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Random coupled parabolic partial differential models are solved numerically
using random cosine Fourier transform together with non-Gaussian random
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1 INTRODUCTION

Random time-dependent scalar mean square partial differential models have been treated recently from both the theoret-
ical and numerical points of view, because in real problems, the parameters, coefficients and initial/boundary conditions
are subject to uncertainties, not only by error measurement but also to the difficulty of access to the measurement, the
possible heterogeneity of the materials or media and so forth. Spatial uncertainty models described by random elliptic
PDEs in bounded domains are treated in Bäck et al,1 Bachmayr et al2 and Ernst et al3 using spectral Galerkin and col-
location methods. In dealing with the coupled partial differential models, the uncertainties are involved in the matrix
coefficients or vector initial/boundary conditions.

Coupled partial differential models are frequent in several engineering disciplines such as geomechanics,4 geotechnics,5
microwave heating processes,6 optics,7 ocean models8,9 and so forth. They also appear in plasma fusion models,10

cardiology11,12 or species population dynamics.13

Solving random models presents somewhat unexpected peculiarities not presented in the deterministic case. In fact, in
the random case, it is important not only the determination of the exact or approximate stochastic process solution but
also the computation of its statistical moments, mainly the expectation and the standard deviation.

Using iterative methods involves the storage of high computational complexity of all the previous levels of iteration
and usually the methods become unmanageable.14 This motivates the search of alternative methods with as simple as
possible expressions of the stochastic solution process. In a recent paper,15 one uses Fourier transforms together with
the random Gaussian quadrature rules to approximate stochastic process solution. The method proposed in Casabán
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2 CASABÁN ET AL.

et al15 has the advantage that approximate stochastic solution is simple and the computation of its statistical moments
are manageable; however, as the numerical integration is based on Gaussian quadrature rules, the accuracy decreases
for highly oscillatory Fourier kernels in large domains.16-18 In this paper, the above-mentioned drawback is overcome by
taking an appropriate truncation of the infinite integral and using quadrature rules with good behaviour dealing with
highly oscillatory integrands.

PDE models in unbounded domains using Fourier integral transforms have been treated in Jódar and Goberna.19,20

This paper deals with a more general random coupled parabolic problem

𝜕u(z, t)
𝜕t

(𝜉) = A(𝜉)u(z, t)(𝜉) + B(𝜉)𝜕
2u(z, t)
𝜕z2 (𝜉), z > 0, t > 0 , (1)

u(z, 0)(𝜉) = 𝑓 (z)(𝜉), z > 0, 𝜉 ∈ Ω, (2)

𝜕u
𝜕z

(0, t)(𝜉) = g(t)(𝜉), t > 0, 𝜉 ∈ Ω, (3)

lim
z→∞

u(z, t)(𝜉) = 0, lim
z→∞

𝜕u
𝜕z

(z, t)(𝜉) = 0, (4)

where u(z, t)(𝜉) = [u1(z, t)(𝜉),u2(z, t)(𝜉)]T ∈ R2, g(t)(𝜉) = [g1(t)(𝜉), g2(t)(𝜉)]T, f(z)(𝜉) = [f1(z)(𝜉), f2(z)(𝜉)]T, and

A(𝜉) =
(

ai𝑗(𝜉)
)

1≤i,𝑗≤2, B(𝜉) =
(

bi𝑗(𝜉)
)

1≤i,𝑗≤2. (5)

Here, A(𝜉) and B(𝜉) are random matrices, f(z)(𝜉) and g(t)(𝜉) are stochastic processes (s.p.'s) with properties to be specified
later. We assume that for each event 𝜉 ∈ Ω, the sample matrix B(𝜉) satisfies

𝜆min

(
B(𝜉) + B(𝜉)T

2

)
= b(𝜉) > 0, (6)

where 𝜆min denotes the minimum eigenvalue.
This paper is organized as follows. Section 2 deals with the solution of the simplified deterministic problem after taking

sample realizations for each event 𝜉 ∈ Ω. Matrix analysis of involved matrices A(𝜉) and B(𝜉) is performed in order to
determine the spectral sufficient condition to guarantee the convergence.

The unsuitable use of Gaussian quadrature for cosine oscillatory integrals and the convergence of the truncated inte-
grals suggest the introduction of alternative quadrature formulae such as the midpoint Riemann sum (see Davis and
Rabinowitz,21 Section 3.9 or the trapezoidal rule).

In Section 3, the random case is addressed taking into account the ideas of previous section in order to construct random
approximate solution s.p.'s that make manageable the computation of its statistical moments, in particular, the expectation
and the variance. Simulations show the efficiency of the proposed numerical methods.

2 SOLVING THE SAMPLED DETERMINISTIC CASE

For the sake of clarity in the presentation, let us recall some algebraic concepts, notations and results.
If P is a matrix in RN×N , its logarithmic operator norm 𝜇(P) is defined by

𝜇(P) = max
{
𝜆; 𝜆 eigenvalue of P + PT

2

}
. (7)

By Dahlquist,22 the matrix exponential ePt satisfies ||ePt|| ≤ et𝜇(P), t ≥ 0.

