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ABSTRACT
This paper deals with the mean-variance optimization frontier problem when real-
istic constraints are considered. Our proposed methodology hybridizes a heuristic
algorithm with an exact solution approach. A genetic algorithm is applied for the
identification of the assets in the portfolio, whilst the asset weights in the port-
folios are obtained by a quadratic programming model. The proposed algorithmic
framework produces a constrained frontier that actually fulfils the bound and cardi-
nality constraints, unlike other proposals where the frontier is composed of several
sub-frontiers, each one considering the cardinality constraint but with different as-
sets in each sub-frontier, thus violating the cardinality constraint. This brings us
to propose a surrogate similarity measure for the optimization of the constrained
frontier, which differs from a previous proposal where no bound constraints were
considered. Regarding the genetic algorithm, we propose an initial population to
boost the convergence of the optimization process, whilst the adopted mutation and
crossover genetic operators result in feasible individuals. An illustrative example us-
ing components of five major stock market indices is provided to demonstrate the
effectiveness of the proposed method.
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1. Introduction

The portfolio optimization problem was defined by Markowitz (1952) as investing in
some risky assets in an efficient way. Markowitz formulated the problem as a math-
ematical programming model with the following two competing objectives: (i) max-
imizing the expected return of the portfolio and (ii) minimizing its risk (variance of
the returns). The efficient frontier is the set of non-dominated portfolios in the mean-
variance sense that meet the aforementioned objectives.

Some researchers have pointed out several weaknesses in the mean-variance portfo-
lio optimization problem. From a practical point of view, investors usually face typical
constraints such as the cardinality constraint, which sets a limit on the number of
assets composing a portfolio, and lower and upper bounds for the weights of assets
(Chang, Meade, Beasley, & Sharaiha, 2000; Liagkouras & Metaxiotis, 2014; Woodside,
Lucas, & Beasley, 2011). Restricting the number of assets by considering cardinality
constraints can simplify the management of the portfolio and reduce transaction costs.
This is particularly important if some assets have a relatively small weight in the port-
folio. Removing these assets from the portfolio can reduce transaction costs without
having any practical impact on the portfolio’s expected return and risk (Chang et al.,
2000; Guijarro, 2018; Ruiz-Torrubiano & Suárez, 2015). Bound constraints enable fund
managers to limit the minimum and maximum amount to be invested in the assets;
the lower bound reduces the transaction costs, whilst the upper limits the portfo-
lio’s exposure to a specific asset or sector. In addition, these constraints can improve
both the in-sample and out-of-sample robustness and performance of the portfolios
(Ruiz-Torrubiano & Suárez, 2015).

Constraints on cardinality transform the model into a quadratic mixed-integer prob-
lem, which has been proved to be NP-hard (Ruiz-Torrubiano & Suárez, 2009, 2015;
Shaw, Liu, & Kopman, 2008). This is one of the main reasons why meta-heuristic
algorithms have gained attention for the constrained portfolio optimization problem,
the genetic algorithm being one of the academics’ favourites (see Section 2).

In this paper, we address the portfolio optimization problem taking into account
realistic constraints, such as cardinality and bound constraints. In line with Guijarro
(2018), we focus on the whole constrained mean-variance frontier, and not on a specific
portfolio on the frontier. An alternative consists of building the cardinality constrained
frontier from different sub-frontiers, each one considering the cardinality constraint
but with different assets in each sub-frontier. However, in practical terms, the “com-
pounded” frontier violates the cardinality constraint. Furthermore, considering the
cardinality constraint may result in a discontinuous frontier, where discontinuities im-
ply that there are certain returns which no rational investor would consider, since
there exist portfolios with the same risk but with higher returns (Chang et al., 2000).
In addition, we also point out that taking the cardinality constraint as an equality
entails a suboptimal solution when bound constraints have to be met. However, con-
sidering the cardinality constraint as an inequality mitigates this problem. This led
us to propose an algorithm for the optimization of the constrained frontier when the
cardinality constraint is interpreted as the maximum number of assets in the portfolio,
instead of the exact number of assets. Including bound constraints allows to revisit
the model proposed in Guijarro (2018) and create a surrogate similarity measure for
the mean-variance frontier optimization under bound and cardinality constraints.

Another difference regarding the paper from Guijarro (2018) is the relaxation of
the required return constraint for portfolios. Again, we use an inequality instead of
an equality constraint, although it is known that in practice it is very difficult to
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give a specific value of ”desired return”. This way, the paper considers two constraint
relaxations to solve the problem under realistic constraints, i.e. cardinality and return.

Our proposal hybridizes a heuristic algorithm with an exact solution approach. A
genetic algorithm (GA) is applied for the identification of the assets in the portfolio,
while the assets’ weights in the portfolios are obtained by a quadratic programming
model. We must emphasise that the GA identifies which assets are used for the frontier
construction considering the aforementioned constraints. Thus, all portfolios use the
same set of assets and the cardinality constraint is actually observed along the whole
frontier, by setting the same assets for any portfolio in the frontier. The quadratic pro-
gramming model takes those assets to compute their weights, according to the required
return of each portfolio. Furthermore, the proposed framework can be considered in
a multi-period setting (Li & Ng, 2000). In this situation, the decision maker needs to
reinvest his/her wealth at the end of each investment period. This implies to readjust
the assets’ weights but without changing the assets involved in the portfolio in order
to avoid excessive transaction costs.

The GA model does not have any cardinality constraints, which means that it can
be solved using standard quadratic programming solvers. This combinatorial encoding
offers a significant advantage over mixed encodings, such as those used in Chang et al.
(2000), where chromosomes with both discrete and continuous components are used.
More precisely, the GA can focus on solving the combinatorial optimization problem of
finding the optimal subset of assets without handling the continuous constraints. This
separation has been shown to increase the performance of cardinality constrained port-
folio selection algorithms (Moscato & Cotta, 2003; Ruiz-Torrubiano & Suárez, 2015).
We also propose an initial population that accelerates the convergence of the algo-
rithm, whilst the mutation and crossover genetic operators adopted result in feasible
individuals. Thus, neither a penalty function nor repair operator are required to con-
vert non-feasible solutions to feasible. Our experiments were carried out on a database
frequently used in similar studies. Our findings suggest that the present proposal for
population initialisation enhances the performance of the algorithm and obtains better
solutions in a significantly shorter computation time.

