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Abstract

We consider the numerical propagation of models that combine both quantum and

classical degrees of freedom – usually, electrons and nuclei, respectively. We focus, in

our computational examples, on the case in which the quantum electrons are modeled

with time-dependent density-functional theory, although the methods discussed below

can be used with any other level of theory. Often, for these so-called quantum-classical

molecular dynamics models, one uses some propagation technique to deal with the

quantum part, and a different one for the classical equations. While the resulting pro-

cedure may in principle be consistent, it can however spoil some of the properties of the

methods, such as the accuracy order with respect to the time step or the preservation

of the equations geometrical structure. Few methods have been developed specifically

for hybrid quantum-classical models. We propose using the same method for both the

quantum and classical particles, in particular one family of techniques that proves to be

very efficient for the propagation of Schrödinger-like equations: the (quasi)-commutator
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free Magnus expansions. These have been developed, however, for linear systems, yet

our problem is non-linear: formally, the full quantum-classical system can be rewritten

as a non-linear Schrodinger equation, i.e. one in which the Hamiltonian depends on

the system itself. The Magnus expansions algorithms for linear systems require the

application of the Hamiltonian at intermediate points in a given propagating interval.

For non-linear systems, this poses a problem as this Hamiltonian is unknown due to

its dependence on the state. We approximate it by employing a higher order extrapo-

lation using previous steps as input. The resulting technique can then be regarded as

a multi-step technique or, alternatively, as a predictor corrector formula.

1 Introduction

Molecular Dynamics1 (MD) has become a well established field since its inception in the

50’s.2,3 The fundamental assumption of MD, at least in its most conventional definition, is

that the atoms are considered to be classical particles, moving in force fields that somehow

incorporate the quantum nature of the electrons. Therefore, MD is concerned with the

integration of the classical Hamiltonian equations of motion. When the force fields are pre-

established, one normally speaks of “classical” MD; whereas if the forces on the nuclei are

computed “on the fly” via the first-principles solution of the quantum electronic problem,

the term “ab initio”, or first principles MD, is used. In both cases, the dynamical problem

only concerns the classical nuclei – the electrons merely adapting adiabatically to the ground

state corresponding to each instantaneous nuclear configuration. However, if the electronic

excited states play a role, one needs a non-adiabatic version of MD, and the dynamical

problem may then be hybrid, mixing both classical and quantum degrees of freedom that

evolve simultaneously and coupled to each other. In this paper we focus on the propagation

of these hybrid quantum-classical systems.4,5

The two different particle types implies the need to propagate two different sets of equa-

tions. Usually, the nuclear movement is orders of magnitude slower than the electronic one,

2



and therefore not much attention is payed to the nuclear algorithm: a standard robust choice

such as the Verlet6 propagator is considered to be sufficient.

Regarding the quantum part, typically much more costly, many different options have

been explored. After discretization of the spatial variables, the resulting equations are sys-

tems of ordinary differential equations (ODEs), for which hundreds of techniques exist. We

refer the reader to the Refs.[ 7–9] for a general introduction, and make a quick summary

here (some of the following ideas have been tested in combination with TDDFT10–21):

• The methods can be divided into single-step (that provide a solution at some time t

from the solution at a single previous time t−∆t) and multi-step (that use information

from a number of previuos time steps). The latter ones have only recently been explored

in this context of electronic wave function dynamics.13,22

• The Runge-Kutta (RK) family is the most successful family of general purpose single

step integrators.23 Also, numerous variations exist: partitioned RK, embedded formu-

las, extrapolation methods (e.g. the Gragg-Bulirsch-Stoer algorithm24), composition

techniques, the linearly implicit Rosenbrock methods, etc.

• One may also make use of the linear structure of Schrödinger equation: the solution

(in the autonomous case) reduces to the action of an exponential, and one may ap-

proximate it with a truncated Taylor expansion,25 with the Chebychev26 and Krylov

polynomial expansions,,27,28 with Leja and Padé interpolations,29 etc. These ideas may

be extended to non-autonomous, or even non-linear Hamiltonians.30

• Another way to exploit the typical Schrödinger equation structure (in particular, the

division of the Hamiltonian into kinetic and potential parts) is making use of splitting

techniques (e.g. Lie-Trotter31 or Strang32 splittings), such as with the split operator

formula,33 or with more sophisticated formulas.34–37

• If the Hamiltonian contains a linear term (e.g. the kinetic operator) and a non-linear

term (e.g. the TDDFT potential), one can use one of the various techniques that
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combine explicit and implicit schemes for those terms, respectively. Examples are the

implicit-explicit “IMEX” formulas13,38,39 or the exponential integrators40–43 (exponen-

tial Runge-Kutta, integrating factor, exponential time-differencing, etc.).

