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Abstract

Diversity of omic technologies has expanded in the last years together with the number of omic

data integration strategies. However, multiomic data generation is costly and many research groups

cannot afford research projects where many different omic techniques are generated, at least at the

same time. As most researchers share their data in public repositories, different omic datasets of the

same biological system obtained at different labs can be combined to construct a multiomic study.

However, data obtained at different labs or moments in time are typically subjected to batch effects

that need to be removed for successful data integration. While there are methods to correct batch

effects on the same data types obtained in different studies, they cannot be applied to correct lab

or batch effects across omics. This impairs multiomic meta-analysis. Fortunately, in many cases, at

least one omics platform –i.e. gene expression- is repeatedly measured across labs, together with

the additional omic modalities that are specific to each study. This creates an opportunity for batch

analysis. We have developed MultiBaC, a strategy to correct batch effects from multiomic datasets

distributed across different labs or data acquisition events. Our strategy is based on the existence of

at least one shared data type which allows data prediction across omics. We validate this approach

both on simulated data and on a case where the multiomic design is fully shared by two labs, hence

batch effect correction within the same omic modality using traditional methods can be compared

with the MultiBaC correction across data types. Finally we apply MultiBac to a true multiomic data

integration problem to show that we are able to improve the detection of meaningful biological effects.
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Introduction

Over the last decade, high-throughput omic technologies such as transcriptomics, metabolomics,
proteomics or epigenomics have become routine assays in many biological research laboratories.
Increasingly, combinations of these methods are proposed to address complex questions about the
molecular regulation of genomes and the physiology of cellular systems. As different omic assays target
different biomolecules or chemical modifications, the combined study of these various molecular layers
has the potential to provide insights into the complex regulatory networks that operate in living cells.
However, simultaneously generating multiple omic measurements of the same molecular system for
one particular study might be difficult. Challenges arise due to budgetary restrictions, time and sample
limitations, or simply because of the convenience of a sequential analysis of the data in order to make
informed decisions for follow up experiments. At the same time, researchers are not longer restricted
to their own experimental capacities in order to obtain multiomic information, as facilities offer these
assays on a commercial basis. Widespread editorial policies requiring omic data deposition in public
repositories before publication of results have created a wealth of molecular data available to researchers
for reuse. As a consequence, scientists have the opportunity to combine compatible data generated in
other labs to compose a suitable multiomic dataset without the need of repeating experiments already
performed by somebody else. Unfortunately, combining data obtained by different people and/or at
different moments in time has an important drawback. Data will almost unavoidably be affected by
technical biases associated to the experimentation event that, especially for high throughput molecular
assays, may result in important levels of noise contaminating the biological signal. This unwanted source
of variation is commonly known as “batch effect” and is very frequently seen as the first component of
variability in the omic dataset, standing out over the experimental conditions under of study.
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Batch effects significantly impair the power of statistical algorithms to detect significant true effects as
they increase measurement errors and data variability. Removing batch effects becomes then necessary
in order to obtain meaningful results from statistical analyses (1; 2). Provided that the omic experiment
has been designed in such a way that batch effects are not confounded with the effects of interest (e.g.
treatment, disease, cell type, etc.), the so-called Batch Effect Correction Algorithms (BECAs) can be
used to remove, or at least mitigate, systematic biases. Therefore these methods are extremely useful to
combine data from different laboratories or measured at different times.

Several BECAs for omic data have been proposed. Limma (3) applies linear models while the ComBat
method (4) from sva R package (5) estimates batch effects as the sum of an additive and a multiplicative
effect with an empirical Bayes approach. RUV (6) estimates the unwanted variation from negative control
genes that are known a priori to be unaffected by the biological factor of interest. We proposed the ARSyN
approach (7), that relies on the ANOVA-Simultaneous Components Analysis (ASCA) framework (8; 9)
to decompose the omic signal into experimental effects, the batch effect and residuals. ARSyN applies
Principal Component Analysis (PCA) to estimate the systematic variation due to batch effect and then
removes it from the original data.