Lemma 1. Let B ∈ RN×N be a matrix such that B + BT is positive definite and satisfies (6). Then,

𝜇(A − 𝜔2B) ≤ 𝜇(A) − b𝜔2, b = 𝜆min

(
B + BT

2

)
, 𝜔 > 0 . (8)

Proof. Let 𝜔 > 0, and let us write

(A − B𝜔2) + (A − B𝜔2)T

2
= A + AT

2
− 𝜔2

(
B + BT

2

)
. (9)
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As A+AT

2
and −𝜔2

(
B+BT

2

)
are both symmetric matrices, by Ostrowski theorem (see Ostrowski23), each eigenvalue 𝜆

of matrix (9) satisfies

𝜆 ≤ 𝜆max

(
A + AT

2

)
− 𝜔2𝜆min

(
B + BT

2

)
= 𝜇(A) − b𝜔2, (10)

where b is given by (6). Hence, the result is established.

If f(z) = [f1(z), f2(z)]T is absolutely integrable in [0,∞), then the cosine Fourier transform of f(z) is defined by

c[𝑓 ](𝜔) = ∫
∞

0
𝑓 (z) cos(𝜔z)dz, 𝜔 ≥ 0, (11)

and if f(z) is twice differentiable and 𝑓 ′′(z) = [𝑓 ′′
1 (z), 𝑓

′′
2 (z)]

T is absolutely integrable, then

c[𝑓 ′′](𝜔) = −𝜔2c[𝑓 ](𝜔) − 𝑓 ′(0), 𝜔 ≥ 0. (12)

In order to simplify the notation, in the following content of this section, we will denote for a realization of random
matrices A(𝜉) and B(𝜉) as A and B, respectively. For the sake of coherence, we also denote f(z), g(t) and u(z, t) as the
corresponding realizations for a fixed event 𝜉 ∈ Ω.

In order to obtain a candidate solution of problems (1)–(6), let us apply the cosine Fourier transform c regarding
u = u(·, t) as an absolute integrable function of the active variable z > 0. Let us denote

V (t) = c[u(·, t)](𝜔) = ∫
∞

0
u(z, t) cos(𝜔z)dz, 𝜔 > 0, (13)

and applying c to (1) and taking into account (12), one gets

c

[
𝜕2u
𝜕z2 (·, t)

]
(𝜔) = −𝜔2c[u(·, t)](𝜔) − 𝜕u

𝜕z
(0, t) = −𝜔2V (t)(𝜔) − g(t), (14)

V (0) = c[u(0, t)](𝜔) = c[𝑓 (z)](𝜔) = F(𝜔). (15)

Hence, V(t)(𝜔) is the solution of the initial value problem in time,

d
dt

V (t)(𝜔) = (A − 𝜔2B)V(t)(𝜔) − Bg(t), t > 0, 𝜔 > 0 fixed, V (0)(𝜔) = F(𝜔). (16)

The solution of (16) for 𝜔 > 0 fixed takes the form

V (t)(𝜔) = e(A−𝜔2B)t

⎧⎪⎨⎪⎩F(𝜔) −

t

∫
0

e−(A−𝜔2B)sc(s)ds
⎫⎪⎬⎪⎭ , c(s) = Bg(s). (17)

Under hypothesis of Lemma 1, and continuity of g(t), taking cosine inverse −1
c , one gets

u(z, t) = −1
c [V (t)(𝜔)] = 2

𝜋 ∫
∞

0
e(A−𝜔2B)tF(𝜔) cos(𝜔z)d𝜔 = 2

𝜋
(I1 − I2), (18)

where

I1 = ∫
∞

0
e(A−𝜔2B)tF(𝜔) cos(𝜔z)d𝜔, I2 = ∫

∞

0

(
∫

t

0
e(A−𝜔2B)(t−s)c(s) cos(𝜔z)ds

)
d𝜔. (19)

Integrals (19) can be truncated for 𝜔, getting the approximations

I1(R) = ∫
R

0
e(A−𝜔2B)tF(𝜔) cos(𝜔z)d𝜔, I2(R) = ∫

R

0

(
∫

t

0
e(A−𝜔2B)(t−s)c(s) cos(𝜔z)ds

)
d𝜔, R > 0 (20)

and the approximate solution uR(z, t) = 2
𝜋
(I1(R) − I2(R)) , z > 0, t > 0.

Now we prove that {uR(z, t)} is convergent and that limR→∞uR(z, t) = u(z, t), stating that

u(z, t) − uR(z, t) = 2
𝜋
(J1(R) − J2(R))

0
−−→
R→∞

, (21)
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where

J1(R) = ∫
∞

R
e(A−𝜔2B)tF(𝜔) cos(𝜔z)d𝜔, J2(R) = ∫

t

0

(
∫

∞

R
e(A−𝜔2B)(t−s)c(s) cos(𝜔z)d𝜔

)
ds. (22)

Using Lemma 1, (22) and the substitution u = 𝜔
√

bt, one gets

||J1(R)|| ≤ ∫
∞

R
e𝜇(A−𝜔2B)t||F(𝜔)||d𝜔 ≤ ||F||∞ ∫

∞

R
e(𝜇(A)−𝜔2b)td𝜔 = ||F||∞e𝜇(A)t ∫

∞

R
e−bt𝜔2 d𝜔

= ||F||∞e𝜇(A)t√
bt ∫

∞

R
√

bt
e−u2 du =

||F||∞√𝜋

2
√

bt
e𝜇(A)terfc(R

√
bt),

(23)

where sup {||F(𝜔)||; 𝜔 ≥ 0} = ||F||∞.
Also, from Lemma 1, for the second integral of (22), one gets

