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Preconditioners for nonsymmetric linear systems with
low-rank skew-symmetric part?

J. Cerdán1, D. Guerrero2, J. Maŕın1, J. Mas1

Abstract

We present a preconditioning technique for solving nonsymmetric linear systems

Ax = b, where the coefficient matrix A has a skew-symmetric part that can be

well approximated with a skew-symmetric low-rank matrix. The method con-

sists of updating a preconditioner obtained from the symmetric part of A. We

present some results concerning to the approximation properties of the precondi-

tioner and the spectral properties of the preconditioning technique. The results

of the numerical experiments performed show that our strategy is competitive

compared with some specific methods.

Keywords: Iterative methods, skew-symmetric matrices, sparse linear

systems, preconditioning, low-rank update.
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1. Introduction

In this paper we study the iterative solution of nonsingular, nonsymmetric

linear systems

Ax = b (1)
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where the matrix A ∈ Rn×n is large, sparse and its skew-symmetric part has low

rank or can be approximated by a skew-symmetric low-rank matrix. Consider

A = H + K where H and K are the symmetric and skew-symmetric parts of

A, respectively. It is supposed that the skew-symmetric part can be written as

K = FCFT + E where F ∈ Rn×s is a full-rank rectangular matrix, C ∈ Rs×s

is a nonsingular skew-symmetric matrix with s even, s � n and ‖ E ‖� 1.

Systems like this arise from the discretization of PDEs with certain Neumann

boundary conditions, the discretization of integral equations [10] as well as path

following methods [1]. In general, any problem whose skew-symmetric part K

has a small number of dominant singular values can be described in this way.

Different strategies have been proposed to solve (1) when the skew-symmetric

part K has exactly rank s � n, i.e., E = O. In [1] the authors present a pro-

gressive GMRES (PGMRES) method which shows that an orthogonal Krylov

subspace basis can be generated with a short recurrence formula. As pointed

out in [6], although the method is mathematically equivalent to full GMRES

[8], in practice it may suffer from instabilities due to the loss of orthogonality of

the generated Krylov subspace basis. In the same paper, the authors propose

a Schur complement method (SCM) that also permits the application of short-

term formulas. The method obtains an approximate solution by applying the

MINRES method s+ 1 times. The authors also suggest that it can be applied

as a preconditioner for GMRES for the more general case when E 6= O which

is the main problem considered in this paper.

The method proposed is based on the framework presented in [4]. Our

approach computes an approximate LU factorization of the matrix

A =

H + E F

FT −C−1

 (2)

which is used as a preconditioner for the linear system (1). This preconditioner

can be viewed as a low-rank update of an incomplete LU factorization of the

symmetric part H. Interestingly, the matrix in (2) is similar to the one used

in [6] to develop the Schur complement method, but in this work it is used to
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update a previously computed preconditioner for the symmetric part H. Then,

the factorization is used as a preconditioner for the (restarted) GMRES and

BiCGSTAB [13] methods.

The paper is organized as follows. In Section 2 the proposed precondition-

ing technique is described. Section 3 is devoted to analyze the approximations

properties of the preconditioned matrix. In Section 4 the technique to approxi-

mate the skew-symmetric part is described briefly. The results of the numerical

experiments for some real and artificial problems are presented in Section 5.

Finally, some conclusions are given in Section 6.

2. Updated preconditioner method

Our preconditioner M is obtained by computing an incomplete LU of the

matrix A in (2). Assuming that we have calculated an incomplete LU factor-

ization of the symmetric part H, Ĥ = LHDHL
T
H , one has

M =

 LH 0

FTL−TH D−1H I

DH 0

0 R

LTH D−1H L−1H F

0 I

 (3)

with R = −(C−1 + FTL−TH D−1H L−1H F ). The computation of the preconditioner

is done in the following steps:

1. Compute incomplete factorization LHDHL
T
H ≈ H .

2. Compute block T by solving LHT = F .

3. Compute R = −(C−1 + TTD−1H T ).

4. Compute LRUR = R.

Step 2 may involve a sparsification of the matrix T after its computation to

reduce the amount of fill-in introduced. Note that the factorization in step 4 is

done exactly when s� n. Otherwise, an incomplete factorization of R may be

necessary to control the amount of fill-in.