The rest of the paper is structured as follows: Section 2 includes a brief survey of
the literature on the bound and cardinality constrained mean-variance problem and
the heuristics that have been applied to solve it. Section 3 introduces the surrogate
similarity measure used for the optimization of the bound and cardinality constrained
mean-variance frontier. Section 4 presents and discusses the computational results and
the conclusions are offered in Section 5.

2. Related work

This section reviews the literature on the constrained portfolio optimization problem
and is mainly concentrated on studies that use a heuristic approach to consider the
cardinality constraint.

The comparison between different heuristics in the cardinality constrained portfolio
optimization problem was first addressed by Chang et al. (2000), who propose genetic
algorithm, tabu search (TS) and simulated annealing (SA) to extend the standard
model by including cardinality constraints and imposing limits on the proportion held
in a given asset. They use the OR-Library (Beasley, 1990), a public database that has
enabled other researchers to come up with alternative models and compare their results
from the perspective of efficacy and efficiency. The database includes information on
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five well-known stock market indices, with cardinality ranging from 31 (Hang Seng
Index) to 225 (Nikkei Index).

Chang, Yang, & Chang (2009) introduce several risk measures by employing GA,
and compare the results with those obtained by the mean-variance model. The al-
ternative risk measures are the semi-variance, mean absolute deviation and variance
with skewness. In this work, computation times are similar to those reported by Ruiz-
Torrubiano & Suárez (2009) and proportional to the number of assets in the cardinality
constrained portfolio.

Soleimani, Golmakani, & Salimi (2009) consider the aforementioned constraints on
cardinality and floor-ceiling limits, and add a new constraint regarding sector capital-
ization. The GA model is applied to large scale problems with 500 and 2,000 stocks,
and acceptable results are obtained in a sensible time (less than 7 minutes).

Cura (2009) uses Particle Swarm Optimization (PSO) in the cardinality constrained
mean-variance model. The experimental results show that when compared to GA, TS
and SA, none of the four heuristics outperforms the others. In line with this, Deng,
Lin, & Lo (2012) propose an improved PSO which increases the exploration in the
initial search steps, boosting the convergence process in the last search steps. Their
results show that this new version is more robust and effective than existing PSO, GA,
SA and TS algorithms.

Sadjadi, Gharakhani, & Safari (2012) propose a new framework to solve the cardi-
nality constrained portfolio problem when input parameters are subject to uncertainty.
Since no practical solution for robust optimization exists when the uncertainty level
increases, the authors propose a GA model to find near-optimal solutions. The CPU-
time for the results reported were below one minute, but the database used was not
the OR-Library.

Woodside et al. (2011) extend Chang et al.’s findings (2000). They compare the
performance of GA, TS and SA, but solving to optimality a mixed-integer quadratic
optimization problem. As stated by the authors, embedding an algorithmic step in-
volving the optimal solution in a heuristic algorithm is relatively uncommon in the
literature. They do not exactly define return but allow it to be specified within a
certain range. The reported CPU-time for the largest test problems is below fifteen
minutes.

Another novel approach entails different trading operations in the portfolio rebal-
ancing, such as sell, hold or buy. Instead of building a static portfolio, Ruiz-Torrubiano
& Suárez (2015) design a dynamic model over time and optimize it through GA. An
adapted RAR crossover operator produces individuals that satisfy all the constraints,
so that no repair mechanisms are needed. The exploration and exploitation capabili-
ties of the GA are enforced using the proposed crossover and mutation operators that
take advantage of specific features of the problem.

GA is also used by Guijarro (2018) where the optimization problem is not the
search for a specific portfolio, but the whole cardinality constrained frontier. The
solution is reached by optimizing the similarity between the unconstrained mean-
variance frontier and the cardinality constrained frontier. The author only considers
cardinality constraints.

Another example of GA to solve a financial problem is proposed by Ruiz-Torrubiano
& Suárez (2009). The authors apply GA to the index tracking problem, which consists
of reproducing the performance of a stock-market index by investing in a subset of
the stocks included in the index –cardinality constraint–. They handle the problem on
two levels: the combinatorial problem of identifying the appropriate assets is solved
by GA, while quadratic programming is used to determine the proportion. No bound
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constraints are considered. The results are reported for the OR-Library stock mar-
ket indices and optimal solutions for 10-assets cardinality constrained portfolios are
obtained in less than a minute’s computation time in all cases.

Although GA is among the most popular heuristics in academia, other approaches
have also been recently applied to the cardinality constrained portfolio optimization
problem, like the artificial bee colony algorithm (ABC) or the electromagnetism-like
algorithm. Some recent examples can be found in Kalayci, Ertenlice, Akyer, & Aygoren
(2017) and Salehpoor & Molla-Alizadeh-Zavardehi (2019).

A remarkable approach is proposed by Bruni, Cesarone, Scozzari, & Tardella (2015),
who implicitly control the cardinality by controlling the return (the extra-return with
respect to a given index, which is easier to specify in practical cases), without the need
for explicit cardinality constraints.

3. Formulation of the problem

This section describes the proposed framework of the bounded and cardinality con-
strained mean-variance optimization problem, plus several issues concerning the con-
straint on asset weights. We first propose a surrogate for the similarity measure given
in Guijarro (2018) and then introduce specific operators for the improvement of the
genetic algorithm.