‖J2(R)‖ ≤ ∫
t

0

(
∫

∞

R
e(𝜇(A)−𝜔2b)(t−s) ‖B‖ ‖g(s)‖ d𝜔

)
ds = ‖B‖∫ t

0
‖g(s)‖ e𝜇(A)(t−s)

(
∫

∞

R
e−𝜔2b(t−s)d𝜔

)
ds. (24)

As we did in previous bound of J1(R) in (23), we have

∫
∞

R
e−𝜔2b(t−s)d𝜔 =

√
𝜋

2
√

b(t − s)
erfc

(
R
√

b(t − s)
)
. (25)

From (24) and (25), one concludes

‖J2(R)‖ ≤
√
𝜋 ‖B‖
2
√

b ∫
t

0

‖g(s)‖ e𝜇(A)(t−s)√
t − s

erfc
(

R
√

b(t − s)
)

ds =
√
𝜋 ‖B‖

b ∫
√

bt

0

‖‖‖‖‖g
(

t − v2

b

)‖‖‖‖‖ e𝜇(A)
v2

b erfc (Rv) dv. (26)

As limx→∞erfc(x) = 0, and g(t) is continuous and bounded in a bounded interval, from (23) and (26), it follows that

lim
R→∞

Ji(R) = 0, i = 1, 2. (27)

Hence, from (21) and (27), one gets limR→∞(u(z, t) − uR(z, t)) = 0.
Note also that u(z, t) given by (18)–(19) is well defined because integrals I1 and I2 of (19) are absolutely integrable,

because for z > 0 and t > 0 fixed, we have (see Lemma 1)

‖I1‖ ≤ ∫
∞

0
e𝜇(A)t ‖F(s)‖ e−𝜔2btd𝜔 ≤ ‖F‖∞e𝜇(A)t ∫

∞

0
e−𝜔2btd𝜔 < +∞,

‖I2‖ ≤ ∫
t

0 ∫
∞

0
e𝜇(A)(t−s)−𝜔2b(t−s) ‖c(s)‖ d𝜔ds ≤ ‖B‖∫ t

0
‖g(s)‖ e𝜇(A)(t−s)

(
∫

∞

0
e−𝜔2b(t−s)d𝜔

)
ds

= ‖B‖√
b ∫

t

0

‖g(s)‖ e𝜇(A)(t−s)√
t − s

(
∫

∞

0
e−v2 dv

)
ds =

√
𝜋 ‖B‖
2
√

b ∫
t

0

‖g(s)‖ e𝜇(A)(t−s)√
t − s

ds.

In summary, the following result has been established.

Theorem 1. Consider problems (1)–(4) for a fixed event 𝜉 ∈ Ω, where f(z) is absolutely integrable, g(t) is continuous and
B satisfies condition (6) with b > 0. Then

1. u(z, t) given by (18)–(19) is solution of problems (1)–(4);
2. uR(z, t) = 2

𝜋
(I1(R) − I2(R)) , z > 0, t > 0, where I1(R) and I2(R) are defined by (20), converges as R → ∞ to u(z, t)

uniformly for z > 0 and pointwise at each (z, t) ∈ R+ × R+.

Example 2.1. Consider problems (1)–(4) for a realization corresponding to 𝜉0 ∈ Ω fixed with the data

A =
[

0 a
−a 0

]
, B = 𝜈I =

[
𝜈 0
0 𝜈

]
, a > 0, 𝜈 > 0; u(z, 0) = 𝑓 (z) =

[
0
0

]
,
𝜕u
𝜕z

(0, t) =
[
−g(t)
0

]
, (28)
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modelling the influence of the Earth's rotation on ocean currents,8 whose exact solution takes the form

u1(z, t) =
√

𝜈

𝜋 ∫
t

0

g(s)√
t − s

e−
(

z2

4𝜈(t−s)

)
cos (a(t − s)) ds, u2(z, t) = −

√
𝜈

𝜋 ∫
t

0

g(s)√
t − s

e−
(

z2

4𝜈(t−s)

)
sin (a(t − s)) ds. (29)

Here, variables t and z represent the time and depth coordinates, u1 and u2 describe the zonal and meridional surface
ocean current velocities, a is the coriolis parameter and 𝜈 is the eddy parameterized vertical viscosity coefficient.

Note that in this case,

A − 𝜔2B =
[
−𝜔2𝜈 a
−a −𝜔2𝜈

]
, 𝜇(A − 𝜔2B) = max

{
𝜆 ∈ 𝜎

[
−𝜔2𝜈 0

0 −𝜔2𝜈

]}
= −𝜔2𝜈. (30)

From (17) and (30), it follows that

c(s) = 𝜈

[
−g(t)

0

]
; e(A−𝜔2B)t = e−𝜔2𝜈t

[
cos(at) sin(at)
− sin(at) cos(at)

]
. (31)

By (18)–(19) and (31), the solution of the problem takes the form

u(z, t) = − 2
𝜋 ∫

∞

0 ∫
t

0
e(A−𝜔2B)(t−s)c(s) cos(𝜔z)dsd𝜔 = 2

𝜋 ∫
∞

0
I2(t, 𝜔) cos(𝜔z)d𝜔, (32)

where

I2(t, 𝜔) = ∫
t

0
e−𝜔2𝜈(t−s)𝜈g(s)

[
cos (a(t − s))
− sin (a(t − s))

]
ds. (33)

Taking advantage of the knowledge of the exact solution given by (29), we check that Gauss–Laguerre quadrature15 of
(32) provides wrong results for large values of z.

