differential models [12] in the deterministic framework, because it underlies the
assumption that the transformed ordinary differential problem needs to be solved explicitly, and this is
not the case; see [13]. This approach has been used for the random case in [5,6,8] for both the constant
coefficient and variable coefficient random m.s. case. Apart from the coefficients, the randomness may
appear into the initial/boundary conditions. The uncertainty into the model is based on impurities
of materials, heterogeneities in the media, error measurements or the lack/difficulty of access to
measurements; see [6] and references therein.

This paper deals with random parabolic partial differential models of the form

∂u(x, t)
∂t

=
∂

∂x

[
p(x)

∂u(x, t)
∂x

]
− q(x) u(x, t) + Φ(x, t), x > 0, t > 0 , (1)

u(0, t) = f1(t), t > 0, (2)
∂u(0, t)

∂x
= f2(t), t > 0, (3)

u(x, 0) = g(x) , x > 0 , (4)

u(x, t) remains bounded as x → ∞ , t > 0 , (5)

with appropriate additional conditions on the random coefficients p(x) and q(x), the random source
term Φ(x, t), and the random initial/boundary conditions s.p.’s, g(x), f1(t) and f2(t) to be specified
later, in the framework of uncertainty models with a finite degree of randomness [8,14], that is, the s.p.’s
are functions depending on a finite number of random variables (r.v.’s). The model (1)–(5) is frequent
in heat and mass transfer theory and chemical engineering sciences, [15], ([16] p. 388).

This paper is organized as follows. Section 2 includes some notations, definitions and preliminary
results, about the mean square calculus of random differential equations and random Laplace
transform, as well as the construction of the formal s.p. solution of problem (1)–(5). In Section 3,
we construct firstly an approximation s.p. solution by truncating the infinite integral Laplace inversion.
Then, non-Gaussian random quadrature formulae allow the approximating s.p. as a sum whose
expectation and variance are easily computable. Numerical procedure algorithms to construct the
numerical approximation are also included. In Section 4, numerical simulations which combine the
use of Monte Carlo method and the numerical integration of the Laplace transform inversion are made
to check the efficiency of the proposed numerical methods.

2. Preliminaries and Formal Solution

In order to be comprehensive but not exhaustive we recall some notation, definitions and results
about m.s. calculus and random Laplace transform; see [8]. Let (Ω,F,R) be a complete probability
space, and let Lm×n

p (Ω) be the set of all random matrices Y = (yij)m×n whose entries yij are random
variables (r.v.’s) satisfying

‖yij‖p =
(
E[|yij|p]

)1/p
< +∞, p ≥ 1,

what this means is that yij ∈ Lp(Ω), where E[·] denotes the expectation operator. The space of all
random matrices of size m× n, endowed with the matrix p-norm, Lm×n

p (Ω), defined by

‖Y‖p =
m

∑
i=1

n

∑
j=1
‖yij‖p, E[|yij|p] < +∞,

is a Banach space. This definition of the matrix p−norm can be extended to matrix s.p.’s Y(t) =(
yij(t)

)
m×n of Lm×n

p (Ω), where now each entry
(
yij(t)

)
∈ Lp(Ω) for every 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The definitions of integrability, continuity, differentiability of a matrix function lying in Lm×n
p (Ω)
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follows in a natural manner using matrix p−norm introduced above. The case mean square
corresponds to p = 2, and mean four p = 4. One has Lm×n

4 (Ω) ⊂ Lm×n
2 (Ω); see [6].

Definition 1. C is the class of all the 2-s.p.’s h(t) defined in the real line such that:

(i) h(t) is m.s. locally integrable,
(ii) h(t) = 0, if t < 0,

(iii) The 2-norm of h(t) is of exponential order, i.e., there exist real constants c ≥ 0, called the abscissa of
convergence, and M > 0 such that

‖h(t)‖2 ≤ M ect , t ≥ 0 . (6)

Taking into account Definition 1, the random Laplace transform of a 2-s.p. h(t) ∈ C is defined by the
m.s. integral

H(s) = L[h(t)](s) =
∫ ∞

0
h(t) e−st dt , s ∈ C , Re(s) > c ≥ 0 , (7)

see [8]. Furthermore, if h(t) is a s.p., that is, h(t) is m.s. differentiable, and h′(t) belongs to class C, then

L[h′(t)](s) = sL[h(t)](s)− h(0+), (8)

see [8]. If we know H(s) = L[h(t)](s), then the random inverse transform allows to recover h(t) in
terms of H(s):

h(t) =
1

2 π i

∫ α+i ∞

α−i ∞
H(s) es tds , t > 0, α > c , (9)

where i denotes the imaginary unit. Now assume that the coefficient p(x) in (1) is a 2-s.p. m.s
differentiable so that the m.s. derivative

∂

∂x

[
p(x)

