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Abstract

Cardiovascular disease remains the main cause of death in Europe. Cardiac
arrhythmias are an important cause of sudden death, buttbelranismare
complex. This denotes the importancdtddir studyand preventionResearch
oncardiac electrophysiologyas shownhatelectrical abnormalitiesaused by
mutations in cardiac channetan trigger arrhythmiasSurprisingly, a wide
varietyof drugs have also shown proarrhythmic potential, incluttiogethat

we use to prevent arrhythmi@urrent guidelines ekigned a test to identify
dangerous drugs kgssessingheir blockng poweron a single ion channéd
address this situatioBtudy of drugchannel interactions has reveatex only
compounds that block multiple channels but also a great complexitpse
interactions This could explain why similar drugs can show vastly different
effects in some diseaseBhere are twamportantchallengesregarding the
effectsof drugson cardiac electrophysialg. On the one hand, companies and
regulators are in search of a high throughput tool that impaeesrhythmic
potentialdetection during drug development. On the other hand, patients with
electrical abnormalitiesften require safer personalized treatisemwing to
their condition.Computer simulations provide an unprecedented power to
tacklecomplex biophysical phenomena. They should prove udefalmining

the characteristics that defite h e  dbenefigialahd unwanteceffects by
reproducing experiental and clinical observations.

In this PhD thesis, we used computational models and simulations to address
the two abovementioned challengé§e split the study of drug effects on the
cardiac activity intdhe study of theisafety andefficacy, respetively. For the
former, wetook a wider approachndgeneratd a neweasyto-usebiomarker

for proarrhythmic potential classificatiarsing cardiac cell and tissue human
action potential modeldNe integratednultiple channel blockhrough 1Ges

and therapeutic concentratiots improve its predictive powefThen, we
quantified the proarrhythmic potential of 84 drugs to train the biomatkar
results suggest that it cloube used to test the proarrhythmic potential of new
drugs.For theseconcchallenge wetook a more specific approaend saight

to improve the therapy of patients with cardiac electrical abnormalities.
Therefore, wecreated adetailedmodel for the long QT syndrormausing
V411M mutation othe sodiunthannefeproducing clinial and experimental

data We tested the potential benefits of ranolazine, while giving insights into
the mechanisms that drifel e c ai ni d e & Qur resulfs suggest thae n e s s
while both drugs showed different mechanisms of sodium channel block,
ranolaine could prove beneficial in these patients.
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Resumen

Las enfermedades cardiovasculares siguen siendo la principal causa de muerte
en Europa. Las arritmias cardiacas son una causa importante de muerte subita,
pero sus mecanismos son complejos. Estotddadmportancia de su estudio

y prevencion. La investigacion sobre electrofisiologia cardiaca ha demostrado
que las anomalias eléctricesusadas por mutaciones que afectan a canales
cardiacos pueden desencadenar arritmias. Sorprendentemente, se ha
descibierto una gran variedad de farmacos proarritmicos, incluidos aquellos
que usamos para prevenirlas. Las indicaciones de uso de farmacos actuales
intentaron solucionar este problema disefiando una prueba para identificar
aquellos farmacos que podian sergrelsos basado en el bloqueo de un solo
canal ionico. El estudio de las interacciones farr@owl ha revelado la
existencia no sélo de compuestos que bloquean mdultiples canales, sino también
una gran complejidad en esas interacciones. Esto podria explicajué
algunosmedicamentos pueden mostrar efectos muy diferartea misma
enfermedadExistendos desafios importantes con respecto a los efectos de los
farmacos en la electrofisiologia cardiaca. Por un lado, las emprestdades
reguladoas esta buscando una herramienta de alto rendimiento que mejore la
deteccion del potencial proarritmico durante el desarrollo de farmacos. Por otro
lado, los pacientes con anomalias eléctricas a menudo requieren tratamientos
personalizados méas seguros. Las satioihescomputacionales contienem

poder sin precedentes para abordar fendmenos biofisicos complelesian

serde utilidada la hora deleterminar las caracteristicas que defitaarolos

efectos beneficiosoxomo no deseados de los farmacos mediante la
reproduccion delatosexperimentales y clinas.

En esta tesis doctoralse han utilizadomodelos computacionales vy
simulaciones pardar respuesta@stosdos desafiosl estudio de los efectos
de los farmacos sob la actividad cardiacee dividié en el estudio de su
seguridad y de swgficacia respectivamentePara dar respuesta al primer
desafig se adoptain enfoque mas ampliose generdn nuevo biomarcador
facil de usar para la clasificacion del potenciaaoritmicode los farmacos
utilizando modelos depotencial de accién de células y tejidos cardiacos
humanosSe integrcel bloqueo de mdltiples canales a través dg y@I uso
de concentraciones terapéuticasn el fin de mejorar el poder predictivo
Luego,se entrené el biomarcador cuantificandgetencial proarritmico de
84 farmacosLos resultados obtenidasugieren queel biomarcadompodria
usarse para probar el potencial proarritmico de nuevos farnResgecto al
segundo desafise adoptdun erfoque mas especifico se buscdnejorar la
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terapia de pacientes con anomalias eléctricas cardiacas. Por ledamégin
modelo detalladale la mutacion V411M del canal de sodicausante del
sindromede QT largo,reproduciendadatos clinicos y experiemtales.Se
evaluarorosposibles efectos beneficiosths ranolazinaa la paiquese aportd
informacion sobre los mecanismos que impulsan la efectividad de la flecainida.
Los resultados obtenidasugierenque, si bien ambos farmacos mostraron
diferentes mecanismate bloqueale loscanales de sodion tratamiento con
ranolazina podriaerbeneficio® en estos pacientes.
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Resum

Les malalties cardiovasculars continuen sent la principal causa de mort a
Europa. Le arritmies cardiaques sén una causa important de mort sobtada,
pero els seus mecanismes s6n complexos. Aixo denota la importancia del seu
estudi i prevencié. La investigaci6 sobre electrofisidogardiaca ha
demostrat que les anomalies eléctriggas decten a canals cardiapsden
desencadenar arritmies. Sorprenentment, s'ha descobert una gran varietat de
farmacs proarritmics, inclosos aquells que utilitzem per a previedré.es
indicacions d'Us de farmacs actuals van intentar solucionar aqueknpsob
dissenyant una prova per a identificar aquells farmacs que podien ser perillosos
basada en el bloqueig d'un sol canal idnic. L'estudi de les interaccions-farmac
canal ha revelat I'existeéncia no sols de compostos que blogquegen multiples
canals, sin6 tabé una gran complexitat en aquestes interaccions. Aixo podria
explicar per qué alguns medicaments poden mostrar efectes molt diferents en
la mateixa malaltia. Existeixen dos desafiaments importants respecte als
efectes dels farmacs en la electrofisiolagiediaca. D'una banda, les empreses

i entitats reguladores estan buscant una eina d'alt rendiment que millore la
deteccié del potencial proarritmic durant el desenvolupament de farmacs.
D'altra banda, els pacients amb anomalies eléctriques sovint reguerei
tractaments personalitzats més segurs. Les simulacions computacionals
contenen un poder sense precedents per a abordar fendmens biofisics
complexos. Haurien de ser d'utilitat a I'hora de determinar les caracteristiques
que defineixen tant els efectesneficiosos com no desitjats dels farmacs
mitjancant la reproduccio de dades experimentals i cliniques.

En aquesta tesi doctoral, s'han utilitzat models computacionals i simulacions
per a donar resposta a aquests dos desafianieestudi dels efectes del
farmacs sobre l'activitat cardiagas v a di vi di r wguretatdest udi d
la sevaeficacia Per adonar resposta g@irimer desafiamentes va adoptar un
enfocament més ampli i es va generar un nou biomarcador facil d'usar per a la
classificacio del potencial proarritmic dels farmacs utilitzant models del
potencial d'accié de cel-lules i teixits cardiacs humans. Es va integrar el
bloqueig de multiples canals a través d'IC50 i I'l's de concentracions
terapeutiqgues amb la finalitat de millorar eldpo predictiu. Després, es va
entrenar el biomarcador quantificant el potencial proarritmic de 84 farmacs.
Els resultats obtinguts suggereixen que el biomarcador podrisseigmr a
provar el potencial proarritmic de nous farmacs. Respecte al segoaahesufi

es va adoptar un enfocament més especific i es va buscar millorar la terapia de
pacients amb anomalies eléctriques cardiaques. Peesard,creaun model
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detallat de la mutacié V411M del canal de sodi, causant de la sindrome de QT
llarg, reprodint dades cliniques i experimentals. Es van avaluar els possibles
efectes beneficiosos de ranolazina, a I'una que es va aportar informacié sobre
els mecanismes que impulsen l'efectivitat de la flecainida. Els resultats
obtinguts suggereixen que, si bé talss farmacs van mostrar diferents
mecanismes de bloqueig dels canals de sodi, un tractament amb ranolazina
podria ser beneficids en aquests pacients.

12
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Acronyms

0D
1D
3D

AMP
AP
APA
APDx
ATP

ATX-I
AUC
BCL
C,D
C++
CiPA
Cmax
CVvD
DAD
EAD
EC50
ECG
EFTPC
Emax
FDA

gap

HEK
hERG
IC50

ICH
IKr

usually refers to isolated cellular models

usually refers to onrdimensional tissues

usually refers to three dimensiomaatrices of simulation
results

accuracy

adenine monophosphate

action potential

action potential amplitude

action potential duration at x% repolarization
adenine triphosphate

anemone toxin Il

area under theurve

basic cycle length in milliseconds

refers to compound concentrations
programming language

comprehensive in vitro in vivo proarrhythmia assay
maximum blood concentrations

cardiovascular disease

delayedafter depolarization

early after depolarization

concentration that produces 50% of the Emax
electrocardiogram

estimated free therapeutic plasma concentration
maximum effect

federal drug administration

proteins that enable ion flow between cells

the Hill coefficient in the simple pore model
human embryonic kidney

human etheg-go-go related gene coding for IKr

concentration that inhibits a current to a 50% of its drug
free conditions
international conference of harmonization

rapid component of the potassium delayed rectifier curr
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INaf

INaL

Ix

JX

LOO
LQTS

M

max dV/dt
mM, uM, M
MOT

ODE

ORd model

P
pIC50
QRS
QSAR
QT

QTc

R

RMP
ROC
SCN5A

TdP
TNR
TPR
TTX

TX

us
uUsD
Vm
WT
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fast component of the sodium current

slow component of the sodium current
membrane current called x

ion flux called x

leaveoneout

long QT syndrome

Molarity/Molar, a measure of concentration
maximum upstroke velocity during depolarization
millimolar, micromolay molar

mean opening time

ordinary differential equation

O'Hara Rudy model of the human ventricular action
potential
first wave of the normal ECG

negative decimal logarithm of the IC50
threewave complex of the normal ECG
gquantitative structuractivity relationship

timeinterval between the onset of the Q and the end of
T waves in the ECG

QT interval corrected by a formula that takes heart rate
account

onset of the QRS complex of the normal ECG

resting membrane potential

recieveroperating characteristic

gene coding for the human cardiac sodium current Ina
usually the last wave of the ECG

torsadede-pointes

true negative rate or specificity

true positive rate or sensitivity

tetrodotoxin

proarrhythmicity biomarker developed during this PhD
thesis
Unites States of America

US Dollar
membrane voltage
wild type
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Structure of this thesis

Chapter 1: Introduction. A brief presentation of the reasons that motivate the
development of this PhD thesis and an overview of its main objectives.