3.1. The bounded and cardinality constrained mean-variance optimization
problem

Here we introduce different elements related to the constrained mean-variance model
we propose. We initially assume the model, Eq. (1), from Chang et al. (2000), which
draws up the efficient portfolio with return r∗, constrained to k assets and bounded
to limits li and ui, i = 1, . . . , N .

minimize

N∑
i=1

N∑
j=1

xixjσij (1a)

subject to

N∑
i=1

xiri = r∗ (desired return constraint) (1b)

N∑
i=1

xi = 1 (budget constraint) (1c)

lizi ≤ xi ≤ uizi (bound constraints) (1d)

N∑
i=1

zi = k (cardinality constraint) (1e)

zi ∈ {0, 1} (1f)

where:
xi is the proportion held in asset i (i = 1, . . . , N),
σij is the covariance between the return of asset i and asset j (i, j = 1, . . . , N),
ri is the expected return of asset i (i = 1, . . . , N),
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r∗ is the desired level for the portfolio’s return,
N is the number of assets available to invest in,
k is the cardinality of the portfolio,
zi is a binary variable which is 1 if asset i (i = 1, . . . , N) is held, and 0 otherwise,
li (ui) is the minimum (maximum) proportion to be invested in asset i (i =

1, . . . , N), if any investment is made in i.
Therefore xi and zi are the decision variables in model described in Eq. (1).
To illustrate some features of this model we begin with the data of the example

provided by Chang et al. (2000) with N = 4 (Table 1). The original data consists
of returns, standard deviations and correlations. We have substituted the covariance
matrix for the correlation matrix, with the aim of drawing a direct parallel with model
in Eq. (1).

[Table 1 about here.]

From this data, we have obtained both the unconstrained efficient frontier (UEF)
and the cardinality constrained efficient frontier (CCEF) with k = 3 in Fig. 1. No
bound constraints are considered for the CCEF at this stage, i.e. l = 0 and u = 1,
and thus no short sales are allowed. However, the UEF problem does allow short sales,
which facilitate the similarity measure proposed by Guijarro (2018). We can see that
the CCEF is actually composed of two different frontiers: one is constrained to assets 1,
2 and 3, while the other is limited to assets 2, 3 and 4. Each frontier therefore complies
with the cardinality constraint, but the whole CCEF violates this assumption while
using all the assets.

[Figure 1 about here.]

In order to effectively fulfil the cardinality constraint in the whole frontier, Guijarro
(2018) proposes a similarity measure for constraining the cardinality in the mean-
variance optimization problem. However, in Guijarro (2018) the bounding constraints
in Eq.(1d) are excluded. For this he compares the area of the UEF with the area of
each candidate CCEF. The CCEF with the largest area is regarded as the most similar
to the UEF, and hence is chosen as the optimal CCEF. Fig. 2 compares the area for
the 4 different CCEF with the k = 3 constraint, but assuming the return constraint
as an inequality, as we later discuss. We can see that the frontier with assets 1, 2 and
3 –CCEF(1, 2, 3)– is the one with the biggest area, so the investor should choose this
frontier as optimal. For additional details on how the area is computed we refer to
Guijarro (2018).

[Figure 2 about here.]

The similarity measure is devised for those frontiers that follow a continuous differ-
entiable function, as does variance of returns, although in the case of bound limits the
calculation of the area can become more difficult than in the unbounded case. Fig. 3
draws the bounded and cardinality constrained frontier devised with assets 1, 2 and 3
and with weights constrained to li = 0.15 and ui = 0.80: BCCF(1, 2, 3). We have also
included the UEF for comparative purpose.

[Figure 3 about here.]

Chang et al. (2000) formulate the problem with an equality rather than an inequality
in the cardinality and return constraints. They argue that if cardinality is expressed
as a range (kL ≤ k ≤ kU ) then the problem can be faced by examining all values of
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k between kL and kU . They state that “the decision as to the number of assets (k)
to have in the chosen portfolio is one that can only be decided by the decision-maker
in the light of the tradeoff between the three factors (risk, return and k) involved”.
Nevertheless, a major point we address in our paper is that in terms of the above
reasoning the BCCF is not efficient, as considering the cardinality constraint as an
equality makes the frontier inefficient. The same applies for the constraint related
with the desired level for the portfolio’s return Eq. (1b). In the following we detail
our approach, which differentiates from Chang et al. (2000) in that we focus on the
cardinality constrained frontier and not on a single portfolio from the frontier.

In Fig. 3 we have also depicted the bounded and cardinality constrained efficient
frontier: BCCEF. This is computed with the same assets and bounding limits as
BCCF, but considering both the return and cardinality constraints as an inequal-
ity, i.e.

∑N
i=1 xiri ≥ r∗ and

∑N
i=1 zi ≤ k. Therefore, we require a minimum return r∗

and we allow the portfolios to include up to k assets, instead of exactly requiring k
assets. In Fig. 3 we can see how both frontiers overlap from the minimum return con-
sidered in the plot (0.0020) to the return of portfolio p3. But the BCCEF dominates
the BCCF for higher returns. This happens because BCCF is not allowed to violate
the bound limits of the assets, while the BCCEF compares the solution in which the
asset weight is in the lower (upper) limit with the one obtained if the asset is excluded
from the portfolio (xi = 0). Fig. 3 shows that observing the cardinality through a strict
equality also constrains the maximum return achievable. The return for the BCCF is
limited to the one obtained by portfolio p4, while BCCEF achieves a higher return.
In some cases the bounds imposed by the investor can become redundant in practice
when the problem is solved. From the above example with li = 0.15 and ui = 0.80
for BCCF(1, 2, 3), the portfolio p4 in Fig. 3 takes the minimum vales for x2 and x3,
i.e. x2 = x3 = 0.15. This constrains the value of x1 to 0.70, and hence the theoretical
upper limit of 0.80 is actually unattainable. The investor should take into account that
the actual bounds, l∗i and u∗i , for the weights are delimited by Eqs. (2)-(3),

l∗i = max

li, 1− k∑
j=1,j 6=i

uj

 , (2)

u∗i = min

ui, 1− k∑
j=1,j 6=i

lj

 , (3)

where i = 1, . . . , k.
In short, (i) the BCCF assumes an equality constraint both for the return and

cardinality and this implies a suboptimal solution, whilst (ii) the inequality constraints
in the BCCEF ensure optimality for the investor and a wider range for the return.

Fig. 4 illustrates how the weights of assets change as return evolves. Both models
allocate the same weights to assets from the point with minimum return to the return
level of portfolio p3. For higher returns, BCCEF excludes asset 2 from the portfolios
(x2 = 0), whilst BCCF keep its weight in the minimum value (0.15). BCCF is not
capable of going beyond p4, in contrast with BCCEF, which gets higher returns by
considering assets 1 and 3 in their portfolios.

