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Abstract 

The liquids resulting from pyrolysis of industrial plastic waste (IPW) and post-consumer colour 

and white plastic film waste (PCPW and PWPW, respectively) at pilot scale (80 kg/h) were widely 
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characterized by different techniques in order to assess their potential as both petrochemical raw 

material and automotive diesel fuel. It was found that pyrolysis liquids mainly consisted of 

hydrocarbons in the diesel boiling point range (180-380 ºC), amounting to approximately 50-55 % 

(in vol.). Therefore, the results were further contrasted with limits established by EN 590:2014 + 

A1:2017 standard for automotive diesel fuel. Although pyrolysis liquids showed good properties, 

they do not conform with some key fuel parameters for diesel engines, such as density, distillation 

curve, kinematic viscosity, flash point and cold filter plugging point. In order to improve these 

properties, PWPW pyrolysis liquids were distilled in the diesel range and the liquid fractions were 

characterized according to automotive diesel standards. It was found that the diesel fraction met 

all specifications with the exception of cold filter plugging point (-10 ºC to 4 ºC vs. -10 ºC winter/0 

ºC summer) and density (800-807 kg/m3 vs. 820 kg/m3). To accomplish with standards, a blend of 

diesel obtained from PWPW pyrolysis liquids and commercial diesel (50/50 wt. %) was also 

prepared and analysed. Results revealed that the blend met the requirements of the 21 parameters 

demanded by the standard for a product to be marketed and used as automotive fuel in diesel 

engine vehicles. 

1. Introduction 

Plastic materials did not begin to be industrially manufactured until the 1940s [1], thus they are 

relatively new substances. However, nowadays plastics are used for a large and growing variety 

of products, applications and sectors, becoming an essential part of our lives [2-5]. In this way, 

those characteristics that make plastics so useful, such as durability, lightness and other intrinsic 

properties, also lead to a challenging sustainable waste management [6], which has become a 

global problem. In this sense, and taking into account that many applications are characterized by 

a short life [3][7], the magnitude of the problem can be estimated considering the amount of 
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worldwide plastic production, that was increased from 1.5 Mt in 1950 to 348 Mt in 2017, and it 

could be tripled in 2050 [8].  

In 2016, about 27.1 Mt of plastic waste was collected through official schemes in Europe (EU 

28+2), of which 27.3 % (7.4 Mt) was sent to landfill, 41.6 % (11.3 Mt) was collected for energy 

recovery, and 31.1 % (8.4 Mt) for recycling (mainly through mechanical recycling) [8]. As a result, 

approximately 70 % of European plastic waste is not recycled due to technical or economic reasons 

and these circumstances affect the environment negatively in terms of pollution and greenhouse 

gas emissions, as well as social perception regarding waste management, consumer’s product 

industry and policy makers [9,10]. This lack of recycling contradicts the European policies directed 

at transforming Europe into a more circular and resourcefully efficient economy. This is the 

principle that has prompted the EU to adopt new directives that include a substantial reduction in 

landfilling of municipal solid waste to a maximum of 10 % by 2035 and a total ban on the landfill 

of separately collected waste [11].  

At present, the main recycling route to recover the intrinsic value of plastics relies on mechanical 

recycling [12,13], which entails the processing of waste by physical means back into plastic 

products. However, there are still economical and technical barriers to mechanical recycling [14]. 

Therefore, it will be necessary to combine mechanical recycling methods with another valorisation 

options in order to manage the huge amount of plastic waste properly [9,10,15]. The combination 

of these technologies as complementary methods is emerging as the only way to comply with the 

objectives established by the EU (regarding waste disposal) in order to reduce the quantity of non-

recycled plastic waste sent to landfill and to develop a circular economy strategy. 

Based on URBASER’s database (multinational environmental service provider), the most 

common polymers in municipal plastic waste are polyolefin compounds: low density polyethylene 
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(LDPE), high density polyethylene (HDPE), polypropylene (PP) and linear low-density 

polyethylene (LLDPE). In this sense it is clear the tremendous interest of a process that would 

allow the conversion of polyolefin into a valuable material. One of the most promising options in 

order to valorise this kind of plastic waste is the production of liquids by means of a 

thermochemical process, and pyrolysis seems to be the predominant technology used [16]. The 

process involves thermal decomposition of large polymeric chains into smaller molecules at 

moderate to high temperatures (400 - 800 ºC) in absence of oxygen [13,16,17], thus obtaining very 

valuable products with high potential to be used as fuel or petrochemical feedstock [18-21].  

Pyrolysis products can be divided into three fractions: solid residue (char), oil/wax and 

combustible gases [22-24]. Although the quantity and quality of the these fractions strongly 

depend on plastic waste composition and the parameters used in the process [3,25], pyrolysis is an 

appropriate process to maximise the liquid yield, as proved by several studies which have reached 

above 75 % yield to liquids by processing polyolefins using catalytic [26-30] or non-catalytic 

pyrolysis [31-34].  

In general, liquids coming from pyrolysis of polyolefins have similar characteristics to diesel 

obtained from petrochemical feedstocks [35], but some properties of these pyrolysis liquids 

prevent their direct use as automotive diesel. Therefore, there is need to carry out, at least, an 

upgrading step (i.e. distillation) [36,37] to improve some properties (i.e. density and flash point) 

and meet the requirements for automotive diesel established by EN 590:2014 + A1:2017 standard 

[38] that has been developed by the European Committee for Standardization. This European 

Standard specifies requirements and test methods for marketed and delivered automotive diesel 

fuel used in diesel engine vehicles designed to run on automotive diesel fuel that contains up to 7 

% (vol.) of Fatty Acid Methyl Ester (FAME) [38]. 
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In this context, URBASER has recently developed a Plastic to Oil (PtO) process to carry out the 

chemical recycling of  polyolefins recovered from MSW, obtaining a high quality pyrolysis liquid 

product [39]. The aim of this paper is to carry out a detailed characterization of the pyrolysis liquids 

obtained from industrial and post-consumer plastic film waste by PtO process in order to evaluate 

their potential as both fuel and petrochemical raw material. Taking into account that the diesel 

fraction is predominant in these liquids, some distillations in the diesel range were performed and 

the different liquid fractions obtained were further characterized with the aim of appraising if they 

meet the requirements according to the EN 590:2014 + A1:2017 standard [38]. In addition, a blend 

of diesel from pyrolysis liquids and a commercial diesel was prepared and analysed following 

standards for automotive diesel. 

 

2. Materials and Methods 

2.1. Feedstocks 

Three different plastic feedstocks have been used to produce three kinds of pyrolysis liquids. 

These materials include industrial plastic waste (IPW), provided by Granzaplast S. L. Plastics 

Recycling, and two post-consumer plastic film waste recovered by manual sorting from mixed 

MSW at the Complex for Treatment of MSW of Zaragoza (Urbaser facility) and pretreated using 

conventional methods (optical sorting, shredding in flakes having a size of 40 mm, wet cleaning 

and drying) to produce a granulated material. Then, two types of granules were obtained: 1) 

PCPW; granules obtained from colour plastic film recovered by ballistic separators and then 

manual sorting; and 2) PWPW: granules coming from white plastic film from primary sorting 

process, in which bulky materials are manually separated in a closed booth. Some pictures of the 

colour and white plastic film bales used to produce granules, as well as pictures of IPW, PCPW 
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and PWPW are given in supporting information. Results obtained from ultimate and proximate 

analysis of these materials are also displayed in supporting information. The polymer composition 

of the three different feedstocks is shown in Table 1. As it can be seen, the main component of the 

industrial plastic waste is LDPE, whereas LLDPE is the main polymer type in post-consumer 

plastic waste.  