Chapter 2: State of the art.In this chaptemwe explore the concepts that will
contribute to this PlgD thesisd ease of

Chapter 3: Development of an insilico TdP biomarker for early
proarrhythmicity detection. This chapter focusses @tudying drug safety.
Simple drugchannel interactions and human action potential models allow us
to create a tool for TdP predictionréthg early stages adrug development.

Chapter 4: Study and modeling of a channelopathy and testing of specific
treatments. This chapter focusses ®@tudying drug efficacyDetailed lon
channel dynamics and dragpannel interactions are used fioe develpment

of mutationspecific models to test the potential of an alternative treatment
with ranolazine forpatients carryinghe SCN5A V411M mutation. At the
same time, we provide deeper knowledge of drignnel interactions which
explain the obtained ressit

Chapter 5: General conclusions.n this chapter, we review the degree of
accomplishment of our main objectives.

Chapter 6: Future Work. An overview of the researcpathsthat would
extend the results of this PhD thesis.

Chapter 7: Contributions. A list of the works that have been directly or
indirectly publishedowing to the development of this PhD thesis.

Appendix. Optimization procedure. Detailed information on the methods
that we follow in Chapter 4.

References. A list of the references that have been consulted for the
development of this PhD thesis.
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Chapter 1. Introduction
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1.1 Motivation

According to an article from the European Commission, cardiovascular disease
(CVD) is the leading cause of death in Europe. In 2016, it took the lives of 1.83
million people, or the 35.7% of all deaths, which is almost ten percentage
points greaterthan tle second most prevalenauseof death. Around 10
million patients suffering from circulatory diseases are discharged from
hospitals every yearAmong those,patients with conduction disease or
arrhythmiaaccount for 1.6 million people, a value that is bound to rise when
reports from all countries become availaflee average length of stajthese
patientsranges from 4.3 days to values as high as 12.6 days depending on the
country, highlighting the dificulties that are related to treating these conditions.
The long QT syndromenhich is characterized by an abnormal elongation of
the QT segment in the ECG,0ne of thecauses of death in the yourg fact,

it accouns for 10% to 15% of the sudden imfiadeath syndroméswhich had
traditionally been mislabeledrurthermore, two independenbhort studies
found that LQTS is the main cause of unexplained cardiac arrest inddults
Electrical abnormalities in the cardiac tissue resulting from mutations in genes
coding for transmembrane ion channels are the main cause of LQTS. They do
so by altering the electrical dynamics that control the timing and contraction
of the cardiac muscl&his syndromes associated with a severe polymorphic
ventricular tachycardia know as Torsatkepointes (TdP). This means that
leaving the syndrome untreated can rise the mortality rate of the patients up to
a 719%. There are asymptoniatcases whose expected-y€ar mortality is
approximately of a 509 An appropriate treatment can reduce the mortality
rate to a 0.3% Betablockers in combination with sodium channel blockers
such as mexiletine, lidocaine, flecainidad ranolazineare indicated in
patients whose QTc shows values over 500" fnd;lowever,there is some
concern for LQTS type 3 patients when also presefi@atures belonging to
conduction defecor Brugada syndromén these cases,jdh temperature or
administration of flecainide was able to reveal the presence of the other
phenotypesand eventrigger life-threatening arrhythmids!? Study of the
drug-channel interaction of the beforementioned drugs has shown that they are
complex and not restricted to blocking either the fagk)(br the late {a.)
components of the sodium curre8tudy of hese interactionsay provide a
deeper understanding of thffectivenessf thesedrugs.Mathematical models

of the ion channelsan helpto study ion channalrug interactions in detail,
andmodels of the huamn action potential allow the study of the impact of those
in the cardiac ventricular cell d&ds functi
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Genetic mutations are not the only cause of LQTS and TdP. In fact, in a
retrospective study in a German hospital, it was found that there was an
incidene of 2.5 per million males and 4 per million females with drug induced
QT interval prolongation per yeédr The exposure to QT prolonging drugs
provoked druginduced LQTS in 6.3% and TdP in 0.33% of the patfénts
Naturally, the combination of both QT prolonging drugs and genetic mutations
increases the risk of suffering drirgduced prolongation of the Qifiterval.

The Intenational Harmonization Conference (ICH) published the current
guidelines to ensure new drugs would not prolong the QT intéfal
However, this camat a high costiue to the low specificity of the test that was
being used, which could prevent useful drugs from reaching the rfarket
International efforts are currently being made to generate newlggd that
improve the arrhythmogenesis predictidhe Comprehensive in vitrn vivo
Proarrhythmia AssafCiPA)!’ leads the efforts by providing new guidelines

to help adopt a new paradigm of drug safetyportantly, this will be done by
integrating information from different sourceghichinclude not onlyclinical
andexperimentatiata, but also in silico data. Thereforeathematical models
including those othe human ion channels and action pdagntepresent a
fundamental tool to test the effects of ditigs

Therefore, there are two main scenarios thauld benefit from the use of
mathematical models of the human ion channels and gmbi@mtia] namely,

to either select the best treatment for a particular LQTS syndrome or to
improve the detection of potentially arrhythmogenic compounds before they
reach the later stages of drug development.

Therefore, in this PhD thesis we will be exphg the use of
electrophysiological modelsf the humancardiacion channels and action
potential both in the detection of potentially arrhythmogenic compounds and
the study of the effectivenese§drugsin the LQTS.

1.2 Objectives

The main objective of thi®hD thesis is tgredict the effects of drugs on
cardiac electrophysiology using computational modeling and simuldtios.

PhD thesis focusses on two relevant aspects where cardiac modeling is
becoming more importanhamely, the study of drugpfety aml efficacy. On

the one handjrug cardiotoxicity, which ishe possibility of drugs provoking
arrhythmia is akey challengefor drug developmentOn the other hand,
personalized medicinean improve the therapies of patiemtith cardiac
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abnormalities, sth aslong QT syndrome. Therefore, this thesis was divided
into two main chapters with the following objectives:

1.

To develop a easyto-use toolbased on cardiac electrophysiological
modelsto detect potentially arrhythmogenic drugs in the early stages
of drug development.

il

1

To generag matriceswith the results of the simulations of
the effects of blocking relevant membrane ionic curtents
To aeate a prediction tool using a large number of drugs
with known riskand the results of the simulations

To evaluate the performance tifetool.

To provide evidence for an alternative treatmeritecainidefor long
QT syndromeSCN5A V411Mpatientswhen its use is not indicated

f

To model the SCN5A V411M mutation reproduag its
dynamics.

To simulate the effects oflecainide and ranolazinen
cardiac electrophysiology.

To provide an explanation of the beneficial effects of
flecainide on SCN5A V411M patient3.o test a possible
alternative treatment for SCN5A V411M patiewith the
drug ranolazine.
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Chapter 2. State of theArt
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2.1 The heart

The heart is at the core of the circulatory systarthe middle of the thoracic

cage, between the lungs and covered in a protective epithelium called the
pericardium Its function is to keep blood flowing constandighty times a
minute on averagg ower i ng the organismdés transpor
and nutrientsamong others. To do so, the heart is made of mainly three types

of tissue, namely, atil, ventricular andconductive muscle. Much like skeletal

muscle cells, ventricular and atrial cells contract and, by doing so, they shrink

their size pding from each other. In turn, this reduces the volume of the

cavities that lie inside the heart, propelling the blood they contain into the

arteries and powering blood flow.

Aorta

Superior
Vena cava Pulmonary

Artery

Pulmonary
Veins

Mitral

Right Valve

Atrium X
Aortic

Valve
Tricuspid
Valve Left
e
Ventricle

s Pulmonai
Inferior Y
Valve

Vena cava Right
Ventricle

Interventricular
Septum

Figure 1. Anatomical representation of the human Heart. Frontal section
of the four chambers, main arteries and valves that allow the heart to pump
blood in the direction indicated by the red arrows

Figure 1 shows the main anatomical features of the heart. It contains four
chambers, two atria and two ventricles. The latter are separated by the
interventricular septum. The heart can be viewed as two independent pumps
that feed into two distinct circulatory siglystems. The lefside of the heart
pumps blood to all organs excluding the lungs, which are connected to the right
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side of the heart.Red arrows indicate theath that blood follows during a
heartbeat. Starting from the rigbide of the heart, @oxygenged blood is
collected from the organs by both cava veins and funneled into thetriigimh

In a first, weaker, contractiont, pustes blood into theright ventricle and
shorty after, the ventricle contragtunneling bloodo thepulmonary arteries
Then, bloodgets oxygenatetiefore beingcollected by the pulmonary veins
into the left atrium There, it ispumped into the left ventriclevhich strongly
contracts to pumpghe bloodinto the aorta artery, feedintpe rest of the
organismand finally closing the cycle. Valves prevent blood from going
backwardshetween atria and ventriclesid between ventricles and arteries.
The tricuspid valve lies between the left right atrium and right ventricle, while
the mitral valveis its lefts i doaunterpartThe pulmonary valve is plade
between the pulmonary arteries and the right ventricle, while the aortic valve
separates the left ventricle from the aorta.

Sinoatrial
Node

Purkinje
Fibers

57/

Auriculo- &

Node \%!:(

Atrioventricular
bundle Bundle Purkinje
(His bundle) Branches Fibers

Figure 2. Cardiac conduction systemRepresentation of the main structures

of the cardiac conduction system. Filled circles represent the position of the
nodes. Dark green lines show the paths that signals arising from the nodes
follow to fully stimulate the cardiac tissue. A red line symbolizes the
electrophysiological separatiof atria and ventricles.