∂ u(x, t)
∂x

]
= p(x)

∂2 u(x, t)
∂x2 + p′(x)

∂ u(x, t)
∂x

,

and (1) can be written for x > 0, t > 0,

∂u(x, t)
∂t

= p(x)
∂2 u(x, t)

∂x2 + p′(x)
∂ u(x, t)

∂x
− q(x) u(x, t) + Φ(x, t) . (10)

Let us assume that Equation (10) has a solution 2-s.p. u(x, t) regarded as a function of active variable t,
lies in the class C, u(x, ·) and let

U(x)(s) = L [u(x, ·)] (s) . (11)

Assume that the source term Φ(x, t) is also a 2-s.p. in class C for each fixed x > 0, so that it is
well defined

Ψ(x)(s) = L [Φ(x, ·)] (s) . (12)

Formal application of random Laplace transform to both sides of Equation (10), using property (8),
(11), (12) and assuming that Leibniz rule for the derivative of an integral (see [17]), holds true, one has

s U(x)(s)− u(x, 0) = p(x)
∂2 U(x)

∂x2 (s) + p′(x)
∂ U(x)

∂x
(s)− q(x)U(x)(s) + Ψ(x)(s) . (13)

Let us assume that the 2-s.p. p(x) has positive realizations for almost every (a.e.) event ξ ∈ Ω, i.e.,

p(x, ξ) = f (x) δ(ξ) > 0 , (a.e.) ξ ∈ Ω, ∀x > 0 . (14)
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Under hypothesis (14), using (4) and (13), we can write (13) in the more compact form, random
ordinary differential equation in the variable x:

∂2 U(x)
∂x2 (s) +

p′(x)
p(x)

∂ U(x)
∂x

(s)− q(x) + s
p(x)

U(x)(s) = −Ψ(x)(s) + g(x)
p(x)

, x > 0 . (15)

Assume that the random boundary conditions f1(t) and f2(t) are also 2-s.p.’s in class C, so by applying
random Laplace transform to both sides of (2) and (3), admitting Leibniz rule for the derivative of
an integral, one has

U(0)(s) = F1(s) ,

∂U(0)
∂x

(s) = F2(s) ,

 (16)

where we have denoted F1(s) = L [ f1(t)] (s) and F2(s) = L [ f2(t)] (s).
The m.s. random differential problem (15) and (16) is transformable into extended first order

random initial value problem in the unknown Y(x)(s) = [U(x)(s), U′(x)(s)]T in the variable x:

Y′(x)(s) = A(x)(s)Y(x)(s) + B(x)(s) , x > 0

Y(0)(s) =

[
F1(s)
F2(s)

]
= F(s) ,

 (17)

where

A(x)(s) =


0 1

q(x) + s
p(x)

− p′(x)
p(x)

 ; B(x)(s) =


0

−Ψ(x)(s) + g(x)
p(x)

 . (18)

In order to guarantee the existence of a m.s. solution s.p., one needs that entries of the random
matrix A(x)(s) satisfies the moment condition of [18] for every x > 0, that is

E
[ ∣∣ai,j(x)

∣∣r] ≤ mi,j (hi,j)
r < +∞ , ∀r ≥ 0 , 1 ≤ i, j ≤ 2 , (19)

and the entries of B(x)(s) are 4-integrable and lie in L4(Ω) see [18]. In our case, this means that
each s.p.

q(x)
p(x)

,
1

p(x)
,

p′(x)
p(x)

satisfy the moment condition (19) (20)

and
Ψ(x)(s) + g(x)

p(x)
lies in L4(Ω) and is 4−integrable . (21)

Under conditions (19)–(21), assuming that the random vector initial condition verifies

F(s) ∈ L4(Ω) , (22)

there is a m.s. solution s.p. of (17) given by

Y(x)(s) = ΦA(x; 0)
{

F(s) +
∫ x

0
Φ−1

A (v; 0) B(v)dv
}

, (23)
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where ΦA(x; 0) is the random fundamental matrix solution of the random homogeneous matrix
differential problem:

W ′(x)(s) = A(x)(s)W(x)(s) , W(0) = I , (24)

with A(x)(s) the random matrix defined in (18); see [18]. Following with the construcction of the
formal m.s. solution of the problem (10), (2)–(5), using the random Laplace inverse Formula (9) and
denoting

U(x)(s) = [1 , 0]Y(x)(s) , (25)

it follows that

u(x, t) =
1

2 π i

∫ α+i ∞

α−i ∞
U(x)(s) es t ds =

1
2 π i

∫ α+i ∞

α−i ∞
[1 , 0]Y(x)(s) es t ds , (26)

where Y(x)(s) is given by (23). Note that the convergence of the integral (26) holds true if

∫ +∞

−∞
‖Y(x)(α + i v)‖ dv < +∞ , α > c ≥ 0 . (27)