 

Table 1. Origin and composition of the different plastic feedstocks used for obtaining pyrolysis 

liquid samples. 

Feedstock 

identification 
Feedstock origin 

Polyolefin composition (wt. %) 
Shape 

LDPE LLDPE PP 

IPW Industrial plastic waste > 91 - < 9 granules 

PCPW 
Post-consumer colour plastic waste 

segregated from MSW 
24 69 7 granules 

PWPW 
Post-consumer white plastic waste 

segregated from MSW 
26 66 8 granules 

 

2.1. Pyrolysis process 

The URBASER PtO process used for obtaining pyrolysis liquids consists of two clearly 

differentiated steps [39]. At the first area, plastic waste is introduced into a hopper where it is 

stored during each test. From there and by means of a double guillotine valve system, the polymer 

is fed to the melter, where it is heated in an inert atmosphere up to the necessary temperature to 

obtain an adequate viscosity for polymer transfer. Then, the molten polymer is continuously sent 

into the pyrolysis reactor. The pyrolysis reactor is a continuous flow stirred tank in which thermal 

degradation of polymers and volatilization of products simultaneously occur under a steady state. 
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The rate of feed input is gradually adjusted to that of product output in order to keep an amount of 

reactor contents constant. The gas leaving reactor enters a two-step condensation system, where it 

is cooled and separated into a gaseous product and a liquid product. The pyrolysis liquids are 

collected in an insulated tank, which is also heated by an electric tracing system to prevent the 

heavy hydrocarbons from freezing. 

The installation used to carry out the process described in [39] is shown in Figure 1. The thermal 

cracking reactor has a production capacity of pyrolysis liquids of 80 kg/h and possesses two 

ceramic panels (model WATLOW VS426A14XC) for heating. The plant is also equipped with the 

following auxiliary services: thermal oil to heat up the melter, two chillers to carry out the 

condensation steps, compressed air for the automatic valves and nitrogen to inert the plant. The 

plant has a complete monitoring and control system that is controlled through a SCADA system 

(PLC: TIA-portal; Automatic logic controller: S7-1500).  

 

 

Figure 1. Pilot plant facility used to produce the pyrolysis liquids. 
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2.2. Pyrolysis products  

During the pyrolysis process, the chains of polyolefins, previously melted, crack into smaller 

pieces of hydrocarbons to obtain a mixture of compounds ranging from four (C4) to forty-four 

(C44) carbon atoms. The yield of liquid, gas and carbon solid (char) derived from thermal 

degradation of IPW, PCPW and PWPW through PtO technology range around 80-85 % (wt.), 10-

15 % (wt.) and 5-10 % (wt.), respectively. 

Pyrolysis tests were carried out under the same operating conditions for the three different 

feedstocks (IPW, PCPW and PWPW). Representative samples of pyrolysis liquids were collected 

every 30 minutes once the steady state was reached.  The samples were characterized by different 

techniques, including PONA analysis, simulated distillation and bromine number determination. 

Some properties, according to the EN 590:2014 + A1:2017 standard [38], were also analysed in 

the CLH Central Laboratory from San Fernando de Henares (Madrid). Note that the results showed 

in this paper are the average values obtained from all the samples taken during a pyrolysis test. 

 

2.2. Distillation equipment 

The distillation of the PWPW pyrolysis liquids in the diesel range was made using a Pilodist 

PD104 HC distillation system. This equipment is characterized by a high separation efficiency for 

the fractionation of gasoline and diesel cuts from pyrolysis hydrocarbon mixtures. The system 

consists of a 35 L stirred stainless steel round-bottomed flask, which is mounted in an aluminium 

support frame. The filling process flows by means of a 100 mm neck (with viewing glass) and the 

draining by means of a drain valve at the bottom. The silvered distillation column DN80 made of 

borosilicate glass is equipped with a wire mesh packing to establish a high distillation rate with 

high separation efficiency. The fractions are distributed through an automatic fraction collector to 
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six final receivers of 20 L each. All distillation parameters, such as temperature, vacuum, reflux 

ratio and fraction collector, are controlled via the software linked to the processor control unit 

DCD4001. 

 

2.3. Characterization techniques of liquids 

2.3.1. Chromatographic analysis 

The detailed PONA (paraffins, olefins, naphthenes and aromatics) analysis was carried out in a 

gas chromatograph VARIAN 3900 DHA equipped with a FID detector (Flame Ionization 

Detector). The conditions for this chromatographic analysis are shown in Table 2 [40]. 

 

Table 2. Conditions of the PONA chromatographic analysis. 

Parameter Condition 

Capillary Column Type TRB-Petrol (100 m x 0,25 mm x 0,5 µm) 

Injector Temperature 250 ºC 

Carrier gas Ar 

Flow Speed 1,5 mL/min 

Detector Temperature 300 ºC 

Column Temperature 

35 ºC during 15 min 

2.5 ºC/min to reach 300 ºC 

300 ºC during 79 min 
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Qualitative GCxGC analysis was done by using a gas chromatograph (Agilent GC system 

7890A) coupled to a FID detector and a mass spectrometer (Agilent 5977A MSD). The detailed 

information of the analytical procedure and the attained data are provided in supporting 

information. 

 

2.3.2. Simulated distillation 

This method is widely used to determine the boiling range distribution of petroleum products. 

For the selected samples, the tests have been made according to ASTM D2887 – 19 [41], using an 

Agilent 7890B gas chromatograph. The gas chromatographic simulation of this technique can be 

used for replacing conventional distillation methods and testing product specification.  

 

2.3.3. Bromine number 

Bromine number is expressed as g Br2 per 100 g of sample and it is a proportional measurement 

of the olefin quantity. It is a highly demanding determination usually made by means of a standard 

titration of the total olefins [42]. With this analytical technique the double bonds present in the 

olefinic hydrocarbons are displaced by Br2 in an acidic medium. The Br2 excess is indirectly 

titrated using a sodium thiosulphate (Na2S2O3) aqueous solution as titrant agent, according to 

ASTM D1159 – 07(2017) standard [43]. 

 

2.3.4. Other properties 

The rest of properties analysed for the pyrolysis liquids, the diesel cuts obtained by distillation, 

the blend of diesel from pyrolysis liquids with commercial diesel, and the commercial diesel, 

follows official standards, according to the European Committee for Standardization (CEN) or 
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ASTM. The properties analysed, the related standards and the laboratory equipment used have 

been summarized in Table 3.  

 

Table 3. Properties determined, related standards and laboratory equipment used. 

Properties by EN 590:2014 + A1:2017 

standard [38] 
Standard Equipment 

Cetane number ASTM D7668 – 17 [44] CID (PAC) 

Cetane Index ASTM D4737 – 10 [45] - 

Density, 15 ºC ASTM D4052 – 18a [46] 
Mettler Toledo 

Density Meter DE40 

Polycyclic aromatics hydrocarbons EN 12916:2016 [47] 

Agilent 1100 series 

(HPLC): 

Polar column G1316 

Quaternary pump 

G1311A 

Degasifier G1322A 

RI detector Agilent 

1100 G1362A 

Sulphur EN 20846:2011 [48] Thermo SN 

Distillation ASTM D86 [49] PAC OptiDist 

Kinematic viscosity, 40 ºC ASTM D445 – 19 [50] Canon CAV – 2100 

Flash point ASTM D93 – 18 [51] Herzog HPF360 

Cold Filter Plugging Point (CFPP) EN 116:2015 [52] ISL V22101 

Pour point ASTM D2500 – 17a [53] ISL CPP 5GS 

Carbon residue (respect to 10 % v/v 

distillation residue) 
ASTM D4530 – 15 [54] ALCOR MCRT 160 

Wear scar, 60 ºC EN ISO 12156-1:2006 [55] 

PCS HFRR CAB  

Nikon microscope at 

100x magnification 
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Water and sediments content ASTM D2709 – 16 [56] 

STANHOPE-SETA

 9000-2P

  

Water content EN ISO 12937:2000 [57] 

Metrohm: 

803 Ti stand module  

851 titrando module 

Total contamination EN 12662:2014 [58] 
Standard laboratory 

equipment 

Ash content ASTM D482 – 13 [59] 
Standard laboratory 

equipment 

Corrosiveness to copper (3 h, 50 ºC) ASTM D130 – 18 [60] MC39 Julabo 

Oxidative stability:   

Total insolubles  EN ISO 12205:1996 [61] 
Dott Giani Scarin & 

C. 