It is important to note that including limits makes the weights non linear with

8



return. In the classical unconstrained mean-variance model, these weights vary in pro-
portion to return, but Fig. 4 highlights that the weight of each asset changes between
marked portfolios. This means that the similarity measure proposed in Guijarro (2018)
for the cardinality constrained efficient frontier must be reconsidered to handle bound
constraints. Instead of computing the area of the cardinality constrained frontier, as
shown in Fig. 2, we propose a surrogate for the similarity measure as the distance
between the UEF and the BCCEF.

[Figure 4 about here.]

3.2. A surrogate for the similarity measure

Here we provide an insight into the modified similarity measure for the identification of
the bounded and cardinality constrained frontier. We use Fig. 5 to help us to introduce
the surrogate similarity measure to the example given above.

Instead of computing the whole area of the frontiers, we propose to compute the
similarity measure by measuring the distance from the BCCEF to the UEF. With the
aim of reducing computational time, we only consider a limited number of portfolios
for the distance calculation.

Fig. 5 gives an example of the selected portfolios, which connect the UEF and the
BCCEF through horizontal lines. For the return we chose equidistant portfolios on the
basis of the minimum and maximum return considered by Guijarro (2018). The figure
suggests that in all four cases the changes in the weight of assets are non linear, as
previously indicated in Fig. 4. Furthermore, the maximum return is not attained for
BCCEF(1, 2, 4) and BCCEF(2, 3, 4). This is because the bounding constraints make
it impossible to reach some return levels; i.e. no feasible portfolio reaches the required
returns while satisfying the bounding constraints. Therefore, the optimal BCCEF must
meet the following assumptions:

(a) In order to discard non-feasible solutions, the frontiers that do not reach the
minimum and maximum return values will not be considered as feasible frontiers.
If we did so, we could be favouring any frontiers dissimilar to the UEF but with a
low reported distance because of the fewer portfolios considered. In the example
in Fig. 5, BCCEF(1, 2, 4) and BCCEF(2, 3, 4) do not fulfil this requirement. We
can see that if this condition is not required, BCCEF(2, 3, 4) will be unfairly
selected as optimal.

(b) The –feasible– BCCEF with the minimum sum of horizontal distances to the
UEF will be chosen as optimal. In the case of Fig. 5, BCCEF(1, 2, 3) would be
the optimal frontier chosen by the algorithm.

Alternatively, we could compute the distance between the BCCEF and the BCCF
(as in Fig. 3) instead of computing the distance between the BCCEF and the UEF.
In the following we explain why we chose the BCCEF-UEF distance for the proposed
similarity measure calculation.

First, considering the BCCF could involve limiting the return range (Fig. 3), while
the UEF does not have this disadvantage because of the short sales. Secondly, let’s
suppose we are confronting two alternative BCCEF (A and B) which must be compared
in the mean-variance sense. Without loss of generality we assume that A obtains a
shorter distance to the UEF than B. If BCCF were used, then A would also get a
shorter distance to BCCF than B. It is thus indifferent whether we use UEF or BCCF
for the comparison between A and B frontiers. Nevertheless, the computation of the
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BCCF requires solving a quadratic programming model with bounded constraints,
while the UEF computation can be solved in a shorter time. Let r be the k× 1 return
vector of assets, V be the k×k covariance matrix of returns and 1 be the k× 1 vector
in which every entry equals 1. We only need to compute the variance σ2 of a limited
number of portfolios on the UEF (Fig. 5), which can be easily solved by using Eq. (4)
as shown in Guijarro (2018).

σ2 =
(
a− 2br∗ + c(r∗)2

)
/
(
ac− b2

)
, (4)

where r∗ is the desired expected return of the portfolio, a = rTV−1r, b = rTV−11
and c = 1TV−11. Thus, values for a, b and c are computed only once for the whole
frontier, and the variance is computed by varying the desired return.

[Figure 5 about here.]

Algorithm 1 presents the pseudo code for the calculation of the optimal BCCEF
for a given subset of assets with cardinality k. This algorithm will ultimately be con-
sidered as the fitness function for the genetic algorithm. The inputs are the vector of
returns (r) and the variance-covariance matrix (V) for the k assets considered, the
upper (u) and lower (l) bounded limits, the range for the portfolios return (r.min and
r.max), the number of portfolios to be considered in the similarity distance calculation
(n.portfolios), and the variance of the portfolios in the UEF. The output is the opti-
mal BCCEF both considering the bounded and the cardinality constraints, where the
BCCEF is reported as a matrix containing the return and variance of the portfolios,
and the distance between the aforementioned variance and the one reported by the
UEF. As stated above, the return range is divided into n.portfolios at equally spaced
intervals. The aim of the algorithm is to search the minimum distance between each
of the points in the UEF and the BCCEF, as shown in Eq.(5):

distance =

n.portfolios∑
p=1

(
σ2
p,BCCEF − σ2

p,UEF

)
(5)

The following steps are followed for each return in the aforementioned range. First,
the quadratic programming model is solved by considering the bound constraints.
Since the inputs of Algorithm 1 include the specific assets to be considered in the
frontier, the function solve.QP computes the model (1a)-(1d), i.e. the cardinality is
implicit. If no feasible solution exists for the return and bound constraints considered,
the problem is solved again by removing the bounded constraints. Secondly, we identify
whether any asset has a weight on the upper or lower limits. In some cases a better
solution can be attained if some of these assets are excluded from the portfolio. If
there is a weight lying on the lower limit, the solution can be improved by removing
the asset from the portfolio, i.e. xi = 0. If there is a weight lying on the upper bound,
removing the asset results in an improvement of the variance only in unusual cases.