The preconditioning step for a Krylov subspace iterative method typically

consists of obtaining the preconditioned vector r̄ = M−1r, where M−1 is the

preconditioner and r is the residual vector. M−1 should be a good sparse
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approximation of the inverse of the coefficient matrix A. The preconditioning

strategy proposed applies an approximation of the inverse of A using the relation

given by equation (5) below. The approximation of the inverse of A is implicitely

applied by solving the triangular systems of the LU factorization of M, equation

(3). Thus, the preconditioning step is done by solving linear systems of the form

M

 r̄

r̄′

 =

 r

0

 ,

obtaining the preconditioned vector r̄ in three steps:

1. Solve LHDHr1 = r.

2. Solve Rr̄′ = −FTL−TH r1.

3. Solve LTH r̄ = r1 −D−1H L−1H F r̄′.

The computation and application of the preconditioner is inexpensive provided

that s � n. Note that step 2 implies the solution of a s × s linear system

which can be done with a direct method. The preconditioner can be viewed as

a low-rank update of the incomplete factorization computed for the symmetric

part H. Thus, it will be referred to as updated preconditioner method.

3. Approximation properties of the updated preconditioner

In this section we study the approximation properties of the proposed up-

dated preconditioner. We recall that A = H + K where H and K are the

symmetric and skew-symmetric parts of A, respectively, and K = FCFT + E

where F ∈ Rn×s is a full-rank rectangular matrix, C ∈ Rs×s is a nonsingu-

lar skew-symmetric matrix with s even, s � n and ‖ E ‖� 1. We denote

HE = H + E.

The proposed preconditioning strategy relies on computing a good approxi-

mation of the augmented matrix in equation (2) which is used to accelerate the

convergence of a Krylov iterative method. Solving (1) with a preconditioned

Krylov method involves the computation of matrix-vector products with A and
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an approximation of its inverse operator A−1 in the preconditioning step. We

have the following relations between the linear operators A and A,

A =
[
I O

] HE F

FT −C−1

 I

CFT

 =
[
I O

]
A

 I

CFT

 (4)

and their inverses,

A−1 =
[
I O

] HE F

FT −C−1

−1  I

O

 =
[
I O

]
A−1

 I

O

 , (5)

provided that HE is nonsingular. Note that if H is a well conditioned matrix

and ‖ E ‖� 1, this condition can be easily satisfied (see Theorem 2.3.4 in [7]).

Next result relates the condition numbers of the matrices A and A.

Theorem 1. Let A be the matrix given by equation (2) associated to the linear

system (1). Assume that FCFT is a reduced unitary diagonalization of the

matrix K − E. Then,

cond (A) ≤ cond (A)
√

1 + σ2
1(C), (6)

where σ1(C) is the maximum singular value of C.

Proof. Considering the equations (4) and (5), one has

cond (A) = ‖A‖2‖A−1‖2 =

∥∥∥∥∥∥
[
I O

]
A

 I

CFT

∥∥∥∥∥∥
2

∥∥∥∥∥∥
[
I O

]
A−1

 I

O

∥∥∥∥∥∥
2

≤ cond (A)

∥∥∥∥∥∥
 I

CFT

∥∥∥∥∥∥
2

.