The next step is the approximation of the s.p. u(x, t) given by the numerical treatment of (26), so that its
expression makes manageable the computation of its statistical moments. For the sake of accuracy for
long time domain and the oscillatory character of the integrand, Gaussian quadrature is not advisable.
As u(x, t) is a real s.p., taking advantage of the relationship between the inverse Laplace transform
and Fourier cosine integrals (see [19] and ([20] p. 28)) we can write

u(x, t) =
2 eα t

π

∫ ∞

0
Re[U(x)(α + i w)] cos(w t)dw ,

and using (25)

u(x, t) =
2 eα t

π
[1 , 0]

∫ ∞

0
Re [Y(x)(α + i w)] cos(w t)dw . (28)

3. Random Numerical Solutions

Under hypothesis (27) the random integral (26) is m.s. convergent and the truncated
s.p. approximate solution takes the form

ũR(x, t) =
2 eα t

π
[1 , 0]

∫ R

0
Re [Y(x)(α + i w)] cos(w t)dw , (29)

where R approaches infinity and Y(x) is the solution s.p. of the random initial value problem (17).
Let us write (29) in the following form for each realization ξ ∈ Ω

ũR(x, t)(ξ) =
2 eα t

π
[1 , 0] IR[Y(x, ξ), t, α] . (30)

Let us consider the partition of the interval [0, R] given by M + 1 points wj = k j, so that k = ∆w = R
M ,

0 ≤ j ≤ M. Using the random trapezoidal quadrature inspired in ([10] Section 3.5) one approximates
IR[Y(x, ξ), t, α] by

IR[Y(x, ξ), t, α] ≈ 1
2

Re[Y(x, ξ)(α)] + k
M

∑
j=1

Re
[
Y(x, ξ)(α + i wj)

]
cos(wj t) , (31)

where the half weight is omitted at the right end due to the infinite nature of the original domain
[0,+∞); see [19].
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From (30) and (31) and taking into account all the realizations ξ ∈ Ω, one gets the approximate
s.p. solution of the problem (1)–(5) given by

uR,k(x, t) = 2 eα t k
π [1 , 0]

{
1
2 Re [Y(x)(α)] + ∑M

j=1 Re
[
Y(x)(α + i wj)

]
cos(wj t)

}
, wj = k j, 0 ≤ j ≤ M . (32)

Taking expectations in (32) one has

E [uR,k(x, t)] =
2 eα t k

π
[1 , 0]

{
1
2
E [Re[Y(x)(α)]] +

M

∑
j=1

E
[
Re
[
Y(x)(α + i wj)

]]
cos(wj t)

}
,

and the corresponding variance

Var [uR,k(x, t)] = E
[
(uR,k(x, t))2

]
− (E [uR,k(x, t)])2

=
4 e2a t k2

π2 [1 , 0]
M

∑
j=0

M

∑
`=0

γj γ` cos(wjt) cos(w`t) Cov
[
Re
[
Y(x)(α + i wj)

]
, Re [Y(x)(α + i w`)]

]
,

where
γ0 =

1
2

, γj = 1 , 1 ≤ j ≤ M , (33)

and Cov[P, Q] = E[PQ]−E[P]E[Q].
Note that the m.s. solution Y(x)(·) involved in (32), given by (23), is not available except in

a limited number of cases, see Example 5 of [18], because the random fundamental matrix ΦA(x; 0) is
not known. This motivates, from a practical point of view, the search of alternative approximations
via simulations, the so called Monte Carlo approach [21]. Although it is well-known that the speed
of convergence of Monte Carlo method is rather slow [22], it is a useful tool for our random problem
in combination with random integral transform methods and numerical integration techniques.
Monte Carlo method provides the E [Re[Y(x)(·)]] throughout the average of an appropriate number
of realizations ξ ∈ Ω of the deterministic problem

Y′(x, ξ)(s) = A(x, ξ)(s)Y(x, ξ)(s) + B(x, ξ)(s) , x > 0

Y(0, ξ)(s) = F(ξ)(s) ,

 (34)

Then the expectation and its corresponding variance by K-Monte Carlo (MC) simulations are
computed by the following expressions

EK
MC [uR,k(x, t)] = 2 eα t k

π [1 , 0]
{

1
2 E

K
MC [Re[Y(x)(α)]] + ∑M

j=1 EK
MC
[
Re
[
Y(x)(α + i wj)

]]
cos(wj t)

}
, (35)

and

VarK
MC
[
uR,k(x, t)

]
= EK

MC

[(
uR,k(x, t)

)2
]
−
(
EK

MC
[
uR,k(x, t)

])2

=
4 e2a t k2

π2 [1 , 0]
M

∑
j=0

M

∑
`=0

γj γ` cos(wjt) cos(w`t) CovK
MC

[
Re
[
Y(x)(α + i wj)

]
, Re [Y(x)(α + i w`)]

]
, (36)

where the coefficients γj, j = 0, · · · , M, were defined in (33) and CovK
MC[P, Q] = EK

MC[PQ] −
EK

MC[P]EK
MC[Q].