As already mentioned, we consider both return and cardinality as inequality con-
straints. The point here is that the number of possible portfolios to be examined is
exponential with the number of assets in the upper or lower limits. If only one asset is
in this situation, then the variance of two portfolios should be compared: the portfolio
with the asset weight in the lower (upper) limit, and the one with zero asset weight.
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If two assets have weights on the limits, then four portfolios should be compared; and
so on. Therefore, as n.bounding.weights is the number of assets with weights on either
the lower or the upper limit, we need to compare 2n.bounding.weights portfolios to solve
for the optimal solution.

Algorithm 1 Pseudo code for the computation of the optimal BCCEF (fitness func-
tion for the genetic algorithm). Comments are placed after a hash (#) in italics.

Inputs: r = [r1, . . . , rk]
T, V = [vi,j ] i, j = 1, . . . , k, l = [l1, . . . , lk]

T, u =
[u1, . . . , uk]

T, n.portfolios, r.min, r.max, UEF = [v1, . . . , vn.portfolios]
T.

Output: F ∈ Rn.portfolios×3. # An n.portfolios × 3 matrix containing the return
and variance for n.portfolios and the distance between the BCCEF and UEF.

1: # |a| stands for the cardinality of set a
2: # seq(i, j, length) generate a regular sequence from i to j of length = ‘length’
3: # solve.QP(r, V, ret, bound.constr) computes the Markowitz quadratic program-

ming model with r being the expected return vector, V the variance matrix, ret the
required return, and bound.constr the bound constraints

4: Begin
5: # r.seq determines the return for the n.portfolios different portfolios
6: r.seq = seq(r.min, r.max, length = n.portfolios)
7: p = 1
8: # optimal portfolio estimation for each return value in r.seq
9: for all (ret in r.seq) do

10: # p.weights is a vector with the weights of the optimal portfolio constrained to
ret and bounded constraints u and l

11: p.weights = solve.QP(r, V, ret, bound.constr = (u, l))
12: # if no feasible solution is obtained, solve again with no bound constraints
13: if (p.weights == ∅) then
14: p.weights = solve.QP(r,V, ret, bound.constr = ∅)
15: end if
16: # assets with a weight out of the bound values
17: l.weights = which(p.weights ≤ l)
18: u.weights = which(p.weights ≥ u)
19: n.bound.weights = |l.weights|+ |u.weights|
20: # if bound constraints are not violated, the p.weights are the weights of the

optimal portfolio
21: if (n.bound.weights == 0) then
22: temp.weights = p.weights
23: temp.variance = p.weightsT ×V × p.weights
24: else
25: # if bound constraints are violated, we search for the constrained optimal

portfolio
26: temp.weights = ∅
27: temp.variance = large.number
28: # compute the binary combinations for n.bound.weights assets: 2n.boung.weights

29: combinations = {0, 1}n.bound.weights

30: n.combinations = 2n.bound.weights
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31: for all (j in combinations) do
32: # Solve the problem by considering the bound constraints for the assets in

combinations[j]
33: (u, l) = combinations[j]
34: p.weights = solve.QP(r,V, ret,bound.constr = (u, l))
35: p.variance = p.weightsT ×V × p.weights
36: if (p.variance < temp.variance) then
37: temp.weights = p.weights
38: temp.variance = p.variance
39: end if
40: end for
41: end if
42: p.weights = temp.weights
43: F [p, 1] = ret
44: F [p, 2] = p.weightsT ×V × p.weights
45: F [p, 3] = F [p, 2]− UEF [p]
46: p = p+ 1
47: end for
48: return (F)
49: End begin

3.3. Configuring the genetic algorithm

Once we have devised an algorithm to compute the optimal BCCEF for a subset
of assets, we can use it as the fitness function in the genetic algorithm. Given the
bound and cardinality constraints, the target of the genetic algorithm is to find which
specific assets will participate in the frontier by minimizing the distance reported by
the fitness function of Algorithm 1. In the following we propose how to implement the
main operators of the genetic algorithm.

3.3.1. Initial population

Instead of randomly select the initial population, we propose to feed the genetic algo-
rithm with the population obtained by solving a shorter version of the model described
in Eq. (1). The initial population is created following the proposal of Guijarro (2018),
i.e. excluding the bound constraints. This allows individuals to be feasible by con-
sidering the cardinality constraint and to accelerate the convergence of the genetic
algorithm, as shown in Section 4.

3.3.2. Crossover operator

In order to avoid a repair operator, both the crossover and mutation operators have
been devised to ensure feasibility in individuals. Algorithm 2 presents the pseudo
code for the crossover operator, where two parents (input) are crossed to produce two
children (output). We first identify the assets included in any parent. As the parents
meet the cardinality constraint, this ensures that the number of assets identified is
between k and 2k. Secondly, each child is composed by randomly selecting k from the
aforementioned subset of assets, so that they comply with the cardinality constraint.

12



Algorithm 2 Pseudo code for crossover operator. Comments are placed after a hash
(#) in italics.

Inputs: parent1, parent2 ∈ {0, 1}k
Outputs: child1, child2 ∈ {0, 1}k

1: # sample(set, size) takes a sample of the specified size from the elements in set
without replacement

2: Begin
3: which.parent1 = which(parent1 == 1)
4: which.parent2 = which(parent2 == 1)
5: which.assets = which.parent1 ∪ which.parent2
6: child1[sample(which.assets, k)] = 1
7: child2[sample(which.assets, k)] = 1
8: return(child1, child2)
9: End begin

3.3.3. Mutation operator

The mutation operator randomly selects an asset in the portfolio and changes it for
another asset not included in the portfolio. This maintains the cardinality of the
mutated portfolio.

Algorithm 3 Pseudo code for mutation operator. Comments are placed after a hash
(#) in italics.