Let us take the data a = 1, 𝜈 = 1 and g(t) = 1. Note that in the case g(t) = 1, expression (33) becomes

I2(t, 𝜔) =
𝜈

a2 + 𝜈2𝜔4

[
𝜔2𝜈 + e−𝜔2𝜈t (a sin(at) − 𝜔2𝜈 cos(at)

)
−a + e−𝜔2𝜈t (a cos(at) + 𝜔2𝜈 sin(at)

) ]
. (34)

Next, Table 1 shows the absolute errors when one approximates (29) using Gauss–Laguerre quadrature of several
degrees M for z = 5 and t = 1.

The convergence of truncated integrals in Theorem 1 suggests the approximation of the truncated integrals using
appropriate quadrature rules preserving the oscillatory behaviour. Let us denote

uR(z, t) = 2
𝜋 ∫

R

0
I2(t, 𝜔) cos(𝜔z)d𝜔. (35)

M AbsErr(u𝟏(𝟓 , 𝟏)) AbsErr(u𝟐(𝟓 , 𝟏))
1 2.7254e − 01 1.2057e − 01
2 7.4014e − 01 3.5587e − 01
3 2.2645e − 02 1.0762e − 01
4 4.4318e − 01 9.7300e − 02
5 4.5831e − 01 1.5709e − 01
6 3.6717e − 01 2.1590e − 01
7 5.1360e − 01 1.8173e − 01
8 1.9483e − 03 5.3340e − 02
9 1.3911e − 01 6.4812e − 02

10 4.8348e − 01 1.3559e − 01
11 3.3161e − 01 1.2510e − 01
12 2.1783e − 01 6.6086e − 02
13 1.4817e − 01 8.2631e − 03
14 2.3801e − 01 5.7655e − 02
15 2.8347e − 01 7.0344e − 02

TABLE 1 Absolute error of numerical approximation of (29) by using Gauss–Laguerre
quadratures of degree M at z = 5 and t = 1



6 CASABÁN ET AL.

TABLE 2 Absolute errors of numerical approximations of (35) at z = 5, t = 1, by the
midpoint Riemann sum with fixed h = 0.05

R AbsErr(u𝟏(𝟓 , 𝟏)) AbsErr(u𝟐(𝟓 , 𝟏))
5 2.2187e − 04 6.0459e − 06

10 6.6113e − 05 1.1396e − 06
15 9.6916e − 05 4.9150e − 07
20 9.3665e − 05 2.4768e − 07
25 8.4522e − 05 1.3928e − 07
30 7.4942e − 05 8.4709e − 08

TABLE 3 Absolute errors of numerical approximations of (35) at z = 5, t = 1, by the
midpoint Riemann sum with fixed R = 20 and various step size h

h AbsErr(u𝟏(𝟓 , 𝟏)) AbsErr(u𝟐(𝟓 , 𝟏))
0.2000 1.4793e − 04 3.4924e − 07
0.1000 1.4441e − 05 5.0984e − 08
0.0500 9.3665e − 05 2.4768e − 07
0.0250 1.3112e − 04 3.4100e − 07
0.0125 1.4912e − 04 3.8592e − 07

TABLE 4 Root mean square errors (RMSEs) of numerical approximations of
(35) by the midpoint Riemann sum with fixed h = 0.05 in the domain
(z, t) ∈ [0, 5] × [0, 1] for the step sizes Δz = 0.05 and Δt = 0.01

R RMSE (u𝟏(z , t)) RMSE (u𝟐(z , t)) CPU, s
5 1.9717e − 02 4.3759e − 04 0.6406

10 8.0645e − 03 4.2821e − 05 0.7188
15 4.9310e − 03 1.0860e − 05 2.1094
20 3.5510e − 03 4.1179e − 06 2.6406
25 2.7871e − 03 1.9559e − 06 2.0938
30 2.3023e − 03 1.0771e − 06 2.7969

The midpoint Riemann sum proposed in Davis and Rabinowitz,21 Section 3.9 applied to (35) gives the approximation

uR(z, t) ≈ 2h
𝜋

N−1∑
𝑗=0

I2

(
t,
(
𝑗 + 1

2

)
h
)

cos
((

𝑗 + 1
2

)
hz
)
, (36)

where Nh = R.
The numerical convergent of the proposed midpoint Riemann sum approximation of the solution given by (36) is stud-

ied with respect to the involved parameters R, N and h in Tables 2 and 3. In particular, in Table 2, we fix the value of h
and vary R in order to analyse the impact of the truncation point R. As expected, increasing values of R result in smaller
absolute error. In Table 3, R is fixed and the step-size discretization h is changing.