• Working on a adiabatic or spectral basis, in various similar manners,12,14,44–47 has been

reported to speed-up an underlying method.

• Finally, the formal solution to a (linear) time-dependent quantum problem is a time-

ordered exponential for the Hamiltonian. Magnus proved in 195448 that it could be

substituted by the normal exponential of a different operator, that can be given as a

series expansion.49 This idea has led to a family of techniques, the Magnus expansions,

that vary in computational cost and accuracy order. In addition to their possible

efficiency, they are good at preserving symmetrical or geometrical properties of the

exact solution (e.g. unitarity, symplecticity). This is the family of methods that we

concentrate on in the current article.

Usually, one propagator for the classical nuclei is simply combined with any of the pre-

viously enumerated choices. While the experience proves that the error caused by this

combination of two different methods is typically not large, it is desirable to use a single

method for the whole system in order to assure that the properties of the propagator (sym-

plecticity, time reversal symmetry, stability, order of accuracy...) are conserved. However,

few authors have considered the design of specifically hybrid propagators.50–57

In this contribution, we approach this problem, focusing on the so-called “self-consistent”,

“Ehrenfest”, or simply “quantum-classical” MD model.4 One also needs to choose an elec-

tronic structure level of theory, and in our case it is time-dependent density functional theory

(TDDFT). We then rewrite Newton’s equations of movement for the nuclei in a non-linear

Schrödinger-like form, and together with the Kohn-Sham equations we use the recently de-

veloped commutator-free Magnus expansions58,59 (CFM) to propagate the whole system. In

a previous work,22 we found that, in the context of TDDFT, a fourth order implementation
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of these integrators has an outstanding performance compared to other well stablished in-

tegrators such as the exponential midpoint rule or the classical fourth order Runge-Kutta

propagator. This has been the motivation to extend the previous study to (1) study to

higher-order commutator-free Magnus expansions, in particular sixth order schemes and (2)

hybrid quantum-classical models.

It is important to note that both the Kohn-Sham equations for the electrons and the

Newton’s equations for the nuclei are generally non-linear, the former through the Hamil-

tonian dependence on the electronic density. The resulting hybrid model is therefore also

non-linear, and can be formulated as a non-linear Schrödinger equation. The CFM methods

were developed, in principle, for linear systems. They require the application of the Hamil-

tonian at intermediate points of each propagating interval. If we attempt to apply them

for a problem with a non-linear Hamiltonian, we face the difficulty that this Hamiltonian

at intermediate steps is not known, since it depends on the state. While generalizations of

the Magnus expansion have been proposed for non-linear problems, in this work we have

employed a simple linearization method: We use extrapolation of the Hamiltonian from pre-

vious propagating steps to predict it at the intermediate points. This effectively turns the

method into some kind of multi-step explicit propagator, and implies the need to save a

number of previos positions, velocities and Hamiltonians of the system.

In section 2 we discuss the theoretical background of the CFM propagators, as well as

the Ehrenfest-TDDFT formalism that we use. In section 3 we show some numerical results.

For that purpose, we have implemeted these propagation schemes in the octopus60,61 code,

a general purpose pseudopotential, real-space and real-time density-functional theory code.

We finish the paper in section 4 discussing the advantages and problems of these methods.
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2 Theory

2.1 Ehrenfest Dynamics

We use Ehrenfest dynamics, a non-adiabatic model for the description of classical-quantum

systems. The state of the system is determined by a set of classical position and momentum

variables {q, p}, and by the many-electron wave function Ψ. The system is governed by a

Hamiltonian Ĥ(q, p) that is a linear operator in the quantum Hilbert space, but also depends

on the nuclear coordinates. The equations of motion are:

q̇α = 〈Ψ|∂Ĥ
∂pα
|Ψ〉 , (1a)

ṗα = −〈Ψ|∂Ĥ
∂qα
|Ψ〉 , (1b)

|Ψ̇〉 = −iĤ(q, p)|Ψ〉 . (1c)

