Contents

Introduction and objectives 1

1 Fundamentals of metamaterials 5
 1.1 Metamaterials as effective media 7
 1.2 Artificial dielectrics 14
 1.3 Artificial magnetism 16

2 Negative index media 19
 2.1 Properties of negative index media 22
 2.2 Applications 24
 2.3 Surface plasmon polaritons and extraordinary transmission ... 28
 2.4 Our contribution (I): Towards low-loss NIMs in the visible ... 31
 2.5 PAPER1. Negative refractive index metamaterials aided by extraordinary optical transmission . . 33
 2.6 PAPER2. Double-negative polarization-independent fishnet metamaterial in the visible spectrum . . 35
 2.7 PAPER3. Low-Loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths .. 37
 2.8 PAPER4. Dual-band double-negative-index fishnet metamaterial at millimeter-waves 39
 2.9 Our contribution (II): Strong magnetism at visible frequencies and optical security 41
 2.10 PAPER5. Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths 43
 2.11 PAPER6. Metamaterials for optical security 45

3 Transformation optics 47
 3.1 Fundamentals 48
3.2 Examples of transformation-optics-based devices 51
3.3 Transmutation of singularities: optimizing the constitutive parameters (our contribution) 57
3.4 Reflectionless light squeezers and expanders and their applications (our contribution) 61
3.5 PAPER9. Exciting surface plasmons with transformation media 77
3.6 Quasi-conformal mappings 79
3.7 PAPER10. Engineering antenna radiation patterns via quasi-conformal mappings 87

4 General discussion of results and conclusions 89
4.1 Negative index media 89
4.2 Transformation optics 91

Bibliography 93