In order to compare the numerical approximation by the Riemann midpoint sum with the analytical solution (29) in
an entire computational domain, we calculate the root mean square error (RMSE). The results for fixed h = 0.05 at the
fixed computational domain 0 ≤ t ≤ 1, 0 ≤ z ≤ 5 are presented in Table 4 and plotted in Figure 1. Because the step
size is fixed, the total computational time varies depending on the size of the integration domain, that is, on the values

FIGURE 1 RMSE of numerical approximations of (35) by the
midpoint Riemann sum with fixed h = 0.05 for various values of R in
the domain (z, t) ∈ [0, 5] × [0, 1] for the step sizes Δz = 0.05 and
Δt = 0.01. RMSE, root mean square error
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FIGURE 2 Solution u1(z, t) calculated by (29) for
a = 𝜈 = 1, g(t) = 1

FIGURE 3 Solution u2(z, t) calculated by (29) for
a = 𝜈 = 1, g(t) = 1

of R. The CPU time of each simulation is reported in Table 4 as well. The solutions u1(z, t) and u2(z, t) of Example 2.1 are
presented in Figures 2 and 3, respectively. Computations have been carried out by MATLAB© R24 for Windows 10 home
(64-bit) Intel(R) Core(TM) i5-8265u CPU, 1.60 GHz.

3 THE RANDOM CASE: NUMERICAL SOLUTION AND NUMERICAL
CONVERGENCE

In Section 2, for a fixed realization corresponding to some 𝜉0 ∈ Ω, we have confirmed that Gaussian quadrature is not
appropriate for approximating oscillatory integrals of the cosine inverse Fourier transform (see Example 2.1). Then, we
experimented in Section 2 the alternative of truncation combined with midpoint Riemann sum in the truncated domain
[0,R]. In this section, we only choose this technique to approximate the solution s.p. of problems (1)–(4), as well as the
computation of the expectation and variance of the approximate s.p.

For the sake of clarity in the presentation, we recall some notation about s.p. used in previous paper15 and references
therein.

Let (Ω,𝔉,R) be a complete probability space, and let Lm×n
p (Ω) be a set of all random matrices Y = (yij)m×n, whose entries

yij are r.v.'s satisfying ‖‖𝑦i𝑗‖‖p =
(
E[|𝑦i𝑗|p])1∕p

< +∞, p ≥ 1, (37)

which means that yij ∈ Lp(Ω), where E[·] denotes the expectation operator. The space of all random matrices of size m×n,
endowed with the matrix p−norm,

(
Lm×n

p (Ω), ‖·‖p
)
, defined by

‖Y‖p =
m∑

i=1

n∑
𝑗=1

‖‖𝑦i𝑗‖‖p, E[|𝑦i𝑗|p] < +∞, (38)
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is a Banach space. The definition of the matrix p−norm in (38) can be extended to matrix s.p.'s Y (t) =
(
𝑦i𝑗(t)

)
m×n of

Lm×n
p (Ω), where now each entry

(
𝑦i𝑗(t)

)
is an s.p., that is, yij(t) is an r.v. for each t. We say that the matrix s.p. Y(t) lies in

Lm×n
p (Ω), if

(
𝑦i𝑗(t)

)
∈ Lp(Ω) for every 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The definitions of integrability, continuity and differentiability of a matrix function lying in Lm×n
p (Ω) follows in a natural

manner using matrix p−norm introduced in (38). The case mean square corresponds to p = 2 and mean four p = 4. One
has Lm×n

4 (Ω) ⊂ Lm×n
2 (Ω) (see Casabán et al15).

Consider that a constant random matrix L ∈ Ln×n
2p (Ω), Y0 ∈ Ln×1

2p (Ω) and C(s) lie in Ln×1
2p (Ω) and 2p− integrable. Assume

that random matrix L =
(
𝓁i𝑗

)
n×n satisfies the moment condition

E[|𝓁i𝑗|r] ≤ mi𝑗(hi𝑗)r < +∞, ∀r ≥ 0, ∀i, 𝑗 ∶ 1 ≤ i, 𝑗 ≤ n. (39)

Then, by Casabán et al,15 Section 3 the corresponding solution of the mean square initial value problem

Y ′(s) = LY (s) + C(s), Y (0) = Y0, s ≥ 0 (40)

is given by

Y (s) = eLs
(

Y0 + ∫
s

0
e−LvC(v) dv

)
. (41)

Now for the sake of clarity, in the presentation, we list the conditions of the random parabolic partial differential systems
(1)–(4). First, random matrices

A(𝜉) ∈ L2×2
4 (Ω), B(𝜉) ∈ L2×2

8 (Ω) (42)

and satisfy the moment condition (39). In addition, assume that g(t)(𝜉) ∈ L2×1
8 (Ω) for each t > 0 and it is continuous in

L2×1
8 (Ω). Furthermore, assume that s.p. 𝑓 (z)(𝜉) ∈ L2×1

8 (Ω) for each z > 0 and it is absolutely integrable in L2×1
8 (Ω), then the

random cosine Fourier transform of f(z)(𝜉), F(𝜔)(𝜉), lies in L2×1
8 (Ω). Assume the random spectral condition: there exists

b*
> 0 such that

inf
𝜉∈Ω

𝜆min

(
B(𝜉) + B(𝜉)T

2

)
≥ b∗ > 0. (43)