Input: portfolio ∈ {0, 1}k
Output: portfolio ∈ {0, 1}k

1: # sample(set, size) takes a sample of the specified size from the elements in set
without replacement

2: Begin
3: which.portfolio.0 = which(portfolio == 0)
4: which.portfolio.1 = which(portfolio == 1)
5: i = sample(which.portfolio.0, 1)
6: j = sample(which.portfolio.1, 1)
7: portfolio[i] = 1
8: portfolio[j] = 0
9: return(portfolio)

10: End begin

4. Computational results

We tested the performance of our proposal for finding the bounded and cardinality
constrained efficient frontier using test problems for five major stock market indices
available from OR-Library (Beasley, 1990): Hang Seng (N = 32), DAX 100 (N = 85),
FTSE 100 (N = 89), S&P 100 (N = 98) and Nikkei 225 (N = 225). This library has
been widely used in previous studies (Cesarone, Scozzari, & Tardella, 2013; Chang
et al., 2000; Cura, 2009; Guijarro, 2018; Liagkouras & Metaxiotis, 2014; Lwin & Qu,
2013; Meghwani & Thakur, 2017; Woodside et al., 2011). Bruni, Cesarone, Scozzari, &
Tardella (2016) have recently provided these datasets, in a version cleaned from errors
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and adjusted for dividends and for stock splits.
The experiments were carried out using 50 equally spaced desired return levels in the

distance calculation between the UEF and the BCCEF in Algorithm 1. The minimum
and maximum value for the return were obtained through the 0.1 and 0.9 percentiles
of weekly assets return, respectively. In this way, the tracing frontier is devised within
a sensible return range, excluding unrealistic values. We used li = 0.01 and ui = 1
(i = 1, . . . , N) and k ∈ {10, 15}, following a similar approach to Woodside et al. (2011).

Along with the aforementioned features of the optimization problem, we must also
determine other relevant parameters in the genetic algorithm. In our study the popu-
lation size and the number of generations is set to 20. One could argue that both are
small numbers, but there are two reasons why we decided to constrain these param-
eters: i) the high computational cost of Algorithm 1, which must be applied to every
individual in the population, and ii) the quality of the initial population, which obtains
such good solutions that 20 individuals was enough in the experiments we performed.
Lastly, we set the probability of mutation to 0.2.

The implementation was carried out in R using the package GA (Genetic Algo-
rithm), by adapting the original code for the proposed initial population, crossover
and mutation operators. The quadratic programming model was also solved with R
and the package quadprog, and no change in the original code was required. The
system runs under macOS v.10.13.1, 1.6 GHz Intel Core i5 and 8 GB RAM.

The results are compared for different cardinalities k ∈ {10, 15}, different stock
market indices, comparing random initial populations vs. proposed initial population,
and here we report the performance of the model, both for the distance between the
UEF and the BCCEF and the computation time. We argue that the investor can
be interested in composing a frontier closed to the UEF as far as possible, but also
in a sensible computation time, so both metrics must be kept in mind. We run each
experiment 50 times in order to analyze the significance of the results from a statistical
point of view. This makes it possible to account for a distribution of distances and
computation times, and statistically analyze differences in mean.

Figs. 6 and 7 plot the distance between the UEF and the BCCEF for k = 10 and
k = 15, respectively, and all the stock market indices considered. We represent the
index (from ind1 – Hang Seng to ind5 – Nikkei 225) on the x-axis, along with the pro-
cedure for the initial population setting (A – random initial population, B – proposed
initial population). The y-axis represents the distance between the aforementioned
frontiers, i.e. an inverted similarity measure in terms of Guijarro (2018). Boxplots
depict the distance distribution for the 50 experiments carried out. We can see notice-
able differences for initial populations A and B regarding indices from ind2 to ind5.
The proposed initial population, which makes use of the unbounded optimization in
Guijarro (2018), improves the solution gathered by the random population. The only
exception is index 1, because the low number of assets (32) enables both approaches
to quickly converge to the optimal solution. To compare these distributions with a
boxplot, we conducted a statistical analysis to confirm the significance of the differ-
ences. The nonparametric Mann-Whitney U test was applied to the distributions to
find any differences between the initial population performances. Sample differences
are statistically significant at a 99% confidence level except for the case of index 1
(Hang Seng).

We can therefore conclude that the initial population taken from the unbounded
version of the cardinality constrained optimization model gives superior results in
relation to the alternative of the random initial population, for both k = 10 and
k = 15.
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[Figure 6 about here.]

[Figure 7 about here.]

Figs. 8 and 9 report the computational times required by the model for k = 10
and k = 15, respectively. In the first case we can see that all the experiments were
conducted in less than 2.1 minutes. When the cardinality is increased to k = 15,
the computation time of Algorithm 1 rapidly increases; in the worst case, nearly 55
minutes were necessary to process the whole number of generations. Comparing both
figures, it can be seen that computational times for indices 2, 3 and 4 remain quite
similar and are substantially lower than those for indices 1 and 5. This is because in a
relatively high number of instances in indices 1 and 5 the portfolios were compounded
with weights in the bound limits, which involves comparing more portfolios with some
weight assets in the bounds and others with some asset weights at zero.

Regarding the difference between the two initial population procedures, the Mann-
Whitney U test reported no statistical difference with k = 10. However, in k = 15 we
obtained statistically significant differences at a 99% confidence level for all indices. As
stated below, the proposed initial population takes as a starting point a solution closer
to the optimal solution than in the case of a random initial population. This enables
a quicker convergence in such a way that the population is composed of mostly the
same optimal solution at that moment, along with other sub-optimal solutions. In a
specific generation the genetic algorithm does not obtain the fitness value of a solution
if it has been computed in a previous generation. In this case, if the same solution
is repeated in the population, the genetic algorithm only computes its fitness value
once (Algorithm 1) and the computation time for the whole process is considerably
reduced.

Along with the results outlined in Figs. 6–9, we include summary statistics for
different performance measures of the reported portfolios in Appendix A. We must
point that the proposed framework seeks to minimize the distance between the mean-
variance frontier and the constrained frontier. Hence, the reported performance mea-
sures were not included in the optimization process.

[Figure 8 about here.]

[Figure 9 about here.]

5. Conclusions

This paper deals with the mean-variance optimization frontier problem when realistic
constraints are considered. We focus on bound and cardinality constraints and our
proposal hybridizes a genetic algorithm, which is applied to the identification of the
assets in the portfolio, with a quadratic programming model which computes the asset
weights.