Since FCFT is a reduced unitary diagonalization of K−E, then FTF = Is and

C ∈ Rs×s is a block diagonal matrix of the form 0 λi

−λi 0

 .
where λi with i = 1, ...s/2 are the absolute values of the complex eigenvalues of

C. Under these conditions the nonzero eigenvalues of the matrices FCTCFT
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and CTC are equal and positive since CTC = diag(λ21, λ
2
1, . . . , λ

2
s/2λ

2
s/2). There-

fore, ∥∥∥∥∥∥
 I

CFT

∥∥∥∥∥∥
2

2

= ρ(I + FCTCFT ) = ρ(I + CTC) = 1 + σ2
1(C).

This proposition suggests that one can expect a faster convergence of the

iterative method used to solve the linear system (1) if the condition number of

the matrix A is improved with a proper preconditioner.

To study the quality of the updated preconditioner, first we evaluate the

approximation error norm. A comparison with the non-updated preconditioner

is also presented. These preconditioners are given by

M = LDU =

 Ĥ F̂

F̂T −C−1

 and M0 =

 Ĥ O

O −C−1

 . (7)

The expression for M is obtained multiplying the LDU factors in equation (3).

Assuming that in step 2 of the computation of the preconditioner a sparsification

of the matrix T has been done, which is denoted by T̂ , one has that the matrix

F is approximated by F̂ = LH T̂ . Moreover, we assume that R is factorized

exactly.

Theorem 2. Let Ĥ = LHDHL
T
H be an incomplete LDU factorization of H.

Let M and M0 be the matrices given in (7). Let ε =‖ Ĥ −H ‖2F , δ =‖ LH ‖2F ,

γ =‖ E ‖2F and c =‖ T̂ − T ‖2F . Then

‖M−A ‖F≤
√
ε+ γ + 2δc. (8)

Moreover, if c ≤ ‖F‖
2
F

δ then

‖M−A ‖F≤‖M0 −A ‖F . (9)

Proof. From (7) we have

M−A =

 Ĥ −HE F̂ − F

F̂T − FT O

 =

 Ĥ −HE LH(T̂ − T )

(T̂ − T )TLTH O

 .
6



Then

‖M−A ‖2F = ‖ Ĥ −HE ‖2F +2 ‖ LH(T̂ − T ) ‖2F
≤ ‖ Ĥ −H ‖2F + ‖ E ‖2F +2(‖ LH ‖2F ‖ T̂ − T ‖2F )

= ε+ γ + 2δc .

If c ≤ ‖F‖
2
F

δ , then

‖M−A ‖2F≤‖ Ĥ −HE ‖2F +2δc ≤‖ Ĥ −HE ‖2F +2 ‖ F ‖2F=‖M0 −A ‖2F

As it could be expected, the above theorem shows that the approximation

degree of M depends on Ĥ and F̂ being a good approximation of H and F ,

respectively, and ‖ E ‖� 1. Moreover, we have proved that if these approxima-

tions are good enough, the updated preconditioner M is closer to the matrix A

than the initial one, M0.

Theorem 3. Let the assumptions of Theorem 2 hold, then the preconditioned

matrix M−1A can be written as

M−1A = I−M−1EA, (10)

where EA = M−A satifies

‖M−1EA ‖F≤‖M−1 ‖F
√
ε+ γ + 2δc (11)

Proof. One has

‖M−1EA ‖2F=‖M−1(M−A) ‖2F≤‖M−1 ‖2F ‖M−A ‖2F≤‖M−1 ‖2F (ε+γ+2δc)

Corollary 4. Let the assumptions of Theorem 3 hold. Then, the eigenvalues

of the preconditioned matrix M−1A are clustered at 1 in the right half complex

plane provided that ‖M−1 ‖F
√
ε+ γ + 2δc < 1.
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Proof. Defining ρ =‖ M−1 ‖F
√
ε+ γ + 2δc, it inmediatelly follows from the

bound (11) and equation (10) that there is a cluster of eigenvalues of M−1A at

1 in the right half complex plane with radius equal to ρ < 1.

Corollary 4 basically means that the quality of the preconditioner depends

on the accuracy of the approximations computed for the symmetric and skew-

symmetric parts of A. With a clustered spectrum one can expect a faster conver-

gence of an iterative method although we recall that other aspects may influence

the behaviour of Krylov-based iterative methods.