These equations are the result of taking the classical limit to the full Schrödinger equation

of a set of particles, for a subset of them.4

For N -electron problems, however, the size of the wave function grows exponentially

with the number of electrons, and the computational cost of managing the full object grows

with it. Therefore, one either needs to restrict its size by constraining the many-electron

Hilbert space (which leads to the Hartree-Fock, post-Hartree Fock, configuration-interaction,

coupled-cluster, etc. techniques), or alternatively swapping the wave function by the elec-

tronic density as the basic variable, i.e. using TDDFT, the choice that we make here. In

essence, the idea is to substitute the fully interacting electronic system with a fictitious non-

interacting one, that nevertheless has the same density – an object from which in principle

(not always in practice) any observable can be extracted. The fictitious non-interacing sys-

tem can be described with a single Slater determinant formed by N one-electron orbitals
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ϕ = {ϕi}Ni=1, from which the density can be obtained as:

n(~r, t) =
∑
σ=↑,↓

|ϕi(~rσ, t)|2 , (2)

where σ runs over the two possible spin indices. The equations of motion for these orbitals

are the time-dependent Kohn-Sham equations, a set of one-electron non-linear Schrödinger-

like equations that depend on a density-dependent potential whose precise form has to be

approximated. When coupled with the clasical nuclei, the resulting Ehrenfest-TDDFT model

is:

i
d

dt
|ϕi〉 = ĤKS(q, ϕ)|ϕi〉, (3a)

q̇α =
1

mα

pα, (3b)

ṗα = Fα[q(t), ϕ(t), t] . (3c)

The latin index i runs over the N electrons of the system; the greek index α runs over the

classical coordinates qα and pα; mα are the nuclear masses, Fα is the force associated to each

classical degree of freedom; and ĤKS(q, ϕ) is the Kohn-Sham Hamiltonian (that typically

depends on the position, but not the momenta, of the nuclei, and which depends also on the

KS orbitals ϕ through their density). These last two objects are given by:

〈~rσ|ĤKS(q(t), ϕ(t), t)|ϕi(t)〉 = −1

2
∇2ϕi(~rσ, t) + vext(~r, q(t), t)ϕi(~rσ, t) + vHxc[n(t)](~r)ϕi(~rσ, t) ,

(4)

Fα[q(t), ϕ(t), t] = −
∑
i

〈ϕi(t)|
∂ĤKS

∂qα
|ϕi(t)〉 −

∂

∂qα
W (q(t)) + F ext

α (t) . (5)

In these equations: vext is the external potential seen by the electrons, that includes the

interaction with the nuclei (typically, Coulomb terms, although in the calculations shown

below these are modified through the use of pseudopotentials62) and perhaps an external
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electromagnetic field; vHxc is the Hartree, exchange and correlation potential that depends on

the electronic density; W (q(t)) is the nucleus-nucleus interaction potential, and F ext
α includes

any external force on the nuclei.

The KS equations are a set of non-linear equations because the KS Hamiltonian depends

on the electronic density, which in turn depends on the KS orbitals. In any case, the resulting

model, Eqs. (3), is nonlinear, even in the absence of that TDDFT nonlinearity [i.e. Eqs. (1)],

due to the classical coupling.

Typically, for this type of hybrid quantum-classical equations, one uses a propagator for

the classical variables (e.g. the Verlet integrator), and a different one for the quantum ones.

It may work, but this näıve combination may also destroy some of the properties that are

expected from any of the two methods: the order of accuracy with respect to the time-step,

the preservation of the symplectic structure, etc.

There have been various proposals for schemes that truly approach the combined sys-

tem.50–57 The first step is to regard the two types of systems as members of the same family,

such that one may apply the same type of methods for both, and for the hybrid. The natural

choice, in this case, would be to regard the hybrid model as one symplectic (Hamiltonian)

system, as both the quantum and classical equations are symplectic, and therefore the com-

bination is a Hamiltonian system, too.4,63 It is therefore possible to build a Hamiltonian

function (using the classical position and momenta variables, and typically using the real

and imaginary parts of the quantum wave function coefficients as “quantum” position and

momenta variables), and a hybrid bracket, from which to derive the dynamics. One may then

apply a method suited for this type of systems. Unfortunately, in order to go to higher-order

schemes, one needs a series of nested Poisson brackets, that imply higher order derivatives

and time-consuming computations.