Unlike other approaches, our model actually satisfies the cardinality constraint for
the whole devised frontier, while previous models obtain the constrained frontier as the
union of constrained sub-frontiers, each one considering the cardinality constraint, but
with different assets in each sub-frontier. We give an illustrative example which shows
that the compounded frontier does violate the cardinality constraint. Our proposal
utilizes the same set of assets for all portfolios along the frontier, hence observing
the cardinality constraint for the whole frontier and not only for individual portfolios.
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The genetic algorithm focuses on the identification of the assets to be used in the
frontier. The quadratic programming model extracts the portfolios solely on those
assets. We also show that taking the cardinality constraint as an equality obtains
suboptimal solutions when bound constraints are considered. This led us to propose a
surrogate similarity measure for the mean-variance optimization problem under bound
and cardinality constraints, as a modification of a previously stated similarity measure.
Another realistic assumption we have addressed is the consideration of the required
return’ constraint as an inequality.

We propose specific initial population, crossover and mutation operators for the
genetic algorithm in order to preserve the feasibility of the solutions throughout the
entire process. By considering a dataset of five major stock market indices broadly used
in the literature, we provide empirical evidence suggesting that the proposed initial
population outperforms the classical random initial population. Furthermore, the com-
putation burden is significantly reduced for cardinality k = 15. The proposed initial
population includes the best individuals from the bound unconstrained optimization
problem, which runs much faster than the constrained version. In a few generations,
the population is mainly composed of the individuals with the highest fitness value,
whilst the random initial population gets a more diversified population and needs to
explore very poor solutions before achieving a good one.

An important future research area includes the consideration of the proposed frame-
work in a multi-period setting. Under this approach, the analyst could manage the
readjustment of assets’ weights without changing the assets in his/her investment,
and hence avoiding unnecessary transaction costs.
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Figure 1. An example on k = 3 CCEF which actually uses 4 assets.
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Figure 2. Different cardinality constrained frontiers with k = 3.
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Figure 3. Comparison between UEF, BCCF and BCCEF.
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Figure 4. Portfolio’s weight for different returns in A) BCCF and B) BCCEF.
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Figure 5. The surrogate similarity measure for different bounded and cardinality constrained frontiers with

k = 3.
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Figure 6. Distances between the UEF and the computed k = 10 BCCEF for different indices. Comparison
between random population (A) and the proposed initial population (B).
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Figure 7. Distances between the UEF and the computed k = 15 BCCEF for different indices. Comparison
between random population (A) and the proposed initial population (B).
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Figure 8. Time computation of the BCCEF for k = 10 and different indices. Comparison between random
population (A) and the proposed initial population (B).
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Figure 9. Time computation of the BCCEF for k = 15 and different indices. Comparison between random
population (A) and the proposed initial population (B).
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Table 1. Data example from Chang et al. (2000).

Asset Return
Standard
deviation

Covariance matrix

1 2 3 4

1 0.004798 0.046351 0.002148 0.000168 0.000203 0.000418
2 0.000659 0.030586 0.000935 0.000153 0.000109
3 0.003174 0.030474 0.000929 0.000091
4 0.001377 0.035770 0.001279
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Appendix A. Performance measures of the reported frontiers

Several measures have been computed to give insight regarding the performance of
portfolios in the reported frontiers: alfa and beta (from the CAPM model), tracking
error, information ratio, Treynor ratio, Sharpe ratio, semi–variance, downside devia-
tion, Omega and VaR. We have used the PerformanceAnalytics package in R (Peterson
& Carl, 2018), a collection of econometric functions for performance and risk analysis.
We refer to that package for a precise definition of those performance measures. The
following tables give summary statistics of these measures:

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]
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Table A1. Summary statistics of the performance measures of portfolios in the BCCEF. Index1 and

k = {10, 15}. Results have been obtained by using the proposed initial population for the GA.

Alfa Beta TE IR Treynor Sharpe σ2
semi DD Ω VaR

Panel A: k = 10
Min. 0.001 0.537 0.114 -0.353 0.266 0.125 0.025 0.015 0.891 -0.069
1st Qu. 0.002 0.606 0.149 0.306 0.396 0.176 0.027 0.017 1.050 -0.049
Median 0.004 0.672 0.167 1.247 0.646 0.242 0.030 0.018 1.290 -0.043
Mean 0.005 0.676 0.193 1.093 0.659 0.223 0.032 0.019 1.281 -0.045
3rd Qu. 0.007 0.737 0.226 1.852 0.901 0.262 0.036 0.021 1.513 -0.040
Max. 0.011 0.905 0.394 2.333 1.354 0.288 0.050 0.029 1.647 -0.035

Panel B: k = 15
Min. 0.001 0.505 0.132 -0.299 0.287 0.134 0.024 0.015 0.893 -0.066
1st Qu. 0.002 0.558 0.161 0.112 0.412 0.174 0.026 0.016 1.003 -0.045
Median 0.005 0.608 0.171 1.225 0.708 0.258 0.029 0.017 1.306 -0.040
Mean 0.005 0.615 0.193 1.105 0.722 0.234 0.031 0.018 1.293 -0.042
3rd Qu. 0.008 0.663 0.220 2.011 0.995 0.285 0.034 0.019 1.555 -0.038
Max. 0.011 0.812 0.334 2.470 1.350 0.303 0.045 0.025 1.709 -0.033

Portfolios’ performance measures: Alfa, Beta, TE Tracking Error, IR Information Ratio,
Treynor Treynor ratio, Sharpe Sharpe ratio, σ2

semi Semi–variance, DD Downside deviation,
Ω Omega and VaR Value at Risk.
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Table A2. Summary statistics of the performance measures of portfolios in the BCCEF. Index2 and

k = {10, 15}. Results have been obtained by using the proposed initial population for the GA.

