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Abstract 

Coastal ecosystems are amongst the most vulnerable to climate change, due to their location 

at the land-sea interface. In coastal waters, the nitrogen cycle can be significantly altered by 

rising temperatures and other factors derived from climate change, affecting phytoplankton 

and higher trophic levels. This research analyzes the effect of meteorological variables on 

dissolved inorganic nitrogen (DIN) species in coastal inshore waters of a Northwestern 

Mediterranean region under climate change. We built simple mathematical schemes based on 

artificial neural networks (ANN), trained with field data. Then, we used regional climatic 

projections for the Spanish Mediterranean coast to provide inputs to the trained ANNs, and 

thus, allowing the estimation of future DIN trends throughout the 21st century. The results 

obtained indicate that nitrite and nitrate concentrations are expected to decrease mainly due 

to rising temperatures and decreasing continental inputs. Major changes are projected for the 

winter season, driven by a rise in minimum temperatures which decrease the nitrite and nitrate 

peaks observed at low temperatures. Ammonium concentrations are not expected to undergo 

a significant annual trend but may either increase or decrease during some months. These 

results entail a preliminary simplified approach to estimate the impact of meteorological 

changes on DIN concentrations in coastal waters under climate change. 

Keywords: Artificial neural networks; Climate change; Coastal waters; Dissolved inorganic 

nitrogen; Mediterranean Sea. 

1. Introduction 
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Climate change is expected to exacerbate the imbalance of the nitrogen cycle (Gruber and 

Galloway, 2008), which could already be even greater than expected (Paulmier and Ruiz-Pino, 

2009). Coastal areas are known to be particularly vulnerable. In fact, some authors envisage that 

the future management of nutrient export might have a dramatic impact on coastal water 

quality (Sinha et al., 2019). Other researchers underline that anthropogenic pressures such as 

population increase and agricultural practices, plus the cumulative effect of climate change, will 

probably aggravate nutrient cycling alteration in coastal waters (Rabalais et al., 2009; Sinha et 

al., 2019). Several investigations outline that nutrient processes will be modified as a response 

to changes in temperature (Wagena and Easton, 2018),  wind patterns (Deng et al., 2018), 

hydrology, sea level rise (Statham, 2012) and precipitation (Störmer, 2011). Global warming can 

also contribute to hypoxia in coastal areas by reducing the vertical exchange, making the system 

more sensitive to nutrient loads (Du et al., 2018). As a consequence of the changes induced, a 

shift in the relationship between nutrients and phytoplankton should be expected, which might 

require a re-evaluation of nutrient criteria for ecological status assessment (Liu et al., 2018). 

Complex interactions among environmental and climate drivers regulate phytoplankton in 

coastal zones (Pesce et al., 2018), which entails a significant impact of climate change on primary 

production. The combined effect of higher temperatures and changes in nutrient availability can 

have drastic consequences for phytoplankton production in coastal waters (Lee et al., 2019), 

which will add up to the impact of increasing anthropogenic nutrient loadings (Huo et al., 2019). 

Additionally, the macrobenthos community may also be affected by sea level rise, leading to an 

increase in nitrogen flux to the water column (Brito et al., 2012). 

Dissolved inorganic nitrogen (DIN), i.e. ammonium, nitrite and nitrate, are the most reactive 

forms of nitrogen in marine waters  and play an important role in primary production (Camargo 

and Alonso, 2006). Nitrate is the most stable form of inorganic nitrogen in oxygenated 

environments and is generally the dominating form of DIN in estuaries and the surrounding 

coastal waters (Statham, 2012). Ammonium is also a relevant N species which is often associated 

to urban influence (Flo et al., 2011). Finally, even though nitrite is the less abundant of the three 

forms of DIN due to its instability, it is often used as an indicator of the balance between 

oxidative and reductive reactions (Temino-Boes et al., 2019). As a consequence of climate 

change, the variations in rainfall patterns may lead to the reduction of DIN inputs to coastal 

waters through river discharges (Pesce et al., 2018), while processes such as ammonification, 

nitrification and denitrification could be altered by rising temperatures or ocean acidification 

(Temino-Boes et al., 2019; Wannicke et al., 2018). 

The Mediterranean coast has been identified as one of the most responsive regions to 

climate change, driven by a significant decrease in the expected mean precipitation (Herrmann 
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et al., 2014). According to some authors, a reduction in the system’s biomass can be expected 

in the Mediterranean Sea during the 21st century (Lazzari et al., 2014), as well as seagrass 

degradation (Ontoria et al., 2019), surface water warming, salinity increase (Vargas-Yáñez et al., 

2017) and a decrease in nutrient availability (Herrmann et al., 2014). On the other hand, 

renewable water resources are also expected to decrease (García-Ruiz et al., 2011), due to 

higher rates of sea surface evaporation and reduced rainfall (Romanou et al., 2010), while water 

demand continues to rise (García-Ruiz et al., 2011; Wang and Polcher, 2019). Under future 

climate scenarios in the Northwestern Mediterranean Sea, changes in deep water convection 

mechanisms in winter will likely diminish the importance of nutrient upwelling, whilst horizontal 

currents will become a more relevant fertilization mechanism (Macias et al., 2018). These 

alterations may lead to significant changes in both nutrient distribution and phytoplankton 

community structures (Severin et al., 2014), which in turn could possibly shift towards small-size 

groups (Herrmann et al., 2014).  

Flo et al. (2011) defined coastal inshore waters (CIW) of the Mediterranean Sea as the 

coastal waters laying between the shore and 200 m into the sea. This reduced region is a unique 

habitat for many species, and a major socio-economic interest, with tourism activities 

increasingly threatening the ecosystems (Colella et al., 2016). The Mediterranean CIW are 

particularly vulnerable to anthropogenic influences, and its characteristics differ considerably 

from other coastal regions located further into the sea (>200m). Significantly higher DIN 

concentrations were reported in CIW, where  continental influence is the major driver of 

nitrogen concentrations (Flo et al., 2011), mainly derived from river discharges. The Ebro river 

delta, the most important delta in the Iberian peninsula, has a mean surface elevation of 0.87 m 

over the average sea water level, which makes it very sensitive to potential sea level rise, 

critically threatening nutrient removal dynamics (Genua-Olmedo et al., 2016). Both climate 

change and agricultural practices have significant impacts on nitrate concentrations in the Ebro 

basin, while phosphate concentrations are mainly driven by agricultural and industrial practices 

(Aguilera et al., 2015). In the case of the Jucar River Basin District (Southeast of Spain), 

temperatures are expected to increase up to 4.86°C in summer by 2040 (Chirivella et al., 2016) 

and consequently alter nitrogen transformation processes (Temino-Boes et al., 2019). 

The aforementioned impacts and the systems implicated are extremely difficult to model 

successfully due to their inherent complexity and the great number of variables involved. In this 

context, artificial neural networks (ANN) provide a very attractive modelling framework, which 

has become increasingly popular, particularly in the evaluation of climate change impacts 

(Altunkaynak, 2007; Liu et al., 2010). The human brain inspired the mechanisms used for ANNs 

development. They have been extensively used in many fields, including water quality 
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evaluation (He et al., 2011). One of the main advantages of ANN models in comparison to 

deterministic models is that an extensive knowledge of the physicochemical processes is not 

required (He et al., 2011). Besides, ANN models can deal with nonlinear relationships among 

variables (Liu et al., 2010), improving the accuracy of long-term forecasts (Doğan et al., 2016). 