These methods have been traditionally applied to remove batch effects from omic data of the same
type, as for example gene expression, and have been instrumental for the combination of data from
the public domain into meta-analyses to reveal novel biological insights that cannot be discovered with
small sample sizes (10; 11; 12; 13; 14). However, while removing batch effects from a single omic data
type with an appropriate experimental design is relatively straightforward, it can become unapproachable
when dealing with multiomic datasets. In the multiomic scenario, each omic modality may be measured
by a different lab or at a different moment in time, and so it is obtained within a different batch. When
this is the case, the batch effect will be confounded with the “omic type effect” and impossible to remove
from the data. However, in some scenarios, the multiomic batch effect can be corrected.

In this work, we present the novel MultiBaC method, which is the first BECA dealing with batch
effect correction in multiomic datasets. MultiBaC is able to remove batch effects across different omics
generated within separate batches provided that at least one common omic data type is included in all the
batches considered. Although this may seem a strong requirement, in practice there are many studies that
include at least gene expression or popular histone marks as part of their multiomic design and hence
provide opportunities for data combination across omic modalities. For example, stress response in yeast
has been studied at the transcriptional rate (15; 16; 17), translational rate (18) and RNA-binding of global
proteins (19), in three different studies that also included RNA-seq profiling. A method that corrects
batch effects across omics will allow for the integration of these data in one single analysis that jointly
evaluates different layers of transcriptional regulation by leveraging public resources and without the
need of generating additional data. In this work we demonstrate that MultiBaC is effective in removing



4 Statistical Methods in Medical Research XX(X)

batch effects without introducing additional biases and that outperforms adaptation of existing strategies
to the multiomic batch problem. MultiBaC is therefore an effective tool to reuse existing datasets to
perform meta-analysis across omics technologies.

Data

A yeast multiomic dataset obtained at different laboratories

We collected data from Gene Expression Omnibus (GEO) database pertaining to three different studies
that analyzed the effects of glucose starvation in yeast. These studies used equivalent yeast strains and
experimental conditions, but differed in the types of omic technologies profiled. Lab A (Department
of Biochemistry and Molecular Biology, Universitat de València) collected gene expression (RNA,
with accession number GSE11521) and transcription rates (GRO, with accession number GSE1002)
(15; 16; 17). Lab B (Department of Molecular and Cellular Biology, Harvard University) obtained gene
expression (RNA) and translation rates (RIBO), with accession number GSE56622 (18). Finally, Lab
C (Department of Biology, Johns Hopkins University) measured gene expression (RNA) and global
PAR-CLIP data (PAR-CLIP) with accession number GSE43747 (19). Therefore, labs had one shared
(RNA) and one distinct (GRO, RIBO and PAR-CLIP, respectively) data types. This distributed multiomic
scenario represents the type of correction problem MultiBaC addresses.

Simulated data

A synthetic multiomic dataset was created that reproduces the scenario described in the yeast example. In
this case, we simulated three different omic data types from two labs, one of them being the common data
type. Each omic data matrix was generated with the MOSim multiomic simulation tool (20). As MOSim
does not model batch effects, we analyzed several yeast experimental datasets (15; 16; 17; 18; 19; 21; 22)
to estimate the magnitude of a reasonable batch effect by fitting a linear model that included the batch
effect and the interaction between treatment and batch. We observed that the coefficients of the model
follow a normal distribution with mean equal to zero. Hence, we simulated different datasets with varying
magnitudes of batch effects, by adding to the MOSim simulated data batch effects generated from a
normal distribution with increasing values of the starndard deviation values. We modeled three batch
effect levels: low, moderate and high, being magnitudes low and moderate present in real experimental
data, while the high level was an extreme scenario never observed in the evaluated datasets. A detailed
description of batch effect simulation can be found in Supplementary Materials 1.
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Proof of concept data

We validated MultiBaC on two multiomic datasets that shared all omics modalities (GEO accession
numbers GSE33136 (21) and GSE24488 (22)). In both GEO studies transcription rates and gene
expression data were available and the experimental conditions compared were room temperature versus
heat-shock stress in yeast. We denote these datasets “proof of concept” data because both omic data
types are available from both studies and, hence, traditional BECAs for a single omic can be applied and
compared to MultiBaC correction. Each of the two laboratories considered applied a different technology
to obtain omic measurements: study 1 (GSE33136) used microarrays while study 2 (GSE24488) used
sequencing techniques. In order to make both datasets comparable, GSE24488 data were normalized
using voom() transformation from limma R package (3).