Alfa Beta TE IR Treynor Sharpe σ2
semi DD Ω VaR

Panel A: k = 10
Min. 0.001 0.162 0.081 -0.031 0.234 0.155 0.013 0.008 0.975 -0.047
1st Qu. 0.002 0.441 0.106 0.532 0.370 0.219 0.015 0.009 1.164 -0.026
Median 0.003 0.495 0.119 1.146 0.468 0.272 0.017 0.010 1.344 -0.023
Mean 0.004 0.497 0.136 1.317 0.731 0.282 0.018 0.010 1.508 -0.025
3rd Qu. 0.007 0.558 0.159 2.129 1.008 0.346 0.020 0.011 1.901 -0.022
Max. 0.011 0.692 0.301 2.949 4.475 0.409 0.035 0.019 2.343 -0.017

Panel B: k = 15
Min. 0.001 0.127 0.094 0.124 0.267 0.182 0.013 0.007 1.022 -0.039
1st Qu. 0.002 0.434 0.107 0.481 0.370 0.233 0.014 0.008 1.151 -0.024
Median 0.003 0.470 0.115 1.034 0.503 0.286 0.016 0.009 1.358 -0.021
Mean 0.004 0.468 0.131 1.367 0.753 0.303 0.017 0.009 1.553 -0.022
3rd Qu. 0.007 0.505 0.150 2.329 1.060 0.384 0.018 0.010 2.011 -0.020
Max. 0.011 0.610 0.255 3.389 5.908 0.438 0.031 0.017 2.512 -0.016

As for Table A1.
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Table A3. Summary statistics of the performance measures of portfolios in the BCCEF. Index3 and

k = {10, 15}. Results have been obtained by using the proposed initial population for the GA.

Alfa Beta TE IR Treynor Sharpe σ2
semi DD Ω VaR

Panel A: k = 10
Min. 0.000 0.674 0.040 -0.536 0.122 0.123 0.014 0.009 0.917 -0.050
1st Qu. 0.001 0.774 0.075 0.570 0.218 0.188 0.016 0.010 1.104 -0.028
Median 0.002 0.815 0.082 1.389 0.290 0.242 0.017 0.010 1.295 -0.024
Mean 0.003 0.828 0.096 1.359 0.336 0.241 0.018 0.011 1.365 -0.025
3rd Qu. 0.005 0.865 0.117 2.194 0.456 0.297 0.020 0.011 1.644 -0.022
Max. 0.007 1.178 0.227 2.889 0.707 0.337 0.036 0.021 1.872 -0.019

Panel B: k = 15
Min. 0.000 0.536 0.045 -0.344 0.139 0.136 0.014 0.008 0.937 -0.045
1st Qu. 0.001 0.745 0.068 0.475 0.214 0.189 0.015 0.009 1.090 -0.025
Median 0.002 0.777 0.081 1.415 0.305 0.254 0.016 0.009 1.309 -0.022
Mean 0.003 0.779 0.092 1.378 0.357 0.252 0.017 0.010 1.382 -0.023
3rd Qu. 0.005 0.805 0.112 2.331 0.502 0.318 0.019 0.010 1.700 -0.021
Max. 0.008 0.996 0.258 3.105 1.013 0.369 0.033 0.019 2.003 -0.017

As for Table A1.
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Table A4. Summary statistics of the performance measures of portfolios in the BCCEF. Index4 and

k = {10, 15}. Results have been obtained by using the proposed initial population for the GA.

Alfa Beta TE IR Treynor Sharpe σ2
semi DD Ω VaR

Panel A: k = 10
Min. 0.000 0.279 0.040 .0.324 0.118 0.093 0.009 0.005 0.631 .0.047
1st Qu. 0.001 0.405 0.060 0.367 0.196 0.136 0.010 0.006 0.756 .0.018
Median 0.002 0.437 0.067 0.845 0.253 0.171 0.011 0.007 0.879 .0.016
Mean 0.002 0.453 0.079 0.908 0.360 0.178 0.012 0.007 0.975 .0.017
3rd Qu. 0.004 0.474 0.092 1.441 0.488 0.214 0.013 0.007 1.182 .0.015
Max. 0.008 1.059 0.252 2.739 1.928 0.359 0.036 0.020 1.976 .0.012

Panel B: k = 15
Min. -0.001 0.563 0.025 -1.553 0.120 0.139 0.012 0.007 0.806 -0.050
1st Qu. 0.001 0.752 0.067 -0.240 0.210 0.205 0.015 0.009 0.950 -0.031
Median 0.002 0.858 0.079 1.662 0.339 0.305 0.017 0.009 1.343 -0.023
Mean 0.003 0.885 0.097 1.207 0.350 0.274 0.020 0.011 1.322 -0.027
3rd Qu. 0.005 1.001 0.125 2.470 0.481 0.333 0.024 0.013 1.677 -0.021
Max. 0.008 1.349 0.230 2.945 0.722 0.365 0.039 0.022 1.871 -0.016

As for Table A1.
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Table A5. Summary statistics of the performance measures of portfolios in the BCCEF. Index5

and k = {10, 15}. Results have been obtained by using the proposed initial population for the GA.

Alfa Beta TE IR Treynor Sharpe σ2
semi DD Ω VaR

Panel A: k = 10
Min. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.051
1st Qu. 0.001 0.429 0.144 0.572 0.116 0.061 0.018 0.012 1.202 -0.032
Median 0.002 0.470 0.151 0.681 0.149 0.078 0.019 0.013 1.256 -0.030
Mean 0.002 0.454 0.152 0.729 0.200 0.085 0.019 0.013 1.247 -0.029
3rd Qu. 0.002 0.510 0.162 0.923 0.222 0.108 0.021 0.014 1.351 -0.028
Max. 0.005 0.795 0.253 1.642 1.004 0.196 0.034 0.022 1.711 0.000

Panel B: k = 15
Min. 0.000 0.232 0.141 0.199 0.009 0.013 0.015 0.010 1.060 -0.050
1st Qu. 0.001 0.371 0.155 0.487 0.116 0.059 0.017 0.011 1.196 -0.029
Median 0.001 0.404 0.160 0.567 0.143 0.070 0.018 0.012 1.231 -0.027
Mean 0.002 0.401 0.166 0.670 0.225 0.087 0.018 0.012 1.292 -0.028
3rd Qu. 0.002 0.428 0.170 0.772 0.249 0.105 0.019 0.013 1.344 -0.025
Max. 0.005 0.579 0.249 1.570 1.134 0.210 0.032 0.020 1.798 -0.022

As for Table A1.
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