The effect of climate change on water resources has been estimated with ANNs in urban areas 

(Al-Zahrani and Abo-Monasar, 2015), aquifers (Coppola Jr. et al., 2005), deltas (Byakatonda et 

al., 2016), rivers (Piotrowski et al., 2015), lakes (Altunkaynak, 2007; Doğan et al., 2016) and 

marine environments (Coutinho et al., 2019). Results show that ANN models often outperform 

conventional methods (Al-Zahrani and Abo-Monasar, 2015). Nutrient mechanisms, 

biogeochemical cycling (Bittig et al., 2018) and primary production (Mattei et al., 2018) in the 

ocean under climate change scenarios have also been evaluated with ANNs .  

Nonetheless, only few studies have focused on the forecasting of global warming effects on 

nutrient cycling in coastal regions (Basu et al., 2010; Wang and Polcher, 2019). In this research, 

we developed simple ANN modelling schemes as a first approach to evaluate regional climate 

change impacts on DIN concentrations trends in CIW through meteorological variables. More 

specifically, we propose a non-linear three-layered feedforward artificial neural network 

structure, containing a single output node. We trained and tested three different ANN models 

with such topology with field data, to estimate ammonium, nitrite and nitrate concentrations. 

Using these trained ANNs expected changes in DIN species concentrations are then estimated, 

considering two meteorological projections under regional climate change scenarios 

corresponding to the representative concentrations pathways (RCP) 4.5 and 8.5 (Moss et al., 

2010). Due to the necessary simplifications of the physical processes, the results obtained are 

of qualitative interest rather than quantitative. Our study site is an inshore Mediterranean 

coastal area of the South East of Spain, exposed to very limited anthropogenic pressures. 

2. Materials and Methods  

2.1. Study area 

The Jucar River Basin District is located in the Spanish Mediterranean coast. In this study 

we focus in the water body C002 (Figure 1) which is the pristine reference site for the moderately 

influenced by continental inputs region. The Ebro river delta is located approximately 60 km 

North from the study site and represents the highest continental water input with a mean 

annual flow of 286 m3.s-1 for the period 2000-2018. Additionally, the aquifer of El Maestrazgo 

which has a mean approximate flow of 1.5 m3.s-1, discharges through three submarine springs: 

Peñíscola, Badum and Alcossebre. Alcossebre is located within our study site, while Badum and 
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Peñíscola are located 1.5 km and  6 km North from DP134 monitoring site respectively (Garcia-

Solsona et al., 2010). As very limited anthropogenic alteration of water quality exists in this area 

(Romero et al., 2013), it becomes easier to study the effect of physical and meteorological 

variables on nitrogen concentrations. Five monitoring sites were located within C002, which are 

presented in Figure 1.  

In this study, we focus on coastal inshore waters (0 - 200m from the coast), in  which 

continental influence is the main driver of nutrient concentrations (Flo et al., 2011). The samples 

collected for the development of this work were taken at <200m from the shore, where the 

depth is <2m, as described by Flo et al. (2011). As a consequence, the water column is completely 

mixed, and no stratification exists. Additionally, samples were taken at the surface, which 

implies that the effect of the sediment can be neglected. The small tidal range in the 

Mediterranean Sea prevent the dispersion of nutrients into the sea (Flo et al., 2011). Water 

samples were collected from each monitoring site once per month from February 2006 to 

January 2011. Samples were taken in plastic bottles at the surface and from beyond the wave 

breakpoint, refrigerated and carried to the laboratory. The temperature and pH were measured 

in situ with a YSI 6600 Multi Parameter V2 Sonde. Salinity was measured at the laboratory with 

a Portasal 8410A salinometer. The samples were filtered with Millipore HAWP filters and DIN 

concentrations (ammonium, nitrite and nitrate) were analyzed with an Alliance Instruments 

Integral Futura air-segmented continuous-flow autoanalyzer. Ammonium was measured based 

on Berthelot's reaction and nitrite with Shinn (1941) water analysis method adapted for 

seawater by Bendschneider and Robinson (1952). Nitrate was reduced to nitrite with a Cu/Cd 

reducing column in basic conditions (pH = 8.5), as described by (Grasshoff, 1976). More details 

are provided by Temino-Boes et al. (2019a). Air temperature, wind speed and rainfall data were 

obtained from the Ministry of Agriculture, Fisheries and Food, and Ebro river discharges were 

obtained from the Ebro Water Authority. 
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Figure 1. Study site corresponding to the water body C002 identified as reference site of the 

Jucar River Basin District. The five monitoring sites are shown. 

2.2. Data pre-analysis 

Considering that continental influence is the main driver of nutrient concentrations (Flo et 

al., 2011) in CIW of the Northwestern Mediterranean, several physical and meteorological 

variables were selected as potential input variables to model nutrient concentrations. These 

variables were: wind speed, rainfall, salinity, Ebro river flow, pH and water temperature. The 

output sensitivity to input variables relationships can be estimated based on the Spearman rank 

correlation if a nonlinear but monotonic relationship is assumed (Pianosi et al., 2016). In order 

to determine to which variables nitrogen concentrations are more sensitive, we calculated the 

Spearman rank correlation coefficients. The results of this analysis were used to select the most 

appropriate input variables to the model.  

Rainfall can significantly affect nitrogen in CIW through different processes: by diluting 

nutrient concentrations, through river runoff or through submarine groundwater discharge 

(SGD). Nitrogen discharges through SGD have been reported to be significant in the study area 

(Garcia-Solsona et al., 2010), particularly  in the form of nitrate (Ballesteros et al., 2007). The 

aquifer of El Maestrazgo, which discharges through coastal springs in Irta National Park, is mainly 
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recharged through rainfall infiltration (Ballesteros et al., 2007). The time lag between SGD flux 

response to freshwater infiltrated has been reported to be ∼3 months (Garcia-Solsona et al., 

2010). In order to determine the time lag between rainfall and nitrate concentrations in our 

model, we calculated the cross-correlation with R version 3.5.1. 

2.3. Artificial neural networks 

ANN are data-driven models that have shown to be very successful modelling tools in a 

diversity of research areas (Abrahart et al., 2004; Alanis et al., 2019; Govindaraju, 2000; Lek and 

Guégan, 1999). In particular, they have proved to be very efficient in the prediction of relevant 

variables in complex systems characterized by nonlinear dependencies of data, as it is the case 

of the ones analyzed herein. Several ANN schemes were trained in this research, in order to 

extract the most relevant interactions between the measured variables and synthesize them 

through simple network topologies. These ANN schemes are built with the final aim of 

simulating long-term future expectable trends in the system under different climatic scenarios, 

as other authors have proposed (Abdullahi and Elkiran, 2017; Elgaali and Garcia, 2007). These 

modelling steps can also be helpful to gain a better understanding of the studied system 

behavior and its internal relationships between the involved physical variables mentioned 

before. The type of ANNs employed herein is the well-known feed forward multilayer 

perceptron of three layers with supervised learning, trained with the classical error-

backpropagation learning algorithm (Gardner and Dorling, 1998; Rumelhart et al., 1986).  

The structure of the networks is made up of three layers: an input layer comprising a group 

of explanatory variables, a hidden layer with nodes including non-linear activation functions, 

and an output layer corresponding to a selected target variable to be predicted.  The training 

process of the networks allows to configure the network internal weights in order to minimize 

the error function, in this case, the average squared error with respect to the measure (known 

values) of the target variable. The activation function used for the hidden nodes was the popular 

logistic function (Kohonen, 1988): 

xe
x




1

1
)(

 

(1) 

Where x is the input value to the particular node, resulting from operations in previous 

layers and connections to the node. 𝜑(𝑥) is the value produced by the activation function, i.e., 

output of the particular node under consideration.  

The choice of the number of hidden nodes (nh) affects the training process and the 

effectiveness and final performance of the network. Complex relationships between inputs and 
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outputs are difficult to be captured with too few hidden nodes, while too many hidden nodes 

may result in network over-training and a loss of generalization capacity of the network. Due to 

the sample size available for this study, the option for a parsimonious model is generally 

recommended. According to it, we applied the criteria (Lachtermacher and Fuller, 1994), 

adopting the minimum nh value matching this criteria: 
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where N is the sample size, and I is the number of input variables. 