The approach that we have taken, in contrast, is to regard the full system as a non-linear
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Schrödinger equation, i.e.:

ẏ(t) = −iH(y(t), t)y(t) , (6a)

y(0) = y0 . (6b)

The state vector y must include now both the classical and quantum degrees of freedom, i.e.:

y =


q

v

ϕ

 (7)

Here, we are using as a shorthand notation q for all the nuclear position coordinates, v for

all their velocities, and ϕ for all the KS orbitals coefficients in some basis or representation.

The non-linear Schrödinger equation may then be written as:


q̇(t)

v̇(t)

ϕ̇(t)

 = −i

HC(q(t), ϕ(t), t) 0

0 HKS(q(t), ϕ(t), t)



q(t)

v(t)

ϕ(t)

 . (8)

The “classical” Hamiltonian matrix HC is:

HC(q(t), ϕ(t), t) = i

 0 1

F (q(t),ϕ(t),t)
mq(t)

0

 . (9)

Note that in order to render the classical equations into “Schrödinger-like” form, we have

used a division and multiplication by q(t). Note also that the matrix is block-diagonal: the

classical and quantum particles interact with each other only through the definition of their

respective Hamiltonians.
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2.2 Commutator-free Magnus Expansion

Given a non-autonomous linear system,

ẏ(t) = −iH(t)y(t) , (10a)

y(0) = y0 . (10b)

the solution is given, in a neighbourhood of t, as:

y(t+ ∆t) = exp(Ω(t+ ∆t, t))y(t), (11a)

Ω(t+ ∆t, t) =
∞∑
k=1

Ωk(t+ ∆t, t) . (11b)

This is the Magnus expansion.48 The Ωk terms are defined in terms of multivariate integrals

of nested commutators of increasing order (see for example Ref. 49):

Ω1(t+ ∆t, t) =

∫ t+∆t

t

dτ1(−iH(τ1)) , (12a)

Ω2(t+ ∆t, t) =
1

2

∫ t+∆t

t

dτ1

∫ t+∆t

t

dτ1 [−iH(τ1),−iH(τ2)] . (12b)

etc. (12c)

When the series is truncated at order k, the resulting algorithm is accurate to order 2k in

∆t – as long as the Ωk are integrated with quadratures of that order.

For example, the exponential midpoint rule (EMR), the result of truncating Eqs. (11) at

k = 1, is second order in ∆t:

y(t+ ∆t) = exp(−i∆tH(t+ ∆t/2))y(t) . (13)

The EMR is the simplest, and an exception among the Magnus integrators, as their evalu-

ation in all other cases involve the computation of Hamiltonian commutators, a computa-
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tionally expensive procedure.

In order to avoid this problem, one may look for commutator-free approximations to the

Magnus expansions.58 In general, they are given by products of exponentials such as:

y(t+ ∆t) = Γ
[S]
M (H)y(t), (14a)

Γ
[S]
M (H) =

M∏
k=1

exp

[
−i∆t

K∑
µ

αkµH(τµ)

]
, (14b)

where M is the number of exponentials of the method and S is the accuracy order of the

resulting method. One needs the Hamiltonian at K times τµ, within the propagating interval

[t, t+ ∆t]. In principle, one could think of applying these propagators also for the non-linear

case, making the identification:

H(τµ) ≡ H(y(τµ), τµ) . (15)

However, the difficulty is that the states y(τµ) for t < τµ ≤ t+∆t are unknown – and therefore

also the Hamiltonians H(τµ) are unknown. This problem can be solved by approximating

H(τµ) through some interpolation or extrapolation formula, i.e. making use of a series of

Hamiltonians at several time steps. We will use the notation H[τµ] for the the resulting

approximation – as opposed to H(τµ) for the exact Hamiltonian. There are two options:

• One may write H[tµ] as an interpolated approximation that makes use of the “future”

H(t+ ∆t), in addition to a number of the “past” Hamiltonians:

H[τk] = Interp[H(t+ ∆t), H(t), H(t−∆), H(t− 2∆t), . . . , H(t− s∆t)]. (16)

We call it an interpolation because τk belongs to the interval covered by the used

Hamiltonians. Since H(t + ∆t) is also unknown, the resulting propagator formula is

an implicit equation that has to be solved for y(t+ ∆t).
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• One may also write H[tµ] as an extrapolated approximation that does not make use of

the unknown H(t+ ∆t):

H[τk] = Extrap[H(t), H(t−∆), H(t− 2∆t), . . . , H(t− s∆t)]. (17)

The resulting formula is an explicit transformation of y(t) into (y + ∆t). Due to this

simplicity, we will only use this choice hereafter.