This cycle ensuresthe organs receive a constant supply ohutritious

oxygenatedblood but it would not be possible
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system as depicted b¥figure2. Everybeat starts when a spontaneous signal
is generated at the sinus ndqt® green circle)a bundle of seléxcitable cells.
This signal quickly propagates through the atiiggering their contraction,

but a layer ofnonconducingfibrous tissue between atria and ventricles
prevents the signal from reaching the latter. Instead, it reaches the auriculo
ventricular bundle, a slowonducing tissue thajuaranées enough time for

the bloodin the atria to be pumped into the ventriclesom there, the signal
travels through a high conductitissue consisting of first the His bundle and
then the Purkinje fibers, which quickly spread it to the whole ventricular tissue
so that it contracts sghronously. The period of contraction is called systole,
while the period of relaxation where blood comes into the atria is called
diastold® 2,

2.2 The cardiac tissue

Cardiomyocytes are the cells that form tediac muscle. There are three
main types of cardiomyocytes, namely, nodal, workiagd conductive.
However, in this PhD thesis we will Hecusing mainly on working cells.
Figure 3, panel A, represents a cardiomyocyte inside a small section of the
cardiac tissueMuch like other cells, @ardiomyocyte consists of a lipid-bi
layer membrane enveloping a myoplasm (cytoplasm ofuaclecell) that
contains the nucleus amdmmon organellethat arenecessary to maintain its
function. The main feature ofiusclecells is the large amount of actimyosin
fibers, responsible for their contractility, which occupy almost the entire
myoplasm. As depicted by panel C, the fibarssurrounded with a special
compartment called the sarcoplasmic reticulum. It forms a complex network
that has the sole purpose of storing calcium ions and releasing them on demand.
The <car di omy o chadTetdbsles, whicm bre extensions that
penetrate deep into its myoplasm and stay in close contact with the
sarcoplasmic reticulum, vastly increasing its surface'area

Cells are tightlyinterconnectedn the cardiac tissyeand musclefibers ae
oriented in a specific direction. As described Figure 3, panel B, special
proteic pores calledapjunctions create openings between cell myoplasms.
These junctias provide a very low resistance channel for ion, molecule and
even protein flugs In the cardiac tissue, they are especially abunidattte
longitudinal direction of the cell. lonic variations in one cell can be reflected
in neighboring cells due to this exceptional interconnect¥ifyhere are other

cell types in the cardiac tissue, such as fibroblasts and stem cells, which do not
possesshe same propertiesthe cardiomyocytes and instead show their role
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not only as structuralregenerativecells but also in specific disezs The
extracellular matrix surrounding the cells contains the extracellular fluid as
well as proteins, mainly collagewhich isproduced by fibroblasts. There is a
remarkabldon concentration difference between the interior and extefior
the cells. hdeed sodiumionstend to accumulate outside the membrane at a
concentration of around 140 mthile remaining at a low-8 mM in the
myoplasm Contrarily, ptassiumionstend to accumulate interior of the cells
at around 155 mMvhile concentrations in thexternal mediunstayaround

5.4 mM

A Cardiomyocyte Intercalated Disc Nucleus
T I 1 \
“.;" \—u’—" Actin-
H 44 - myosin

fibers

Membrane
; Myoplasm
4 <
B T J,rﬂ"‘ C
ctin- 7Y
Auun_ ° K & T-tubule
myosin —. PR
fibers o Sarcoplasmic
/ l S T reticulum
Intercalated GAP Ions

Disc junction

Figure 3. Representation of a cardiomyocyte. ARepresentation of the
cardiac tissue. A row of interconnected cardiomyocytexking) has been
highlighted.B) Diagram of a gap junction connecting two cardiomyocytes at
the intercalated discs. lons in solution were represented as blue circles. The
orang arrow indicates ion flow, although it is not restricted to the sense that
is shown.C) Sarcoplasmic reticulum, not shown in A for the sake of clarity,
surrounds the actimyosin fibers and ubules in the shape of a network.
Note that features are nat $cale.

The cardiac tissue contains several types of cardiomyocytes that shghtly
importantly differ in their response to a stimulus. Whée least9 different
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zones have been identified in the atrial ti€dube ventricle8 t iheas l=eene
classified in four maintypes working cells forming theendocardium,
midmyocardiumandepicardiumandspecialized conductive cells forming the
Purkinje systerif. Epicardial cells fornthe outemost layer othe ventricular

wall while endocardial cellform theinternal side Midmyocardial cells are
found deep in the subepicardtal myocardialregions of the ventricular free
wall, as well as in subendocardial layers both in trabecpégsllary muscles,
andseptumThe differences of such cell types have been documented in a wide
range of mammalians including humahktawever, the limits of those layers
are still diffuse as the nature and interconnectivity of the cardiac tissue
nor mal i zes t hysiologiel chabasterigids,ewhithr acepclearly
definedin vitro but notin vive?. In fact, here are numerous confusing factors
when determining the midmyocardiesuesince it locationits thickness and

its distributioncan vary between preparations even from the same cardiac
region This isa strongargumensupportinghe controversyhat surroundshe

role of midmyocardial cells. While their existence is difficult to refrnd their
particular electrophysiology is known, the inability to identify them in intact
coupled cardiac tissuia a reliable way keeps the comnity from agreeing

on their definitiod* 27,

Nevertheless, the fact that there are importdatdtrophysiologicatlifferences
throughout the ventricular wall has bewndely demonstratedincluding
different response to drugs antheir role amplifying the transmural
electrophysiologicaheterogeneity of the tissire pathological conditiorfé 7.

2.2.1 lon channels

Cardiomyocytes are excitable cells that can respond to stimuli by producing a

fast depolarization of their membrane. This depolarization represents the
fisignal 06 that is able to propagate maki
properties. It occurs whesodium ions from the extracellular medium rush into

the cell 6s myopl as stalledhionchamgl Theseagec i a | prot
special transmembrane proteins that @@ameableo certainions, mainly to

sodium, calciumand potassium. Importantly, thei@e several channel types

thatnot only differin their specificity towards the ion, but also in theirergy

requirements andperation modes.

As for energy consumptignion channels can be passive, where ion flow
happens in the sansenseas a concentration gradierit from high to low
concentration or active, where a source of energy, normally ATP, is used to
catalyze théon transporticrosgshe membrane
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lon channels can be permeable to one or more ions. Some channels can profit
from the gadient of one ion to provide the required energy to move other ions
in the opposite directiorThis is the case of the sodiuralcium exchanger

which is one of the main calcium regulators in the cardiac cells and responsible
for exchanginghreesodium céions from the extracellular medium for one
calcium cation in the myoplasfh However, thesodiumcalcium exchanger

can be reverted providdtie electrochemical conditions are m@ontrarily,

the sodiumpotassium pump is the perfect example of an energy mediated ion
exchange. Its function is to exchange one potassium ion from the intracellular
medium for one sodium ion from the extracellular medium. To enable this
counter gradient ion floyit consimesan ATP molecule for every operatiéh

The energy investment is nonetheless worth it since the sequlitgssium

pump maintains the sodium and potassium gradients that are essential for the
cardiomyocytesnd the rain driver of their function

The flow of ions through ion channetonstitutesa current due to the
movement of chargeparticles The following list describes then currents
and fluxeghat mainly contribute to the cardiomyocyte functasa contractile
cell.

1 Potassium currents
0 Ik rapid component of thdelayed rectifie potassium current
Ik.
0 lks: slow component of thdelayed rectifiepotassium current
Ik.
0 Ik1: inward rectifierpotassium current
0 Il fast component of thi#ansient outwat potassium current
lto.
0 liws slow component of thi¥ansient outwat potassium current
|t0.
Ikur: Ultrarapiddelayed rectifiepotassium current.
Ik-ate: ATP activatechotassium current
Ik-ach: Muscarinic gate@otassium current.
0 lkp: plateaupotassium current
1 Sodium currents
0 Ina: fast component of the sodium curreit.
0 Inau late component of the sodium curreit.
0 lp; background sodium current.
1 Calcium currents
0 lca: L-typecalcium current
0 lcar T-type calcium current

O O O
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1 lon fluxes
0 Jy calcium uptake from the myoplasm to the sarcoplasmic
reticulum by the SERCA pump.
0 Je: calcium release from the sarcoplasmic reticulum to the
myoplasm by the RyR channel.

Table 1. List of the genes that code for ion channelsThe first column
indicates the current that flows through the protein that is coded the gene on
the second column. Data from Roden and Kuperschnidt

Current name Gene name
Ikr hERG

Iks KvLQT1/minK
I kur Kv1l.5

lk1 Kir2.1

Ik-ach Kir3.1/Kir3.4
Ik-aTP Kir6.1/2

lto Kv4.3

Ina SCN5A

lcaL tC

Icar UH

Throughout this PhD thesis we will Heequently referencing several ion
channels fromtheir current names. For example, the ¢hannel would
represent the protein through which flow potassium ions whose current is
called k.. Proteins, and therefore ion channels,teaascribedcandtranslated

from genes. Sometimes we could reference arciannel by its gene name.
For example, the gene that codes ithre channel responsible foklis the
human etheg-gogo related gene, or hERG for shaitierefore somesources
could refer toit as thehERG channelinstead. Another important gene
throughout this work i s t hsbuBitONEA gene,
sodium channelTable 1 shows a list of the genes thaide for some of the
main currents.
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To review the structure and function of the ion channels, wetaki#on the

example of the sodium channsinceit is a particularly important channel in

this work. As its name suggests, the sodium channel shemseability to

sodiumcationsin the cardiac tissuéhe channel consists of several subunits,

but only the main U subunit is necessary

A Sodium channel Transmembrane domain

a-subunit —L

V¢Linkcrs

Voltage sensor

Membrane

Ul

Transmembrane
domain

Figure 4. Representation of the unfolded proteic structure of th&+subunit

of a human sodium channelA) Unfolded complete structure of the sodium
channel showing four transmembrane domains connected with linkers
responsible for the gating properties of the clehnB) Representation of a
single transmembrane domain showing its six segments. The fourth one
contains a high concentration of positively charged residues, making it slide
during voltage changes between the exterior (up) and interior (down) of the
cardianyocyte.