The data used for network training is the sample corresponding to the period from February 

2006 to January 2010, while the period from February 2010 to January 2011 is reserved for 

validation. This partition is consistent with the criteria suggested by Haykin (1999): 

 
(3) 

where W is the number of weights in the neural network, and rVAL is the proportion of the total 

data used for training. 

As it is the case with other black-box models, the overall performance is highly influenced by 

the data preprocessing (Nawi et al., 2013). In particular, the computational efficiency of the 

networks is enhanced if both input and output variables are scaled. Consequently, all variables 

involved in the ANN modelling were previously pre-process through equation (4). 
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where x represents the original variable, xMIN is the minimum value, xMAX is the maximum value 

of the sample, x’ is the transformed variable, and ɣ is an exponent introduced in order to reduce 

the final skewness. ɣ values are conveniently chosen for each of the variables considered in the 

ANN modelling process, ranging from 0.3 to 1.0. 

The back-propagation algorithm was used to train all the networks. This sequential iterative 

method adjusts the network weights in small steps, following the direction of negative gradient 

of the error function. The learning rate was manually modified to smaller values as the training 

process advanced, to avoid undesirable oscillatory behavior of the training error function. 

During the learning process, the order of presentation of patterns was randomized through the 

shuffling of the cases, which is usually advantageous to avoid local minima. While other more 

powerful and quicker algorithms are commonly used (Burney et al., 2007), the reduced size of 

the networks involved herein allowed an efficient use of the simpler error-backpropagation 
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algorithm until the error function reached a specified convergence with satisfactory quickness. 

Training and validation processes of the different ANNs proposed were performed using the 

software STATISTICA. 

2.4. Climate change scenarios 

The National Plan for Adaptation to Climate Change (PNACC), through the Scenarios-PNACC 

initiative, collects regional climate information for Spain, both of current climate and of future 

scenarios for the next decades. The projections of meteorological variables are based on the 

Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). The 

initiative integrates the results of international dynamic and statistic regionalization projects 

such as Euro-CORDEX and VALUE, with national projections developed by the National 

Meteorological Agency (AEMET) and by the Meteorology Group of Santander (CSIC - University 

of Cantabria). We downloaded projections of daily meteorological variables for future emission 

scenarios from the Platform of Exchange and Consultation of Information on Adaptation to 

Climate Change in Spain (AdapteCCA.es), under RCP4.5 and RCP8.5. Mean monthly estimations 

for air temperature, humidity and rainfall were calculated from 2011 to 2100 for both RCPs.  

Due to the lack of water temperature and salinity projections under climate change in the 

study area a simplified approach to estimate these variables is necessary. Linear stepwise 

regression models were used to estimate salinity and water temperature from meteorological 

variables, i.e. air temperature, rainfall and humidity. For the estimation of salinity also Ebro river 

flow was used. All variables were previously normalized through a unity-based normalization. 

The first 4 years of measurements were used for model calibration and the last year for 

validation. The Spanish center for studies and experimentation of public works (CEDEX) assessed 

the impact of climate change on water resources in a natural regime in the Spanish basins 

throughout the 21st century. The model developed is the Integrated Precipitation Simulation 

model (SIMPA), a distributed simulation model of the hydrological cycle that establishes water 

balances for the different processes. It estimates the contribution from meteorological data and 

the physical characteristics of the territory. The model is fed with regionalized projections of 

climate change procured by AEMET and provides the expected values of the main hydrological 

variables. The results are available online through a downloadable computer application 

(CAMREC), a plugin for QGIS 2.18. The changes expected in the Ebro river flow at its mouth 

throughout the 21st century under RCP 4.5 and RCP 8.5 were obtained from CAMREC. 

Monthly DIN concentrations from 2011 to 2100 were estimated by means of the developed 

ANN model. For each month, Mann-Kendall trend test was applied to determine whether the 

trends observed are statistically significant. This test is a non-parametric monotonic trend 
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analysis which identifies the increasing or decreasing patterns in time series data (Chaudhuri 

and Dutta, 2014; Colella et al., 2016). The magnitude of the trend was evaluated with Sen’s slope 

(Sen, 1968), a non-parametric method which does not require assumptions on the normal 

distribution of the data (Kitsiou and Karydis, 2011). The annual trend is evaluated with the 

season Mann-Kendall test and the seasonal Sen’s slope. These tests are performed with the 

package “trend” in R version 3.5.1. 

3. Results 

3.1. Monitoring data 

The data obtained from the monitoring campaigns are presented in Figure 2. Water 

temperature and pH are similar between monitoring sites. Salinity however is lower in DP010 

which can be attributed to SGD inputs. DIN concentrations are higher in DP010, nitrate 

concentrations particularly. This monitoring site is located close to an urban area as opposed to 

the other sites which are within Irta National Park. Additionally, the SGD in this area entails an 

input of DIN especially in the form of nitrate (Ballesteros et al., 2007). As indicated in section 

2.2., the cross-correlation between nitrate and rainfall was evaluated. The result of the analysis 

is presented in Figure 3. The correlation is maximum with a time-lag of 4 months between 

rainfall and nitrate concentrations. This finding is in close agreement with the time lag in the 

aquifer’s discharge time in Garcia-Solsona et al. (2010) which also studied the same aquifer of El 

Maestrazgo, and indicated a time lag of approximately 3 months. The Spearman correlations 

between physicochemical variables and DIN concentrations is shown in Table 1. Based on these 

correlations the input variables selected for DIN species estimation were water temperature, 

salinity and rainfall (with a 4-month time lag). Ebro river flow, the pH and the wind speed were 

discarded for not having any significant correlation. 
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Figure 2. Boxplot of water temperature, salinity and pH (left) and dissolved inorganic nitrogen 

species concentrations (right) obtained during monthly monitoring campaigns from February 

2006 to January 2011. The median is represented by a black horizontal line, the bottom and 

the top of the box represent the first (Q1) and third quartiles (Q3) respectively and the lower 

and upper ends of the whisker represent Q1-1.5 (Q3-Q1) and Q3 + 1.5 (Q3-Q1)  respectively. 

Outliers are not represented. 
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Figure 3. Cross-correlation between nitrate concentration and rainfall. Horizontal axis shows 

the time lag in nitrate concentrations (months) while vertical axis shows the correlation 

between nitrate and rainfall for each lag. 

Table 1. Spearman rank correlations between studied variables. NH4+ is ammonium in mgN∙L-1, 

NO2
- is nitrite in mgN∙L-1, NO3

- is nitrate in mgN∙L-1, R-4 is rainfall in mm.day-1with a 4-month 

time lag, Q is Ebro river flow in m3∙s-1, WT is water temperature in °C, S is salinity in g∙kg-1 and 

W is wind speed in m∙s-1.  The asterisk indicates a statistically significant correlation at a 0.05 

significant level. 

  NH4
+ NO2

- NO3
- R-4 Q WT pH S W 

NH4
+ - -0.05 0.23 0.19 0.09 0.25* 0.10 -0.39* -0.07 

NO2
- 

 
- 0.43* 0.19 0.06 -0.54* -0.05 -0.11 0.03 

NO3
- 

  
- 0.46* 0.23 -0.33* 0.10 -0.64* -0.16 

R-4 
   

- 0.32* -0.02 0.16 -0.37* -0.06 

Q 
    

- -0.35* -0.04 -0.46* -0.04 

WT 
     

- 0.29* 0.12 -0.02 

pH 
      

- -0.08 -0.14 

S        - 0.20 

W         - 

 

3.2. ANN Model 
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A simple artificial neural network architecture is proposed to predict values of each of the 

DIN species, i.e., NH4
+, NO3

- and NO2
-. One network is built and trained for each of these 

variables, although the three networks developed have the same 3-layer topology. The variables 

used as predictors, that is, the input variables of the networks, are the same for each of the 

three neural networks. The selected predictors are those physical parameters that showed 

higher correlation: salinity, temperature and rainfall. Consequently, the number of nodes in the 

input layer is three, and the number of nodes in the output layer is one. The number of hidden 

nodes was calculated with equation (2), resulting in nh=2, which is also consistent with 

recommendation by (Wanas et al., 1998). This network size proved to be optimal, as other 

networks with nh=1, 3 and 4 were later tested, yielding to worse performance indexes. 