Accelerated method EN 15751:2014 [62] 
Dott Giani Scarin & 

C. 

Colour ASTM D6045 – 12 [63] PFX 195 Lovibond 

FAME content EN 14078:2014 [64] 
Perkin Elmer 

Spectrum One 

Clear and bright ASTM D4176 – 04 [65] 
Standard laboratory 

equipment 

Other diesel properties   

Simulated distillation ASTM D2887 – 19 [66] 
Agilent 7890B gas 

chromatograph 

High heating value ASTM D240 – 19 [67] 

Parr 6100 

Compensated 

Calorimeter 

Parr 1108 Oxygen 

bomb 

Total acid number ASTM D664 – 18e2 [68] 

Metrohm: 

Autosampler 815 

Robotic Dosino 800  
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Stirrer 801 

Cl content ASTM D7536 – 16 [69] 
Philips PW-2424 

MAGIX 

 

3. Results and discussion 

3.1. Assessment as raw material 

The results of the PONA analysis for the pyrolysis liquids obtained from the three different 

feedstocks, IPW, PCPW and PWPW, are shown in Table 4. 

  

Table 4. PONA analysis results of pyrolysis liquids from IPW, PCPW and PWPW. 

 IPW liquids PCPW liquids PWPW liquids 

Paraffins (wt. %) 38.7 50.5 57.8 

Olefins (wt. %) 18.4 22.5 19.3 

Aromatics (wt. %) 16.5 19.0 14.2 

Naphthenes (wt. %) 26.4 8.0 8.7 

 

Results from Table 4 show that paraffins are the main compound in terms of hydrocarbon 

families. This is consequent with the polyolefin thermal cracking mechanism, in which the random 

rupture of the chains leads to aliphatic chains with different carbon atom number [70] and with the 

prevalence of paraffinic compounds [35,37]. The predominance of paraffinic hydrocarbons was 

also reported by Onwudili et al. [31]. These authors observed the presence of more than 40 % of 

linear alkanes in the pyrolysis liquids obtained from pure LDPE. The presence of naphthenes and 

aromatic compounds in pyrolysis liquids is due to the ternary gas-phase reactions of 

thermodynamically unstable low alkanes and alkenes at pyrolysis temperatures [70]. 
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As can be seen in Table 4, the olefin and aromatic contents are approximately the same for the 

liquids obtained from the pyrolysis of IPW, PCPW and PWPW (although less aromatics are 

present in liquids from PWPW). However, the paraffins and naphthenes contents are ostensibly 

different for the IPW liquids in comparison with the PCPW and PWPW liquids. The content in 

paraffins is higher in pyrolysis liquids from post-consumer plastic waste (PCPW and PWPW), in 

which LLDPE is the main component (Table 1). In contrast, the content in naphthenes in PCPW 

and PWPW liquids is significantly lower than in IPW liquids. Note that LDPE is the main 

component of IPW (Table 1). Taking into account the composition of raw materials, it can be 

concluded that the observed trend in naphthenes content is consistent with the results obtained by 

Abbas-Abadi et al. [71] and Lee [72], who reported that the thermal degradation of LLDPE 

produces significantly fewer amounts of naphthenes than in the case of LDPE or PP. Table 5 shows 

the distribution of paraffins and olefins by carbon atom number extracted from PONA analysis. 

 

Table 5. Distribution of paraffins and olefins by carbon atom number of pyrolysis liquids from 

IPW, PCPW and PWPW.* 

Carbon 

atom 

number 

IPW liquids PCPW liquids PWPW liquids 

Paraffins 

(wt. %) 

Olefins  

(wt. %) 

Paraffins  

(wt. %) 

Olefins  

(wt. %) 

Paraffins  

(wt. %) 

Olefins  

(wt. %) 

5 2.4 4 1.7 2.39 3.23 4.01 

6 4.4 11.8 3.1 8.76 3.91 10.81 

7 6.8 11.8 4.8 9.70 5.48 9.46 

8 6.8 10.2 5.5 8.56 5.58 7.86 

9 6.8 9.0 5.7 8.07 5.55 7.09 

10 6.8 9.0 6.3 8.61 5.82 8.25 
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11 7.2 7.7 5.9 7.84 6.39 7.61 

12 6.6 6.8 6.0 6.92 6.34 6.96 

13 6.2 6.0 6.0 6.38 5.88 5.95 

14 5.8 4.9 5.8 5.38 5.63 5.20 

15 5.5 3.5 5.9 4.25 5.59 4.06 

16 5.1 3.1 5.6 3.83 5.33 3.87 

17 4.6 2.2 5.3 2.92 4.85 3.13 

18 4.0 2.2 4.8 2.33 4.36 3.01 

19 3.7 1.7 4.5 2.12 3.81 2.26 

20 3.2 1.4 4.1 1.98 3.47 1.98 

21 2.7 1.1 3.7 1.43 3.09 1.66 

22 2.3 0.9 3.3 1.17 2.71 1.42 

23 1.9 0.7 2.9 1.10 2.29 1.23 

24 1.6 0.7 2.5 0.67 2.00 1.11 

25 1.3 0.4 2.1 0.66 1.65 0.65 

26 1.1 0.4 1.9 0.36 1.43 0.63 

27 0.8 0.2 1.5 0.53 1.22 0.39 

28 0.7 0.2 1.3 0.36 0.95 0.55 

29 0.5  1.1 0.20 0.78 0.41 

30 0.3  0.9 0.19 0.63 0.21 

31 0.4  0.7  0.52 0.21 

32 0.3  0.6  0.46  

33 0.2  0.5  0.38  

34   0.4  0.28  

35   0.3  0.23  

36   0.2  0.18  

* Uncertainties of the values given in the Table are ±0.5 (wt. %). 
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For all the pyrolysis liquids, the paraffins are concentrated between C7 and C18 carbon atom 

compounds, whereas the majority of compounds in the case of olefin ranges between C6 to C15 

(especially between C6 to C8). C7 to C18 paraffinic compounds make up the 72.2 % of total 

paraffins for IPW liquids, 67.6 % for PCPW liquids, and 66.8 % for PWPW liquids, while C6 to 

C15 compounds entail the 80.7 % of total olefins for IPW liquids, 74.5 % for PCPW liquids, and 

73.2 % for PWPW liquids.  

Petroleum products are always a more or less complex mixture of hydrocarbons obtained by 

distillation and/or refining [73]. By considering a modern refinery scheme with many different 

units like hydrotreating, catalytic reforming, hydrocracking or alkylation, the pyrolysis liquids 

showed in Tables 4 and 5 become promising raw materials to be used downstream the petroleum 

crude distillation. Therefore, these liquids are clearly a higher quality feedstock than petroleum 

crude oil, with a high content in alkanes, as shown in Table 4, and with a carbon atom distribution 

considerably lighter than petroleum (Table 5). If the pyrolysis liquids from polyolefins were used 

as feedstock in a typical refinery, the products obtained would be similar to the products that are 

normally produced by distillation and/or refining of crude (e.g., gasoline, naphtha, kerosene, fuel 

oil and heavier). 