Figure 4, panel A, depicts the extended structure of the s u,bwihiohi t
contains fouridentical interconnected domain@anelB) that fold together
creating a central pore through which sodium ions can passiiftlge Every
domainconsists o6ix segmentgnamed 1 to 6 in panel Bf which the fourth
(green)contains many positively charged residugising it voltagesensing
cgpabilities Indeed, these canake the segmestide in(downwardskand out
(upwards) of the membrane, changing ther o t eadnfor@ation in the
process, which triggemmodificationsof linker positionsleading toimportant
alterationsi n  t he ¢ hann% [Gdtisg, or then abilityo togen ar e
closedependingon an external stimulus, is indeadundamentaproperty of
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the ion channelsThe sodium channel is therefore a voltagéed ion channel

whose conductance can be regulated by changes in membrane pdéntial.

not e -suburites acdompaniedbwoax i | i ary b subotnits (b1
shown thati mportantl y modul ate the channel 6
conductancealteringits gatingpropertiesor even al tering the n
capacitancé® However these are not fundament al
function,

2.2.2 The action potential

Membrane Potential

Time (ms)

Figure 5. Time course of the najor membrane currents that contribute to
the time course of the action potentialTop panelillustratesthe time course
of the action potential during one bedithe emaining panels show the
approximate time course of the major currents that contributdt.to
Depolarizing currents are negativg conventionThe aea under the curvef
every currenhas bee filled for the sake of clarityCurrents are not to scale

During a heartbeat, cardiomyocytes contract synchronously owing to a cycle
of depolarization and repolarization of their membrane, a process known as the
action potentia{AP). By convention, the internal portion of the membrane is
negatively charged at resting state, which can be assessed by a pair of
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microelectrodes, one of them being inserted in the cardiomywete c yt op |l as
and the other one beimg the external medium

Figure5 illustrates the time course ahaction potential during one heartbeat,
along with the time courses of the main currents that take part imritation.
There are five phases to the action potential, starting with phageere the
cell is in equilibrium and the membrane potential stays are8@do-90 mV.
This is due to the presenkg, which are partially compensated by the sodium
background current, and maintained thg potassium and sodium gradients
generated bynak.

Phase 0 is mainly driven byl. A small depolarization of the membrane is
enough to trigger the openingtbie sodium channelsnabing sodium iongo
rush into the celldue to concentratiomgradient that exists between the
intracellular and extracellular mediumghis further elevateshe membrane
potential causingthe opening of more sodium channdlerough this positive
feedback loopall sodium channelguickly openculminating in arextremely
fast (around 2 ms) depolarization of the membrane to positive potentials. Then,
the channels quickly clogeking the depolarization to an end. Phase 1 starts
with a small repolarization due ti@ activation,an outward currentvhich
partially countesthe effects ofar. While its peak is strong during this phase,
lo will inactivate after aroundLO0 ms Phase 2also called the plateau phase,
is by far the longest phase in cardiac ventricular clelfging around00 to
400 ms. It is characterized by the opening of calcamd sodiumchannels,
(lca. and ka) and their depolarizing effects are compensated by the
repolarizing effects ofthe potassium rectifier currentsgl and ks
Conseguently, the membrane potential stays quite stdbling this phasea
feature that is necessary to ensure a proper contraction of theikelbther
musclecells, ventricular cellsneedcalcium in the sarcoplasmic reticulum to
be releasethrough the RyR channels resting conditions, there is almost no
calcium in the myoplasm due to the activity of the SERCA pungp Which
bringsit all into the sarcoplasmic reticulum, h@s ka. activates, a calcium
inducedcalcium release mecham floods the cell with calcium, multiplying
its concentration bya thousand time%, which triggers the contraction of
muscle fibers by exposing the aetimyosin binding siteFinally, phase 3
consists of a repolarization mainly driven by fhaassiunrectifier currents
(Ikr and ks), now supported by the activation @f hnd the inactivation otk
bringing the membrane potential to its initial resting Staead allowing the
calcium to be imported to the sarcoplasmidcrgtim in preparation for the
next contraction
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An important property that is directly inherited from the sodium channel
dynamics is refractoriness. An action potential can be triggered by an increase
in membrane potential due to current injectistimulus). However, the action
potential cannot be triggered at any momdittere is an absolute refractory
time window that begins after the start of an action potential and ends during
late phase 2 where no new action potential will result from a stimulus. A
relative refractory period consists of an additional time frame where action
potentials can be triggered, albeit in response to stimulgeateramplitude.
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Figure 6. Graphical representation of the main biomarkers used to
characterize the action potential

Biomarkerst h a 't are typically wused to <charac
morphology include the resting membrane potential (RMP), action potential

duration (APD), action potential amplitude (APA), upstroke veloaihax

dv/dt) and triangulatior{seeFigure 6). The most commomeasuremenof

APD is the one that isegisteed at 90% repolarization of the membrane

voltage (APDo), but this value can be assessed for any percent repolarization.

In fact, triangulation can be calculating by subtracting the 4Rithe APDRo

values.

The action potential time courgeheavilydependenon pacing frequencgin
Hertz) andits inversevalug the basiccycle length BCL) which is the time
interval in milliseconds between two consecutive stimiilie formeris a

45



Prediction ofthe effectsof drugson cardia@activity using computer
simulations

measure othe number of stimuli that are appliedone second, while the latter
indicates thetime interval between stimuli. The electrophysiological
differences between tissue types play an important role both duemithy
andalteredcardiac function.

Pericardium Right Ventricle

BCL (msec)

Ventricular
Lumen

[ ————
200 msec

Figure 7. Action potentials from selected cells of the canine ventricai

wall. Left panel symbolizes the ventricular wall and dashed lines represent the
limits of the regions, whose exact position varies considerably between species,
individuals, and preparations. The right panel was modified from Sicouri and
Antzelevitch®, and shows superimposed action potentials recorded at several
BCLs from cells belonging to the indicated regions.

Figure7 depicts the main feature$representative action potentiflsm three

cell typesatseverabacing ratesThe kft panel represents a transmural section
of the ventrite wherethe main electrophysiological regioase delimited by
dashed linesSample action potentials from epicardial (Epi), midmyocardial
(M region) and endocardial (Endo) cells have been represented in the right
panel at several BCL€olors remind of thénterconnectegbroperties of the
cardiac tissue and show that the actiatentials usually transition gradually
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from one end to the other of the ventricular wale action potential duration

is the first prominent difference that can be observed. Epicaellashowthe
shortest action potentialfollowed by endocardiadnd midmyocardial cells,
which show the longesThese arise from changes in current densities as, for
example, midmyocardial cells show a very smalbhd a largerna.of almost
twice that of the epicardial celfs The presence of a notch following phase 0
(depolarizatiol, also called spikeanddomemorphology,which arises from

the presence of a largas that contributes to the phase 1 repolarizafsee
2.2.7%, is characteristicof the midmyocardialand endocardif but not
epicardia) cells The APD rate adaptation shows also differences between cell
types, consisting of steeper curves Rarkinje and midmyocardial cells
compared to endocardial and epicardial é&liss depicted by the greater AP
differences in midmyocardial cells Figure7.

In healthy conditionsthe midmyocardium would largely contribute to the
cardac contraction strength followed bythe endocardium and epicardium
while Purkinje cells are specifically in charge of stimulus conduction and
delivery to strategic locations in the endocardidma mentioned in 2.2.1, the
electrphysiological differences of the cells get softened by the
electrochemical coupling between cells in the cardisgue averaging the
APD difference®, so much that sometimes it is difficult to identify the cells
directly on the cardiatissue asve reviewedin 2.2

2.2.3 The electrocardiogram

In previous sectionve explored thesvolution of themembrane voltage that
cardiomyocytesexperienceduring theaction potential. While small, these
fluctuations in voltage can add up to create an important voltage difference
between adjacent regions in the heart. The depolarization wave propagation
generates a dipotbat induces variable electric field throughé human body.
This dipole can be measured by connecting a pair of electrodes gkithe
However, the cardiac vector, whose direction gets determined by the position
of the negative and positive charges, may not be aligned with the position of
the electrodes which is usually the casélherefore, measured potential
differences are a projection of the reatdiacvector on the imaginary vector
formed by the electrodesConsequently, aneed to define standardized
positions for electrodeappearedNine standard positionsvere definedby

1938 (1, II, I, V1, V2, V3, V4, V5 and ). Three unipolar leads (aVR, aVL,
aVF) wereincludedlater adding ugo a total of twelve measuring locations
which form the current electrocardiogram (ECG)

47



Prediction ofthe effectsof drugson cardia@activity using computer
simulations

| I
QRS complex

L J

QT segment

Figure 8. Time course of the typical ECG in humanslllustrationof a typical
lead Il electreardiogram.Note that the time course of the electric field is
substantially different between derivations.

Figure8 showsatypical ECG time course. Briefly, there are ugbtcommon
waves. The first, P, is a small wave corresponding to the depolarization of the
atria It is followed by a triple wave comptestarting with a small decrement
(Q wave)that precedes a fast peak that swinggRigvave)and then down to
anothesslightly greaterdepressioiS wavethat goes back to the resting value.
The latter is called the QRS complex and corresponds to théadeption of

the ventriclesalthough it might not always show as a triplet. The left ventricle
is responsible foa major part of this complekecause of its greater size. The
interval between the P and Q waves gives information about conduction
throughthe auriculoventricular node and widening of the QRS complex is
usually related to ventricles that take longer to depolaiizéicating a
reduction inconduction speed in theardiactissue.A short inactive period
corresponding to the plateau phase efdlation potentials in the tissisgethen
followed by a wide albeit low; wave matching the repolarization of the
ventricles(theT wavé. Atrial repolarization happens during the QRS complex
However, due to the greater amplitudelad signals coming from ventricular
repolarization,it cannot be observedrhe QT segment, or QT intervas
defined as thetervalbetween the beginning of the Q wave and the end of the
T wave ands related tahe time it takes for the ventricles to perform an entire
depolarizatiorrepolarization cycle. The R to R interval can be used to assess
heart rate. Many cardiovascular diseases i detected by monitoring the
ECG of a patient, such as myocardial infeme, hypertensionischemia,or
myocardial neuropathydue to the alterations they provoke on ECG
parameter§3
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2.3 Cardiac Disease

Cardiovasculadisease remains the most prevalent disease worldwide with
more than 150 million people suffering frorf®jtclaiming approximately the

same number of lives as cancer. In US alone, the estimated heart disease cost
only in 2008 was of 448 bhillion USD. Due to the mechanicalneatfithe heart,
cardiac disease is complex and multifacEtechs electrophysiological
alterations can produce cardiac dysfunction without leaving visible
modifications of the tissue.

2.3.1 Cardiac structural disease

Heart disease shows in a variety afises that can lead to arrhythmia or heart
failure. Obesity is tightly related to coronary artery disease, which is a
consequence of atherosclerosis, a condition where vascular lesions get
progressively thickened when a combination of lipid absorptiohdogsion

and leukocyte aggregation tries to repair the dafidgeThese lesions are
especially dangerous in essential vascular regions such as coronary arteries,
which irrigate the cardiac tissue itself. Eventually, plaque cthetent,
coronary spasm, or even during a sudden effort requirement, blood flow can
be severely restricted preventing the ventricular tissue from getting oxygen,
consequently provoking angina and, in prolonged episodes, myocardial
infarctiorf.