Consequently, the architecture of the proposed ANN consists on a 3-layer feedforward neural 

network with 3 input nodes, two hidden nodes and one output node (either NH4
+, NO3

- or NO2
-

), as indicated in Figure 4.  The obtained rooted mean squared errors (RMSE) for training and 

validation data are presented in Table 2. While Figure 5 shows the model outputs for 

ammonium, nitrite and nitrate and the R2 for each model. 

 

 

Figure 4. Feedforward neural network topology with the three input variables and the output 

(either NH4
+, NO3

- or NO2
-) 

Table 2. Rooted mean squared error (RMSE) in mgN∙L-1 for training and validation data in the 

three models with outputs NH4
+, NO3

- or NO2
- respectively. 

RMSE NH4
+ NO2

- NO3
- 

Training 4.10E-03 1.48E-03 2.63E-02 

Validation 3.15E-03 8.15E-04 1.99E-02 

 



14 
 

 

Figure 5. Ammonium (NH4
+), nitrite (NO2

-) and nitrate (NO3
-) models based on artificial neural 

networks. Rainfall with a 4-month time lag, water temperature and salinity are the input 

variables. The coefficient of determination R2 and the absolute error (AE) in mgN.L-1 is shown. 

3.3. Water temperature and salinity models 

Linear regression model parameters to estimate water temperature and salinity are 

presented in Table 3. Water temperature is estimated from air temperature solely, while salinity 

is estimated with rainfall (with a 4-month time lag), humidity and Ebro river flow. Both models 

are found to be statistically significant as determined by the R2, adjusted-R2 and p-value shown 

in Table 4. Durbin-Watson statistic tests the residuals to determine if there is any significant 

correlation based on the order in which they occur in the data. There is no serial autocorrelation 

in the residual at a 95% level of significance as indicated in Table 3. As indicated in section 2.4, 

the first 48 measurements corresponding to the first 4 years were used to build the model and 

the last 12 values were used for validation. Both calibration and validation data are shown in 

Figure 6. The coefficient of determination R2 was very similar in calibration and validation for 

both models. 
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Table 3. Results of the stepwise linear regressions to estimate water temperature (model 1) 

and salinity (model 2). Tair is air temperature, R-4 is rainfall with a 4-month time lag, H is 

humidity and Q is Ebro river flow. 

Model Parameter Estimate Standard Error T statistic p-value 

1: Water 

Temperature 

Constant 0.1032 0.0242 4.2700 0.0001 

Tair 0.8944 0.0424 21.0767 0.0000 

2: Salinity 

Constant 0.9476 0.0651 14.5534 0.0000 

R-4 -0.1927 0.0947 -2.0353 0.0479 

H -0.2734 0.0996 -2.7454 0.0087 

Q -0.5436 0.1055 -5.1549 0.0000 

 

Table 4. Model interpretations of stepwise linear regressions to estimate water temperature 

(model 1) and salinity (model 2): coefficient of determination, standard error, Durbin-Watson 

statistics and ANOVA. 

Parameter  Model 1: Water temperature  Model 2: Salinity 

R2 90.62 50.99 

R2 adjusted 90.41 47.65 

Standard error 0.0937 0.1589 

Durbin-Watson statistic 1.9702 1.5951 

Durbin-Watson p-value 0.4079 0.0722 

ANOVA F-Ratio 444.23 15.26 

ANOVA p-value 0.0000 0.0000 
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Figure 6. Stepwise linear regression models for the estimation of water temperature (up) and 

salinity (down). The coefficient of determination R2 and the absolute error (AE) are shown for 

both calibration and validation data. 

3.4. The effect of climate change on DIN concentrations 

Estimations of air temperature, humidity and rainfall from 2011 to 2100 under climate 

change scenarios were downloaded from AdapteCCA.es website and changes in Ebro river flow 

were obtained from CAMREC as mentioned in section 2.4. The changes projected for these 

variables under climate change each month for the period 2070-2100 relative to 1971-2000 

(1961-2000 for Ebro river flow) are presented in Figure 7. Salinity and water temperatures for 

both RCP 4.5 and RCP 8.5 emission scenarios were calculated with the linear models developed 

in the previous section. By means of the ANN models, DIN concentration trends between 2011 

and 2100 were estimated. Results are represented in Figure 8. 
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Figure 7. Changes in air temperature, rainfall, humidity and Ebro river flow for the period 

2070-2100 compared to 2071-2000 (2061-2000 for Ebro river flow) under RCP 4.5 and RCP 8.5 

scenarios. 
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Figure 8. Projections of ammonium, nitrite and nitrate concentrations from 2011 to 2100 by 

means of the ANN models under RCP 4.5 and RCP 8.5 scenarios. 

The Sen’s slope for each month was calculated to measure the magnitude of the increasing 

or decreasing trend for DIN species over the period 2011 to 2100. Additionally, Mann-Kendall 

test was applied to evaluate whether the observed trend is statistically significant. The results 

are shown in Table 5. Nitrite and nitrate concentrations are expected to decrease both under 

RCP 4.5 and RCP 8.5 on an annual basis, with greater decrease found for RCP 8.5. Nitrite peaks, 

which are observed under low temperature conditions, are expected to decline. On the other 

hand, ammonium is expected to increase mainly between January and March and decrease from 

September to December, but the global trend was not statistically significant. 

Table 5. Sen’s slope for monthly changes in nitrate, nitrite or ammonium concentrations 

between 2011 and 2100 projections for each month under RCP 4.5 and RCP 8.5. The annual 

trend is evaluated with the seasonal Sen’s slope. 

Month NH4
+

 4.5 NO2
- 4.5 NO3

- 4.5 NH4
+

 8.5 NO2
- 8.5 NO3

- 8.5 

January 7.14E-06** -1.18E-05** -4.65E-05* 7.89E-06** -2.16E-05** -1.94E-04** 

February 2.94E-06 -5.06E-06** -4.06E-05 2.00E-05** -1.33E-05** -1.91E-04** 

March 7.32E-06* -3.44E-06** -1.53E-05 9.09E-06** -5.88E-06** -1.66E-04** 

April -4.76E-06 -3.13E-06** -6.40E-05* -2.99E-06 -4.76E-06** -1.19E-04** 

May 4.35E-06 0.00E+00 -4.17E-05 4.35E-06 -3.33E-06** -1.32E-04** 

June 0.00E+00 -1.20E-07** -6.64E-05** -2.99E-06 -1.47E-06** -1.56E-04** 

July 2.56E-06 -9.04E-07** -5.37E-05** 2.18E-06 -1.80E-06** -1.75E-04** 

August 4.76E-08 -8.88E-07** -6.86E-05** 1.19E-05** -2.48E-06** -1.83E-04** 

September 2.41E-06 -1.46E-06** -5.29E-05** -1.46E-06** -3.23E-06** -1.90E-04** 

October -8.54E-06* -2.21E-06** -7.43E-05** -8.96E-06** -4.64E-06** -1.85E-04** 

November -9.87E-06* -4.13E-06** -8.59E-06** -1.80E-05** -8.59E-06** -1.66E-04** 

December -7.28E-06 -1.08E-05** -9.36E-05** -1.21E-05** -2.43E-05** -1.84E-04** 

Annual 2.34E-07 -2.34E-06** -5.84E-05** 2.35E-06 -5.22E-06** -1.64E-04** 

 *Statistically significant correlation at a 0.05 significance level 
** Statistically significant correlation at a 0.01 significance level 

4. Discussion 

Artificial neural networks have proved to be a useful tool to evaluate the effects of climate 

change on DIN species. The proposed models showed the ability to estimate the impact of future 

meteorological conditions on the trends of DIN concentrations in CIW. Nonetheless, the results 

should be interpreted cautiously due to the assumptions made throughout the evaluation. 