Methods

ARSyN method

ARSyN (ASCA Removal of Systematic Noise) was presented by Nueda et al. (7) and is a batch effect
correction approach that relies on the ANOVA-Simultaneous Component Analysis (ASCA) framework.
Let xijr be the gene expression of gene x, measured at time i, under treatment j and for replicate r.
Therefore, xijr can be decomposed as in any ANOVA model as:

xijr = µ+ αi + βj + (αβ)ij + (αβγ)ijr (1)

where µ is an offset term, αi the treatment, βj the batch effect, (αβ)ij the interaction effect between batch
and treatment, and (αβγ)ijr the individual variation (residuals). If our omic data matrix X contains N
genes in columns and M samples in rows, the previous equation can be expressed using matrix notation
as:

X = 1mt +Xa +Xb +Xab +Xabg (2)

where m is an N size vector containing the estimations of µ for each gene, matrices Xa, Xb and Xab

contain the estimations of parameters αi, βj and (αβ)ij respectively, and Xabg contains the residuals
(αβγ)ijr. Once this ANOVA-like decomposition is obtained, a PCA is applied on each submatrix, the
number of principal components is determined for each case, and the resulting ASCA model is:

X = 1mt +

Xa︷ ︸︸ ︷
TaP

t
a +Ea +

Xb︷ ︸︸ ︷
TbP

t
b +Eb +

Xab︷ ︸︸ ︷
TabP

t
ab +Eab +

Xabg︷ ︸︸ ︷
TabgP

t
abg +Eabg (3)
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where Ti and Pi are the scores and loadings matrices from the PCA on each matrix Xi, respectively.
After estimating the effects with ASCA, ARSyN corrects the batch effect by subtracting undesirable
effects from original data according to the following equation:

X∗ = X−

Batch and interaction effects︷ ︸︸ ︷
(TbP

t
b +TabP

t
ab) (4)

where X∗ is the corrected matrix without batch or interaction batch-treatment effects.

MultiBaC: A multiomic batch effect correction strategy

MultiBaC (Multiomic Batch Correction) method was conceived to correct batch effects across different
omic data types provided that at least one omic modality is repeated in the batches. For the sake of
simplicity in the formulation of the MultiBac method we consider that batch effect arises from different
labs generating data, although the method is generally applicable to any other batch sources such as
time or lab technician. Let us consider a minimal size problem example with two labs, each one of them
measuring two different omic data types, one of them in common (Figure 1(a)). We denote X1 as the
common data type from lab 1, X2 as the common data type from lab 2, K as the non-common data type
from lab 1 and Z as the non-common data type from lab 2. One important feature of MultiBaC is that the
different omics studied in each lab do not have to share the variable space. This allows to combine gene-
related omics (e.g. RNA-seq) with other technologies such as proteomics or metabolomics. However,
within each lab the same samples should have been measured with the different omic technologies, hence
the number of samples must be the same for all the omics.

MultiBaC assumes that there exists a relationship between two different omic data types that does not
depend on the laboratory. Basically, MultiBaC applies a multivariate PLS regression (23) to model the
non-common omic data matrix as a function of the common omic measurements. The models are then
used to predict the missing measurements what results in complete multiomic datasets in all laboratories.
Next, traditional BECA methods are applied to correct the batch effect from the original matrices.
MultiBaC proceeds through three steps (Figure 1(b)):

In the Modelling step, PLS models are built for each lab, where the common omic data type is used as
the explanatory matrix X and the non-common omic is used as the response matrix Y. The PLS model
can be expressed as Y = XB+E, where B is the regression coefficient matrix and E is the residuals
matrix. B can be estimated as:

B = W∗CT = W(PTW)−1CT (5)
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where W is the X-weight matrix, P is the X-loading matrix and C is the Y-weight matrix.
Therefore, considering a PLS model for each lab, for our minimal size problem, we will have the

following PLS models:
PLS1 : K = B1X1 +E1

PLS2 : Z = B2X2 +E2

Q2-based cross-validation (CV) optimization, proposed by Tenenhaus (24), is applied to select the
optimal number of components for the PLS models, sinceQ2 measures the marginal contribution of each
component to the predictive power of the model. A good Q2 value > 0.7 is required to ensure that the
model has a good prediction performance and can be used to infer the missing data modality. In the
Prediction step, MultiBaC will estimate the missing omic data type for each lab by using the previously
obtained PLS coefficient matrices:

Ẑ1 = X1B2

K̂2 = X2B1

Note that, for predicting Ẑ1, the coefficient matrix relating X2 and Z is used, that is, B2. And the
procedure is analogous for K̂2. Remember that we aim to predict the omic information that was not
initially available for each lab. This will allow us to remove the batch effect on non-common information
with traditional methods using the original and the predicted information, i.e., K and K̂2 for instance.

Finally, in the Correction step MultiBaC applies ARSyN to remove batch effect from every omic data
type. Available data are used for the common omic, while predicted data must be used for the rest of
omics.

X∗ = ARSyN(X1, X2)

K∗ = ARSyN(K, K̂2)

Z∗ = ARSyN(Ẑ1, Z)

where ∗ means corrected matrix. Typically, we will discard now the predicted and corrected omic matrices
K̂∗

2 and Ẑ∗
1, and use the original and corrected matrices, K∗ and Z∗, for further statistical analyses.

[insert figure 1]
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Other multiomic batch effect correction approaches

In addition to MultiBaC strategy, we also adapted two other existing and conceptually different
methodologies that theoretically could be applicable for solving the multiomic batch effect problem.
These strategies were compared with the MultiBaC method.

Missing data imputation strategy: In this approach, the values for the non-common omic data
types are considered missing values for the laboratories where these omic data types are not available.
Imputation of missing values is carried on with the multivariate method Trimmed Scores Regression
(TSR) (25), and then a BECA is applied (e.g. ARSyN). TSR models the structure in Figure 2(a)
containing missing values (NA) as a unique matrix, and employs the latent space of the whole matrix
to impute missing data according to the relation between observed variables in each batch by using the
common information as an inner reference.

Product transfer model: The Joint-Y PLS (JY-PLS) methodology presented by Garcı́a Muñoz et al.
(26) is based on PLS regression and assumes that both PLS response matrices (X1 and X2 in Figure 2(b))
share the same latent structure. Note that response matrices in this model are X1 and X2 (the common
data type). Basically, JY-PLS builds a PLS model between K and X1 and another PLS model between
Z and X2 by forcing X1 and X2 to share the same weight matrix (QT ), i.e the same latent space. The
ARSyN batch effect corrected common data type (X∗) is used for the JY-PLS inversion step in order to
obtain K∗ and Z∗, that is, the non-common batch effect corrected matrices. In brief, the inversion step
tries to transfer a new set of responses which are the corrected data (e.g X∗

1), in order to obtain which
observations of the non-common omic could be in agreement with that set of responses (i.e K∗).

[insert figure 2]

Validation strategies

Latent space concordance. This validation strategy was used to assess the performance of the methods
on simulated data by evaluating if original data (before batch effect addition) and batch effect corrected
data share the latent space in a PCA model. Latent space concordance (R2) measures how well the
variability structure of originally simulated matrices is able to explain the variability of corrected matrices
and the higher the R2 the better the concordance. We applied latent structure concordance by estimating
a PCA model with the original data and computing R2 score for the corrected data after projection onto
that PCA model. In order to remove rotation effect differences, which could decrease the R2 score, the
PROCRUSTES algorithm (27; 28) was applied in this step.