Algorithm 1 summarizes the steps to compute the approximations of the expectation and the
standard deviation of the solution s.p. (32)
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Algorithm 1 Procedure to compute the expectation and the standard deviation of the approximate
solution s.p. uR,k(x, t) (32) of the problem (1)–(5).

1: Take the coefficient p(x) ∈ L4(Ω) a 4-integrable and 4-differentiable s.p. verifying condition (14).
2: Take the source term Φ(x, t) ∈ L4(Ω) and the boundary conditions f1(t) ∈ L4(Ω) and f2(t) ∈

L4(Ω) all of them 4-integrable s.p.’s in class C.
3: Take the coefficient q(x) lying in L2(Ω).
4: Take the initial condition g(x) lying in L4(Ω) a 4-integrable s.p.
5: Check that conditions (20) and (21) over the data are verified.
6: Fix a point (x, t), with x > 0, t > 0.
7: Take the length of the truncation end-point R and the number of subintervals M.
8: Compute the step-size k = ∆ w using the relationship M k = R.
9: Take the value of the parameter α involves in the random trapezoidal quadrature.

10: for j = 0 to j = M do
11: Compute the M + 1 points wj = kj and sj = α + i wj, and the functions cos(wj t).
12: end for
13: Take and carry out K realizations, ξi, 1 ≤ i ≤ K, over the r.v.’s involved in the random data of the

problem (1)–(5).
14: for each realization ξi, 1 ≤ i ≤ K do
15: Compute the Laplace transform of the source term Ψ(x, ξi)(s) and the Laplace transform of the

boundary conditions F1(s)(ξi) and F2(s)(ξi).
16: end for
17: for j = 0 to j = M do
18: for i = 1 to i = K do
19: Compute the numerical solution of the deterministic initial value problem (17)–(25) for sj =

α + i wj: Y(x, ξi)(sj).
20: end for
21: Compute the real part of the K solutions obtained: Re[Y(x, ξi)(sj)], 1 ≤ i ≤ K.
22: Compute the mean of these K real values: EK

MC[Re[Y(x)(sj)]].
23: end for
24: Compute the approximation of the expectation, EK

MC[uR,k(x, t)], using expression (35).
25: for j = 0 to j = M do
26: for ` = 0 to ` = M do
27: Compute CovK

MC
(
Re[Y(x)(sj)], Re[Y(x)(s`)]

)
.

28: end for
29: end for
30: Compute the approximation of the standard deviation,

√
VarK

MC[uR,k(x, t)] using expressions
(33), (36).

4. Numerical Examples and Simulations

In this section, we check that the proposed method is efficient in presence of randomness and the
involved computational complexity by means of two illustrative examples. We begin with an example
where the exact solution, in the deterministic case, has a known closed form expression permitting
a reliable comparison for each sample realization.

4.1. Example 1

We consider the random parabolic partial differential model (1)–(5) with r.v. coefficients p(x) = a,
q(x) = b, constant source term Φ(x, t) = 1, homogeneous boundary condition u(0, t) = 0 and initial
condition u(x, 0) = 0. The r.v. a follows a beta distribution of parameters (2, 0.5), that is, a ∼ Be[2, 0.5],
and the r.v. b has an exponential distribution of parameter λ = 1 truncated on the interval [0.2, 1.1],
that is, b ∼ Exp[0.2,1.1](1). Both r.v.’s are considered independent ones.
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From ([16] Section 3.1.3. pp. 276–277) the corresponding deterministic problem

∂u(x, t)
∂t

= a0
∂2u(x, t)

∂x2 − b0 u(x, t) + 1, x > 0, t > 0 ,

u(x, 0) = 0 x > 0,
u(0, t) = 0, t > 0,
u(x, t) remains finite as x → ∞ ,

 (37)

has the exact solution

u(x, t) =
∫ t

0

∫ ∞

0
G(x, ν, t− τ)dν dτ , (38)

with

G(x, ν, t) =
e−b0 t

2
√

π a0 t

(
e−

(x−ν)2
4 a0 t − e−

(x+ν)2
4 a0 t

)
, (39)

where a0 and b0 are strictly positive real numbers.