Moving to a petrochemical point of view, it is worth noting that the pyrolysis liquids could also 

be used to obtain chemical compounds of interest by means of separation and purification steps. 

In this sense, paraffinic fractions from C12 to C18 and olefins are highly desirable raw materials 

in detergent industries for the manufacture of chemical products, such as alkyl-benzene sulphonic 

acid (ABSA) and sodium lauryl ether sulphate (SLES) [31], among others. In addition, aromatic 

compounds could be a source of precursors for polymerization of plastic monomers [74]. Benzene, 

toluene and xylenes (BTXs), which could be recovered by extractive or azeotropic distillation, 
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solvent extraction or adsorption, are major sources of chemicals [73]. However, the pyrolysis 

liquids obtained are not very rich in aromatic compounds (see Table 4), and consequently further 

work is necessary in order to assess if the recovery of these aromatic compounds are worthy 

enough to make their recovering profitable.  

 

3.2. Quality as fuel 

One of the most extended and studied uses for the pyrolysis liquids coming from plastic waste 

is to obtain a fuel, which could be used as automotive diesel [24,25,28,32,35,37]. A few authors 

have reported that this kind of product presents properties similar to diesel and therefore they could 

be used “as produced” for power generation [25,37]. In contrast, other authors have detected the 

necessity of carrying out an upgrading step of the pyrolysis liquids via distillation [24,35] or 

hydrotreating [36,75,76], or by blending with other petroleum products [74,77] prior to their use 

as fuel in automotive diesel engines.  

In order to evaluate the fuel quality of the pyrolysis liquids obtained by the URBASER PtO 

process, an initial analysis based on compounds distribution in liquids by boiling points (simulated 

distillation or simdist) was performed. The results obtained are shown in Table 6. 

 

Table 6. Simdist according to ASTM D2887 – 19 [66] of the IPW, PCPW and PWPW liquids 

obtained by the URBASER PtO process. 

% recovered 

(vol. %) 

Determined Values Boiling Point (ºC) 

IPW liquids 
PCPW 

liquids 

PWPW 

liquids 

Initial Boiling 

point 
59.0 51.7 49.3 
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5 64.9 70.4 69.3 

10 93.2 95.1 96.7 

20 124.2 130.1 133.4 

30 151.7 173.3 169.7 

40 186.6 203.5 203.4 

50 216.3 235.7 225.8 

60 252.9 269.8 264.9 

65 270.5 287.8 284.3 

80 329.5 344.8 331.3 

85 353.7 369.4 346.9 

90 380.6 399.0 380.6 

95 421.6 445.7 430.3 

Final Boiling 

Point 
506.9 641.6 567.0 

 

The detailed results from simdist analysis (see supporting information) indicate that a minority 

fraction in the pyrolysis liquids distils at temperatures above 380 ºC, thus accounting for 10, 13 

and 12 % for the IPW, PCPW and PWPW liquids, respectively. The light fraction, with a boiling 

point lower than 180 ºC, is the second one in terms of volume contribution, accounting for 38, 33 

and 33 % for the IPW, PCPW and PWPW liquids, respectively. Consequently, the main fraction 

is in the boiling point range from 180 to 380 ºC and represents a 52 % of the total for the IPW 

liquids, 54 % for the PCPW liquids and 57 % for the PWPW liquids. This fraction corresponds to 

the diesel boiling point range. Considering the results from simdist analysis, it can be concluded 

that the pyrolysis liquids mainly consist of hydrocarbons in the diesel boiling point range, and 

there is no significant differences for the three types of pyrolysis liquids related to the hydrocarbon 
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boiling point distribution by each feedstock. Therefore, properties of pyrolysis liquids could be 

similar to diesel fuel. 

The definition of diesel fuel comprises a wide possible combination of properties (such as flash 

point, cetane number, viscosity, stability, volatility, etc.). To characterize diesel fuels and thereby 

establish a framework of definition and reference, various classifications that depend on the 

country are used [73]. In this study, the assessment of the potential use of pyrolysis liquids as 

diesel fuel, without any upgrading step (not even a simple distillation), has been carried out 

according to EN 590:2014 + A1:2017 standard [38]. This is the European framework reference for 

fuels to be used in diesel engine vehicles designed to run on automotive diesel fuel that contains 

up to 7 % (vol.) FAME. In addition, and according to the Spanish legislation (RD 61/2006 [78] 

and RD 1088/2010 [79]), the limits for the use of diesel fuel in agricultural vehicles and maritime 

transports (class B) and in household heating systems (class C) have been considered. Table 7 

shows the basic properties obtained for the pyrolysis liquids coming from the three feedstocks 

(IPW, PCPW and PWPW), required by EN 590:2014 + A1:2017 [38] for automotive diesel and 

by RD 61/2006 [78] and RD 1088/2010 [79] for class B and C diesels, and other additional 

properties. 

 

Table 7. Basic properties of the pyrolysis liquids obtained from the three feedstocks (IPW, PCPW 

and PWPW), limits established by EN 590:2014 + A1:2017 standard [38] (automotive diesel) and 

RD 61/2006 [78] and RD 1088/2010 [79] (class B and C diesel) for these properties, and other 

additional properties. 
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Properties by EN 590:2014 + 

A1:2017 standard, RD 61/2006 

and RD 1088/2010 

Units 

Limits [38,78,79] 
IPW 

liquids 

PCPW 

liquids 

PWPW 

liquids Automotive 

diesel 

Class B 

diesel 

Class C 

diesel  

Cetane index  > 46 > 46 n/a 53.7 62.3 66.1 

Density, 15 ºC kg/m3 820/845 820/880 < 900 793 799 791 

Polycyclic aromatic 

hydrocarbons 
wt. % < 8 n/a n/a 3.7 3.1 2.1 

Sulphur mg/kg < 10  < 1000 < 1000 12.9 19.0 4.4 

Distillation: º C       

65 % recovered (vol. %)  > 250 > 250 > 250 262 289 311 

80 % recovered (vol. %)  n/a n/a < 390 315 343 368 

85 % recovered (vol. %)  < 350 < 350 n/a 336 366 391 

95 % recovered (vol. %)  < 360 < 370 n/a > 365 421 452 

Kinematic viscosity, 40 ºC mm2/s 2.00/4.50 2.0/4.5 < 7.0 1.29 1.81 1.89 

Flash point º C > 55 > 60 > 60 < 25 < 25 < 25 

Cold Filter Plugging Point º C    10 25 22 

Winter (October 1st – March 31st)  < -10 < -10 < -6    

Summer (April 1st – September 

30th) 
 < 0 < 0 < -6    

Lubricity, wear scar, 60 ºC m < 460 n/a n/a 377 317 362 

Water content mg/kg  < 200 < 200 n/a 130 150 130 

Other basic properties Units Standard 
IPW 

liquids 

PCPW 

liquids 

PWPW 

liquids 

High Heating Value (HHV) MJ/kg - 46.64 46.43 48.47 

Total acid number mg KOH/g ASTM D664 – 18e2 0.02 0.00 1.30 

Cl content mg/kg ASTM D7536 – 16 8.0 4.0 2.5 

Bromine number 
g Br2/100 

g sample 
ASTM D1159 – 07 39.6 40.0 31.0 
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3.2.1. Cetane index and high heating value 

In many combustion diesel fuel systems and particularly in diesel engines, there is a lapse called 

“ignition delay” from fuel injection to the moment of autoignition. The higher tendency of a fuel 

to autoignition, the shorter its ignition delay is, and therefore the fuel presents better performance 

in the combustion process. Cetane number represents a fuel characteristic that is closely linked to 

autoignition [80]. However, cetane number is a property difficult to determine and with a 

considerably uncertain result, so the cetane index, which is a substitute for the cetane number [25], 

has been determined and used (Table 7). As can be seen, the results obtained for the three pyrolysis 

liquids are similar to the typical values for commercial diesel fuel, which presents cetane index 

values in the range of 45 – 70 [81,82]. As has been reported in the literature [83], paraffinic 

hydrocarbons have the highest cetane indexes, while aromatic compounds the lowest ones. 