Differential expression analysis. Assuming that batch effects impair combination of different
experiments but do not affect the inner information structure of one experiment, we consider that
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differential expression (DE) analysis applied to individual omic matrices should give the same or very
similar results before and after batch effect correction. In order to assess the concordance of such DE
results, we considered the original data as the true values and the corrected data as the predicted values,
and we used three different scores based on the number of DE genes obtained from each dataset: False
Discovery Rate (FDR), Sensitivity (SE) and Specificity (SP). FDR measures the false positive rate, i.e.
the percentage of genes declared as DE after correction but non-DE in the original matrix. SE assesses the
ability to detect, after correction, all the DE genes obtained from the original data. Finally, SP appraises
the ability to detect, after correction, all the initially non-DE genes. Differential expression analysis were
performed using limma R package (3).

Results and Discussion

Simulated data

Simulated datasets were used to test the performance of MultiBac method at removing batch effects
and preserving the structure of the original data. We studied the latent space concordance between
original (without batch effects) and MultiBaC-corrected data at increasing magnitudes of batch effect
and interaction values between batch and experimental conditions (Figure 3(a), upper left panel). R2 was
high (> 0.7) and very similar for the three tested methods at all batch magnitudes except for the highest
values. Moreover, the intensity of the batch-condition interaction had little effect on theR2 values. These
results indicate that tested batch correction methods successfully recovered the latent structure of the
unbiased data when batch effects were within limits observed in real datasets.

Next, we compared the differential expression analysis results on the original simulated data and on
the batch effect corrected data to evaluate if detection of differentially expressed features was maintained
after the batch effect correction. Taking the differential expression results from data without batch effect
as the true reference, we computed the False Discovery Rate (FDR), Sensitivity (SE) and Specificity (SP)
(Figure 3(a)). The performance of the compared methods regarding these three indicators was greatly
affected by the magnitude of the interaction effect between the batch and the experimental condition,
while the batch effect magnitude did not seem to have an important effect. FDR (bottom-left plot) is
lower for MultiBaC than for the other two methods in all cases. In general, this indicator varies from 0 to
20%, while it reaches more than 50% in some cases for TSR or JY-PLS. In addition, MultiBaC FDR was
less affected by the effect of the interaction when compared to the other methods. The increase in false
positives caused SP rate (bottom-right plot) to generally decrease at high interaction magnitudes, but
JY-PLS and MultiBaC performances were very similar, with scores above 80% in all cases, including
at high interaction levels. Regarding SE results (top-right plot), MultiBaC was once again the best
method, with SE above 95% in all simulations. This means that MultiBaC recovers all the originally
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differentially expressed genes, regardless the magnitude of the interaction effect. Altogether we conclude
that MultiBaC outperforms compared methods and results in batch corrected data where no apparent
additional biases have been introduced.

[insert figure 3]

Proof of concept data

We further validated MultiBaC with proof of concept data, where the same two omics (gene expression
and transcriptional rates) had been measured by two different laboratories. Consequently, traditional
BECAs can be applied on each omic data type to remove the laboratory effect and compared to the across-
data types batch effect correction by MultiBaC. ARSyN was used as BECA method. For MultiBaC, we
assumed that gene expression was the common omic and transcriptional rates were non-common between
labs. We evaluated results by comparing PCA plots from original data and both ARSyN and MultiBaC
corrected data (Figure 3(b)). As expected the PCA of the original data showed a strong effect of the
laboratory that was captured by the first principal component (PC). However, after ARSyN correction, the
first PC separated between the experimental conditions while the second PC discriminated the omic data
types, indicating that batch effects had been efficiently removed. MultiBaC correction results also showed
that the first principal component was related to the experimental condition, as desired. A small residual
batch effect was noticeable at the second PC for the control condition of gene expression but the strongest
effect was related to the omic data type, similarly to ARSyN correction. High batch and interaction effect
magnitudes have been almost totally removed from transcription rate data, indicating that in scenarios
with realistic batch and interaction effects MultiBaC provides excellent results. Therefore, this example
illustrates that MultiBaC performance on experimental data is equivalent to established BECAs with the
advantage that MultiBaC can be applied when specific omic data types are not included in all batches.