Using the integral representation of erfc
(

z
α1

)
, α1 > 0, see ([23] Section 3.2), one gets

∫ ∞

0
e−(α

2
1 ν2+2 z ν+γ) dν =

√
π

2 α1
e

(
−γ+ z2

α2
1

)
erfc

(
z

α1

)
. (40)

Taking values α1 = 1
2
√

a0 t , z = ∓ x
4 a0 t and γ = x2

4 a0 t in (40) one gets

∫ ∞

0

(
e−

(x−ν)2
4 a0 t − e−

(x+ν)2
4 a0 t

)
dν = 2

√
π a0 t erf

(
x

2
√

a0 t

)
. (41)

From (38), (39) and (41) it follows that

u(x, t) =
∫ t

0
e−b0(t−τ) erf

(
x

2
√

a0 (t− τ)

)
dτ =

∫ t

0
e−b0 η erf

(
x

2
√

a0 η

)
dη . (42)

For the evaluation of the last integral in (42), let us consider the integral 7.4.37 in page 304 of [24]

∫
ed1η erf

(√
d2

η

)
dη =

1
d1

{
ed1η erf

(√
d2

η

)
+

1
2

ed1η− d2
η

[
ρ

(√
d1η + i

√
d2

η

)
+ ρ

(
−
√

d1η + i

√
d2

η

)]}
+ const.

(d1 6= 0) , (43)

where ρ(z) = e−z2
erfc(−i z), with arguments z = ±

√
d1η + i

√
d2
η . From (42) and (43) for d1 = −b0

and d2 =
x2

4 a0
, it is easy to obtain explicitly the exact solution of problem (37)

u(x, t) =

1
b0

1− e−b0 t erf
(

x
2
√

a0 t

)
− 1

2
e

√
b0
a0

x
erfc

(√
b0 t +

x
2
√

a0 t

)

−1
2

e
−
√

b0
a0

x
erfc

(
−
√

b0 t +
x

2
√

a0 t

) . (44)



Mathematics 2020, 8, 1112 9 of 16

Expression (44), considering a0 = a and b0 = b as the r.v.’s taken in this Example 1, will be useful
to compare with our proposed numerical solution s.p.

Now, in order to obtain an approximate solution s.p. of problem (1)–(5) with the data considered
in this Example 1 using the developed random Laplace transform method, the associated second order
ordinary differential Equation (13) takes the form

sU(x)(s) = a
∂2U(x)(s)

∂x2 − bU(x)(s) +
1
s

, x > 0, s > 0 . (45)

Then, as a(ξ) > 0 and b(ξ) > 0 for a.e. realization ξ ∈ Ω, one gets the real general random solution
of (45)

U(x)(s) = c1(s) e−
√

b+s
a x

+ c2(s) e
√

b+s
a x

+
1

s(b + s)
. (46)

By imposing condition (5) it is obtained that c2(s) = 0, thus from (46) we have c1(s) = − 1
s(b+s) and the

random solution of the Laplace transformed problem is given by

U(x)(s) =
1

s(b + s)

(
1− e−

√
b+s

a x
)

. (47)

Thus the approximation solution s.p. (32) for the Example 1 takes the form

uR,k(x, t) =
2 eα t k

π

{
1
2

Re [U(x)(α)] +
M

∑
j=1

Re
[
U(x)(α + i wj)

]
cos(wj t)

}
, (48)

with U(x)(s) defined in (47). We recall that U(x)(s) = [1, 0]Y(x)(s) in the theoretical development in
Section 2.

The study of the numerical convergence of the statistical moments (33), (35) and (36) of the
approximate solution s.p. (48) is illustrated in the following way. In this first experiment we have
varied the length of the truncated end-point R`, 1 ≤ ` ≤ 4. Table 1 collects the root mean square
errors (RMSEs), [25], for n = 12 spatial points in the spatial domain [0.5, 6], xi = ih, 1 ≤ i ≤ n with
h = ∆x = 0.5, computed for k = 0.2 and K = 5000 realizations using the following expressions

RMSE
[
EK

MC[uR,k(xi, t)]
]

=

√
1
n

n

∑
i=1

(
E[u(xi, t)]−EK

MC[uR,k(xi, t)]
)2 , (49)

RMSE
[√

VarK
MC[uR,k(xi, t)]

]
=

√√√√ 1
n

n

∑
i=1

(√
Var[u(xi, t)]−

√
VarK

MC[uR,k(xi, t)]
)2

, (50)

where E[u(xi, t)] and
√

Var[u(xi, t)] represent the statistical moments of exact solution (44) considering
a0 = a and b0 = b as the r.v.’s taken in this Example 1. It is observed the good behaviour of both
approximations the expectation and the standard deviation obtained by our proposed method. Figure 1
shows that the approximations to the expectation getting better when the length of R is increasing,
that is, the absolute errors decrease. Computations have been carried out by Mathematica c©software
version 11.3.0.0 [26], for Windows 10Pro (64-bit) Intel(R) Core(TM) i7-7820X CPU, 3.60 GHz 8 kernels.
The CPU times (in seconds) spent in the Wolfram Language kernel are included in Table 1 as well as in
the subsequent tables.
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Table 1. Example 1. Root mean square errors (RMSEs) for the expectation (49) and the standard
deviation (50) considering the discretization on the spatial domain [0.5, 6] in the following way xi = ih,
1 ≤ i ≤ 12, h = ∆x = 0.2, taking fixed α = 0.5, K = 5000 simulations and k = 0.2 but varying the
length of the truncation end-point R` ∈ {4, 8, 16, 32} at the temporal instant t = 1.