According to the PONA analysis showed in Table 4, the PWPW liquids have a higher paraffin 

content and a lower aromatic content than IPW and PCPW liquids. As a result, the cetane index of 

the PWPW liquids is the higher one, but the other two pyrolysis liquids have also an appropriate 

cetane index for their use in diesel combustion engines. 

Other diesel property related to the combustion process is the high heating value (HHV), which 

gives an idea of the thermochemical potential of a compound, representing the released energy in 

a complete combustion reaction with sufficient air. Although HHV is not specified in diesel fuel 

standards, high values of this property ensure the feasibility of using it as fuel. As shown in Table 

7, pyrolysis liquids obtained from the three feedstocks (IPW, PCPW and PWPW) exhibited values 

of HHV very close to diesel, heavy fuel oil or other fuels (gasoline, kerosene, furnace oil, etc.) 

[24,35,77], thus confirming their combustion potential. 
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3.2.2 Polycyclic aromatic hydrocarbons, sulphur, water and Cl content 

As noted earlier, a high content in aromatic compounds results in a poor cetane index in a fuel. 

Furthermore, particulate emission in diesel engines is directly related to PAHs content [84]. 

Consequently, PAHs content is limited by EN 590:2014 + A1:2017 standard [38] to 8 (wt. %), 

which is higher than the values obtained for the three types of pyrolysis liquids. 

The presence of sulphur in diesel fuel forms SO2 and SO3 during the combustion process, which 

are then released into the atmosphere. These gases react with water to form sulphates and acid rain 

that is harmful to the environment [85]. Moreover, current treatment technologies for the emissions 

of the diesel engine exhaust gases are based on catalytic converters, whose efficacy is severely 

affected by sulphur level [86]. For these reasons, the sulphur level is strongly limited to 10 mg/kg 

for automotive diesel. This value is slightly lower than the values obtained for IPW liquids (16.5 

mg/kg) and PCPW liquids (19.0 mg/kg). However, PWPW liquids with a sulphur content of 4.4 

mg/kg meet this standard, so it can be concluded that PWPW would be a more suitable feedstock 

regarding sulphur content. These results, very close or under the requirements, indicate that the 

sulphur content is not expected to be a problem for the use of the liquids as diesel fuel. 

All fuels have certain tendency to contain a higher or lower quantity of water, depending on their 

nature and room temperature. Water causes several problems in engines and other combustion 

devices like combustors, turbines or boilers, e.g. corrosion in the fuel feeding system or filter 

silting because of water crystal formation or microbiological growing in the interphase fuel/water 

[87]. Considering these drawbacks, fuels that do not meet water content requirement are directly 

considered out of specifications, and their use is automatically discarded. As can be observed in 

Table 7, the water content in all the pyrolysis liquids meet the value required by diesel automotive 

standards.  
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Pyrolysis liquids obtained from plastic waste often contain chlorinated compounds because of 

the presence of chlorine in plastic additives. This is very detrimental either to use such liquids 

directly as fuels [88] or supply them to the petrochemical industry [89]. In addition, inorganic 

chlorine could be a cause of corrosion in the engine, while organic chlorine may become a source 

of harmful substances [90]. The chlorine detected in the IPW, PCPW and PWPW liquids was 

always below 8 ppm (Table 7). Note that, this value is an ultra-low level content, even compared 

to other chlorine low level pyrolysis liquids, which have been previously dechlorinated [88,90], 

and have been identified as a suitable feedstock for refineries [91]. 

 

3.2.3. Lubricity 

This property is a measurement of the fuel´s own lubrication capacity necessary for different 

parts of the engine. This capacity is not directly related to the viscosity of the fuel, but severely 

influenced by some components. Oxygenated, nitrogenated and sulphurated polycyclic aromatic 

hydrocarbons enhance the lubricity of fuel [92]. In absence of these substances, olefinic 

hydrocarbons are good lubricants, whereas the lubricity of the paraffinic hydrocarbons is poor 

[93]. As shown in Table 4, the IPW, PCPW and PWPW liquids have relatively high olefin content, 

so it is expected to find a product with good lubricant properties. This fact has been confirmed by 

the results obtained for wear scar at 60 ºC (Table 7). As can be seen, the three pyrolysis liquids 

exhibited lubricities that fulfil the automotive diesel requirements (< 460 m). In particular, PCPW 

liquids present a better lubricity (317 m) than the other two liquids (IPW liquids: 362 m; PWPW 

liquids: 377 m), probably due to the higher content in olefins of PCPW liquids. This observation 

allows confirming that olefins are the main lubricant compounds in the pyrolysis liquids, thus 
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discarding the noticeable presence of other substances, which may have a great influence in 

lubricity.  

 

3.2.4. Total acid number 

Acid compounds present in diesel may become salts by reaction with Ca, Na or K ions that could 

be found at a trace level [93]. These salts cause clogging problems in filters and injectors [94]. 

Therefore, and despite not being a specified parameter by legislation or standard, it is important to 

control the acid number in an adequate value. As can be seen in Table 7, the results obtained with 

respect to acid number for the three pyrolysis liquids (< 1,5 mg KOH/g) are in the range of those 

typical reported for commercial diesel fuel. Therefore, it is not expected to cause operational 

problems [95]. However, acid number must be controlled at all time in this kind of products due 

to a possible liquid degradation that may lead to an acidity increment. Note that an increase in 

TAN value would affect metal corrosion and elastomer degradation negatively [96]. Considering 

this, two weeks after the first analysis, additional acid number measurements were carried out for 

the three pyrolysis liquids, obtaining total acid number values similar to the original ones (e.g. 

PWPW liquids: 1.25 mg KOH/g after two weeks vs. 1.30 mg KOH/g). This fact confirms the 

stability of the samples regarding acidity. 

 

3.2.5. Distillation curve 

As noted earlier, a distillation curve test results in a curve that represents the percentage of 

recovered volume versus boiling temperature. Due to the importance of a distillation curve shape 

and its implication for engine performance, distillation curve is a valuable metric measurement of 

the overall volatility and driveability of a fuel [97]. Elevated final boiling points indicate long 
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combustion times, incomplete combustion of heavy hydrocarbons that leads to deposits and smoke 

formation increment, and poor atomization of the fuel/air mixture, which causes a diminution in 

the engine power and an increment in the fuel consumption [98]. On the other hand, high volatile 

diesel fuels may present vapour lock problems and poor atomization of the fuel/air mixture [99]. 

The light range of a distillation curve has little influence on engine performance, so it is not directly 

limited up to 65 % (in vol.), but no more than 65 % (in vol.) of diesel fuel has to be recovered at 

temperatures below 250 ºC. As can be observed in Table 7, this requirement is fulfilled by all the 

samples. However, it is important to indicate that this fact does not guarantee that the liquid product 

meets other key diesel fuel limits, such as density and flash point specification, which are indirectly 

limited by the content in light hydrocarbons. In the case of diesel fuel, the most important 

restrictions are in the medium to high range of the boiling temperature curve (mainly temperatures 

involving the 65 – 95 % range of the recovered liquid volume) in order to limit the content in heavy 

hydrocarbons. For automotive diesel, these limits are 350 ºC for the 85 % and 360 ºC for the 95 % 

of the recovered volume of liquids. For class B diesel, the first limit is also 350 ºC for the 85 % of 

liquid volume, but it is slightly higher for the second limit, 370 ºC, for the 95 % of liquid volume. 

