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Abstract—Electric Vehicles (EVs) are growing attention for
their higher efficiency and less-polluting specifications. However,
a massive introduction of EVs could lead to several issues in
power systems. Several authors have proposed various smart
charging approaches. But, these approaches could not be ap-
propriately implemented without knowing the charging behavior
of the EV customers. Thus, this paper proposes an EV charging
load prediction for the particular case of Quito, Ecuador. This
forecasting is performed based on data obtained from a GPS
system and on statistical methods.
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NOMENCLATURE

Indices
i vehicle index
j day index
k time interval index
Parameters
ηEV EV efficiency [km/kWh]
C battery capacity [kWh]
N Number of EVs
P ch Charging power rate [kW]
Pk,i EV load of EV i at time interval k [kW]
SOCA State-of-charge when arriving home [%]
tdep home departure time [h]
Sets
Sj Time intervals in a day j
Variables
PEV
k Total EV load at time interval k [kW]
SOCD State-of-charge when departing home [%]
tend Charging end time [h]

I. INTRODUCTION

Electric Vehicles (EVs) are considered an effective trans-
portation technology for reducing greenhouse gas emissions
and local pollution in the cities, which is mainly generated
by internal combustion vehicles. Several governments have
implemented initiatives for promoting the purchase of EVs
for private customers, and public transportation, such as buses
and taxis. However, a massive introduction of EVs could lead
to issues and challenges for the power grid, including voltage

drops [1], significant distribution investments [2], and power
losses [3]. Hence, the distribution network hosting capacity
needs to be evaluated to guarantee correct grid constraints [4].

In the future Smart Grid, EV users, instead of passive
consumers, will become active prosumers who can provide
power and energy services to electric utilities, such as ancillary
services [5]. For this, it is necessary to know the behavior of
users for charging their EVs.

EV data are scarce, so various projects were developed in
the world to understand how people charge their EVs, such as
the MEA project [6]. However, these projects result expensive
and they allow to understand the charging habits of particular
customers of a place. The habits of customers vary depending
on countries or cities.

Some barriers exist in Latin American countries, which have
limited a larger adoption such as some countries in Europe
and Asia, and in the USA, including the lack of effective
subsidies from he governments for EVs, insufficient charging
infrastructure, and important subsidies in fossil fuels [7].
Although these barriers, in Ecuador, like many Latin American
countries, it is expected that the numbers of EVs will increase
significantly next years. Thus, a proper estimation to the EV
charging load is necessary considering local users behavior.

It becomes crucial to alleviate the impacts of EVs on power
systems. Thus, several authors have studied solutions to appro-
priately manage this new load. These solutions include peak
reductions, cost reductions, power losses reductions, among
others. For this, smart charging approaches are considered,
which consider energy management for charging the EVs [8]–
[10]. Moreover, EVs can even improve grid system by proving
services to the grid, such as ancillary services [11]. Other
studies focus on the impact of EVs in systems with high
penetration of renewable energy [12]–[14].

Although these studies and others demonstrate their ef-
fectiveness on the grid, they are mostly based on assumed
information on the EV load. To be effective, realistic EV
charging profiles must be required. Hence, other researchers
have studied the EV charging load profiles, using deterministic
and stochastic approaches.

To forecast EV load, the behavior of the EV customers need



to be studied. Some important variables that are considered
in the various models include the arrival time, the departure
time, the distance driven. These variables allow to model EV
characteristics such as the starting charging time, the end time
of charging, the state-of-charge (SOC), the power and energy
required. In [15], a Monte Carlo simulation is used to forecast
charging load by classifying the types of plug-in EVs, charging
time, ways to complete the energy supply of plug-in EVs in
China. The authors of [16] propose a non-parametric Gaussian
kernel density estimation method, demonstrating that is more
efficient than Monte Carlo Simulation. In [17], a statistical
methodology is presented, using real-data to obtain plug-in and
hybrid EV load profiles. The authors of [18] study a stochastic
model using the US national household travel survey to obtain
the plug-in EV profiles. In [19], a comprehensive probabilistic
model is built considering data of UK.