R` RMSE
[
EK

MC[uR` ,k(xi, 1)]
]

CPU,s RMSE
[√

VarK
MC[uR` ,k(xi, 1)]

]
CPU,s

4 2.75343 × 10−2 14.8438 4.21989 × 10−4 7.1250
8 1.44244 × 10−2 28.6094 7.36449 × 10−4 25.0469

16 1.33445 × 10−3 58.1719 4.23940 × 10−4 107.2660
32 3.36898 × 10−4 175.6090 4.27797 × 10−4 495.0470

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.005

0.01

0.015

0.02

0.025

0.03(a) (b)

Figure 1. Example 1. (a) Expectation of the exact solution (38) and (39) considering a0 = a and b0 = b
as the r.v.’s taken in this Example 1 versus approximations of the expectation (35), (47) and (48) for
several lengths of the truncation end-point R. (b) Absolute errors of expectations for several values
of R. For both left and right t = 1, k = 0.2, K = 5000 and R` ∈ {4, 8, 16, 32}. The spatial domain
considered is xi ∈ [0.5, 6] with xi = ih, h = 0.5.

Secondly, by varying the length of the step-size of the trapezoidal quadrature, k`, 1 ≤ ` ≤ 5,
for both R and the number of realized events K fixed, the computed RMSEs are shown in Table 2.
Finally, in the last experiment, we have taken several number of realizations Ki in the Monte Carlo
method checking the improvement of the approaches obtained for both the expectation and the
standard deviation; see Table 3. It is observed that for a number of events K equal to 1600 the results
are enough precise. In this sense, Figure 2 illustrates the decreasing trend of the absolute errors for
both statistical moments when the number of simulations increase.

Table 2. Example 1. RMSEs for the expectation (49) and the standard deviation (50) considering the
discretization on the spatial domain [0.5, 6] in the following way xi = ih, 1 ≤ i ≤ 12, h = ∆x = 0.2,
taking fixed α = 0.5, K = 5000 simulations and R = 16 but varying the step-size of the trapezoidal
quadrature k` ∈ {0.8, 0.4, 0.2, 0.1, 0.05} at the temporal instant t = 1.

k` RMSE
[
EK

MC[uR,k`
(xi, 1)]

]
CPU,s RMSE

[√
VarK

MC[uR,k`
(xi, 1)]

]
CPU,s

0.8 1.28377 × 10 4.6719 4.75391× 10−2 7.2344
0.4 4.23282 × 10−3 8.4375 9.02170 × 10−4 31.5625
0.2 1.33445 × 10−3 57.6094 4.23940 × 10−4 135.9220
0.1 1.14283 × 10−3 115.3280 4.25683 × 10−4 601.5940

0.05 1.04648 × 10−3 270.3590 4.26453 × 10−4 2315.3000
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Table 3. Example 1. RMSEs of the expectation (49) and the standard deviation (50) for the solution s.p.
(47) and (48) at t = 1 in x ∈ [0.5, 6] with ∆x = 0.5 varying the number of realizations Ki for R = 16 and
k = 0.2 (M = 80).

Ki RMSE
[
EK

MC[uR,k(x, 1)]
]

CPU, s RMSE
[√

VarK
MC[uR,k(x, 1)]

]
CPU, s

100 2.16541 × 10−3 1.2813 2.97642 × 10−3 4.9531
200 1.19892 × 10−3 2.3750 5.94483 × 10−4 6.2656
400 5.22902 × 10−3 6.4375 3.73953 × 10−3 10.2031
800 3.74892 × 10−3 9.0000 2.92100 × 10−3 16.2031

1600 7.37703 × 10−4 17.9063 6.96690 × 10−4 27.9063
3200 7.94225 × 10−4 38.8750 7.89259 × 10−4 60.4688

0 1 2 3 4 5 6
0

1

2

3

4

5

6
10

-3

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9
10

-3

(a) (b)

Figure 2. Example 1.(a) Absolute errors of the expectation for (47) and (48). (b) Absolute errors
of standard deviation for (47) and (48). For both left and right, t = 1, k = 0.2, R = 16 and Ki ∈
{400, 800, 1600}. The spatial domain considered is xi ∈ [0.5, 6] with xi = ih, h = 0.5.