Reactivation of the blood flow can mitigate the damage to the tissue to a certain
degree, Bhough the characteristics of the affected area can never be recovered.
The stiffness othe tisswe that growsto heal the damagepmbined with its
reduced electrical conduction propertiespresents a continuous lag to the
cardiac function. The ventti tends to dilate and remodel to compensate for
the lack of contractile poweRemodeling of the cardiac tissue is caused by
increased stress with constant cellular death and regeneration, and leads to
reordering, hypertrophy and elongation of the cargiocytes, accumulation

of inflammatory molecules and increased interstitial fibrosis induction, among
ot her s. These changes ar e. Howeveethe ci al
s ¢ a ribdoblasts couple tohealthy cardiomyocytesleading to deeper
alteratiors of their electrophysiological propertf®$® Therefore, cardiac
structural disease, consistingprésence décar tissue anchrdiacremodeling,
represents perfect substrate for arrhythnatrigger.

2.3.2 Long QT syndrome (LQTS)
LQTS patients show characteristic elongated QT segments of thenBCG
related tostructural cardiac defects The causes of this elongation lie in
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electrical abnormalities of the cardiac electrophysiology, which can be caused
by mutations or external factors such as ion channel blocking drugs. Elongated
QT segments have been linked to arrhythmia gsde which is why health
institutions, researchers, regulators, and pharmaceuticals have shown great
interest in developing methods for tearly detection of drug capable of
inducingLQTS, as well as treatments for this conditi@etailed information
necessary to understanelevantaspects of the LQT8om the drug safety
perspectivean be found in Chapter and from the drug efficacy perspective

in Chapter3 of this PhD thesis

2.4 Arrhythmia and Torsade-de-pointes

Arrhythmias are altered heart rates amgged in an abnormal electrical
behavior in the heart. They have been classified in tachyarrhythmias and
bradyarrhythmias according to heart rate. Tdvener is diagnosed whethe
patientheartreachesnore than 100 beats per minute and the latter with les
than 60 beats per minute. According to the anatomical and electrophysiological
barrier that exists between atria and ventricles, arrhythmias that develop in the
atria are classified assupraventricular while the rest areentricular.
Tachyarrhythmias castart fromthe development of electrical activity in an
abnormal region of the cardiac tissue. If correctly timed, this ectopic activity
can trigger the conduction of the electric signal in a-plysiological, even
inverse path thatcould confront the nrmal depolarization wave. Theould

lead, for example, to extra beats, ventricular contractions that are reflected in
QRS complexes in the ECG that are not preceded by a P wdneh(is
produced byheatrial depolarization), but also to sustained tachyarrhythmias,
which involve perpetuation of the abnormal depolarization of the heart by
completely overriding the sinoatrial signéne of the possible explanations
behind atrial fibrillation ighe existace of rotating depolarizing frontsotors

for shorti that can be triggered by ectopic activity, or circulation of the signal
around fibrotic anatomical structures such as veins, arteries, or Bogade
de-pointes (TdP) is a particularly dangerous olymorphic ventricular
tachyarrhythmia characterized by a series of QRS complexeappatrto

twist around the electrical baseline. Its subjacent mechanism is still not well
understoodut, among its causes, it has strongly been assodiateablonged

QT segments in the ECG which can lead to early after depolarizations and/or
delayed after depolarizatiofi¢™4®. Thesecan be induced by samdrugs,
particularly antiarrhythmic drugs, but also by inherited electrical abnormalities
in the cardiac conduction system caused by gene mutafitesfollowing
phenomena are known take part in the initiation of arrhythmias:

50



Prediction & the effectsof drugson cardiac activity using computer
simulations.

f

EADs, or early after deplarizations are premature depolarizations
that occur during the repolarization phase. In normal conditions,
sodium channels recover from refractoriness not long after the
potential reaches its resting membrane vadledayed repolarization
involves amembrane potentiathat stays at a higher valuguring
abnormally long durations, extending the plateau plodisbe AR
Under ttese conditions, adium channels could reopen as they
recover towards the end thiis phasgtriggering new depolarizations
Drugs or mutations can induce delays in repolarization by reducing
the amplitude of repolarizing currents such @& or increasing
depolarizing current such as IN&I>2 These suddedepolarizations

can propagate through the cardiac tissue, a phenomenon that is called
triggered activity>*’.

DADs, ordelayed after depatizationsare abnormal depolarizations
similar to EADs but are triggered by completely different
mechanismsDADs typically result from sudden calcium release
events from the sarcoplasmic reticulum in conditions of calcium
overload promoted by increasédDqo or QT3%47 intervals Since
DADs occur afteta complete repolarization, they can trigger a new
action potential provided they reachethiepolarization threshold,
which can also propagate through the cardiac tissue.

Conduction slowness: drugs that bloglg,Ithe fast component of the
sodium current, not only reduce the upstroke velocity but also the
conduction velocity, the speed at whithe depolarization wave front
propagates through the tissue, which can lead to arrhythmia as
revealed by the CAST tri#dl This is particularly dangerous in cardiac
structural disease (scars), whéuactional and electrophysiological
properties of the affected zone differ from the surrounding tissue.
Scars themselves provide conduction slowness in the interface
between healthy and fibrotic tissue (the border zofegy also may
generate channels aflow conduction at their core consisting of
surviving cardiomyocyte bundleshich creaesthe perfect substrate

for arrhythmi&* When the wave front leaves the slow conduction
area, it may enter a recently repolarized tissue ready for a new
depolarization This representshe origin of abnormal propagation
which can perpetuate itself by circulating through or around the scar
again.
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2.5 Antiarrhythmic therapy

The goalof dispensing drugs to patiergafferingarrhythmias is naturally to
terminatethe arrhythmic activitywhile preventing the appearance of new
epiodes. Unfortunately, antiarrhythmics are known to be both the solution and
the cause of arrhythmiaéntiarrhythmic drugs interact with ion channels,
either enhancing or reducing their permeabiitgnductance)o ions,which
in-turn produceshanges in the time course of the action poterikiais could
potentiallycounter the alterations causeddmpjacent abnormaikts However,

it may as well induce electricalbnormalitiesby prolonging the APy and
thuspromoting EADformationas we regiewed inaprevious section

Antiarrhythmics have been assigned a class from | to IV accotdirtge
Vaughan Williamsclassificatiof®%, which is based on the molecular target of
the drug The fact that there are numerous drugs that target multiple channels
constitutes the reason why there have been many attempts at coehting
classificatiors, however the most widelused is the abovementionede
Briefly, Vaughan Williams classes include sodium channel blockers in class |
(with subclasses a, b and,deta adrenoreceptor blockers in class Il, APD
prolongers in class Il and calcium channel blockers in class IV

2.5.1 Class I: sodium channel blockers.

Sodium channel blockers can affect the fast or the late component of the
sodium currentClass la drugs include compounds that blggkand therefore
reduce the upstroke velocity od the ac
conduction velocity in the cardiac tissue. At the same time, they show affinity
for Ik, channels thus reducing repolarization and prolonging the, APizh
induces a QT segment prolongation. Exampdésclass la drugs include
disopyramide and quinidin€lass Ib comprises drugs that have a minimal
effect on phase 0 and instead shorten the APD by meats bfdck, although

high doses can producgadblock-like side effects. Mexiletine and lidocaine

are examples of these compounds. Class Ic contaiigs tliat show no effect

on APD and strong effect on phase 0 of the action potential characterized by
very slow dissociation dynamics, greatly reducing conduction velocity.
Among the examples of these drugs, flecainide and encainide can be found.

2.5.2 Class Il: b-blockers

p-stimulation increasescd., calcium concentration in the sarcoplasmic
reticulum, the magnitude of repolarizing potassium currents and the pacemaker
activity in the cardiac tissue in order to shorten the APD while increasing
contraction strengt and heart rateb-stimulation is associated to stressful
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situati ons. T hrecepwofs ceduees hebrl rate; whicm lgadshto
reduced oxygen demand during angina and prevents arrhythmia in some forms
of the LQTS owing to less calcium overload the sarcoplasmic reticulum,
which reduces DAD generatioBome examples of these drugs include nadolol,
sotalol and the widely used propranolol. Interestingly, the latter shows sodium
channel block to some extent at high dées

2.5.3 Class lll: action potential prolongers.

Drugs belonging to this group generalljisplay blocking effects on
repolarizing potassium currenwichas kr or lks. The resulting prolongation

of the APD and the QTsegment can be antiarrhythmic by increasing
refractoriness and therefore stoppthgreentry of thevave front Examples

of pure potassium current blockers include dofetilide and ibutilide, while
multi-channel blockers, such as amiodarone, dronedaraheuéniding are
also availableSotalol haslso showrb-blocker effect®. Recently, k- block

has been identified in many drugs that are not related to cardiac treatment, such
as antimicrobial agents, antihistamines, antipsychotics, and %th8isce
prolongation of the QT is also a surrogate biomarker fosdaede-pointeg?,
these drgs are usually classified as dangeféus

2.5.4 Class IV: calcium channel blockers.

The effects of calcium channel blockers maindyy on slowing heart rate,
which arekey to the nodal tissues. Reentrant arrhythmias that include the
auriculoventricular node can be stopped using calti@se drugsventricular
arrhythmias initiated througtniggered activity by DADs can bgreventedas
well®®. Calcium currents are responsible for maintaining the action potential
plateau (se€igure5), therefore their block can contribute to reducing the APD.
In fact, the apparent safety of some drugs that exert a strong block of potassium
channels such as Verapamil could be explainedddgium channel block
Other examples of drugs in this category include nifedipine, nitrendipine and
diltiazem.

2.6 Modeling the cardiacelectrophysiology

2.6.1 Anintroduction to cardiac modeling

Models are powerful tools in science toahprovide useful information about
the system they reproducehey can beised to study and predict outcomes in
many fields of knowledge, from weather forecastitplane designModels
haveindeedbeenable to predict the existence of phenoméefore bag
experimentallyobservedsuch is the case tiie discovery of wave eatry in
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cardiac tissue, which was first shown computatiofaltg later be found
experimentall§®. Thisis aformidable example of a great understandinghef t
principles that were modelgHat proves the ability of computational models
to provide insight into unknown mechanisms.