Next, we consider the case in which the symmetric part of A is indeed positive

definite. The following result characterizes the spectrum of M−1A.

Theorem 5. Let A and M be the matrices given by

A =

 HE F

FT −C−1

 and M =

 Ĥ F̂

F̂T −C−1

 .

Assume that H is spd, F and F̂ have full rank s, and the error matrix EF =

F − F̂ has rank p, p ≤ s. Then, the eigenvalues of M−1A are either one or real

positive and bounded by

λmin(Ĥ−1H) ≤ λ ≤ λmax(Ĥ−1H) , (12)

or complex bounded by

|λ| ≤ 1 +
‖ C ‖2‖ EF ‖2√
1 + σ2

min(F̂CT )
(13)

where σmin represents the smallest singular value.

Proof. The technique to prove the result is standard and similar to the one that

can be found in [2]. The eigenvalues and eigenvectors of M−1A are solutions of

the following generalized eigenvalue problem Aw = λMw written as HE F

FT −C−1

 x

y

 = λ

 Ĥ F − EF
(F − EF )T −C−1

 x

y

 ,
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where the eigenvector w is partitioned according to the block structure of the

matrix A.

One has equivalently that,

HEx+ Fy = λĤx+ λFy − λEF y ,

FTx = λFTx− λETF x+ (1− λ)C−1y .
(14)

We distinguish the following cases:

1. x = 0. From the second equation in (14) it follows that 0 = (1− λ)C−1y.

Then λ = 1 and therefore EF y = 0 from the first equation. Since y ∈

kerEF that has dimension s−p, we obtain that there are s−p eigenvectors 0

y

 associated to the unit eigenvalue.

2. x 6= 0. We consider three cases:

(a) FTx = 0. Since F has rank s it follows that there are n − s lin-

early independent vectors satisfying this condition. From the sec-

ond equation we have λETF x = (1 − λ)C−1y. Although x is real,

the eigenpair can be complex. Thus, the conjugate transpose is

λ̄xTEF = (1 − λ̄)yHC−T . By multiplying the first equation by

xT and substituting one has

xTHEx = λxT Ĥx− λ

λ̄
(1− λ̄)yHC−T y,

or equivalently, since HE = H + E

xTHx+ xTEx = λxT Ĥx− λ

λ̄
(1− λ̄)yHC−T y .

We recall that E and C are skew-symmetric matrices. Therefore, in

the equation above the terms xTEx and yHC−T nullify. Then

xTHx = λxT Ĥx .

Since H and Ĥ are spd matrices the eigenpairs are real, and by

Courant-Fischer Minimax Theorem (see [7]) it follows that the eigen-

values are bounded by

λmin(Ĥ−1H) ≤ λ ≤ λmax(Ĥ−1H) .
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(b) FTx 6= 0 and ETF x = 0. In this case s−p linearly independent vectors

satisfy these conditions. The second equation reduces to

(1− λ)FTx = (1− λ)C−1y

and it is satisfied for eigenvalues equal to 1 or when y = CFTx. In

this last case, by substituting in the first equation one has

HEx+ FCFTx = λĤx+ λFCFTx− λEFCFTx .

Multiplying by xT we obtain

xT (HE + FCFT )x = λxT (Ĥ + FCFT )x .

Since FCFT is skew-symmetric, then reasoning similar as in 2.(a)

these eigenvalues are bounded by

λmin(Ĥ−1H) ≤ λ ≤ λmax(Ĥ−1H) .

(c) FTx 6= 0 and ETF x 6= 0. Multiplying the first equation by xH and

the second by yH one has

xHHEx+ xHFy = λxHĤx+ λxH F̂ y ,

yHFTx = λyH F̂Tx+ (1− λ)yHC−1y .
(15)

Adding both equations we obtain

xHHEx+2Re(xHFy)−yHC−1y = λ(xHĤx+2Re(xH F̂ y)−yHC−1y) .