However, these works and others use data from surveys,
which could not be very realistic. To overcome this drawback,
some authors employ real-world electric vehicle charging
data. For example, in [20], stochastic simulation is proposed
considering GPS travel data collected during an EV demon-
stration trial. The authors of [21] investigate a regression
method considering datasets provided by the municipality of
Amsterdam of an EV project. In [22] evaluates the effects
of social characteristics of EV drivers using an agent-based
approach by NetLogo software and considering data sets from
Singapur. By the other hand, other researchers perform the
forecasting based on the information of battery chargers, as
per [23], where the modeling of battery chargers is studied to
obtain the charging patterns. Despite this, in [24], it is shown
that customer profile based prediction is faster than station
measurement, considering similar0 forecasting errors.

Just a few works have investigated the travel patterns of
drivers, by using GPS systems, such as [20], [25]. Driving
behavior is very different from one place to another, especially
due to different schedule work conditions, so it is necessary
to evaluate specific behavior for a case study. Moreover,
these works correspond only to private cars and no work has
predicted the future charging load of electric taxis. The aim of
this paper is to obtain an EV charging profile prediction for
the case of Quito, Ecuador, for both private cars and taxis.

The rest of this paper is organized as follows. Section II
proposes the Prediction methodology. Section III presents the
case study. Section IV discusses the results. Finally, Section V
highlights the main conclusions and contributions of the paper.

II. PREDICTION METHODOLOGY

A. Data collection by GPS

To obtain the data, the GPS device is installed in the vehicle
and the information is collected during the 5 working days,
which is considered the appropriate period to evaluate the
critical load. The data obtained is the date, hour, latitude,
longitude, speed, driven distance, and location.

The GPS used for the present project is the GL300 model.
This device was chosen for features and algorithms that make
it water resistant, have 3 axes for the integrated speedometer

Fig. 1. GPS system in a vehicle.

and extreme battery life, as well as having a web platform
which shows administrators the location of the device. Fig. 1
depicts the GPS systems installed in a vehicle.

The Web platform used for the research project was pro-
vided by the company CLARO, since it is the only one legally
authorized to control the GL300 GPS monitoring. This Web
platform can make queries to monitor the GPS activity, that is,
it can create reports of all the events that have happened with
the GPS user. To identify the events and classify them, the
Web platform provides activity graphs, and relevant data such
as distance traveled, maximum / minimum speed, latitude and
longitude of the user.

The Date and Time columns are used to represent the
day and time of the user’s positioning. The hour column
is crucial during the deterministic model, since it allows
determining when the user leave home and stop using his
vehicle. The Latitude, Longitude and Direction columns will
help to determine the possible charging stations using a density
diagram using Google Earth software. Finally, the odometer
of the GPS device, marks the distance traveled by the user,
which helps us to obtain the input data of the deterministic
model.

Between 2800 to 5500 daily sequence points are obtained
in each of the private vehicles with a total of 131706 points
counting for 27 private vehicles. Moreover, a total of 93699
sequence points in 10 taxi cars were obtained. These data sets
were filtered since several errors were obtained, due especially
to stops in lights.

B. Statistical methodology

Some assumptions are firstly made:

• To comply with the specification of the model, it is
assumed that the EV will be charged only at home
immediately after the end time of use of the vehicle.

• The EV starts working with its SOC at 100%.
• The maximum charging power rate is assumed to be 6.6

kW.

It was focused in the data collection on the departure
time, arrival, maximum speed, and distance traveled from the
vehicle.



To obtain the electricity needed, the SOC is calculated for
each user. The next equation is used as per [25]:

SOCA
i,j = SOCD

i,j −
tdepi,j

ηEV .C
.100 (1)

Then the end charging time is defined:

tendi,j =
P ch.di,j
ηEV

(2)

To obtain the required energy, the following equation is
used:

Ereq
i,j =

di,j
ηEV

(3)

Then, the charging duration is defined:

Ti,j =
Ereq

i,j

P ch
(4)

The set of time intervals Sj in a day j is:

Sj = {1, 2, .., D} (5)

To obtain the charging load profile, it is necessary to
calculate the total power consumed by all the EVs, which is
the sum of the power of each EV i at each time interval k, as
defined as follows:

Pk =

N∑
i=1

Pk,i,∀k ∈ Sj (6)

III. CASE STUDY

A. Quito - Ecuador

The case study of Quito, Ecuador was selected to forecast
the EV charging load prediction. This case study was selected
based on the willingness of the major of Quito to incentive
the purchase of EVs for public and private transportation [26].
Quito is the capital of Ecuador, with an elevation of 2,800
meters above sea level. This is another reason to push to
this greener alternative because in high altitudes the efficiency
of internal combustion vehicles decrease and more polluting
gases are emitted. The map of Quito is depicted in Fig. 2.
Quito has a population of 2.6 million inhabitants and the last
survey indicates that Quito has 382,314 vehicles.