MultiBaC application to a real problem

Lastly, we applied MultiBaC to the real distributed multiomic dataset, with three labs having gene
expression (RNA) as common omic data type and a second omic assay as non-common (namely GRO,
RIBO and PAR-CLIP). These data showed a pronounced batch effect (Figure 4(a)) that stood out above
omic methodology and experimental condition. MultiBac was successful at correcting these biases
(Figure 4(a)). After correction, PCA clustered samples by omic type rather than by laboratory and, within
each technology, separation of samples from the two experimental conditions was observed (Figure
4(b)), suggesting that technical noise was removed to reveal biological information. We further evaluated
that MultiBac preserved the biological information between experimental conditions by comparing
differential expression calls between corrected and non-corrected data ( Table 1 ), as well as the number
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of common genes in both analyses. We computed FDR, SE and SP by taking the original data as the true
reference. Although original data do not represent a real true reference without batch effect as happened
in simulated data, these results are still useful to compare the effect of MultiBaC correction with ARSyN
performance (only applied on RNA data) in terms of differential expression results.

Table 1. Differential expression results for the yeast multiomic dataset obtained at different labs. First column
(Original) contains the number of differentially expressed genes (DEG) for each omic computed from original
data. Second column (Corrected) contains the same results but computed from corrected data. Third column
(Common) displays the number of DEG that are common to both analyses. FDR, SE and SP (columns 4-6)
were calculated in percentage by assuming original results as true. Differential expression for omics with the
symbol ∗ was computed without adjusting p-values. Last row (TOTAL) shows the number of DEG obtained in
at least one omic.

Original Corrected Common FDR SP SE
no of genes %

GRO 3075 2616 2615 0.038 99.950 85.041
RNA 2440 2487 2440 1.889 98.253 1

RIBO* 109 87 87 0 1 79.817
PAR* 653 607 601 0.988 99.089 92.037

TOTAL
(unique) 4135 4445 3906

The sensitivity to detect true positives (SE) was high, around 80% in the worst case (RIBO-seq),
while the specificity exceeded 98% in all cases and FDR was always below 2%. RNA measurements
can be considered as a control since the correction was made with the ARSyN method. In this case, a
small increase in RNA number of DEGs revealed that correction slightly affected differential expression
results, even when traditional BECAs and MultiBaC were applied. This is expected as the removal of
batch effects reduces the variability within experimental conditions and hence improves the differential
expression results. Even so, most DEGs were recovered after correction and we can state that MultiBaC
preserves most of the biological information in the original data, as happens with any other traditional
BECA.

Genes declared as differentially expressed in at least one of the omics (4135 for the original set and
4445 for the corrected set) were selected for clustering analysis in order to check if gene profiles across
omics and conditions changed after correction. K-means algorithm (29; 30) was applied for clustering
analysis and each cluster was labeled by its pattern of change (Table 2) across omic data types (results in
Supplementary Materials 2)
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Table 2. Clusters characterization. Each cluster obtained is characterized by a differential behavior shared by
all genes in that cluster. Up or down means up- or down-regulated genes in treatment condition versus control
condition.

Cluster Pattern

1 GRO down
2 GRO and RNA down
3 GRO up and PAR down
4 RNA down
5 PAR down
6 GRO up
7 RNA up
8 GRO and PAR down
9 PAR up

The number of genes in each cluster before and after MultiBaC correction is summarized in Figure
4(b), as well as the number of shared genes between pre- and post-correction clusters. The diagonal
of this table reveals the number of genes whose pattern was not affected by the correction. The cells
in yellow show the most important changes in trend after correction (at least 10% of the number of
genes in the diagonal). These changes were, however, subtle in magnitude and after a more detailed
analysis per cluster we concluded that only 42 genes inverted their trend from up to down regulation or
viceversa for RNA. Among these 42 genes, 21 were classified as “become positive” (BP) genes, since
they were initially down-regulated and after correction they became up-regulated. The other 21 “become
negative” (BN) genes followed the opposite behavior, that is, they were initially up-regulated and after
the correction they were down-regulated.