4.2. Example 2

Let us consider the random parabolic models (1)–(5) with the following choice of data

p(x) =
1

1 + a x2 , q(x) = 1− b sin(x) , Φ(x, t) = e−t , (51)

f1(t) = 0 , f2(t) =
2e−t
√

t√
π

, g(x) = 0 . (52)

In (51) the r.v. a has a Gaussian distribution of mean µ = 0.1 and standard deviation σ = 0.02
truncated on the interval [0.08, 0.12], a ∼ N[0.08,0.12](0.1; 0.02), and b follows a gamma distribution
of parameters (0.8; 0.25) truncated on the interval [0.16, 0.24], b ∼ Gamma[0.16,0.24][0.8; 0.25]. Both a
and b are considered independent r.v’s. For the choice of data (51) and (52), the listed conditions
in Algorithm 1 are satisfied, then we can compute approximations to the statistical moments of the
s.p. solution of problem (1)–(5), (51) and (52). In order to evidence the convergence of approximations
we will compute the root mean square deviations (RMSDs) for consecutive approximations of the
mean and the standard deviation, in two stages. Firstly, varying the length of truncation end-point R
by means the following expressions

RMSD
[
EK

MC[uR`R`+1,k(xi, t)]
]
=

√
1
n

n

∑
i=1

(
EK

MC[uR`+1,k(xi, t)]−EK
MC[uR` ,k(xi, t)]

)2 , (53)

RMSD
[√

VarK
MC[uR`R`+1,k(xi, t)]

]
=

√√√√ 1
n

n

∑
i=1

(√
VarK

MC[uR`+1,k(xi, t)]−
√

VarK
MC[uR` ,k(xi, t)]

)2
(54)
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and secondly, varying the step-size k of the trapezoidal quadrature by means

RMSD
[
EK

MC[uR,k`k`+1
(xi, t)]

]
=

√
1
n

n

∑
i=1

(
EK

MC[uR,k`+1
(xi, t)]−EK

MC[uR,k` (xi, t)]
)2 , (55)

RMSD
[√

VarK
MC[uR,k`k`+1

(xi, t)]
]
=

√√√√ 1
n

n

∑
i=1

(√
VarK

MC[uR,k`+1
(xi, t)]−

√
VarK

MC[uR,k` (xi, t)]
)2

(56)

in the spatial domain [0.1, 1.5] for n = 15 points xi = ih, 1 ≤ i ≤ n, h = ∆x = 0.1. Table 4
collects the RMSDs (53) and (54) taking k = 0.5 and the number of realized events K fixed (1600).
The choice of the values for both parameter k and K are motived by the good results obtained in
Example 1. Figures 3 and 4a show the convergence of the approximations for the expectation (35) and
the standard deviation (36) as R` increases. This behaviour is depicted in Figures 3 and 4b where it is
shown the decreasing trend of the absolute deviations (AbsDev) for the expectation and the standard
deviation, defined as follows

AbsDev
(
EK

MC[uR`R`+1,k(xi, t)
)

=
∣∣∣EK

MC[uR`+1,k(xi, t)−EK
MC[uR`,k(xi, t)

∣∣∣ , (57)

AbsDev
(√

Var[uR`,R`+1,k(xi, t)
)

=

∣∣∣∣√VarK
MC[uR`+1,k(xi, t)]−

√
VarK

MC[uR`,k(xi, t)]
∣∣∣∣ . (58)

0.2 0.4 0.6 0.8 1 1.2 1.4
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0.08(a) (b)

Figure 3. Example 2. (a) Expectations computed by(35). (b) Absolute deviations of the expectations
computed by (57). For both left and right, the parameters t = 1, k = 0.5, α = 0.5, K = 1600 are fixed
while the length of the truncation end-point R changes, R` ∈ {2, 3, 4, 5, 6, 7}. The spatial domain is
x ∈ [0.1, 1.5] with ∆x = 0.1.

Table 4. Example 2. RMSDs at t = 1 for the expectation (53) and the standard deviation (54)
considering the discretization on the spatial domain [0.1, 1.5] in the following way xi = ih, 1 ≤ i ≤ 15,
h = ∆x = 0.1, taking K = 1600 simulations and k = 0.5 both fixed.

{R`, R`+1} RMSD
[
EK

MC[uR`R`+1,k(xi, 1)]
]

RMSD
[√

VarK
MC[uR`R`+1,k(xi, 1)]

]
{2, 4} 4.08921 × 10−2 2.39328 × 10−4

{4, 8} 2.72959 × 10−2 2.57692 × 10−4

{8, 16} 1.03896 × 10−2 8.86479 × 10−5

{16, 32} 1.61474 × 10−3 3.36047 × 10−5

{32, 64} 8.11820 × 10−4 2.62627 × 10−5
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Figure 4. Example 2. (a) Standard deviations computed by (36). (b) Absolute deviations of the
standard deviations computed by (58). For both left and right, the parameters t = 1, k = 0.5, α = 0.5,
K = 1600 are fixed while the length of the truncation end-point R changes, R` ∈ {2, 4, 8, 16, 32, 64}.
The spatial domain is x ∈ [0.1, 1.5] with ∆x = 0.1.