Nitrite and nitrate models reached R2 values over 0.50, which can be acceptable, considering the 

high variability generally found in coastal waters. Due to the high uncertainty in ammonium 
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concentrations in Northwestern Mediterranean coastal waters (Paches et al., 2019), the model 

performance was lower for this nutrient (Figure 5). Also, the additional uncertainty introduced 

by the linear models developed for water temperature and salinity estimations should be 

pointed out. Water temperature model reached R2 = 0.90; but salinity model had R2 = 0.50, 

implying a degree of uncertainty introduced to ANN model inputs for future projections. The 

observed errors in ANN outputs can be attributed to both natural and anthropogenic sources. 

Anthropogenic nitrogen inputs, even if considered to be very limited in our study area (Romero 

et al., 2013), may account for some of the uncertainties. For instance, nitrogen inputs through 

Ebro river or submarine groundwater discharges are not constant along the year. On the other 

hand, the discharges of the aquifer El Maestrazgo are related to other parameters on top of 

precipitation. Nonetheless, the main contribution of this work lies in the evaluation of the overall 

expected tendency of nitrogen concentrations under climate change scenarios. 

In this sense, and according to the modelling results obtained, nitrite and nitrate 

concentrations are expected to drop under both RCP 4.5 and RCP 8.5 climate change scenarios, 

with greater decreases under RCP 8.5. Nitrite peaks generally occur due to low temperatures 

which decouple both steps of nitrification (Temino-Boes et al., 2019). In accordance with this, 

future projections show a reduction of peaks during December and January, mainly due to the 

expected increase in minimum temperatures. We also observed a high negative correlation 

between temperature and nitrite concentrations (-0.54). Overall, the decaying trend of nitrite 

levels under climate change scenarios is basically driven by future rising temperatures, while the 

decrease in continental inputs (salinity and rainfall) play a secondary role. Nitrate is also 

expected to decrease, driven by both higher temperatures and decreasing rainfall. It is 

interesting to note that maximum monthly cumulative rainfall occurs in September, resulting in 

higher aquifer recharge during this month. This yields to groundwater discharge peaks during 

successive months, with an average time delay of 4 months, i.e., January. A decrease of future 

expected rainfall, more particularly during this rainiest month, will result in significant 

groundwater discharges reduction, which in turn will affect nitrate levels. This is consistent with 

simulation results obtained under RCP 8.5, where the most significant decreases in future nitrate 

concentration are expected during January.  

The expected trends derived from the presented simulations herein, are consistent with 

known processes governing the dynamics of the nitrogen cycle. As pointed out by previous 

researchers, higher nitrification and denitrification rates are actually driven by higher 

temperatures, and thus, are expected to decrease future nitrogen availability (Wagena and 

Easton, 2018). Other authors already indicated that changes in temperature and precipitation 

could decrease nitrogen yields in coastal waters (Alam et al., 2017). Some studies point out a 
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significant imbalance of the ocean’s nitrogen budget, with greater losses than inputs (Voss et 

al., 2013). Bi et al. (2018) also found a negative correlation between nitrogen concentrations 

and temperature. Precipitation was also correlated to nitrogen concentration in previous 

studies, indicating that climate change might reduce nitrogen loads (Bi et al., 2018). Concerning 

ammonium concentrations, our results indicate that significant changes are not expected on an 

annual basis. While ammonification and other related processes are intensified due to higher 

temperatures, other factors are counteracting such effect, such as lower future precipitation 

and lower river discharges. Not being simultaneous drivers, though, smaller changes and trend 

fluctuations are expected for individual months.  

The modelling framework presented herein necessary implies an important over-

simplification of the complex systems under investigation. It neglects certain underlying 

physicochemical processes involved, and therefore, many uncertainty sources need to be 

accounted for. Although most relevant climatic drivers were considered in the analysis, other 

pressures such as changes in anthropogenic nutrient loads were not taken into consideration. 

For instance, 65% of the Ebro delta is occupied by rice fields (Genua-Olmedo et al., 2016), which 

implies that nutrient management in agriculture is a key factor for future export of DIN 

(Jennerjahn, 2012). The future fertilization policy applied in the Ebro catchment is uncertain, 

ranging from a 10% increase to a 15% decrease (Herrero et al., 2018). Obviously, the sort and 

amount of fertilizer will change due to changes in rainfall and air temperatures, which would 

influence coastal nutrient loads (Statham, 2012). Socioeconomic decisions about land use and 

management will have determining consequences for hydrological processes (Zarzuelo et al., 

2019) and thus, on coastal nutrient enrichment (Sinha et al., 2019). Clearly, an interdisciplinary 

collaboration is necessary between natural and social sciences (Jennerjahn, 2012). Another 

aspect to be outlined is the highly regulated Ebro river, affecting its average discharges to the 

Mediterranean. About 96% of the catchment is regulated by dams (Jiménez et al., 2017), causing 

significant reductions of river flow over the past decades (Fatorić and Chelleri, 2012). In the 

future, higher water regulation due to increasing water demand (Wang and Polcher, 2019) and 

more intense human activity is generally expected in the Mediterranean region (Herrero et al., 

2018). Depletion of river flows in the delta areas may enhance saline intrusion in the lower 

reaches of rivers and into the groundwater reserves (García-Ruiz et al., 2011). Under such 

conditions, the vulnerability of the Ebro valley will likely increase (Barrera-Escoda et al., 2014), 

influencing the nitrogen export to coastal waters. Natural and human-induced hydrodynamic 

alterations (Zarzuelo et al., 2019) may also have a significant impact on nutrient discharges. 

Furthermore, the potential changes in phytoplankton community and their ability to assimilate 

nitrogen induced by higher temperatures was not considered in this study (Kumar et al., 2018). 



21 
 

In spite of these limitations, the study area selected corresponds to an area of low 

anthropogenic inputs (Romero et al., 2013) which indicates that climate change may have a 

greater impact than changes derived from direct human inputs. 

On a global scale, the alteration of nitrogen transformations leads to many complex 

cascading effects (Gruber and Galloway, 2008). Overall, the results obtained in this study 

indicate that climate change is expected to decrease DIN concentrations in Mediterranean CIW 

due to increasing temperatures and lower continental inputs. The results obtained are of 

practical interest for management purposes, but the limitations of a simplified analysis should 

be recognized. Future studies should focus on the development of more sophisticated models 

with a combined evaluation of climate change and changes in anthropogenic nutrient loads.  

5. Conclusion 

The modelling approach proposed herein, together with the results derived from the 

performed simulations, represent a first approach to evaluate the potential climate change 

impact on dissolved inorganic nitrogen concentrations in coastal inshore waters (<200m). More 

specifically, we focused on the effect of the main meteorological variables on DIN species in the 

CIW of a Northwestern Mediterranean region with low anthropogenic inputs. As such, 

quantitative conclusions are necessarily limited, as many uncertainty sources need to be 

accounted for, as explained previously.  

In order to evaluate the impact of climate change on DIN concentrations, we used artificial 

neural network models trained with real field data collected monthly during a period of 5 years. 