In order to perform the extrapolation, one must store the state at previous time steps

y(t−∆t), . . . , y(t− s∆t) (or the corresponding Hamiltonians, whatever is more convenient).

If the underlying linear method is of s-th order, the extrapolation must be of s-order. In

this way, the resulting scheme is s-th order also for non-linear systems.

The block-diagonal structure of our target Eq. (8) permits to treat the two subsystems

separately: q(t+ ∆t)

v(t+ ∆t)

 = Γ
[S]
M (HC)

q(t)
v(t)

 , (18)

ϕ(t+ ∆t) = Γ
[S]
M (HKS)ϕ(t) . (19)

We have implemented four versions of the CFM, two order four propagators and two of order

six. In all cases, the final algorithm for the propagation is:

1. Compute {q[tµ]} extrapolating from q(t), q(t−∆t), . . . , q(t− s∆t).

2. Compute {F [tµ]} extrapolating from F (t), F (t−∆t), . . . , F (t− s∆t).

3. Compute {HKS[tµ]}, extrapolating from HKS(t), HKS(t−∆t), . . . , HKS(t− s∆t).

4. HC [tµ] = i

 0 1

1
m

F [tµ]

q[tµ]
0



5.

q(t+ ∆t)

v(t+ ∆t)

 = Γ
[S]
M (HC)

q(t)
v(t)


12



6. ϕ(t+ ∆t) = Γ
[S]
M (HKS)ϕ(t)

7. Compute F (t+ ∆t) and HKS(t+ ∆t), necessary inputs for the next iteration.

2.2.1 Γ
[4]
2

The first 4th order method that we have implemented is composed of two exponentials,58,64

and is defined by:

Γ
[4]
2 (H) = exp{−i∆t(α1H[t1] + α2H[t2])} exp{−i∆t(α2H[t1] + α1H[t2])} , (20)

where the constants αi and ti are given by:



α1 =
3− 2

√
3

12
, α2 =

3 + 2
√

3

12
,

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
,

t1 = t+ c1∆t, t2 = t+ c2∆t.

(21)

2.2.2 Γ
[4]
4

We have tried another fourth-order method, Γ
[4]
4 .59 It is designed for Hamiltonian functions

that can be decomposed into two parts:

H(y(t), t) = T + V (y(t), t) , (22)

the first of which, the “kinetic” term T , is linear and time-independent, whereas the second

one, the “potential” term V (y(t), t) is not, but whose exponential is easy to calculate (for
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example, because it is diagonal). The scheme is given by:

Γ
[4]
4 = exp{−i∆tṼ4}

exp{−i∆t
2

(T + Ṽ3)}

exp{−i∆t
2

(T + Ṽ2)}

exp{−i∆tṼ1},

where:



Ṽ1 = a11V1 + a12V2 + a13V3,

Ṽ2 = a21V1 + a22V2 + a23V3,

Ṽ3 = a23V1 + a22V2 + a21V3,

Ṽ4 = a13V1 + a12V2 + a11V3,

(23)

and

V1 = V [t+ c1∆t], V2 = V [t+ c2∆t], V3 = V [t+ c3∆t], (24)

are extrapolated potentials. The idea is to profit from a fast evaluation of the two expo-

nentials of the potentials, exp{−i∆tṼ1} and exp{−i∆tṼ4}, so that in practice, the cost is

similar to that of a method with only two exponentials.

The constants that appear in these equations are given by:



a11 =
10 +

√
15

180
, a12 = −1

9
, a13 =

10−
√

15

180
,

a21 =
10 + 8

√
15

180
, a22 =

2

3
, a23 =

10 + 8
√

15

180
,

c1 =
1

2
−
√

15

10
, c2 =

1

2
, c3 =

1

2
+

√
15

10
,

(25)
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The derivation of this method, relies on the definition of three “generators” αi:

α1 = −i∆t(T + V2) (26a)

α2 = −i∆t
√

15

3
(V3 − V1) (26b)

α3 = −i∆t10

3
(V3 − 2V2 + V1), (26c)

For the method to have fourth order accuracy, the second and third generator must commute,

[α2, α3] = 0. In our case, the division of the Hamiltonian must be done for both the quantum

and the classical subsystems:

H(y(t), t) =

HC(q(t), ϕ(t), t) 0

0 HKS(q(t), ϕ(t), t)


=

TC + VC(q(t), ϕ(t), t) 0

0 TQ + VQ(q(t), ϕ(t), t)

 . (27)

Likewise, one may define the corresponding classical and quantum generators αCi and αQi,

respectively, that must verify the commutation rules.