As in case 2.(a), since E and C are skew-symmetric matrices, the

equation above simplifies to

xHHx+ 2Re(xHFy) = λ(xHĤx+ 2Re(xH F̂ y)) . (16)

We consider two possibilities in equation (16): if xHĤx+2Re(xH F̂ y) =

0, the eigenvalue λ can be complex. In this case from the second equa-

tion in (14) one has (FTx− C−1y) = λ(F̂Tx− C−1y), equivalent to

10



(CFTx− y) = λ(CF̂Tx− y). Note that CF̂Tx− y 6= 0 since we are

considering ETF x 6= 0. Then

|λ| = ‖ CF
Tx− y ‖2

‖ CF̂Tx− y ‖2
=
‖
[
CFT −I

]
w‖2

‖
[
CF̂T −I

]
w ‖2

≤ 1 +
‖
[
CETF O

]
w ‖2

‖
[
CF̂T −I

]
w ‖2

≤ 1 +
‖ C ‖2‖ EF ‖2‖ w ‖2
‖
[
CF̂T −I

]
w ‖2

= 1 +
‖ C ‖2‖ EF ‖2

‖
[
CF̂T −I

]
w
‖w‖2 ‖2

≤ 1 +
‖ C ‖2‖ EF ‖2√
1 + σ2

min(F̂CT )
,

where σmin(F̂CT ) represents the smallest singular value of a matrix

F̂CT .

On the other hand, if xHĤx + 2Re(xH F̂ y) 6= 0 then λ ∈ R. By

subtracting the transpose of the second equation from the first one in

(15), we obtain the same equation and the corresponding bound as in

2.(a). Note that 2p is the maximum number of complex eigenvalues.

To illustrate the bounds deduced in this section we consider the matrix

ADD20 from the University of Florida sparse matrix collection [5]. This matrix

has order 2, 395 with 13, 151 nonzero elements and condition number cond(A) =

1.7637 × 104. We approximate its skew-symmetric part with a matrix of rank

s = 42, giving an error matrix with norm ‖E‖2 = 9.88 × 10−5. An incomplete

Cholesky factorization of H with dropping parameter equal to 10−4 was com-

puted. The matrix T was also sparsified with a dropping threshold of 10−3 with

respect to its maximum absolute value. The results were obtained in MATLAB.

First, we studied the bound (6) of Theorem 1. We computed for this matrix

cond (A)
√

1 + σ2
1(C) = 1.0149 × 108, that is greater than cond(A), satisfying

the bound.

Concerning Theorem 2, the values of the parameters involved in the state-

ment were ε = 3.0834×10−6, γ = 2.1762×10−7, δ = 335.6455, c = 2.6701×10−9
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and
‖F‖2F
δ = 4.8627×10−9. The quantities involved in equations (8) and (9) are

shown in Table 1 that clearly satisfy the inequalities.

‖M−A ‖F
√
ε+ γ + 2δc ‖M0 −A ‖F

1.8× 10−3 2.3× 10−3 2.6× 10−3

Table 1: Bounds for Theorem 2

The bound in Theorem 3 is also satisfied since it was obtained 3.0313 and

227.8091 for the left and right side values in inequality (11), respectively.

Finally, with respect Theorem 5, the bounds computed according to the

equations (12) and (13) are λmin(Ĥ−1H) = 0.8599 and λmax(Ĥ−1H) = 1.1311

for the real eigenvalues, and |λ| ≤ 1.0208 for the complex ones. These bounds

are satisfied since the minimum and maximum real eigenvalues of M−1A are

0.9384 and 1.1309, respectively. Moreover, the norm of the largest complex

eigenvalue was 1.0101. Figure 1 illustrates the spectrum of the preconditioned

matrix M−1A. It is observed that the eigenvalues are clustered at one in the

right half complex plane.