For the case study, two particular segments of vehicles are
evaluated. The private cars that belong to typical users that
go from home to work and inversely each day. The other
segment corresponds to taxi drivers, which are considered
public transportation. The buses could not be evaluated due
to impediments of the companies.

B. Input Data

The considered EV for the EV load modeling is the Kia
Soul. Based on the data sheet the charging power rate P ch

was assumed to be constant and to be 6.6 kW.

Fig. 2. Map of Quito.

Fig. 3. Range frequency of the departure time in a day.

IV. RESULTS

A. Private Cars Behavior Analysis

Firstly, the departure time and home arrival are organized by
range frequencies in the different hours of the day, as depicted
in Fig. 3 and Fig 4 respectively. Observe that most of the
drivers depart home between 6 AM to 9AM, and arrive home
between 4 PM to 8PM.

Then, the daily driven distance is filtered. In Fig. 5, the
frequency of daily distance driven for taxis is illustrated. Note
that most of the customers drive between 40 to 60 km.

B. Taxi Cars Behavior Analysis

In Fig. 6 and Fig. 7, the range frequency of travel departures
and travel end respectively of taxis are represented. Note
that the departures are considerable during all day and the
travel end correspond to the beginning of the afternoon to the
beginning of the night.

Then, the driven distance of the taxis is obtained and
depicted in Fig. 8. Observe that the driven distance is much



Fig. 4. Range frequency of the home arrival in a day.

Fig. 5. Frequency of distance driven for taxis.

Fig. 6. Range frequency of the departure time in a day.

bigger than the private cars, which was clearly expected. Many
of the taxis drive more than 170 km, so a change from internal
combustion vehicles to EVs would lead to a significant load
increase.

C. Energy Analysis

A Monte Carlo simulation is performed in order to obtain a
sensitivity analysis of the variations of the required energy. The
selected number of simulations was 382,314 for the private
cars that correspond to the actual number of vehicles in Quito.
Fig. 9 illustrates the required energy by number of users for

Fig. 7. Range frequency of the home arrival in a day.

Fig. 8. Range frequency of the home arrival in a day.

Fig. 9. Energy required for private cars by number of users.

private cars. It should be noted that most of the future EV
users could require between 6 to 12 kWh per day.

For the taxis, a Monte Carlo simulation was performed
too, considering 16,024 simulations, which corresponds to the
number of actual taxis in Quito. Fig. 10 illustrates the required
energy by number of users for taxis. Observe that the number
of vehicles is much smaller but the required energy is between
26 to 40 kWh, which is more than 3 times the energy required
for private vehicles.



Fig. 10. Energy required for taxis by number of users.

Fig. 11. Charging load for private EVs.

D. EV Charging Load

In Fig. 11 the EV load corresponding to the private cars
is represented. Significant peaks are observed starting 6PM,
which is generally an hour when typical electricity peaks
already exists. Therefore, this additional load has to be ad-
equately managed in order to mitigate grid issues.

Fig. 12 represents the Ev load corresponding to the taxis.
Note that a peak is observed at 4PM and 7PM and significant
load is observed during all night. The peak load of 7PM could
be managed to be reduced, but the load in the other hours could
not lead to issues in the grid, especially because of the low
electricity demand during the night.

V. CONCLUSIONS

In this paper, the EV charging load prediction for both pri-
vate and taxis EVs is studied. This prediction was performed
through real-data acquisition from a GPS system tat was
installed in several internal combustion vehicles, to analyze the
driving behavior of the different customers. Then, a statistical

Fig. 12. Charging load for Taxi EVs.

method is proposed to predict different crucial variables for
load prediction, such as departure and arrival hours, and drive
distance. The predicted EV charging load is obtained, based
on the predicted energy required and the analyzed variables.

The case study of Quito, Ecuador is analyzed. The results
indicate that significant peaks are observed during the night
for private cars, which can lead to grid issues if several EVs
are purchased in the case study. Therefore, it is necessary to
adopt proper charging strategies.
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