Then, the random initial value problem (see 16)

d
dt

V (t, 𝜉)(𝜔) = (A(𝜉) − 𝜔2B(𝜉))V(t, 𝜉)(𝜔) − B(𝜉)g(t)(𝜉), V(0, 𝜉)(𝜔) = F(𝜔) (44)

has the mean square solution

V (t, 𝜉)(𝜔) = e(A(𝜉)−𝜔2B(𝜉)) t
(

F(𝜔)(𝜉) − ∫
t

0
e−(A(𝜉)−𝜔2B(𝜉)) sc(s)(𝜉)ds

)
, c(s)(𝜉) = B(𝜉)g(s)(𝜉), (45)

and V(t, 𝜉) lies in L2×1
2 (Ω). Using random cosine inverse transform (see 18), one has

u(z, t)(𝜉) = 2
𝜋 ∫

∞

0
V (t, 𝜉)(𝜔) cos(𝜔z)d𝜔, 𝜉 ∈ Ω. (46)

Truncation gives the approximate s.p.

uR(z, t)(𝜉) = 2
𝜋 ∫

R

0
V (t, 𝜉)(𝜔) cos(𝜔z)d𝜔, 𝜉 ∈ Ω. (47)

Using N− midpoint Riemann sum quadrature of uR(z, t)(𝜉), one gets

MidN (uR(z, t)(𝜉)) = 2h
𝜋

N−1∑
𝑗=0

V (t, 𝜉)
(
𝜔𝑗+ 1

2

)
cos

(
𝜔𝑗+ 1

2
z
)
, (48)

where Nh = R, 𝜔𝑗+ 1
2
=
(
𝑗 + 1

2

)
h.

Because the randomness of the integrand of (47) only affects to V(t, 𝜉)(𝜔), it is easy to check that

E [MidN (uR(z, t)(𝜉))] = 2h
𝜋

N−1∑
𝑗=0

cos
(
𝜔𝑗+ 1

2
z
)
E

[
V(t, 𝜉)

(
𝜔𝑗+ 1

2

)]
, (49)
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where

Var [MidN (uR(z, t)(𝜉))] = E
[
(MidN (uR(z, t)(𝜉)))2] − E[MidN (uR(z, t)(𝜉))]2

= 4h2

𝜋2

N−1∑
i=0

N−1∑
𝑗=0

cos
(
𝜔i+ 1

2
z
)

cos
(
𝜔𝑗+ 1

2
z
)

Cov
[

V (t, 𝜉)
(
𝜔i+ 1

2

)
, V (t, 𝜉)

(
𝜔𝑗+ 1

2

)]
, (50)

where Cov[P,Q] = E[PQ] − E[P]E[Q].
In an analogous way, the random trapezoidal quadrature rule can be used to approximate the random integral (47)

obtaining the following expressions for the expectation and the variance of the approximate solution s.p. of (1)–(6)

E
[
TrapN(uR(z, t)(𝜉))

]
= 2 h

𝜋

[
1
2
E [V (t, 𝜉)(w0)] +

N∑
k=1

E [V (t, 𝜉)(wk) cos(wk z)]

]
, (51)

Var
[
TrapN(uR(z, t)(𝜉))

]
= E

[(
TrapN (uR(z, t)(𝜉))

)2
]
− E

[
TrapN (uR(z, t)(𝜉))

]2

= 4h2

𝜋2

N∑
k=0

N∑
𝓁=0

𝛾k 𝛾𝓁 cos(wk z) cos(w𝓁 z)Cov [V(t, 𝜉)(wk),V (t, 𝜉)(w𝓁)] , 𝛾0 = 1
2
, 𝛾k = 1, 1 ≤ k ≤ N,

(52)
where Nh = R, w𝓁 = 𝓁 h, 0 ≤ 𝓁 ≤ N.

Algorithm 1 summarizes the steps to compute the approximations of the expectation and the standard deviation of the
solution s.p. (46)

In the next example, we consider a random version of Example 2.1 where the uncertainty in the computation of the
exact values of coriolis and eddy viscosity is considered. Another uncertainty approach has been recently treated in Yosef
and Bel.25
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Example 2.2. We consider the random coupled parabolic problems (1)–(4) with the initial boundary conditions

u(z, 0) = 𝑓 (z) =
[

0
0

]
,
𝜕u
𝜕z

(0, t) =
[
−g(t)

0

]
=
[
−1
0

]
, (53)

and the random matrix coefficients

A(𝜉) =
[

0 a(𝜉)
−a(𝜉) 0

]
, B(𝜉) = 𝜈(𝜉)I =

[
𝜈(𝜉) 0

0 𝜈(𝜉)

]
, (54)

where the r.v. a(𝜉) > 0 follows a Gaussian distribution of mean 𝜇 = 2 and standard deviation 𝜎 = 0.1 truncated on
the interval [0.8, 1.2], that is, a(𝜉) ∼ N[0.8,1.2](2, 0.1), and the r.v. 𝜈(𝜉) > 0 has a gamma distribution of parameters (4; 2)
truncated on the interval [0.5, 1.5], that is, 𝜈(𝜉) ∼ Ga[0.5,1.5](4; 2). Both r.v.'s are considered independent ones. Observe
that the random matrices A(𝜉) ∈ L2×2