According to the results in Table 7, it can be observed that IPW liquids meet the first restriction 

for automotive diesel, but not the second one. As can also be seen, the final boiling point (FBP) 

for the IPW liquids was 365 ºC, which corresponds to a value of 91.5 % (vol. %) of liquid 

recovered; therefore, the temperature for a theoretical 95 % recovered liquid volume would be 

more than 360 ºC (automotive diesel limit), and probably more than 370 ºC (class B diesel limit). 

The PCPW and PWPW liquids meet neither the first limit nor the second, presenting very high 

temperatures for the 95 % recovered liquid volume (> 420 ºC). As conclusion from the data 

obtained in the distillation curve tests (Table 7), it can be extracted that there is a fraction present 



 26 

in the pyrolysis liquids too heavy to use it directly in diesel engines as automotive or class B diesel. 

Therefore, there is need to include a separation step (i.e. distillation) in order to decrease the 

content in heavy hydrocarbons. Less restrictive is the limit of heavy hydrocarbons for the use of 

diesel as domestic heating diesel (class C), that is a product of a slightly lower quality than the 

other two types of diesel [100]. The pyrolysis liquids obtained from the three feedstocks fulfil the 

distillation curve requirements for class C diesel (Table 7). 

 

3.2.6. Density 

This parameter has a great influence on the internal combustion engine regulation since injection 

systems work on a volumetric basis. Variations in density lead to variations in mass of the fuel 

introduced to the combustion chamber, which means a variation in the air/fuel ratio. To control 

this complex system, the loop control in diesel engines uses density as control variable [101]. 

Therefore, the allowed range of density values for automotive diesel fuel is very restrictive (820-

845 kg/m3 at 15 ºC). As can be observed in Table 7, the density values of all the pyrolysis liquids 

studied are slightly lower than 820 kg/m3, resulting in slightly lighter compounds than diesel. 

However, it is important to note that this property could be improved by removing the lightest 

compounds present in the pyrolysis liquids through distillation, among other alternatives. 

 

3.2.7. Flash point 

The flash point (FP) is the lowest temperature at which the application of an ignition source 

causes the vapour of a sample to ignite and the flame to propagate across the surface of the liquid 

under specified conditions [102]. It can be used for evaluating the tendency of a compound to form 

flammable mixtures with air in controlled laboratory conditions. It is an important parameter for 
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the handling, storage and safety of fuels, as it gives an indication of fire risk in storage under 

ambient conditions [103]. The more number of light hydrocarbons a sample has, the lower the FP 

is. Regarding this parameter, the results obtained for the three pyrolysis liquids (Table 7) were 

found to be clearly out of diesel specifications (< 25 ºC vs. > 55 ºC for automotive diesel). This 

fact is due to the presence of very light compounds in all the samples. These considerations about 

the value of FP are in accordance with the results from simdist analysis, which revealed a 

considerable light fraction that distils at temperatures below 180 ºC (about 33 - 38 % depending 

on the feedstock). This observation is also in agreement with the values obtained for density (lower 

than automotive diesel fuel limit). To accomplish the limits required for FP, the content in the 

lightest compounds should be decreased by distillation. 

 

3.2.8. Cold filter plugging point 

The cold filter plugging point (CFPP) is a critical property that predicts the lowest temperature 

at which a fuel freely flows through filters in diesel engine systems. The CFPP data obtained for 

IPW, PCPW and PWPW liquids were 10, 25 and 22 ºC, respectively (Table 7). These values are 

very high and totally out of specifications, probably due to the high content in long-chain paraffinic 

constituents with high-melting points [25]. The presence of polar/acidic structures, typical in 

biodiesel coming from biomass, also causes poor cold properties [102, 104], but these type of 

compounds are not expected to be found in pyrolysis liquids from polyolefins.  Like in flash point 

and density cases, one option to improve this property would be by means of a distillation process, 

directed to remove the heaviest compounds responsible for the filter plugging. In case distillation 

is not enough to solve this drawback, other options could be considered, such as the blending of 
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the liquid product with conventional petroleum diesel [101] or the use of additives [105]. Both 

alternatives have also been investigated in this study. 

 It is also important to note that the CFPP parameter has a great influence on the diesel yield 

obtained by distillation of pyrolysis liquids or crude oil, since it will limit the final boiling point 

temperature to a greater or lesser extent depending on the heavy paraffin content.  

 

3.2.9. Kinematic viscosity 

Kinematic viscosity is a physical magnitude that provides an indication about the flowing 

tendency of a substance. In combustion engine systems, it is markedly important because it has a 

direct influence on the injection system, which has to produce fuel atomization to ensure a 

homogeneous mixture between fuel and air in the combustion chamber. High viscosity values lead 

to poor atomization performance due to excessively big drops of liquid. In contrast, low viscosity 

hampers distribution of fuel across the combustion chamber, causing non-homogeneous mixtures 

[101]. As can be observed in Table 7, none of the pyrolysis liquids obtained from URBASER PtO 

process is between the limits established by EN590:2014 + A1:2017 standard [38]. According to 

this standard, the values of kinematic viscosity are required to be in the range from 2.0 to 4.5 

mm2/s. However, the kinematic viscosity values of IPW, PCPW and PWPW liquids are lower than 

2.0 mm2/s (Table 7). As known, kinematic viscosity increases with chain length in aliphatic 

hydrocarbons [106]. This fact together with the absence of oxygen or other heteroatoms in the 

liquids indicate that the lighter hydrocarbons present in the samples are responsible for the low 

values of kinematic density observed. In the same way that other properties previously discussed, 

it is also necessary to carry out the distillation of the pyrolysis liquids to meet the kinematic 

viscosity limits required by the automotive diesel standard. 
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3.2.10. Bromine number 

The determination of the bromine number in hydrocarbons is a common analysis made in the 

petrochemical industries [42] to determine the content in olefinic double bonds present in a 

hydrocarbon-based sample [107]. According to results in Table 7, the bromine numbers obtained 

for the pyrolysis liquids were 39.6, 40.0 and 31.0 g Br2/100 g for IPW, PCPW and PWPW liquids, 

respectively. These values can be considered as moderate compared to the bromine numbers of 

similar liquid products, higher than 50 [76]. The presence of high contents in olefins causes 

oxidative instability, leading to the formation of gums [76]. Therefore, the olefin content in 

pyrolysis liquids should probably be reduced to use as diesel fuel. In this sense, catalytic 

hydrogenation would be an alternative. However, it also has to be taken into account that while 

more olefins are converted into paraffins, the product becomes more stable but also less lubricant. 

Therefore, a balance should be reached. With the contents in oleffins above-mentioned, the 

addition of an antioxidant, like butylated hydroxyl-toluene (BHT), may be a cost-efficient 

alternative to improve the oxidative stability without losing lubricant properties [108].  

 

In view of a whole assessment of the pyrolysis liquids as fuel and considering the limits shown 

in Table 7 for EN 590:2014 + A1:2017 standard [38], as well as RD 61/2006 [78] and RD 

1088/2010 [79], it can be concluded that none of the three feedstocks (IPW, PCPW and PWPW) 

allows obtaining pyrolysis liquids that can be used directly as diesel fuel. Despite the fact that all 

pyrolysis liquids exhibited good fuel properties, there is a lack of consistency to reach automotive 

diesel, class B diesel or class C diesel status because some specifications are not fulfilled. The 

values of density, distillation curve, kinematic viscosity, flash point and CFPP did not meet the 

limits required for automotive and class B diesel. Regarding class C diesel, with not so rigorous 

https://www.sciencedirect.com/topics/chemical-engineering/toluene
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limits, it was found that the pyrolysis liquids met density, distillation curve and kinematic viscosity 

specifications, but the value of flash point was too low and CFPP was too high. It is important to 

note that all the properties that must be improved to meet diesel standards have a common factor: 

their enhancement can be attained by means of an optimized distillation process. The results of the 

distillation experiments are discussed in the next section. 