A functional enrichment analysis of these 42 genes did not return any significant result, which means
that these genes are involved in many different functions but their change in trend when correcting
batch effect is not related to any specific functional category. In order to further understand why these
genes changed their trend, we compared their expression values to those of 100 randomly selected
up-regulated genes for RNA (RG) that did not change their trend after correction (Figure 4(c)). We
found that BP genes were originally up-regulated in Lab A despite of being down regulated when
performing the average between labs. The same happens for BN genes, they were initially down regulated
in one lab. Interestingly, for RG randomly selected genes, the mean value was the same for all labs
and there was no discordant information. This result suggests that MultiBac corrects genes with a true
laboratory associated bias. For other genes MultiBaC slightly modified the value of the fold-change
without introducing a switch in the direction (sign) of the change.
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Finally, we compared MultiBaC results with those from P. L. Nagy et al., 2003 (18) (Lab B in our
example). They focused their analysis on two groups of genes: RNA & Ribosome Occupancy (RO) up-
regulated (G1) and RNA up- & RO down-regulated (G2) (see Figure 4(d)). In (18), RO denotes the
ratio between RIBO and RNA values, while the ratio between GRO and RNA is named as Polymerase
Occupancy (PO) and we used here the same notation. Regarding RO ratios, there are no large differences
between the original and the corrected state. However, the PO ratio is greater after correction. This result
agrees and improves the conclusions of the cited paper, where PO values were approximately the half of
RNA values. This means that MultiBaC correction improved the relationship between omics improving
accuracy and in agreement with previous studies.

[insert figure 4]

Conclusion

Many methods have been proposed to efficiently remove unwanted effects from omic data, such as effects
related to lab, machine, protocol, etc., which are known in general as batch effects. These approaches
(BECAs) deal with just one omic data type at a time and, to the best of our knowledge, no strategy has
been suggested yet for the multiomic context, where each omic may have been produced in a different lab,
by a different person or at a different period. Obviously, when two different omics have been generated in
two different batches, it is difficult, if not impossible, to distinguish between the effect of the batch and the
effect of the omic type itself. However, it is possible to estimate the batch effect between different omics
when there is at least one common omic data type in all the batches. In this work we introduce MultiBaC,
a new methodology to correct batch effects when integrating multiomic datasets in this scenario. Thus,
the only requisite to apply MultiBaC is that one omic data type must be shared by all the batches to allow
batch effect estimation and removal.

In this work we showed the application of MultiBac to integrated different omic technologies obtained
for the same biological system at different labs. However, MultiBaC could be in principle applied in
other situations such as experiments where the same omic data type has been generated by two different
techniques or protocols. One example could be metabolomics obtained with Gas Chromatography
(GC) and High-Pressure Liquid Chromatography (HPLC), where a few metabolites are shared by both
protocols but the rest of metabolites are specific of each protocol. The common metabolites would
constitute the common information and MultiBaC can be applied to remove the protocol effect so both
datasets can be joined in a single analysis.

To prove the ability of MultiBaC to correct batch effect, we applied the method on simulated
multiomic scenarios. As there are not established multiomic batch correction methods, we adapted
and applied two suitable existing algorithms (JY-PLS and TSR) and compared them to our MultiBaC
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approach. The performance of MultiBac and the other methods naturally depends on the magnitude
of the batch effect and on how much this effect interacts with the effect of the experimental factor of
interest. MultiBaC correction worked extremely well at batch levels expected for these technologies.
Batch magnitude affected the latent structure similarity between original and corrected data but it did not
affect differentially expressed genes (DEG). With extreme interaction magnitudes MultiBaC performance
was compromised although it was still the best approach. We concluded that our results under the
moderate interaction scenario represent very well the MultiBaC performance with real interaction effects.
All in all, our analyses showed a good performance of the correction methods in realistic scenarios
with MultiBaC outperforming in all simulated scenarios when correcting real experimental datasets with
a strong laboratory effect. In the “proof of concept” dataset, where traditional BECAs could also be
applied, results obtained with ARSyN and MultiBaC were very similar according to the PCA. MultiBaC
performance was slightly less powerful than ARSyN method since MultiBaC does not estimate the
batch and interaction effects from the non-common omic, while ARSyN does. Thus, the estimation
and correction of the unwanted variation is not the same and should be more accurate for ARSyN.
Nonetheless, MultiBaC almost completely removed the batch effect. Finally, in our ”real yeast multiomic
dataset”, differential expression together with clustering analysis proved that lab effect was removed
while the effects of experimental factors were preserved in all the omics. Few genes changed their trend
after correction but the comparison with previously published results showed that results after correction
were more meaningful, reliable and concordant with such studies.