The most relevant climatic variables were considered as drivers. Results indicate that nitrite and 

nitrate concentrations are expected to decrease under climate change scenarios RCP 4.5 and 

RCP 8.5. Cold months such as December, January and February are expected to undergo the 

major concentration changes due to rising temperature and decreasing continental inputs. 

Ammonium did not show a significant annual tendency but may increase from January to March 

and decrease from September to December. Future research should focus on the evaluation of 

the combined effects of climate change and other human induced changes such as river flow 

regulations or nitrogen pollution. The evaluation of future nitrogen dynamics in coastal waters 

with more complex approaches is essential in order to develop preventive action plans. 

 

Acknowledgments: We acknowledge the Valencian Ministry of the Environment, Water, Urban 

Planning and Housing for their support in field data collection. We also acknowledge the 

National Meteorological Agency (AEMET) and by the Meteorology Group of Santander (CSIC - 



22 
 

University of Cantabria) for their National Plan for Adaptation to Climate Change (PNACC), from 

whom meteorological variables for future climate change scenarios were obtained. We thank 

the Ministry of Agriculture, Fisheries and Food for historical values of air temperature and 

rainfall, and the Ebro Water Authority for historical Ebro river discharges. Finally, we 

acknowledge Universitat Politècnica de València for the student scholarship which supported 

this research. 

Funding: Field data collection was supported by the Valencian Ministry of the Environment, 

Water, Urban Planning and Housing. The work was partly supported by a Cotutelle PhD 

scholarship granted by Universitat Politècnica de València. 

References 

Abdullahi, J., Elkiran, G., 2017. Prediction of the future impact of climate change on reference 

evapotranspiration in Cyprus using artificial neural network. Procedia Comput. Sci. 120, 

276–283. doi:10.1016/j.procs.2017.11.239 

Abrahart, R.J., Kneale, P.E., See, L.M., 2004. Neural networks for hydrological modelling. 

Balkema. 

Aguilera, R., Marcé, R., Sabater, S., 2015. Detection and attribution of global change effects on 

river nutrient dynamics in a large Mediterranean basin. Biogeosciences 12, 4085–4098. 

doi:10.5194/bg-12-4085-2015 

Al-Zahrani, M.A., Abo-Monasar, A., 2015. Urban residential water demand prediction based on 

artificial neural networks and time series models. Water Resour. Manag. 29, 3651–3662. 

doi:10.1007/s11269-015-1021-z 

Alam, M.J., Goodall, J.L., Bowes, B.D., Girvetz, E.H., 2017. The Impact of Projected Climate 

Change Scenarios on Nitrogen Yield at a Regional Scale for the Contiguous United States. 

JAWRA J. Am. Water Resour. Assoc. 53, 854–870. doi:10.1111/1752-1688.12537 

Alanis, A., Arana-Daniel, N., Lopez-Franco, C., 2019. Artificial neural networks for engineering 

applications. Academic Press. 

Altunkaynak, A., 2007. Forecasting surface water level fluctuations of lake van by artificial 

neural networks. Water Resour. Manag. 21, 399–408. doi:10.1007/s11269-006-9022-6 

Ballesteros, B., Marina, M., Mejías, M., Domínguez, J., 2007. Caracterización hidroquímica del 



23 
 

acuífero carbonatado profundo de El Maestrazgo (Castellón).[Hydrochemical 

characterisation of the deep, carbonated El Maestrazgo aquifer (Castellón)]. Coast. 

aquifers challenges Solut. 549–564. 

Baron, J.S., Hall, E.K., Nolan, B.T., Finlay, J.C., Bernhardt, E.S., Harrison, J.A., Chan, F., Boyer, 

E.W., 2013. The interactive effects of excess reactive nitrogen and climate change on 

aquatic ecosystems and water resources of the United States. Biogeochemistry 114, 71–

92. doi:10.1007/s10533-012-9788-y 

Barrera-Escoda, A., Gonçalves, M., Guerreiro, D., Cunillera, J., Baldasano, J.M., 2014. 

Projections of temperature and precipitation extremes in the North Western 

Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution 

(1971–2050). Clim. Change 122, 567–582. doi:10.1007/s10584-013-1027-6 

Basu, N.B., Destouni, G., Jawitz, J.W., Thompson, S.E., Loukinova, N. V., Darracq, A., Zanardo, 

S., Yaeger, M., Sivapalan, M., Rinaldo, A., Rao, P.S.C., 2010. Nutrient loads exported from 

managed catchments reveal emergent biogeochemical stationarity. Geophys. Res. Lett. 

37, n/a-n/a. doi:10.1029/2010GL045168 

Bendschneider, K., Robinson, R.J., 1952. A new spectrophotometric determination of nitrite in 

sea water. J. Mar. Res. 2, 87–96. 

Bi, W., Weng, B., Yuan, Z., Ye, M., Zhang, C., Zhao, Y., Yan, D., Xu, T., 2018. Evolution 

Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario 

Simulations: A Case Study in the Luanhe River Basin. Int. J. Environ. Res. Public Health 15. 

doi:10.3390/ijerph15081724 

Bittig, H.C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N.L., Sauzède, R., Körtzinger, A., 

Gattuso, J.-P., 2018. An Alternative to Static Climatologies: Robust Estimation of Open 

Ocean CO2 Variables and Nutrient Concentrations From T, S, and O2 Data Using Bayesian 

Neural Networks. Front. Mar. Sci. 5, 328. doi:10.3389/fmars.2018.00328 

Brito, A.C., Newton, A., Tett, P., Fernandes, T.F., 2012. How will shallow coastal lagoons 

respond to climate change? A modelling investigation. Estuar. Coast. Shelf Sci. 112, 98–

104. doi:10.1016/J.ECSS.2011.09.002 

Burney, S.M.A., Jilani, T.A., Ardil, C., 2007. A comparison of first and second order training 

algorithms for artificial neural networks. Int. J. Comput. Inf. Eng. 1, 145–151. 



24 
 

Byakatonda, J., Parida, B.P., Kenabatho, P.K., Moalafhi, D.B., 2016. Modeling dryness severity 

using artificial neural network at the Okavango Delta, Botswana. Glob. Nest J. 18, 463–

481. 

Camargo, J.A., Alonso, Á., 2006. Ecological and toxicological effects of inorganic nitrogen 

pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849. 

doi:10.1016/J.ENVINT.2006.05.002 

Chaudhuri, S., Dutta, D., 2014. Mann-Kendall trend of pollutants, temperature and humidity 

over an urban station of India with forecast verification using different ARIMA models. 

Environ. Monit. Assess. 186, 4719–4742. doi:10.1007/s10661-014-3733-6 

Chirivella, V., Capilla, J.E., Pérez-Martín, M.A., 2016. Dynamical versus statistical downscaling 

for the generation of regional climate change scenarios at a Western Mediterranean 

basin: The Júcar River District. J. Water Clim. Chang. 7, 379–392. 

doi:10.2166/wcc.2015.207 

Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., Santoleri, R., 2016. Mediterranean ocean 

colour chlorophyll trends. PLoS One 11, 1–17. doi:10.1371/journal.pone.0155756 

Coppola Jr., E.A., Rana, A.J., Poulton, M.M., Szidarovszky, F., Uhl, V.W., 2005. A neural network 

model for predicting aquifer water level elevations. Ground Water 43, 231–241. 

Coutinho, F.H., Thompson, C.C., Cabral, A.S., Paranhos, R., Dutilh, B.E., Thompson, F.L., 2019. 

Modelling the influence of environmental parameters over marine planktonic microbial 

communities using artificial neural networks. Sci. Total Environ. 677, 205–214. 

doi:10.1016/j.scitotenv.2019.04.009 

Deng, J., Paerl, H.W., Qin, B., Zhang, Y., Zhu, G., Jeppesen, E., Cai, Y., Xu, H., 2018. Climatically-

modulated decline in wind speed may strongly affect eutrophication in shallow lakes. Sci. 