 

3.3. Diesel distillation cuts 

Commercial diesel has a typical distillation cut between 160 – 360 ºC [81].  As it has been 

discussed earlier, the main fraction of hydrocarbons in the pyrolysis liquids obtained  from IPW, 

PCPW and PWPW is in the range from 180 to 380 ºC, representing more than 50 % of the liquid 

volume. This range of boiling temperatures corresponds to typical diesel fuel. In addition, the 

removal of the lightest and heaviest fractions from the pyrolysis liquids may improve density, 

distillation curve, kinematic viscosity, flash point and CFPP. This fact is a key point to meet 

automotive diesel standards. In this sense, the distillation conditions should be optimized because 

the values of these properties are strongly influenced by the boiling point of the compounds present 

in the resulting hydrocarbon mixture, so small changes in the lower or higher boiling points may 

produce great variations on them. Taking this into account, several distillation tests were carried 

out varying the initial and final boiling points in order to comply with the maximum parameters 

according to automotive diesel standards. PWPW liquids were used to carry out these tests, 

because this feedstock seems to produce the better product in terms of sulphur content, and no 

other substantial differences were observed compared to the liquids obtained from IPW and 

PCPW. The properties, more clearly influenced by boiling points, were analysed for the different 
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diesel range cuts obtained from the distillation of PWPW liquids. The results obtained are 

summarized in Table 8. 

 

Table 8. Properties obtained from different diesel range cuts of distilled PWPW pyrolysis liquids, 

according to EN 590:2013 + A1:2017 standard [38] (automotive diesel) and RD 61/2006 [78] and 

RD 1088/2010 [79]. 

  Theoretical cut temperatures (ºC) 

Properties by 

EN 590:2013 +  

A1:2017 

standard, RD 

61/2006 

and RD 

1088/2010 

Units 

160 – 

360 

UPD1 

160 – 

390 

UPD2 

180 – 

390 

UPD3 

180 – 

395 

UPD4 

190 – 

390 

UPD5 

190 – 

395 

UPD6 

210 – 

395 

UPD7 

Density, 15 ºC kg/m3 799 802 806 807 807 807 804 

Flash point ºC 62 63 80 78 73 83 88 

Cold Filter 

Plugging Point 

ºC 
- 10 1 2 4 2 3 2 

Distillation ºC        

65 % recovered 

(vol. %) 

 
272 290 297 300 303 301 262 

80 % recovered 

(vol. %) 

 
295 316 321 324 318 326 297 

85 % recovered 

(vol. %) 

 
304 326 339 333 335 334 318 

95 % recovered 

(%) 

 
325 350 353 355 347 360 356 
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As can be seen in Table 8, a liquid product similar to automotive diesel was obtained by 

distillation of the PWPW pyrolysis liquids. This product has been referenced as Urbaser PtO Diesel 

(UPD). Note that all the diesel cuts obtained (UPD1 to UPD7) meet the requirements concerning 

distillation curve according to EN 590:2014 + A1:2017 standard [38]. In addition, it can be 

observed that the 95 % recovered liquid volume for the diesel cuts with theoretical final boiling 

points of 390 and 395 ºC (UPD2 to UPD7) is very close to the limit established by the standard (< 

360 ºC). This observation indicates that the final boiling point  has reached the limit, and then the 

maximum content in heavy compounds. Therefore, an increase of the upper distillation cut 

temperature would lead to non-compliance with this parameter. On the other hand, it can be 

observed that the removal of heavy compounds from PWPW pyrolysis liquids also improves the 

CFPP. This value was decreased from 22 ºC for the PWPW pyrolysis liquids to 1 - 4 ºC for the 

diesel cuts with final boiling points of 390 and 395 ºC (UPD2 to UPD7). However, it is important 

to indicate that these values do not meet the RD 61/2006 regulation [78], neither for winter (CFPP 

< -10) nor for summer (CFPP < 0). Only UPD1 presented a CFPP value in agreement with the 

legal requirements, but it was necessary to decrease the final boiling point to 360 ºC, with the 

subsequent liquid yield reduction. 

 

Regarding the light part of the distillation curve, it is important to note that the flash point has 

been improved for all diesel cuts. As can be observed in Table 8, the FP values were increased 

from < 25 ºC for the pyrolysis liquids to temperatures higher than 55 ºC (automotive diesel 

specification). This increase was due to the removal of the lightest compounds. Although this fact 

also had a positive impact on density, none of the diesel range cuts reached the lower limit required 

by the automotive standard for diesel (820 kg/m3). The inclusion of heavy compounds would be 
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required to reach this value. However, there is no option to increase the content in heavy 

compounds by distillation due to the final boiling point limit. This value is restricted to 390 or 395 

ºC in order to meet the temperature requirement of 95 % recovered liquid volume established by 

automotive diesel standards. 

 

3.4. Diesel mixture 

The distillation of the PWPW pyrolysis liquids in the diesel range allowed to improve some 

properties, but density and CFPP were still out of specifications for automotive and class B diesel. 

As it has been mentioned previously, the blending of the pyrolysis liquids with conventional 

petroleum diesel or the use of additives are potential options to meet the required value of CFPP. 

In this sense, an additive to improve CFPP, a key property for engine performance, was added to 

UPD4 in a concentration of 1000 ppm (UPD4A). Table 9 shows the results obtained for UPD4A 

according to EN 590:2014 + A1:2017 standard [38]. As expected, the density did not improve with 

the use of additives. The value of density could only be enhanced by mixing the UPD with other 

heavier products, thus the blending solution seemed to be the best alternative to improve both 

properties simultaneously. In order to assess this alternative, UPD4 was blended with a commercial 

automotive diesel (CD) as this diesel cut presents the wider theoretical cut temperature range and 

the highest density value. UPD1 also seemed to be a good option to blend with commercial diesel 

because of its low CFPP, but is was discarded due to the low theoretical cut temperature range 

(low diesel fraction yield from pyrolysis liquids distillation).  

As density is an additive property, to reach a value of 823 kg/m3 (above the limit value of 820 

kg/m3 established for automotive diesel), UPD4 and commercial diesel (CD) were blended in a 

ratio of 50/50 (wt. %). The blend was also improved with a CFPP additive (1000 ppm). The 



 34 

properties of the blend with additives (CDUPD4A) were analysed using EN 590:2014 + A1:2017 

standard [38] as a reference. Table 9 shows the results obtained for the UPD4/commercial diesel 

blend with additives (CDUPD4A) and the commercial diesel (CD) used for the blend. 

 

Table 9. Properties of the UPD4 with additives (UPD4A), the UPD4/commercial diesel blend with 

additives (CDUPD4A) and the pristine commercial diesel (CD) and the properties limits by EN 

590:2014 + A1:2017 standard [38], RD 61/2006 [78] and RD 1088/2010 [79]. 