Figure 1: Spectrum of M−1A to illustrate the bounds of Theorem 5. The bounds for the real

eigenvalues are indicated with a red parenthesis.
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4. Low-rank approximation of the skew-symmetric part

The preconditioner proposed is based on having at disposal a good low-rank

approximation of the skew-symmetric part of a matrix. To reach this goal we

use the Sparse Column Row aproximation (SCR) method presented in [3]. With

this method we obtain an approximation of the skew-symmetric part K of the

form FCFT , where F consists of columns of K and C is a s×s skew-symmetric

matrix with s even. The SCR method is especially suited for computing sparse

low-rank approximations. We briefly describe the method.

The SCR method is based on the computation of a SPQR approximation of

a given matrix and its transpose. In our case, and since K is skew-symmetric,

it suffices to compute an SPQR approximation of K. Let

KP =
(
F Fx

)
=
(
Q Qx

)R11 R12

0 R22

 ,

where P is a permutation matrix, F is the set of s columns of K with largest

norm and R11 is an s × s upper triangular matrix. Then KP is approximated

by Q[R11 R12], with an error εc = ||R22||. Since Q = FR−111 , the storage of

Q is not necessary. Defining R := R11, one gets that the matrix C which

minimizes ‖ K − FCFT ‖ is C = −R−1R−T (FTKF )R−1R−T , see [11], with

an approximation error bounded as ‖ K − FCFT ‖≤
√

2εc. Note that C is

skew-symmetric.

5. Numerical Experiments

In this section we compare the updated preconditioner method, referred to

as Upd. Prec., with the SCM method used as preconditioner and also an incom-

plete LU factorization of the symmetric part H. The iterative methods used

are the full GMRES, restarted GMRES(m) and BiCGSTAB. The experiments

have been performed with MATLAB. The iterative methods were run until the

relative initial residual was reduced to 10−8, allowing a maximum number of

2000 iterations. The incomplete factorization of the symmetric part H was
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computed with MATLAB’s function ilu() that implements an ILU factorization

with threshold [9]. We present the results obtained for different problems that

appear in the bibliography and also using some matrices obtained from the Uni-

versity of Florida sparse matrix collection. Concerning the SCM preconditioner,

it requires s + 1 applications of MINRES, which could be prohibitive to apply

at each iteration of GMRES applied to the preconditioned system. Thus, as the

authors suggest in [6], since s of these applications are needed to solve a linear

system with multiple right-hand sides, the solution of this system is computed

once and reused at each GMRES iteration.

5.1. A class of simple examples

The first example was used in [6] to show the performance of SCM method.

Consider the block-diagonal matrix

A =


Λ−

Λ+

Z

 ,
where Λ− = diag(λ1, . . . , λp), Λ+ = diag(λp+1, . . . , λn−s) with λ1, . . . , λp uni-

formly spaced in [−β,−α] and λp+1, . . . , λn−s uniformly spaced in [α, β] for

some positive constants α < β, p � n and s even such that 2 ≤ s � n.

Z = tridiag(−γ, 1, γ) ∈ Rs×s with γ > 0. The matrix A is indefinite with

eigenvalues

• λ1, . . . , λp ∈ [−β,−α],

• λp+1, . . . , λn−s ∈ [α, β],

• s complex eigenvalues of Z.

In this case A = H +K with

H =


Λ−

Λ+

I

 , K = FCFT =


O

O

Z − I

 .
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For this first problem E = O, that is, the skew-symmetric part is not approxi-

mated.

We study how to solve the system (1) with b equal to 1/
√
n in all its com-

ponents, n = 105, α = 1/8, β = 1, γ = 1. Figure 2 compares the CPU time of

the different methods tested.

Figure 2: CPU solution time for the first example with the different methods tested for different

values of the rank of the skew-symmetric part of A, s.