For the quantum part, the division is obvious, as we do have natural “kinetic” and

“potential” terms. The commutator relation [αQ2, αQ3] = 0 is fulfilled, as it only involves

potential terms that are diagonal in real space. For the classical Hamiltonian, Eq. (9), a

choice must be made. We have found that simply doing TC = 0 and VC(q(t), ϕ(t), t) =

HC(q(t), ϕ(t), t) is appropriate, and [αC2, αC3] = 0.

2.2.3 Γ
[6]
5

The first order 6 method that we have implemented (Γ
[6]
5 ) requires five exponentials, but

using the same division of the Hamiltonian into a kinetic and a potential term described for
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Γ
[4]
4 , only three of those are costly, whereas two of them are potential exponentials:

Γ
[6]
5 = exp{−i∆tṼ5}

exp{−i∆t(b1T + Ṽ4)}

exp{−i∆t(b2T + Ṽ3)}

exp{−i∆t(b1T + Ṽ2)}

exp{−i∆tṼ1},

The potential terms Ṽi are linear combinations of V1, V2, and V3, which are defined in Eq. (24).

The cuadrature points ci are the same as in Γ
[4]
4 , given in Eq. (25).

2.2.4 Γ
[6]
4

We have also tested a second order six method, (Γ
[6]
4 ), that only involves four exponentials,

two of which only have potential terms:

Γ
[6]
4 = exp{−i∆t(Ṽ4 + ∆t2Ṽ )}

exp{−i∆t/2(T + Ṽ3)}

exp{−i∆t/2(T + Ṽ2)}

exp{−i∆t(Ṽ1 + ∆t2Ṽ )} . (28)

Once again, the potential terms Ṽi are linear combinations of V1, V2 and V3. The novelty is

the presence of the term Ṽ , given by:

Ṽ = i
y

∆t3
[α2, [α1, α2]] , (29)

where y = 1/43200, and αi are the generators defined in Eqs. (26).

The presence of these commutator terms contradicts the “commutator-free” character of
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the methods that we are advocating. However, in some circumstances it may be advantan-

geous to include some commuators if they are easy to compute. This is of course problem

– and implementation – dependent. As in all cases, the classical and quantum part can be

treated separately:

• Regarding the quantum part, the commutators defining ṼQ,

ṼQ = i
y

∆t3
[αQ2, [αQ1, αQ2]] , (30)

can then be worked out assuming that the potential term is a local function in real

space. The result is:

ṼQ = − 1

25900
||∇VQ3 −∇VQ1||2, (31)

For the efficiency of the method, it is important that this term can be computed with

ease, or otherwise be very small, such that it can be neglected.

• For the nuclear case, the equation reads:

q(t+ ∆t)

v(t+ ∆t)

 = exp{−i∆t(H̃C4 + ∆t2H̃C)}

exp{−i∆t/2H̃C3}

exp{−i∆t/2H̃C2}

exp{−i∆t(H̃C1 + ∆t2H̃C)}

q(t)
v(t)

 (32)

The H̃Ci matrices are linear combinations of HCj:

HCj = HC [tj] = i

 0 1

λj 0

 , (33)
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for λj = 1
m
F [tj]/q[tj]. The extra term H̃C must be computed by considering its defini-

tion as a nested commutator, yielding:

H̃C = i
y

∆t3
[αC2, [αC1, αC2]] =

i

51840

 0 0

(λ3 − λ1)2 0

 . (34)

3 Results

We have analyzed the performance of these CFM methods for hybrid systems, by simulating

a Hydrogen molecule in the presence of a laser field. For this purpose we have used the

octopus code,60,61 a real-space pseudo-potential code that permits to perform Ehrenfest-

TDDFT simulations. Regarding numerical details, the molecule was placed in a spherical

simulation box of radius R = 10 a.u., containing a regular rectangular grid with a spacing

of h = 0.4 a.u. The total simuation time was set to T = 20π a.u. The molecule was subject

to the effect of a laser pulse e(t) with the shape

e(t) = A sin(ωt), (35)

where the amplitude is set A = 0.1 a.u. and the frequency is ω = 10.