The modeler might approach the creation of a new model from severtd poin

of view depending on his needs. Statistical models arsetlthat only seek to
reproduce a phenomenon at a high level without delving into its subjacent
properties, therefore their behavioofsencompared to a bladbkox. They need

to be trained with datasets and seek to capture the trends of the data. The
contrary of a togdown approach like the latter is a bottaim approach, where

the model seeks to study most basic units of a phenomenon to reproduce more
macroscopic behaviorglerived from them These models are called
mechanisticmodelsand are optimizedo reproduce certain dynamics with
precision instead of relying on big dataseédme solution seeks to reduce
complexity while the other seeks precision. In the end, all models have a
combination of both approaches since they can be mechanistic at elneniév
blackbox at anothét. This is the case of astcardiacaction potential models,
where the ion currents combine to generate the action potential time course
while the description of the current gaitself is statistic

Electrophysiological models of the cardiac activity span multiple scales, from
the ion channel to the whole body, including cell, tissue, and organ descriptions.
One would think that switching scales would agd an exponentially
increasing amount of error from one level to the next. However, the field has
matured enough that studiasthe ion channel level can explain alterations at
the body levelas demonstratedor example, bySadrieh and coworkeds
Consequentlycardiac electrophysiology modeling has proven its usefulness
in many areaslt has been exceptionally successful in drug develogthent
owing to the constantly increasing richness of its herftagrefact, he recent

trend in safety pharmacology has acknowledged the need to create reliable
models of the cardiac electrophysiology to test drug cardiotoxicity as an
integral part of the drug developmeand efforts are currently being made to
refine them even moté A number of projects have already elaborated their
own biomarkers to try and assess the risk of cardiac arrythmias based on
different parametef&°8.5%%¢ with varied yet positive resultsBeattie and
coworker§® went further and included quantitative structamivity
relationship (QSAR) data to the miiming topredicting the effet of a drug

on an ion channel frornts proteic and atomistructure The ultimate goal of
these tools is to assess the risk of arrhythmia of new compounds to reduce loss
during drug development.
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Cardiac electrophysiology models have shown success inartesA recent

work from MartinezMateu and coworkefs showed using simulations the
existence of phantom rotors in signal acquisition with atrial basket catheters,
which could be hampering the determination of ablation procedures. On that
note, apromising initiative seeks to help physicians to establish the minimal
number and precise locations of the necessary ablations that can cancel atrial
arrhythmias. For that matter, Boyle and coworkemseated personalized
model s of patientsd6 hearts (through
simulate their specific atrial fibrillatiamheydetermined the best locations for
ablation and performed the interventions which resulted in nergatiiffering

from fibrillation again. This technology, despite being a proftoncept,
shows thepotentialof cardiac electrophysiology models applied directly to
human health.

2.6.2 lon channelmodds

lon channels compose the basis of all cardiac motleéscombination of their
dynamics leaslto the formation of the action potential, the main driver of the
cardiac contraction. Therefore, they aceucial during cardiac model
development. In this sectipthe main mathematical descriptions that enable
reproduction of ion currents, namely, the Hodgkinxley and Markov chain
formalisms will be discussed in detail.

2.6.2.1 Hodgkin-Huxley formalism

adv

The results of wrks from Hodgkin and Huxley in 1952 n t he squi dés gi

axon paved the way fahe scientificcommunityand are still being used
today?. In this sectionwe will be reviewing the most important conclusions

of their work which revolutionized the way of approachii@n channel and

cell electrophysiolog modeling. The HodgkinHuxley formalismconsiders

the cell membrane and its ion channels as a simplified electronic circuit as
described irFigure9.
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Figure 9. Electrical circuit representing the cellular membrane of a
cardiomyocyte in the HodgkinHuxley formalism. The membrane possesses

a capacitance (@). Currentg(l) can flow from one side to the other through
channels represented a geneator (symbolizingthe reversal potential) in
series with a variable resistance (R), whose value depends on the membrane
voltage (E), which is determined by ion concentratiams both sides of the
membrane Subscript indices specify the igK, Na, é , ). kFiguremodified

from Hodgkin and Huxley19527~.

Cw represents the membrane capacitanceefitesents theeversal potential
(or the tendency to cross the membraoien particular ionfi i (I&*, Na" or
Ca*), andE represents the membrane potential. Every ion chasimeluded
in the circuit as a variable resistor whose conductdigéedepends orE.
Deduced fr om thk eurrebthtmb flows Itheougthe whole
membranecan becalculatedasthe additionof all currents that flow through
each resistoacross the membraifseeEq. 1).

O W ¢ BIE B =I Eq.1

The term’O represents the chanfBe&onductancewhich depends on the
channel 6s gsa The mgmbrane vgit#ge tvaswritten to Vi
(previously named E) for the sake of clarifodgkin and Huxley proposed a
model where the channels would contain an appropriate number of
independengates meaningtheir state doedependo n ot her .gat es b
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do p «
Eq.2
The above model represents , itheopegnwo possi |
a or closed p & . Switching between those statds governed by
transiti on rlasedioghedpen (State oann ¢ hfe ogeitc om t he
the closed state). Therefore, over time, the increment of the open state
proportioncan be written as

’Qc’x| § ol
e a a
Qo P S Eq.3
whereU and b are voltage dependent. This e
0d c’xbzc'x
Qo t Eq. 4
Where
« L P
T, T
| Eq.5
And
" P
|1 Eq.6

From solving thesequations, it can be deduced tfatany time,

a o a a za Q-
« ‘ Eq.7

In a channel population, the proportion of gates in the m state at timé t (

depends on the initial conditio () and tend exponentially to the steady

state ¢ ) at a rate determined by the voltage dependent varihBlsimilar

approach can be used fagectivation gates.
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Figure 10. Manual whole-cell patch-clamp layout. The HEK293 cell
transfectd with the ion channel of interest is placed on a glass slide and its
membrane sucked with a glass pipette to punch a hole in it after reaching giga
seal conditions. External solution is constantly flowing in the sense of the red
arrows. An electrode is @ated inside the glass pipette for the internal medium
while another electrode is placed in the extracellular medium. Both can be used
to apply voltage and measure currents.

This formulation wasised by Hodgkin and Huxley taptimally describe the
potassium and sodium currens behavios under controlled membrane
potentiaé of a giant squid axofhis method is commonly known esltage
clamp It representshe most powerful technique to study ion channels and
their dynamics. This is becausktheability to controlthe membrane potential

of a cel| which is central to obtaining reliable results. Although there are many
voltage-clampversiong?, by far the mostsedcorfiguration is the wholeell
patchclamp.

As depicted byFigure 10, cells are carefully placed i containefilled with a

solution of known ionic composition (external solutioh where a

microelectrode is also submerged. Then, a glass micropipeti@ininga

solution that i s siiméadefallyputirocontabtevithc el | 6s ¢
thecel | 6 s MNeximiegatverpeessure is applied inside the pipette until

it forms a very tight j(aggasedl. Bimalywi t h t he
the membraa is slightly sucked into the pipette until it bread@mpleting the

whole-cell patchclamp configurationHereg themicroelectrodes are in contact

with two different milieus, the internal and the external solutions, separated by

t he cel | §whichmentaisthaionehannel that is being studitd

58



Prediction & the effectsof drugson cardiac activity using computer
simulations.

To illustratethe procedures that are used and the results#mabe obtained
from wholecell patchclamp experiments, we will take on the example of the
sodium channel

Several gating properties have been identified, including activation, fast
inactivation,and slow inactivatioH, key components of the s
fast component. Fast and slow recovery from inactivation have also been

identified. Theyplay a key role in the refractoriness of the cardiac tissue and

amplitude of the late sodium curre@therworks have revealed the existence

of two additional operation modes inclu
openi>fgstohat are essential to the for mat.
component.Here we will explore thefast activation andhe inactivation

dynamics since they provide a foundation that will facilitate the explanation of

other more complex dynamics.

Activation and inactivation can be explained by the Hodgkin and Huxley
formalism whodescribedhctivation as threBmo gates whildanactivation was
accurately described with only ofko gate.Figurellrepresents the voltage
dependent functions @ and"Q , which arethe steady statgalues of
activation(panels B and Dand inactivatior{panels A and CyespectivelyTo
study sodium current dynamicexperimentalists appla series of voltage
commands t o t hedesigeel todest the &nmebcouese of the
elicited current which changs as a function of not only the applipdtential

but also depending on the duration and sequence of the comrAatidation

is assessed by applying a seriepolses atest potentialgpanel B)
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Figure 11. Representation of the activation and inactivation dynamics of

Inaf. Elicited current resulting of applying voltage steps to assess inactivation
(A) and activation (B). Note that the two steps that are presented correspond to
voltages that yieldpproximatey 100% and 50% of the current. Theslarrows
indicate the point where the current would be meas(aed normalized)n

order to represent the correspondirgl dots for the inactivation (C) and
activation (D) curves. Insets in C and D illustrate toeplete stimulation
protocols that were used to obtain the curves. Panels C ameréndapted

from Moreno and coworkef$

The channehctivatesyuickly (within 2 ms), resulting in a peak sodium current
providedan adequateoltage stefis used The closer the test potential is to the
starting point, in this case the resting membrane potential, the lower the peak
until eventually no current can be registeréacording to the Hodgkin
Huxley formalism, &resting membrane potentiah gates arelosed, and h
gates are open, therefore norrent can flow through the channels. When
exposed to more positive potentials, m gates quickly open allowing the current
toactivateBot h m and h gates fAfeel d the

chang:

gates exhibit a slower closing eareflected by ame at er U at, such pot

which creates enough time frame for the current to flow before inactivating.
Maximum peak currents are plotted as a functiopuolse potentia(panel D)
to estimatet  with a Boltzmann equatioas the following
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T C ¢ O

Boltzmann Eq.

‘Cw beingthe maximal current at voltags "Othe maximal conductance of
the channelOthe sodium reverse potentic the halfactivation voltage

andQthe slope factorTherefore can be approximated by normalizing

‘Om and dividing by @ 'O . Note that the presence of three m gates in the
sodium channel implies the observed conductance values are elevated by an
exponent of 3Hodgkin and Huxley determined thetivationrate U by testing

which values gave the best fit to their resilts

Inactivation is assessed by applying a series of pulsesitibletest potentials

for a fixed time that ensures steady state inactivation has been répahetl

A). Here the current quickly activates and then inactivates according to the
closing dynamics of the h gageot shown) Then, a short 20 ms pulse to fixed
high potentials of typically10 mV is apped before going back to resting
membrane potentials. The chalmné¢hat inactivated during the first pulse
cannot activate again during the second one, thus the current pleakedsult

of the channels that remain closdthe highethe voltage ofhe tespulse the
fewerthe channels that are available &mtivation during the second pulse.
Peak currents are then plotted as a function of test potentials and normalized
to their maximum value to provide an approximation of the voltage dependent
steady state inactivatiofpanel C)'Q , while U can b e foretteet i mat ed
activation gaté.

In this PhD thesisnostof theion channel modelse usedollow the Hodgkin
Huxley formalism However, we also made use of Markov chain models for
the sodiumcurrent because of their versatility towards repigdg complex
dynamics.