For all the values of the rank s it can be observed that using BiCGSTAB

preconditioned with the updated preconditioned method performs the best. In

the case of full GMRES, it starts to be competitive compared with SCM for

values of s greater than 40. Note that the solution time of the SCM increases

linearly with the rank of the skew-symmetric part, while its remains almost

constant for the other methods.

In the next example we modify the previous one in order to obtain a class

of problems for which the skew-symmetric part of the coefficient matrix is ap-

proximated by a low-rank matrix, that is, A = H + FCFT + E with E 6= O

and ‖ E ‖� 1. The problem is defined with the following matrices,

A =


Ψ

Γ

Ω

 , FCFT =


O

O

1
2 (Ω− ΩT )

 , E =


O

1
2 (Γ− ΓT )

O


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where Ψ is of size n/2 from the discretization of the 2D Poisson operator,

Γ = tridiag(−γ,−4, γ) and Ω = tridiag(−ω,−4, ω) are tridiagonal matrices of

dimension n/2− s and s� n, respectively. We consider n = 250000, γ = 0.01,

ω = 10 and s an even number with values from 10 to 40 representing the rank

of the matrix FCFT . For these matrices the error matrix has 2−norm equal

to 0.02. Under these conditions the skew-symmetric part of A has rank equal

to n2/2 and it is approximated by a matrix of rank s. The matrix A is in-

definite with eigenvalues lying in the intervals (0, 8] and [−4 − 20i,−4 + 20i],

which follows from Gerschgorin’s theorem [12]. Figure 3 shows the eigenvalue

distribution for a matrix generated with n = 50 and s = 20.

Figure 3: Eigenvalues for the matrix with n=50 and s=20

In Tables 2 and 3, respectively, we present the number of iterations and time

needed to solve the system Ax = b with b a random vector. The SCM, restarted

GMRES(90), BiCGSTAB and GMRES methods were preconditioned with an

ILU factorization computed for H with drop tolerance 10−2, and with the pro-

posed preconditioner. It is observed that Upd. Prec. performs considerably

better than the other ones in number of iterations and CPU time.
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Iterations

s 10 20 30 40

GMRES(90) Prec. ILU 228 233 274 398

GMRES(90) Upd. Prec. 99 99 99 99

GMRES(90) SCM 206 206 206 206

BiCGSTAB Prec. ILU 260 664 993 †

BiCGSTAB Upd. Prec. 114 125 113 125

Table 2: Number of iterations for the second problem with different values of s. A † means no

convergence in 2000 iterations.

Time (s)

s 10 20 30 40

GMRES(90) Prec. ILU 75.3 79.8 101.7 140.0

GMRES(90) Upd. Prec. 36.0 35.8 36.3 36.2

GMRES(90) SCM 73.6 74.2 76.3 77.6

BiCGSTAB Prec. ILU 14.6 37.3 56.4 †

BiCGSTAB Upd. Prec. 6.7 7.3 6.7 7.4

Table 3: CPU time for the second problem with different values of s. A † means no convergence

in 2000 iterations.

5.2. The Bratu problem

The next example corresponds to the 2-dimensional Bratu problem. It con-

sists of finding the solution u(x, y) of the nonlinear boundary problem

−∆u− λ exp(u) = 0 in Ω, with u = 0 on ∂Ω (17)

depending on the parameter λ, ∆ is the Laplacian, Ω the unit square and ∂Ω its

boundary. We discretize this problem using the five-point finite differences as in

[1, 6], in a grid of 500×500 points. After this, we obtain a system with coefficient

matrix of order n = 2.5 × 105 with skew-symmetric part of exactly rank equal

17



to 2. Table 4 shows the results for the tested methods. The non-preconditioned

BiCGSTAB and restarted GMRES(m) methods were also tested.