In conclusion, MultiBaC is effective at removing non-biological noise from multiomic data collected
at different studies, and makes these datasets comparable. We anticipate MultiBac will be a useful tool
for the reutilisation of existing data for multiomic integration analyses and in facilitating experimental
designs that involved the generation of multiple and diverse omic assays.
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(a)

(b)

Figure 1. Description of MultiBaC method to correct batch effects in multiomic data from different laboratories.
(a) Minimal size problem example in which one omic data type is shared by both laboratories and each
laboratory may have other omic data types in an exclusive manner. (b) Overview of MultiBaC strategy, which
combines PLS regression with conventional ARSyN batch effect correction. 1: A PLS model is built per
laboratory to explain the non-common omic with the shared one. 2: For each laboratory, the initially missing
omic is predicted. 3: ARSyN correction is applied on each omic data type by using predicted data.
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(a) (b)

Figure 2. Outline of alternative methods for multiomic batch correction. The matrix notation used is the same
as in Figure 1(a). (a) TSR: After TSR, a traditional BECA (e.g. ARSyN) can be applied. (b) JY-PLS: Wi, Pi and
Ti are weights, loadings and scores of K and Z matrices, respectively. Ui are the scores for X matrices. QT

is the matrix of common weights of X matrices. X∗ is used in the JY-PLS inversion step to obtain K∗ and Z∗.
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(a)

(b)

Figure 3. Performance of MultiBaC correction. (a) Simulated data results. Top-left : Latent space concordance
(R2). Bottom-left : False Discovery rate (FDR). Bottom-right : Specificity (SP). Top-right : Sensitivity (SE).
Rectangles at the bottom represent the batch (top) and interaction (bottom) magnitudes as explained in
Supplementary Materials 1. (b) Proof of concept data results. Left : PCA score plot for original data. First
principal component (main source of variability) groups samples by lab instead of by omic or treatment. Middle:
PCA score plot for ARSyN batch-corrected data. First principal component groups samples by condition, so
batch effect is completely removed. Right : PCA score plot for MultiBaC batch-corrected data. First principal
component groups samples by condition as in ARSyN correction but a residual batch effect is shown by the
second component for normal condition in gene expression data. Dashed line ellipses are grouping samples
from different batches by omic-condition factor.
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(a)

(b)

(c)
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(d)

Figure 4. MultiBaC results on the ”distributed yeast multiomics dataset” data. (a) PCA score plot of the global
matrix with all the omic data types (merged by genes) after MultiBaC correction. Dashed line ellipses are
grouping samples from different batches by omic-condition factor. (b) Number of genes shared between
clusters generated from original data (rows) and corrected data (columns). Diagonal cells contain genes that
have been assigned to the same pattern before and after correction. Yellow cells correspond to clusters with
an important number (at least 10% of diagonal box) of genes whose trend changed after correction. (c) RNA
values of 42 genes that have changed the sign of their logFC after correction. Become Positive Genes (BP)
are genes that were down-regulated in the original data (white boxes) but up-regulated after correction (gray
boxes). Become Negative genes (BN) had the opposite behavior. Random Genes (RG) are 100 up-regulated
genes randomly selected. Triangles show the logFC value for each single gene in each lab. (d) LogFC values
per omic before and after MultiBaC correction. First row: RNA and Ribosome Occupancy (RO) up-regulated
genes. Second row: RNA up-regulated but RO down-regulated genes. Each line corresponds to the profile of a
gene in the corresponding group. The doted central line is the average profile of all the genes in the group, and
the segment at each point represents the mean value ± the standard deviation. Dashed lines remark the
logFC threshold values +1 and −1. Yellow arrows indicate the increase of Polymerase Occupancy (PO)
values after correction.