Total Environ. 645, 1361–1370. doi:10.1016/J.SCITOTENV.2018.07.208 

Doğan, E., Kocamaz, U.E., Utkucu, M., Yıldırım, E., 2016. Modelling daily water level 

fluctuations of Lake Van (Eastern Turkey) using Artificial Neural Networks. Fundam. Appl. 

Limnol. / Arch. für Hydrobiol. 187, 177–189. doi:10.1127/fal/2015/0736 

Du, J., Shen, J., Park, K., Wang, Y.P., Yu, X., 2018. Worsened physical condition due to climate 

change contributes to the increasing hypoxia in Chesapeake Bay. Sci. Total Environ. 630, 



25 
 

707–717. doi:10.1016/J.SCITOTENV.2018.02.265 

Elgaali, E., Garcia, L.A., 2007. Using Neural Networks to Model the Impacts of Climate Change 

on Water Supplies. J. Water Resour. Plan. Manag. 133. doi:10.1061/(ASCE)0733-

9496(2007)133:3(230) 

Fatorić, S., Chelleri, L., 2012. Vulnerability to the effects of climate change and adaptation: The 

case of the Spanish Ebro Delta. Ocean Coast. Manag. 60, 1–10. 

doi:10.1016/J.OCECOAMAN.2011.12.015 

Flo, E., Garcés, E., Manzanera, M., Camp, J., 2011. Coastal inshore waters in the NW 

Mediterranean: Physicochemical and biological characterization and management 

implications. Estuar. Coast. Shelf Sci. 93, 279–289. doi:10.1016/j.ecss.2011.04.002 

García-Ruiz, J.M., López-Moreno, I.I., Vicente-Serrano, S.M., Lasanta-Martínez, T., Beguería, S., 

2011. Mediterranean water resources in a global change scenario. Earth-Science Rev. 

105, 121–139. doi:10.1016/j.earscirev.2011.01.006 

Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Rodellas, V., Mejías, M., Ballesteros, B., 

Domínguez, J.A., 2010. Groundwater and nutrient discharge through karstic coastal 

springs (Castelló, Spain). Biogeosciences 7, 2625–2638. doi:10.5194/bg-7-2625-2010 

Gardner, G.W., Dorling, S.R., 1998. Artificial neural networks (the multilayer perceptron)—a 

review of applications in the atmospheric sciences. Atmos. Environ. 32, 2627–2636. 

Genua-Olmedo, A., Alcaraz, C., Caiola, N., Ibáñez, C., 2016. Sea level rise impacts on rice 

production: The Ebro Delta as an example. Sci. Total Environ. 571, 1200–1210. 

doi:10.1016/j.scitotenv.2016.07.136 

Govindaraju, R.S., 2000. Artificial neural networks in hydrology. Water Science and Technology 

Library. 

Grasshoff, K., 1976. Methods of seawater analysis. Verlag Chemie: Weinstein, New York. 

Gruber, N., Galloway, J.N., 2008. An Earth-system perspective of the global nitrogen cycle. 

Nature 451, 293–296. doi:10.1038/nature06592 

Haykin, S., 1999. Neural networks, a comprehensive foundation. Prentice Hall International, 

Inc. 



26 
 

He, J., Valeo, C., Chu, A., Neumann, N.F., 2011. Stormwater quantity and quality response to 

climate change using artificial neural networks. Hydrol. Process. 25, 1298–1312. 

doi:10.1002/hyp.7904 

Herrero, A., Gutiérrez-Cánovas, C., Vigiak, O., Lutz, S., Kumar, R., Gampe, D., Huber-García, V., 

Ludwig, R., Batalla, R., Sabater, S., 2018. Multiple stressor effects on biological quality 

elements in the Ebro River: Present diagnosis and predicted responses. Sci. Total Environ. 

630, 1608–1618. doi:10.1016/j.scitotenv.2018.02.032 

Herrmann, M., Estournel, C., Adloff, F., Diaz, F., 2014. Impact of climate change on the 

northwestern Mediterranean Sea pelagic planktonic ecosystem and associated carbon 

cycle. J. Geophys. Res. Ocean. 119, 5815–5836. doi:10.1002/jgrc.20224 

Huo, S., Zhang, H., Ma, C., Xi, B., Zhang, J., He, Z., Li, X., Wu, F., 2019. Algae community 

response to climate change and nutrient loading recorded by sedimentary phytoplankton 

pigments in the Changtan Reservoir, China. J. Hydrol. 571, 311–321. 

doi:10.1016/J.JHYDROL.2019.02.005 

Jennerjahn, T.C., 2012. Biogeochemical response of tropical coastal systems to present and 

past environmental change. Earth-Science Rev. 114, 19–41. 

doi:10.1016/J.EARSCIREV.2012.04.005 

Jiménez, J.A., Valdemoro, H.I., Bosom, E., Sánchez-Arcilla, A., Nicholls, R.J., 2017. Impacts of 

sea-level rise-induced erosion on the Catalan coast. Reg. Environ. Chang. 17, 593–603. 

doi:10.1007/s10113-016-1052-x 

Kitsiou, D., Karydis, M., 2011. Coastal marine eutrophication assessment: A review on data 

analysis. Environ. Int. 37, 778–801. doi:10.1016/J.ENVINT.2011.02.004 

Kohonen, T., 1988. An introduction to neural computing. Neural Networks 1, 3–16. 

Kumar, S., Bhavya, P.S., Ramesh, R., Gupta, G.V.M., Chiriboga, F., Singh, A., Karunasagar, I., Rai, 

A., Rehnstam-Holm, A.S., Edler, L., Godhe, A., 2018. Nitrogen uptake potential under 

different temperature-salinity conditions: Implications for nitrogen cycling under climate 

change scenarios. Mar. Environ. Res. 141, 196–204. 

doi:10.1016/j.marenvres.2018.09.001 

Lachtermacher, G., Fuller, J.D., 1994. Backpropagation in hydrological time series forecasting. 



27 
 

In: Hipel, K.W., McLeod, A.I., Panu, U.S., Singh, V.P. (Eds.), Stochastic and Statistical 

Methods in Hydrology and Environmental Engineering. Kluwer Academic, Dordrecht. 

Lazzari, P., Mattia, G., Solidoro, C., Salon, S., Crise, A., Zavatarelli, M., Oddo, P., Vichi, M., 2014. 

The impacts of climate change and environmental management policies on the trophic 

regimes in the Mediterranean Sea: Scenario analyses. J. Mar. Syst. 135, 137–149. 

doi:10.1016/j.jmarsys.2013.06.005 

Lee, K.H., Jeong, H.J., Lee, K., Franks, P.J.S., Seong, K.A., Lee, S.Y., Lee, M.J., Hyeon Jang, S., 

Potvin, E., Suk Lim, A., Yoon, E.Y., Yoo, Y. Du, Kang, N.S., Kim, K.Y., 2019. Effects of 

warming and eutrophication on coastal phytoplankton production. Harmful Algae 81, 

106–118. doi:10.1016/J.HAL.2018.11.017 

Lek, S., Guégan, J.F., 1999. Artificial neural networks as a tool in ecological modelling, an 

introduction. Ecol. Modell. 120, 65–73. 

Liu, L., Ma, C., Huo, S., Xi, B., He, Z., Zhang, H., Zhang, J., Xia, X., 2018. Impacts of climate 

change and land use on the development of nutrient criteria. J. Hydrol. 563, 533–542. 

doi:10.1016/J.JHYDROL.2018.06.039 

Liu, Z.L., Peng, C.H., Xiang, W.H., Tian, D.L., Deng, X.W., Zhao, M.F., 2010. Application of 

artificial neural networks in global climate change and ecological research: An overview. 