Method Time (s) Iter

GMRES(100) †

BiCGSTAB 26.6 827

GMRES(100) Prec. ILU 45.1 123

GMRES(100) Upd. Prec. 46.3 131

BiCGSTAB Prec. ILU 13.1 194

BiCGSTAB Upd. Prec. 11.3 156

SCM 38.2 255

Table 4: CPU solution time and iterations for the Bratu problem

It can be observed that BiGSTAB preconditioning with our technique has

the edge over the SCM method and also works better than the ILU precondi-

tioner computed for H. Compared with the preconditioned GMRES(100), both

preconditioners performed similarly.

5.3. Problems from the University of Florida sparse matrix collection

Table 5 shows the matrices used in this subsection. These matrices arise from

different applications. In this table n and nnz indicate the size and number of

nonzeros of the matrices, respectively. The rank of the matrix FCFT that

approximates the skew-symmetric part is indicated with s, and the norm of

the error matrix E is indicated in the last column. ‖E‖2 = 0 means that the

skew-symmetric part has low rank. The full and restarted GMRES methods

were used. Tables 6 and 7 show the results of the experiments.

We can observe that for these matrices the Upd. Prec. technique obtains the

better results in terms of CPU time. The number of iterations is comparable to

the SCM preconditioner, but this method spends more CPU time to obtain the

solution because the preconditioner application is more expensive. We remark

that, compared with the incomplete LU factorization of H, when the skew-

symmetric part K is not exactly approximated, as it happens with the matrices
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Matrix name Application n nnz s ‖E‖2
IPROB Linear programming 3001 9000 4 0

PESA Directed weighted graph 11738 79566 2 0

BIG Directed weighted graph 13209 91465 2 0

ASIC 100K Circuit simulation 99340 940,621 6 0.7091

HCIRCUIT Circuit simulation 105676 513072 58 0.0472

SCIRCUIT Circuit simulation 170998 958936 126 0.0026

Table 5: Set of tested matrices from the University of Florida sparse matrix collection

IPROB PESA BIG

m= 10 m = 200 m = 200

ρ/Iter/time(s) ρ/Iter/time(s) ρ/Iter/time(s)

GMRES Prec. ILU 2.15/22/0.2 1.16/295/3.8 1.15/295/3.8

GMRES Upd. Prec. 2.15/21/0.2 1.16/244/2.8 1.16/270/3.2

GMRES SCM 2.15/27/0.7 1.16/263/3.4 1.15/265/5.4

GMRES(m) Prec. ILU 2.15/30/0.2 1.16/698/5.5 1.15/1928/17.3

GMRES(m) Upd. Prec. 2.15/30/0.1 1.16/398/3.4 1.16/832/7.5

GMRES(m) SCM 2.15/28/0.8 1.16/378/3.8 1.15/761/9.1

Table 6: Results for the matrices IPROB, PESA, BIG

in Table 7, the technique proposed improves considerably the convergence of

the restarted GMRES method.

6. Conclusions

We have presented a method for preconditioning nonsymmetric matrices

whose skew-symmetric can be well approximated by a low-rank matrix. The

method can be viewed as an update of a preconditioner computed for the sym-

metric part of the system matrix. Some approximation properties of the pre-

conditioner and the eigenvalue distribution of the preconditioned matrix have
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ASIC 100K HCIRCUIT SCIRCUIT

m = 20 m = 50 m=200

ρ/Iter/time(s) ρ/Iter/time(s) ρ/Iter/time(s)

GMRES(m) Prec. ILU 0.87/120/2.1 0.86/155/8.4 1.09/1171/148.2

GMRES(m) Upd. Prec. 0.87/38/0.8 0.89/80/1.6 1.12/568/61.4

GMRES(m) SCM 0.87/36/10.1 0.88/76/21.3 1.09/569/149.7

Table 7: Results for the matrices ASIC 100K, HCIRCUIT and SCIRCUIT

been presented. The method has been compared with others that appear in

the literature for this kind of matrices. From the numerical results conducted

it has been observed that the proposed preconditioner is competive in terms of

solution time and number of iterations spent.
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