2.6.2.2 The Markov chain models

Markov chain models, Markov models for shditst introduced in 1906 by
Andrei Markov® are a useful representatienof biophysical dynmics
including cardiacion channels. They quantitatively describestochastic
process through set of discrete statesoupled withrates that determine the
transition velocities between theifhe simplest Markov model contains two
states(open and closh and two transition rateg U  a,nmiich fis)nothing
but the representation of a gate in the Hoddhixley formalisn®79Q States
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areusuallyrepresentations of specific conformations of the proteinsbihitt
the ion channel According to theMarkov property, transitions happen
depending only on theurrently occupied statevhich is a feature of biologic
systems that cannot be accounted for in the Hodgkixiey formalism.

Like in the HodgkinHuxley formalism, Markov chain models of ion channels
usually represnt channel populatienthereforghe additiorof the occupancy
probability of all statess 1. The system reaches steady state when the voltage
is fixed duringenough timeso that the transition velocities between states
equalize The model has normally one or more open states representing the
channel conformatimthat allow ions to flow through its poreChannel
conductance depends directly on the fraction of the chativaleccupy these
states.

o a a o5
IC, —= Ic, === F —= ¥, IM,
B Bi2 Ba Bs
£ A WY
2
11 %12 43
—_
C;——C C o]
8B, ° Bi2 "B

Figure 12. Representation of the Markov model of the SCN5A channel
responsible for the ka current. Image obtained from Clancy and Rty

Markov models were required whenore accurataepresentation®f ion

channelswere necessary to explaithe dynamicsthat HodgkinHuxley

formulations could not. Study of the sodium channel revealed ithat
inactivationwas faster in the open st2&, which is contrary to the concept

of independent gates. A more detaiteddel ofthe sodium channel dynamics

was created by Clancy & Ruthto account fothese newdynamicsin 2.2.1

we reviewed the structure of the sodium channel and highlighted the presence

of several domains connected by linkltatmo dul at e t he channel 6s
to voltage changed-or example, &h domain possess a segment that
functiorsas a voltage sensarhi ch dri ves t h#&Thelllannel 6s a
IV linker appears t@articipatethe fast inactivation of the curréhtvhich can

be stabilized by the @rminus®, the final chain of the protein. These

processes have beeonsideredn the modektructure(seeFigure12).

To represent the cooperativeness of the activation process, three closed states
(C1, C2 and C3) were included instead of representing each voltage sensor
separately The inactivated state Was added toeproducefast inactivation
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dynamicsby the IIFIV linker. IF was also connected @ reproduceits
dependence on the open state. Stabilization of the inactivated state was
modeledby including the IM1 state. Deeper, slow inactivation wa&n into
accounby addingthe IM2 state. Finally, the two closed inactivated states (IC2
and IC3) were included to represent the closed state inactivation. This model
reproduces a fundamental property of the sodium channel, which is its rate
dependence. Wile the states IM1 and IM&main almost unoccupied slow

rates hi gher pacing rates shift the channe
states due to spending more tiatalepolarized potential$nactive channels

take longer to recovdrefore another pulse reaches the cell, witiah lock

them in that statthusreducingthe total amount of current that gets triggered
during the depolarizatiomhis haglirecteffects on other curreriactivatiors

which plays an important role in theme course of the action potential and
thereforein rate adaptatiomf the APZ’, among othersMany subsequent
works have modified and improved thsdsum channel formulation over the
following yearg”:889,

2.6.3 Cardiomyocyte action potential models

Cardiomyocyte modeling was first attempted in 862rom that moment, the

scientific community has witnessed an authentic burst in number and variety

of cardiac electrophysiologial models helping understand the multiple
mechani sms that s faTheyhatelheen develapdbnd s f unct i
several speciesuch asdog, guinea pig,rabbit mouse, ratand most

importantly, humarf®. Some notable examples the latterincludethe Ten

Tussche®, the Courtemanch&kamire-Nattel’® and more recently the

GrandiBers” andO 6 H eRudg?® models

In 2.6.2.1 we introduced thecellular membraneand compaed it to an
electronic circuit with many variable resistérthe channelsNe wereable to

do so by using the membrane capacity and the sum of all the currents that flow
through the membrane. These concepts est&dligie foundationfor the
action potential models.

Action potential models integrate information from several sources;hwhi

include electrophysiology models of ion currents studied in cardiomyocytes,

cardiac tissue and transfected cells, as well as compartmental models based on

imaging information of the subellular structuresThe st udy of the c
individual componentss sufficient to obtain maction potential model due to

the multiscale nature of this modeling approddte inherently modular nature

of thesemodels allowsgthe reuse of somef its components. Consequently,
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there are numerous examples of models comgiron currents whose data
wereobtainedfrom different species.

Gatesd ¢ o ninlthetHbodgkinHuxley formalismandstate occupancin the
Markov chain model formalismdepend on membrane potentialhe
complexity of these models makes it impossibleegolve their evolution over
time analytically, but they can be approximatesing differential equations.
However, thelargerthe number of gates or states, thmer the number of
differential equations that have to be solved to describe the behaioriarf
current. Markov chain models like théna and lks modek we reviewed in
2.6.2.2 are especially complicated for thatason These mathematical
problems are best solvatumerically using ordinary differential equation
(ODE) solvers provided in a wide variety of scientific software like Matlab
(TheMathWorksinc.), which we extensively used for the development of this
PhD thesis

Theseprograms wdk under theprinciple that usingshorttime steps (dt)n a
system of differential equations turns it into an uncoupled sy&é€tThe
system carthenbe solved by calculating every differential equation one at a
time. Every time step, model states are updateddgingthe amountesulting

of theirincrementover theselectedime interval Of cours, an initial set of
states which can be derived from the literatunsust also be provided at the
start of a simulationAn excessively large time stepay triggerinstabilities,
whereby some states adopt incorrect valudsor exampl e, inot a n
excessively large valugpor fluctuate around a central valwgthout ever
stabilizing Contrarily, excessivelyshort time steps might delay the
simulatiord s ¢ o mhiletheilattan case isot incorrect, adopig a time

step leading to satisfactory results in the shortest time possibldvisable
Utilization of variable time steps is a very effective way of reducing the
computational time that a model takes to perform a simulationpfhaseof

the action potetial subject to rapid incrementuch as phases 1 and 2, should

be calculated at shorter time steps, but other phases with softer variations in
membrane potential can be calculatetbnger time steps, reducing the total
number ofcomputations that mube performedto completethe simulation.

2.6.4 Tissuemodels

Naturally, the next step after generating single cardiomyocyte action potential
models (also called 0D models) is to bind them in several configurations. In
the cardiac tissue, cells are interconneéctdirough intercalated discs
containinggapjunctions, which behave much like ion chann&lse same way
there is a driving force between the exterior and interior of a cell, a driving
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force exists between two neighboring cells. Therefore, it is possibldulate

the current from one cell to the other by using the same expressions as for
individual ion channelsAssuming that a cell at positianis surrounded by

two cells f-1 and n+}, the existinggapjunctions enable two currents, which

are modulated by thgapjunction conductancé@ ) as follows

Eq.8

Eq.9

The membrane voltage incremewer time of cell n can be calculated with the
following equation

o e Q Q
Qo 0 Eq. 10

Where |on represents the membrane currents and & possible external
stimulus current. Enabling coupling between cells implikat voltage
differences between cells canwmgenerate current flowin fact, there is no
need to stimulate all cells at the sameetifor a strand to be depolarized
Triggering a depolarization asne cell should trigger enough current in its
neighbor to depolarize it as welh normal conditions which is key to
propagation. Thegap junction conductance determines the delay between
adacent cell depolarizations. To calculate the conduction velocity, modelers
identify this delay over a known distande; examplebetweera cell near the
beginning and a cell near the esfch 1D strand(which is easier in models with
homogeneously sized cefig)

To simulate a transmural section of the ventricular wall, strand models can be
assigned | ayers of different cardiomyocy
and coworkes® used a strand of 16&lindrical cells with 60 endocardial, 45

midmyocardial and 60 epicardial cellscrease in igpersion of repolarization

is one of the factors thaffects arhythmia generation (sex4), which can be

simulated using these models.
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Another parameter that can be calculatsthg aventricular transmural stnd

is itspseudeECG. Works in the literature used a virtual electrode placed 2 cm
form the epicardial erf#°81°2 where the spatially weighted addition of the
voltage gradient was determiri€tl

Eq. 11

Where r epresents the unipolar potenti al 0
radius andv  wis the distance from the electrode to any cell in the stfand

The resulting ECG does present a recognizable QRS complex and a T wave,

but the P wave is generated by the atrial depolarization and therefaraat

be present.Biomarkers aghe pseudd®T of the strand are useful in QT

prolongation experiments, for examplender exposure to QT prolonging

drugs.

2.6.5 Channeldrug interaction models

Channeldrug interactions are the core of arrhythmic and antiarrhythmic drugs,
but they are far from the only mechanism. In this section, we will take on the
main channetlrug interaction models that we used in D thesis.

Drugs can bind to a e variety of molecules including ion channels. A drug
that enhances the response level of its receptor, in this case an ion channel, is
called an agonist. The opposite definition of an agonist applies to inverse
agonists, whose effect reduces the respdesel of their target. Finally,
antagonists are drugs that bind to the same location of an agonist but produce
no effect, thus effectively reducing the response level of the ion channel.
Antiarrhythmic drugs blockion channels which meansthey are invese
agonists as theyreducetheir activity by binding tatheir proteic structure and
changing the stability a¢heir conformation®.

While binding to the channel does not guarantee an eftpentifying the
response of a drug through receptor occupancy makes the basis in the law of
mass action. A number n of ligands L and a remeBtcan bind at a rate k1
creating LR, then dissociate at a rate k2, each depending on the amount of R,
Lnand the complex IR, as described by the following diagrgrit4
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At steady state, an equilibriumtiieenbothbinding and unbindingelocities
is attained In that case,

Eq.12
Ka is defined as the equilibrium affinity constant
. o0y
V] [y - ~
Q Y 0 Eqg. 13
Kqis defined as the equilibrium dissociation constant
T YD
V] [y ~
Q 0'Y Eq. 14
If Ro is the total number of receptors,
Y oY Y
Eq. 15

thenit can be deduced that, for a number miofing sites per receptor,

0 'Y lY -~ 'Y >~
0 0 0 0 Eq. 16
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Where the concentration of,R complexes depends on the total amount of
receptors R(provided thenumberof ligands significantly exceeds the receptor
concentration), the concentration of free ligands L, and the rates of dissociation
and association;kand k. The number of binding sit€g) is also known as the

Hill factor and should be considered a measuwé molecularity and
cooperativity. K describeghe affinity of the ligand for the receptor. In the
context of the agonist drugrevious equations can be reformulatedescribe

its characteristic concentration response caiagefollows.