Chinese Sci. Bull. 55, 3853–3863. doi:10.1007/s11434-010-4183-3 

Macias, D., Garcia-Gorriz, E., Stips, A., 2018. Deep winter convection and phytoplankton 

dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) 

scenarios. Sci. Rep. 8, 6626. doi:10.1038/s41598-018-24965-0 

Mattei, F., Franceschini, S., Scardi, M., 2018. A depth-resolved artificial neural network model 

of marine phytoplankton primary production. Ecol. Modell. 382, 51–62. 

Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., Van Vuuren, D.P., Carter, 

T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, 

K., Smith, S.J., Stouffer, R.J., Thomson, A.M., Weyant, J.P., Wilbanks, T.J., 2010. The next 

generation of scenarios for climate change research and assessment. Nature 463, 747–

756. doi:10.1038/nature08823 

Nawi, N.M., Atomi, W.H., Rehman, M.Z., 2013. The effect of data pre-processing on optimized 



28 
 

training of artificial neural networks. Procedia Technol. 11, 32–39. 

Ontoria, Y., Gonzalez-Guedes, E., Sanmartí, N., Bernardeau-Esteller, J., Ruiz, J.M., Romero, J., 

Pérez, M., 2019. Interactive effects of global warming and eutrophication on a fast-

growing Mediterranean seagrass. Mar. Environ. Res. 145, 27–38. 

doi:10.1016/j.marenvres.2019.02.002 

Paches, M., Aguado, D., Martínez-Guijarro, R., Romero, I., 2019. Long-term study of seasonal 

changes in phytoplankton community structure in the western Mediterranean (Valencian 

Community). Environ. Sci. Pollut. Res. 26, 14266–14276. doi:10.1007/s11356-019-04660-

x 

Paerl, H.W., 2018. Why does N-limitation persist in the world’s marine waters? Mar. Chem. 

206, 1–6. doi:10.1016/J.MARCHEM.2018.09.001 

Paulmier, A., Ruiz-Pino, D., 2009. Oxygen minimum zones (OMZs) in the modern ocean. Prog. 

Oceanogr. 80, 113–128. doi:10.1016/J.POCEAN.2008.08.001 

Pesce, M., Critto, A., Torresan, S., Giubilato, E., Santini, M., Zirino, A., Ouyang, W., Marcomini, 

A., 2018. Modelling climate change impacts on nutrients and primary production in 

coastal waters. Sci. Total Environ. 628–629, 919–937. 

doi:10.1016/J.SCITOTENV.2018.02.131 

Pianosi, F., Beven, K., Freer, J., Hall, J.W., Rougier, J., Stephenson, D.B., Wagener, T., 2016. 

Sensitivity analysis of environmental models: A systematic review with practical 

workflow. Environ. Model. Softw. 79, 214–232. doi:10.1016/J.ENVSOFT.2016.02.008 

Piotrowski, A.P., Napiorkowski, M.J., Napiorkowski, J.J., Osuch, M., 2015. Comparing various 

artificial neural network types for water temperature prediction in rivers. J. Hydrol. 529, 

302–315. 

Rabalais, N.N., Turner, R.E., Diaz, R.J., Justic, D., 2009. Global change and eutrophication of 

coastal waters. ICES J. Mar. Sci. 66, 1528–1537. doi:10.1093/icesjms/fsp047 

Romanou, A., Tselioudis, G., Zerefos, C.S., Clayson, C.A., Curry, J.A., Andersson, A., 2010. 

Evaporation-precipitation variability over the mediterranean and the black seas from 

satellite and reanalysis estimates. J. Clim. 23, 5268–5287. doi:10.1175/2010JCLI3525.1 

Romero, I., Pachés, M., Martínez-Guijarro, R., Ferrer, J., 2013. Glophymed: An index to 



29 
 

establish the ecological status for the Water Framework Directive based on 

phytoplankton in coastal waters. Mar. Pollut. Bull. 75, 218–223. 

doi:10.1016/j.marpolbul.2013.07.028 

Rumelhart, D.E., Hinton, G.E., Williams, R., 1986. Learning representations by back-propagating 

errors. Nature 323, 533–536. 

Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. 

Assoc. 63, 1379–1389. doi:10.1080/01621459.1968.10480934 

Severin, T., Kessouri, F., Rembauville, M., Sánchez-Pérez, E.D., Oriol, L., Caparros, J., Pujo-Pay, 

M., Ghiglione, J.-F., D’Ortenzio, F., Taillandier, V., Mayot, N., De Madron, X.D., Ulses, C., 

Estournel, C., Conan, P., 2014. Open-ocean convection process: A driver of the winter 

nutrient supply and the spring phytoplankton distribution in the Northwestern 

Mediterranean Sea. J. Geophys. Res. Ocean. 122, 4587–4601. doi:10.1002/jgrc.20224 

Shinn, M.B., 1941. Colorimetric method for the determination of nitrite. Ind. Eng. Chem. Anal. 

Ed. 13, 33–35. 

Sinha, E., Michalak, A.M., Calvin, K. V., Lawrence, P.J., 2019. Societal decisions about climate 

mitigation will have dramatic impacts on eutrophication in the 21st century. Nat. 

Commun. 10, 939. doi:10.1038/s41467-019-08884-w 

Statham, P.J., 2012. Nutrients in estuaries — An overview and the potential impacts of climate 

change. Sci. Total Environ. 434, 213–227. doi:10.1016/J.SCITOTENV.2011.09.088 

Störmer, O., 2011. Climate Change Impacts on Coastal Waters of the Baltic Sea, in: Global 

Change and Baltic Coastal Zones. Springer, Dordrecht, pp. 51–69. doi:10.1007/978-94-

007-0400-8_4 

Temino-Boes, R., Romero, I., Pachés, M., Martinez-Guijarro, R., Romero-Lopez, R., 2019. 

Anthropogenic impact on nitrification dynamics in coastal waters of the Mediterranean 

Sea. Mar. Pollut. Bull. 145, 14–22. doi:10.1016/j.marpolbul.2019.05.013 

Vargas-Yáñez, M., García-Martínez, M.C., Moya, F., Balbín, R., López-Jurado, J.L., Serra, M., 

Zunino, P., Pascual, J., Salat, J., 2017. Updating temperature and salinity mean values and 

trends in the Western Mediterranean: The RADMED project. Prog. Oceanogr. 157, 27–46. 

doi:10.1016/j.pocean.2017.09.004 



30 
 

Voss, M., Bange, H.W., Dippner, J.W., Middelburg, J.J., Montoya, J.P., Ward, B., 2013. The 

marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of 

climate change. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20130121. 

doi:10.1098/rstb.2013.0121 

Wagena, M.B., Easton, Z.M., 2018. Agricultural conservation practices can help mitigate the 

impact of climate change. Sci. Total Environ. 635, 132–143. 

doi:10.1016/J.SCITOTENV.2018.04.110 

Wanas, N., Auda, G., Kamel, M.S., Karray, F., 1998. On the optimal number of hidden nodes in 

a neural network, in: IEEE Canadian Conference on Electric and Computer Engineering 

Proceedings. pp. 918–921. 

Wang, F., Polcher, J., 2019. Assessing the freshwater flux from the continents to the 

Mediterranean Sea. Sci. Rep. 9, 8024. doi:10.1038/s41598-019-44293-1 

Wannicke, N., Frey, C., Law, C.S., Voss, M., 2018. The response of the marine nitrogen cycle to 

ocean acidification. Glob. Chang. Biol. 24. 

Zarzuelo, C., D’Alpaos, A., Carniello, L., López-Ruiz, A., Díez-Minguito, M., Ortega-Sánchez, M., 

2019. Natural and Human-Induced Flow and Sediment Transport within Tidal Creek 

Networks Influenced by Ocean-Bay Tides. Water 11, 1493. 

 

 

 

 

 

 