Computations have been carried out by Mathematica c© software version 11.3.0.0 for Windows
10Pro (64-bit) AMD Ryzen Threadripper 2990WX 32-Core Processor, 3.00 GHz. As regards the study
of the convergence of the approximations for both the expectation and the standard deviation when
parameter k changes, Table 5 collects the RMSDs (55) and (56) taking R = 32 and the number of
realized events K fixed (1600). The decreasing behaviour of these RMSDs is in full agreement with
the results shown in Figures 5 and 6 where it is illustrated how the successive approximations of the
absolute deviations for both the expectation and the standard deviation are close to each other when
k` decreases.
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Figure 5. Example 2. (a) Expectations computed by (35). (b) Absolute deviations of the expectations
computed by (57). For both left and right, the parameters t = 1, R = 32, α = 0.5, K = 1600 are fixed
while step-size of the trapezoidal quadrature k changes, k` ∈ {8, 4, 2, 1, 0.5, 0.25}. The spatial domain is
x ∈ [0.1, 1.5] with ∆x = 0.1.
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Figure 6. Example 2. (a) Standard deviations computed by (36). (b) Absolute deviations of the
standard deviations computed by (58). For both left and right, the parameters t = 1, R = 32, α = 0.5,
K = 1600 are fixed while the step-size of the trapezoidal quadrature k changes, k` ∈ {8, 4, 2, 1, 0.5, 0.25}.
The spatial domain is x ∈ [0.1, 1.5] with ∆x = 0.1.

Table 5. Example 2. RMSDs at t = 1 for the expectation (55) and the standard deviation (56)
considering the discretization on the spatial domain [0.1, 1.5] in the following way xi = ih, 1 ≤ i ≤ 15,
h = ∆x = 0.1, taking K = 1600 simulations and R = 32.

{k`, k`+1} RMSD
[
EK

MC[uR,k`k`+1(xi, 1)]
]

RMSD
[√

VarK
MC[uR,k`k`+1(xi, 1)]

]
{8, 4} 5.18967 × 10 2.57413 × 10−3

{4, 2} 3.24473 × 10 1.88253 × 10−3

{2, 1} 7.14500 × 10−2 8.83031 × 10−5

{1, 0.5} 1.03254 × 10−3 3.25342 × 10−5

{0.5, 0.25} 6.92989 × 10−4 2.62627 × 10−5

In Tables 6 and 7 we show the timings (CPU time spent in the Wolfram Language kernel) to
compute both statistical moments of the approximated solution (32) plotted in Figures 3–6a.

Table 6. Example 2. CPU time spent to compute the approximations of the expectation (35) and the
standard deviation (36) of (47) and (48) considering the discretization on the spatial domain [0.1, 1.5] in
the following way xi = ih, 1 ≤ i ≤ 15, h = ∆x = 0.1, taking K = 1600 simulations and k = 0.5 at the
temporal instant t = 1.

R` CPU,s
[
EK

MC[uR` ,k(xi, 1)]
]

CPU,s
[√

VarK
MC[uR` ,k(xi, 1)]

]
2 24.375 25.2188
4 46.9688 45.9375
8 58.6875 75.5000
16 102.6250 143.109
32 219.5780 209.3280
64 359.7190 253.5000
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Table 7. Example 2. CPU time spent to compute the expectation (35) and the standard deviation (36)
of (47) and (48) considering the discretization on the spatial domain [0.1, 1.5] in the following way
xi = ih, 1 ≤ i ≤ 15, h = ∆x = 0.1, taking K = 1600 simulations and R = 32 at the temporal instant
t = 1.

k` CPU,s
[
EK

MC[uR,k`
(xi, 1)]

]
CPU,s

[√
VarK

MC[uR,k`
(xi, 1)]

]
8 13.8438 13.3750
4 24.1563 22.9219
2 44.7656 43.8438
1 88.9844 119.6410
0.5 165.0000 239.1250
0.25 351.0000 362.5630

5. Conclusions

In this paper, we focus in the numerical approximation of the solution s.p. and its statistical
moments of random heterogeneous parabolic partial differential models following the mean square
approach. Random integral transform method is used avoiding iterative methods that are not useful
because of the complex nature of the random problem. For the computation of the integrals arising
when the random inverse integral transform is applied, we choose non Gaussian quadrature methods
instead of the common used Gaussian quadrature ones due to the high oscillatory nature of the
involved integrands. Simulations are performed using Monte Carlo method. Illustrative examples
show the convergence of the proposed method and the sensibility of the approximate expectation and
standard deviation to the number of the realizations considered.
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