4 (Ω) and B(𝜉) ∈ L2×2
8 (Ω) and verifying the moment condition (39) because the

r.v.'s a(𝜉) and b(𝜉) are bounded. The function g(t) = 1 involves in the boundary condition (53) is in L2×1
8 (Ω) for each t

and is continuous too. Furthermore, the random spectral condition (43) is satisfied because the r.v. 𝜈(𝜉) > 0. The exact
solution of problems (1)–(4) in its deterministic version is given by (29) with g(s) = 1. Figure 4 shows the numerical
values of the expectation and the standard deviation of the exact solution s.p. (1)–(4) and (53)–(54) considering both
at fixed time t = 1. Computations have been carried out by Mathematica©software version 11.3.0.0,26 for Windows

TABLE 5 Timings for computing the numerical values of the expectation and the standard
deviation of the exact solution s.p. (1)–(4) and (53)–(54) at time t = 1 in the spatial domain
0 ≤ z ≤ 5 for Δz = 0.1

Statistical Moments CPU, s
E[u1(z, 1)] 18.2656
E[u2(z, 1)] 20.4531√

Var[u1(z, 1)] 7592.3800√
Var[u2(z, 1)] 539.1560

FIGURE 4 Expectation and the standard deviation at the time instant t = 1 of the exact solution s.p., [u1(z, t),u2(z, t)], for the random
coupled parabolic problems (1)–(4) and (53)–(54), considering the r.v.'s a(𝜉) ∼ N[0.8,1.2](2, 0.1) and 𝜈(𝜉) ∼ Ga[0.5,1.5](4; 2), and the spatial
domain z ∈ [0, 5] with step size Δz = 0.1 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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𝝃i RMSE
(
E
[
MidN (u𝟏,R(z, 𝟏)(𝝃i))

])
RMSE

(
E
[
MidN (u𝟐,R(z, 𝟏)(𝝃i))

])
CPU, s

200 4.9594e − 03 2.8818e − 04 0.1205
400 5.6568e − 03 1.2430e − 03 0.2500
800 4.8149e − 03 1.2268e − 03 0.4531
1600 4.9603e − 03 4.5712e − 04 0.4844
3200 5.0119e − 03 4.4230e − 04 1.1406
6400 4.7532e − 03 8.8098e − 04 1.2188
12800 4.8759e − 03 1.2562e − 04 5.2656

TABLE 6 Root mean square errors
(RMSEs) of the numerical approximations of
the expectation (49) for the the solution s.p.
(46) at t = 1 in 0 ≤ z ≤ 5 with Δz = 0.1
varying the number of realizations 𝜉i for
R = 20 and h = 0.05 (N = 400)

𝝃i RMSE
(√

Var
[
MidN (u𝟏,R(z, 𝟏)(𝝃i))

])
RMSE

(√
Var

[
MidN (u𝟐,R(z, 𝟏)(𝝃i))

])
CPU, s

200 1.8818e − 03 1.3906e − 03 0.6094
400 2.7378e − 04 1.9727e − 04 0.9531
800 3.8938e − 03 2.3218e − 03 1.9844
1600 5.0547e − 04 3.2676e − 04 6.9531
3200 3.1779e − 04 1.1304e − 04 19.0313
6400 6.6312e − 04 3.6929e − 04 55.1094
12800 2.9489e − 04 1.5663e − 04 186.484

TABLE 7 Root mean square
errors (RMSE) of the numerical
approximations of the standard
deviation (50) for the solution s.p.
(46) at t = 1 in 0 ≤ z ≤ 5 with
Δz = 0.1 varying the number of
realizations 𝜉i for R = 20 and
h = 0.05 (N = 400)

FIGURE 5 Absolute errors of the expectation and the standard deviation for both components of the approximate solution s.p. (48) at t = 1
fixing R = 20 and h = 0.05 (N = 400) in (49)–(50) but varying the number of simulations 𝜉i = {400, 1600, 12800}. The spatial domain is
z ∈ [0, 5] with Δz = 0.1 [Colour figure can be viewed at wileyonlinelibrary.com]

10Pro (64-bit) Intel(R) Core(TM) i7-7820X CPU, 3.60 GHz 8 kernels. In Table 5, we show the timings (CPU time spent
in the Wolfram Language kernel) to compute both statistical moments of the exact solution plotted in Figure 4.

Numerical convergence of the statistical moments (49)–(50) of the approximate solution s.p. (48) based on the mid-
point Riemann sum quadrature and Monte Carlo technique is illustrated in the following way. Tables 6 and 7 collect
the RMSEs for the numerical expectation and the standard deviation, respectively, for several number of realizations 𝜉i
in the Monte Carlo method. In this first experiment, suitable values of truncation endpoint R and step size h suggested
by the deterministic Example 2.1 have been fixed. Figure 5 illustrates the decreasing trend of the absolute errors of
the approximations to the expectation, E[MidN (uR(z, t)(𝜉))] (49), and the standard deviation,

√
Var[MidN (uR(z, t)(𝜉))]

http://wileyonlinelibrary.com
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TABLE 8 Root mean square errors (RMSE) of
the numerical approximations of the expectation
(49) for the solution s.p. (46) at t = 1 in
0 ≤ z ≤ 5 with Δz = 0.1. The number of
realizations 𝜉 = 1600 and h = 0.05 is fixed and
the size of the integration domain Ri varies

Ri RMSE
(
E
[
MidN (u𝟏,Ri

(z, 𝟏)(𝝃))
])

RMSE
(
E
[
MidN (u𝟐,Ri

(z, 𝟏)(𝝃))
])