To study the accuracy of the propagators, we compared the wave function at the end of

the propagation with a reference “exact” calculation, obtained using the standard explicit

fourth-order Runge-Kutta propagator with a much smaller time step. We defined the error

in the wavefunction as:

Ewf =

√∑
m

||ϕm(T )− ϕexact
m (T )||2, (36)

where ϕexact
m are the reference KS orbitals from the “exact” computation. Since we are not

only interested in the accuracy, but also on the performance of the propagators, we measured

the cost of the propagator, both as the wall-time in seconds for a full run of the simulation,

and as the number of Hamiltonian applications for each method. The cost was plotted as a
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function of the wave function error previously defined.

Figures 1 and 2 summarize the results of the simulations for the EMR and the four CFM

methods described above. Fig. 1 displays the error in the wave function as a function of the

time-step. Using logarithmic scales on both axes, the curves are (approximately) straight

lines whose slope reveals the accuracy order of the propagator. We can see that the CFM

integrators are significantly more precise than the EMR, with a difference of at least 1.5

orders of magnitude for the values of ∆t presented. In this figure, the CFM methods of a

given order are indistinguishable, as they produce results with almost equal accuracy.

In Figure 2 we present with solid lines the cost (in seconds) of the propagation, and

with dashed lines the cost in number of evaluations of the Hamiltonian, both as a function

of the error in the wave function. The axes are again in logarithmic scale. While the

cost is completely dependent of the system and the hardware used for the simulation, the

number of evaluations of the Hamiltonian is an intrinsic property of each method, making it a

suitable indicator of the performance of the integrators. These cost vs. accuracy plots permit

to identify the most efficient methods for a given required accuracy. Not all applications

demand the same level of accuracy, and the efficiency of the methods depend on it. As a rule

of thumb, the more sophisticated propagators perform better when very stringent accuracies

are needed, and simpler propagators become more useful if the needed precision is not that

high.

As we can see, our results are no exception for that rule: both the cost in terms of wall

time and in terms of Hamiltonian evaluations show the same behavior: The order 6 CFM

methods are more efficient than their order 4 counter parts when the required error falls

below ∼ 10−7; in particular Γ
[6]
4 is superior to all the other methods in this range of error.

For errors > 10−7, in contrast, the order 4 propagators show the best performance, Γ
[4]
2 being

slightly superior to Γ
[4]
4 . And, in all cases, the EMR is completely outclassed by the CFM

propagators.
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Figure 1: Error in the propagation, measured as the difference of the propagated KS orbital
with respect to the quasi-exact one (computed with a tiny time step), as a function of the
time step. Both the error and the time step are shown in logarithmic scale.
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Figure 2: Cost in seconds (scale in left axis) and total number of Hamiltonian applications
(scale in the right axis) as a function of the error. The order 6 CFM methods overtake the
order 4 ones as the best propagators for errors smaller than 10−8, all of them performing
better than the EMR.
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4 Conclusions

We have studied a family of methods to propagate quantum-classical hybrid systems (quan-

tum electrons, classical nuclei): the (quasi)-commutator-free Magnus expansions. In partic-

ular, we have chosen two order four and two order six expansions. For the quantum part,

we have employed time-dependent density-functional theory to handle the many-electron

problem, although the methods described here can be directly applied for any other method.

Instead of using different and independent propagators for the classical and quantum

parts, we have rewritten the full dynamics as a non-linear Schrödinger-like equation. Then,

we may apply the same propagator for both the classical and quantum parts of the system.

We have employed, however, a family of schemes, the commutator-free Magnus expansions,

that was developed for linear systems. The formulas for propagating the system a given time

step requires of the application of the Hamiltonian at intermediate instants of the step, and

for nonlinear Schrödinger equations this Hamiltonian is unknown. We have circumvented

this problem by performing an extrapolation from previous time steps.

The use of an algorithm designed from the start for the combined system permits to ensure

its properties (i.e. preservation of the symplectic structure, accuracy order with respect to

the time step), whereas using a different algorithm for each system does not. In addition, our

numerical tests prove that the proposed schemes are computationally efficient. The choice of

method, however, depends on the required accuracy: if very precise calculations are required,

it is better to choose a higher order Magnus expansion, such as any of the two sixth-order

expansions that we have tested. For lower accuracies, the fourth-order schemes may suffice,

and are better than the simplest of the Magnus expansions, the exponential midpoint rule.
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