Properties by EN 590:2014 + 

A1:2017 standard, RD 61/2006 and 

RD 1088/2010 

Units 

Limits [38,78,79] 

 UPD4 with 

additives 

 

UPD4A 

Commercial 

diesel/ 

 UPD4 

blend with 

additives 

 

CDUPD4A 

Commercial 

diesel 

 

CD 

Automotive 

diesel 

Class C 

diesel  

Cetane number  ≥ 51 n/a 66.1 62.1 51.5 

Cetane index  ≥ 46 n/a 67.2 58.9 51.6 

Density, 15 ºC kg/m3 820/845 < 900 807 823 839 

Polycyclic aromatics hydrocarbons 
wt. % ≤ 8 n/a 2.6 3.1 3.5 

Sulphur mg/kg ≤ 10  ≤ 1000 7.0 6.9 6.0 

Distillation (vol.): º C      

65 % recovered  ≥ 250 ≥ 250 297 299 299 

80 % recovered  n/a ≤ 390 321 324 323 

85 % recovered  ≤ 350 n/a 329 332 331 

95 % recovered  ≤ 360 n/a 353 356 357 

Kinematic viscosity, 40 ºC mm2/s 2.00/4.50 ≤ 7.0 2.65 2.77 2.80 

Flash point º C > 55 ≥ 60 77 68 57 

Cold Filter Plugging Point º C   0 - 12  - 19 
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Winter (October 1st – March 31st)  ≤ -10 ≤ -6    

Summer (April 1st – September 30th)  ≤ 0 ≤ -6    

Pour point º C  ≤ 4 4 1 - 5 

Carbon residue (in respect to 10 % 

v/v distillation residue) 

(wt. 

%) 
≤ 0.30 ≤ 0.35 0.07 0.06 0.03 

Wear scar, 60 ºC m ≤ 460 n/a 418 322 224 

Water and sediment content 
(vol. 

%) 
n/a ≤ 0.1 < 0.01 < 0.01 < 0.01 

Water content mg/kg ≤ 200 n/a 40 40 40 

Total contamination mg/kg ≤ 24 n/a 31.1 16.5 < 12 

Ash content 
(wt. 

%) 
≤ 0,01 n/a < 0.001 < 0.001 0.001 

Corrosiveness to copper (3 h, 50 ºC) scale ≤ class 1 ≤ class 2 1A 1A 1A 

Oxidative stability:       

Total insolubles g/m3 ≤ 25 n/a 8* 6* 2 

Accelerated method hour ≥ 201 n/a 41 > 20 - 

Colour scale ≤ 2 blue2 L2.0 L2.0 L1.5 

FAME content 
(vol. 

%) 
≤ 7 n/a 0.07 2.42 5.2 

Clear and bright  pass n/a Meet Meet Meet 

1 This method is only applicable for diesel fuel containing more than 2 % (vol.) FAME 

2 Additivated with a dye for fiscal purposes 

*Additivated with 1500 ppm BHT 

 

As can be observed in Table 9, UPD4A meets all the parameter requirements established by the 

EN 590:2014 + A1:2017 standard [38], RD 61/2006 [78] and RD 1088/2010 [79] for Class C 

diesel, with the exception of density, winter CFPP and total contamination. It is important to notice 

that CFPP additives contain heavy compounds that lead to high results in total contamination test, 

and then the product could be considered free from solids or particles. Moreover, UPD4A is 
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expected to be a good product for diesel engines considering that its cetane index is not excessively 

high [109]. It is also worth noting that automotive engines are designed to work with standardized 

fuels to fulfil environmental regulations, among others [110], but this does not mean that a non-

standard fuel cannot be used. A diesel fuel with good properties, like UPD4A, could be admitted 

by an engine manufacturer without modifications in the engine or with some minor adjustments.  

As expected, CDUPD4A can be considered a fully commercial product, meeting CFPP 

specification for winter and summer, but not with a margin as wide as CD (- 19 ºC for CD vs. - 12 

ºC for CDUPD4). Other key properties for engine performance and emissions, like cetane index, 

PAH content, sulphur content or kinematic viscosity, among others, are quite similar between 

CDUPD4A and CD. Therefore, it can be concluded that the blend of UPD4 and commercial diesel 

with additives (CDUPD4A) is a high quality product that meets all the diesel fuel specifications, 

and thus it can be used in automotive diesel engines. 

 

4. Conclusions 

Pyrolysis liquids obtained from industrial plastic waste (IPW) and two-post consumer plastic 

film waste (PCPW and PWPW) have been characterized by different techniques, including PONA 

analysis, simulated distillation and bromine number. In addition, parameters established by the EN 

590:2014 + A1:2017 standard, RD 61/2006 and RD 1088/2010 were also analysed to assess their 

potential use as automotive diesel fuel. In order to improve some key diesel properties, pyrolysis 

liquids were distilled in the diesel range and the liquid fractions were characterized according to 

automotive diesel standards. A blend of diesel obtained from pyrolysis liquids and commercial 

diesel (50/50 wt. %) was also prepared and analysed.  

The main conclusions obtained in this study are summarized as follows: 
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- Pyrolysis liquids mainly consist of hydrocarbons in the diesel boiling point range (about 50 

% in vol. in the range of 180-380 ºC). 

- Paraffins are the main components of the pyrolysis liquids. For IPW liquids, 72.2 wt. % of 

total paraffinic compounds are in the range of C7-C18, while these values were 67.6 and 

66.8 wt. % for PCPW and PWPW, respectively.  

- The content in paraffins turned out to be higher in liquids obtained from pyrolysis of post-

consumer plastic film waste (PCPW: 50.5 wt. %; PWPW: 57.8 wt. %), in which LLDPE is 

the main component. Paraffins in pyrolysis liquids from IPW (LPDE: > 91 wt. %) were 38.7 

wt. %. 

- The relatively high content in paraffins and the low molecular weight of the pyrolysis liquids 

make this product highly desirable for petrochemical industry to be used in different points 

of the crude refining process. 

- There are no significant differences in olefin and aromatic contents of the IPW, PCPW and 

PWPW liquids. These values are in the range of 18-23 wt. % and 14-19 wt. %, respectively. 

For IPW liquids, 80.7 wt. % of total olefins are in the range of C6-C15, while these values 

were 74.5 and 73.2 wt. % for PCPW and PWPW, respectively. 

- Thermal degradation of PCPW and PWPW resulted in liquids with a lower content in 

naphthenes than IPW ( 8-9 wt. % vs. 26.4 wt. %), mainly due to differences in polymer 

composition of the raw materials.  

- The origin of plastic film waste (industrial or post-consumer from mixed MSW) had a 

negligible influence on the hydrocarbon distribution according to the boiling point ranges.  

- Cetane index was higher in PWPW liquids than PCPW and IPW, mainly due to the higher 

content in paraffins. The values obtained for all the pyrolysis liquids (56-66) were observed 
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to be very close to commercial diesel. The energy content values of IPW, PCPW and PWPW 

liquids (HHV: 46-48 MJ/kg) were also similar to diesel fuel. 

- IPW, PCPW and PWPW liquids exhibited ultra-low level content in chlorine. The sulphur 

content in PWPW liquids was lower than the limit established by diesel automotive standard 

(4.4 mg/kg vs. 10 mg/kg). These values for PCPW and IPW were slightly higher (19.0 and 

16.5 mg/kg, respectively). 

- Diesel specifications for PAHs content, water content and lubricity properties were met by 

IPW, PCPW and PWPW liquids. The values of TAN were also in the range of commercial 

automotive diesel. 

- Density, distillation curve, kinematic viscosity, flash point and cold filter plugging point of 

the pyrolysis liquids were found to be out of diesel specifications. This prevents their direct 

use as automotive diesel fuel. 

- Distillation of the pyrolysis liquids in the diesel range allowed obtaining a liquid product 

that met the standard requirements for automotive diesel, with the exception of density and 

CFPP.  

- The blending of Urbaser PtO diesel (UPD) with commercial diesel in a 50/50 (wt. %) ratio 

meets the 21 parameters required by the standard for a product to be marketed and used as 

automotive fuel in diesel engine vehicles. This strategy becomes a successful option for 

converting the pyrolysis liquids into a high quality product that allows contributing to the 

circular economy. 
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