CPU, s
5 2.2870e − 02 7.0643e − 04 0.1719

10 1.0113e − 02 4.6269e − 04 0.3281
15 6.6053e − 03 4.5785e − 04 0.5938
20 4.9603e − 03 4.5712e − 04 0.6406
25 3.9572e − 03 4.5689e − 04 1.3750

TABLE 9 Root mean square errors (RMSEs) of the numerical approximations of the expectation standard
deviation (50) for the solution s.p.(46) at t = 1 in 0 ≤ z ≤ 5 with Δz = 0.1. The number of realizations
𝜉 = 1600 and h = 0.05 is fixed and the size of the integration domain Ri varies

Ri RMSE
(√

Var
[
MidN (u𝟏,Ri

(z, 𝟏)(𝝃))
])

RMSE
(√

Var
[
MidN (u𝟐,Ri

(z, 𝟏)(𝝃))
])

CPU, s

5 5.0618e − 04 3.4636e − 04 3.3594
10 5.0549e − 04 3.2624e − 04 13.1406
15 5.0547e − 04 3.2662e − 04 34.6875
20 5.0547e − 04 3.2676e − 04 80.4688
25 5.0547e − 04 3.2681e − 04 123.1250

FIGURE 6 Absolute errors of the expectation and the standard deviation for both components of the approximate solution s.p. (48) at t = 1
with logarithmic scale for the y axis. The number of simulations 𝜉 = 1600 and the step size h = 0.05 in (49)–(50) are fixed, but the size of the
integration domain, R, varies Ri = {5, 10, 15, 20, 25}. The spatial domain is z ∈ [0, 5] with Δz = 0.1 and Ni = {100, 200, 300, 400, 500} so that
R = Nh [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 10 Comparison of the root mean square errors (RMSEs) of the expectations for the random midpoint
quadrature, (49) and random trapezoidal quadrature (51) at t = 1 in 0 ≤ z ≤ 5 with Δz = 0.1. The number of
realizations 𝜉 = 1600 and R = 20 is fixed and the step size hi of the integration varies

hi RMSE
(
E
[
MidN [u𝟏,R(z, 𝟏)(𝝃), u𝟐,R(z, 𝟏)(𝝃)]

])
RMSE

(
E
[
TrapN [u𝟏,R(z, 𝟏)(𝝃), u𝟐,R(z, 𝟏)(𝝃)]

])
1 [7.23250e − 02, 6.82348e − 02] [7.22725e − 02, 6.81724e − 02]
0.05 [4.96031e − 03, 4.57117e − 04] [4.96647e − 03, 4.57117e − 04]
0.025 [4.96029e − 03, 4.57117e − 04] [4.96337e − 03, 4.57118e − 04]

TABLE 11 Comparison of the root mean square errors (RMSEs) of the standard deviations for the random midpoint
quadrature (50) and random trapezoidal quadrature (52), at t = 1 in 0 ≤ z ≤ 5 with Δz = 0.1. The number of
realizations 𝜉 = 1600 and R = 20 is fixed and the step size hi of the integration varies

hi RMSE
(√

VarN
[
MidN [u𝟏,R(z, 1)(𝝃), u𝟐,R(z, 𝟏)(𝝃)]

])
RMSE

(√
Var

[
[TrapN [u𝟏,R(z, 𝟏)(𝝃), u𝟐,R(z, 𝟏)(𝝃)]

])
1 [2.16066e − 02, 1.78262e − 02] [2.27856e − 02, 1.97827e − 02]
0.05 [5.05470e − 04, 3.26758e − 04] [5.05470e − 04, 3.26757e − 04]
0.025 [5.05470e − 04, 3.26758e − 04] [5.05470e − 04, 3.26757e − 04]

(50), when the simulations 𝜉i by Monte Carlo increase. If more precision is required, it should be increasing the values
of parameters R and h (or N) rather than increasing the number of simulations 𝜉i.

Second, by varying the length of R for both h and the number of realizations 𝜉 fixed, the computed RMSEs are
shown in Tables 8 and 9. We have chosen 𝜉 = 1600 realizations because the results obtained in the previous study are
sufficiently accurate. Figure 6 shows how the approximate expectation, E[MidN

(
uRi (z, t)(𝜉)

)
] (49), improves when

the size of the integration domain Ri increases.

The CPU times of the numerical experiments exhibit the efficiency of the proposed method versus the long times spent
to compute the statistical moments in Table 5.

The comparative Tables 10 and 11 collect the RMSEs for the expectation and the standard deviation using both methods
midpoint and trapezoidal. The results shown are very similar in both cases.

4 CONCLUSIONS

This paper shows that the integral transform method combined with numerical integration and Monte Carlo technique 
is useful to deal with random systems of PDEs. Although here, we consider parabolic type systems and cosine Fourier 
transform, the ideas are applicable to other systems and other integral transforms. The numerical integration must con-
sider the possible oscillatory nature of the involved integrals. This approach is a manageable alternative to deal with the 
computational complexity derived from the treatment of random models versus the iterative methods.

The main advantage of the present method is twofold. First, taking advantage of the integral transform method, we 
obtain an integral form of the solution of the random original problem. Second, to implement efficient random quadrature 
rules for the approximation of the involved oscillatory type integral. Accuracy and computational cost are illustrated with 
examples.
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