6 @ Eq.17

This expressiorshows thathe responséo a concentratiorC of the agonist
depends on the maximal response Emax and themsdimal effect
concentrations Eg. The classical dosesponse curves that can be described
with this equation are depicted Bjgurel13.
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Figure 13. Typical response curves as a function afrug A concentrations

The doseresponse curve shows a hyperbofiaturable dependence on
concentrations of drug, where the authors assigned 100% to Emax and an
arbitrary value to E€. The shape of the curve turns into a sigmoid when
represented in a semilogarithmic graph in panel B. Figure from Goodman and
Gilmarr®,

Eqg. 17 canalsobe written as

0 ©
0 Eq.18
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Antiarrhythmic drugs usuallgtecrease the activity oh@on channel, therefore
acting as inverse agonists. Their effects can be described witiaxifmal
inhibition concentrationflCsg) instead of EG with the following equation.

P Eq. 19

Where G, the conductance of an ion channel, depends on its maximal
conductance (fy, the concentrations of the drug (c), the fmHximal
inhibitory concentration (165 and H, the Hill coefficient (previously named

n). This mahematical formula has been widely used to experimentally
characterize drug effects on ion channel conductances, which has led to a
widespreadisein drugchannel modeling-°.66.69.90.91,10508

The Hill formalism is not the only description of the chardelg interaction.

In fact, as previously explored B6.2.2 Markov chain models desbe the

ion channel dynamics in great detaildcan also be extended to reproduce the
effects of drugs on ion current$his is done by includingliscrete states
corresponding tarug-bound conformationef the channét. Markov models
havebeen wilely used talescribechanneldrug interactiong-8991,106,107,109,110
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Chapter 3. Development of an in
silico TdP biomarker for early
proarrhythmicity detection

Romero, L.,Cano, J, GomisTena, J., Trenor, B., Sanz, F., Pastor, M., et al.
(2018).In Silico QT and APD prolongation assay for early screening of-drug
induced proarrhythmic risk.J. Chem. Inf. Model. 58, 86878.
doi:10.1021/acs.jcim.7b00440.

Romero LandCano J contributed equally to the development of this work.
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3.1 Introduction

Ever since Torsadde-Pointes(TdP) generation was found to be related to
prolongations on the QT intervegsulting from k. block®®484° this has been
the main reason for drug withdrawal from 1990 to 2&B@\ntiarrhythmic
drugs can successfully prevent the incidence of lethal arrhythimiaghey
canalsobe their causeFor example, miodaronehas shown great success
treating atrial fibrillation and vericular tachycardimrophylaxid!? but it has
also shown a high proarrhythmic potahfs. It wasattributedto itsimportant
off-targetblock of the key repolarizing current! andmarked QT interval
prolongatiod®. There is a rising concern about proarrhythmic efféttnce
they are not restricted to antiarrhythrsmmpoundsut sparmany drug types
including antibiotics, antipsychotics and antihistamifie$his represents
additionalchallenges in the drug development cyclewNcompounds already
takeon averagehirteenyears to complete the requirezkearch antesting*S,
during which the companies can spetywherefrom 50 to 2000 million
dollars*6. Current guideline$'>expanded theequiredtests by including two
new assays in order tedt for proarrhythmic effect3he first is the hERGYI
block assay, where tharug should not significantly reduce the amplitude
Drug developers have commonly referred to ag IC uM as the lowest
acceptable valuélhe secondisthet hor ough s@U/d@®, where th
segment of healthy subjects under exposure to the new compbaualdi not
increasemore than 8L0 mscompared to control condition& positive result

in these assayuldlead toremoval ofthe compound from the development
pipeline completely To prevent drugs from being removed later in the
developmentprocess the industry routinely performgreclinical assay$o
assesAPD prolongation ord: block!'”:1€ thanks to which lparmaceutical
companiec an decide to preventivelynstop the
early phases an avoid unnecessary l3%ses

The currenguidelineshavesuccessfulljed to no drugnducedTdP among

new drug&'® Howeer, while this demonstrates that thessag that were
proposedare sensitive they have also showpoor specificity towards
identifying TdP causing druéfs First, he hERG channetésponible for lx;)

shows to bind to numerous structuré®r that reason,ts channebrug
interactiondhave beenl e s cr i bed a $9'% mfac,mptes W ofu s O
the new compounds couldlock I«'%. Second, sme drugsthat strongly
interact withit are paradoxically safe and have never produced Toade
pointes, such as verapaf@fi® or propafenon@. In fact these drugs have
shown block of other ion channels suchas or In2"%5%%12¢ suggesting that
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other ion currets could modulater even counterache effects of & block.
Third, the thorough QT/QTcannot identify the cases where the prolongation
arises from interaction with channels other than hER@sequently, urrent
guidelines havereventednany potentiallybeneficial drugs from reaching the
market?>12¢

The Comprehensive in vitsim vivo Proarrhythmia Assay(CiPA)
acknowledged thesehallengesand is currently developing a newradigm

for drug testingduring developmeht Their approach is based on the
understanding of the fundamental mechanisms that drive the cardiac
electrophysiology, which are rooted in thidy of the ion chnnels. They
proposed alistoficompounesti gmed to evaluate the
human cardiac ion channedsid stem cell derived cardiomyocytemgether

with more traditionatlinical trials Importantly, the CiPA project includean
in-silico component aiming to develop a reference modelagsessthe
compounds d edrdiaeeledtrgphysialogytusing data from the in
vitro tests which highlights the importance of in silico modeling in modern
TdP predictionThe proposed refence drug classification was the one from
the Arizona Center for Education and Research on Therapeutics (AZCERT)
website, today known as Crediblemeds (wwwditiemeds.org).

Several works in the scientific literature creat@dmarkers to attempt to
predid drug TdP risk. A’ wor k t hat f ocwlldoekdpotency t he dr u
found that a 3dold margin between theffective free therapeuticplasma
concentration (EFTPC) and1ICso would ensure an adequate degree of
safety®, which highlightsthe importance of EFTP®/lirams andcoworker§®
propo®d a biomarkebased on Anear discriminant analysis of the steady state
APDgo. They tested several in silico models for risk predictions based en a 5
ms prolongation of the APJ threshold for determining dangerous drugs
They found t hRudy madél eof ti@6 Himan aventricular
cardiomyocyt®® performed the bestlbeit under exposure ta00-fold the
maximum plasma concentration (Cmax). Kramer and cowdtkéested
several models including combinations of logarithmffegénceshetween the
lwkand ot her sxTheyfonnd tha this vial@ showed the best results
when set between theal and k ICses, which underlined both the need for
multi-channel block and th@mportantrole of Ica in TdP prevention A
previous work from our grodp’ showed that classification of compounds
could be improved by including theitslblock together with the Ik, block.

It is also relevant to mention more recent works from other authors that were
published while the study of the present chapter was Ipgirfgrmed Passini
and coworker® analyzedthe occurrence of repolarization abnormalities in
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populations othuman APmodels to create a classifier for TdBinga 62
compound listThey also showed thaheir classifier could perform similarly,

or even better than studies in animditta and coworketd” found that
combining the net charge flowing througkx membran@on channelsluring
one beat(gNet) could correctly classify a list of 12 compounds in three
different risk groups (low, intermediate and highhe authors validated the
classifier with the 1&ompound validation list from CiPA in a later wétk
Theseresults were obtained for concentration ranges fuprto 25 timeghe
free plasma concentratiqnalled Cmax in their workParikh and coworkers
developed kassifiess for TdP risk stratification from direct featur&8. Abassi
and colleagueslso studied theagly assessment of proarrhythmic risk of drugs
using in vitro data andunicellular simulations They reproduced the
characteristics of the effects of drugsAiR duratonandQT prolongation and
TdP published 3D simulationbutwith muchsmallercomputationatosts

3.1.1 Objectives

To summarize, drugnduced arrhythmia represents a great challenge for
companiesregulators,and patientsThe abovementioned biomarkers were
developed to answer the need to detect compounds with potential
proarrhythmic effects and have shown good results. However, many of them
rely on ondemand simulations witAP models, sometimes requiring several
iterationsor even populations of hundreds or even thousands of models.
Additionally, the performance of Qmtervals measured in tissue strdadthe
prediction of TdP potential has yet to be assesBedrefore, & address this
challenge,we ought to create a neeasyto-use biomarker for drug TdP
potential prediction in early stages of their development. We splithisigter

in three stages that will guide our work towards the consecution of our main
goal. First, we ought to preompute a large number of simudats covering a
wide range of three ienhannel block combinations«) Iks and kay), both in
cellular and tissue models) reduce the technical requirements. Then, we
ought to create a biomarker that integrates thecprmeputed multichannel
block resits and therapeutic concentrations to predict the TdP potential of an
extensive list of drugs. Finally, we ought to evaluate the performance of our
biomarker on our drug dataset.

3.2 Materials and methods

3.2.1 Models
The O 6-Rudy (@RdY® (seeFigure 14) model of thehumanventricular
cardiomyocytewasthe stateof-the-art modelwhen this study was conceived

75



Prediction ofthe effectsof drugson cardia@activity using computer
simulations

It was calibrated by studying the electrophysiological behaviosarhples
from morethan 100 human hearts.

Figure14. Di agr a m o-Rudy niodel oOtbeHhanram ventricular
cardiomyocyte.Fi gure from extractfed OO6Har a

The ORd modeleproduceghe action potential(AP) time courseof three
cardiac ceHltypes éndocardial,midmyocardial andepicardial) byadapting
severalon currentconductances arphrameters, thus making it easy to study
the effects of external agents on three diffecemtiaccells

The ORd 1D model consists of a transmural strand of 165 cells, divitted in
three sections. A first section of 60 endocardial cells representsidrepart

of the cardiac ventricular wall and is followed by a-e#l section of
midmyocardial cells representing the core of the wall. The outer part of the
wall corresponds tdhe last 60 cell section of epicardial cells. The ORdl
model can also be uddo calculate the pseudeCG. To do so, weiseda
virtual electrode 2 cm away from the last epicardial dallprevent boundary
effects, the first and the last fifteen cells were omitted in the gradient
calculation.

We stimulated the single cell ORd mbdelivering a train of square pulses of
0.5 ms duration ané0 pA/pF directly to the cell membrane. Each one caused
an increase in membrane potentibhpproximately 1.5 times the one required
to start the depolarization phase, triggered entirely byas$tesodium current

76

and


























































































































































































































































































































































































