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Abstract

Fictitious Domain Methods, like the Cartesian grid Finite Element Method (cgFEM), are

based on the use of unfitted meshes that must be intersected. This may yield to ill-conditioned

systems of equations since the stiffness associated with a node could be small, thus poorly

contributing to the energy of the problem. This issue complicates the use of iterative solvers

for large problems. In this work, we present a new stabilization technique that, in the case of

cgFEM, preserves the Cartesian structure of the mesh. The formulation consists in penalizing

the free movement of those nodes by a smooth extension of the solution from the interior of

the domain, through a post-process of the solution via a displacement recovery technique. The

numerical results show an improvement of the condition number and a decrease in the number

of iterations of the iterative solver while preserving the problem accuracy.

Keywords: cgFEM, Iterative Solver, Fictitious Domain, Condition number
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1 Introduction

During the last decades of the XXth century, a parallel concept to the Finite Element Method (FEM)

emerged, the Fictitious Domain Method (FDM). According to [1], a wide amount of variants have

been developed since V.K. Saul’ev published, in Russian, the paper Solution of certain boundary-value

problems on high-speed computers by the fictitious-domain method (Sibirsk. Mat.Z. 1963.4:912-925).

In the FEM framework, the geometry of the component to be analyzed is conformingly meshed.

Therefore, the mesh generation complexity is directly related to the complexity of the geometry.

Besides the existence of advanced and automated mesh generators algorithms [2, 3], the meshing

process is one of the most tedious processes during the FE analysis. On the contrary, the FDM is

based on embedding the problem domain into a fictitious domain, i.e. a square in 2D or a cube in

3D, which is easy to mesh. The FDM completely separates the mesh used for solving the Finite

Element (FE) problem from the geometry of the component. Therefore the component’s geometry is

not related to the mesh generation process, which is usually octree-based. Since the FE mesh is not

related to the geometry, special treatment of the geometry is needed in the FDM. This important

issue is usually the key ingredient that distinguishes the different approaches of the FDM.

Recently the FDM has gained additional interest since problems without CAD geometry are arising

in numerical simulations. This sort of problems embraces, among others, those coming from medical

images. In that sense, the Finite Cell Method [4, 5] and the Cartesian grid Finite Element Method

(cgFEM) [6, 7] have demonstrated their capabilities to deal with these problems [8, 9].

Independently of the approach used, most of these methods face difficulties in similar aspects: im-

posing the Dirichlet boundary conditions, numerical conditioning, accuracy over the boundary, etc.

In this sense, the FDM so-called CutFEM [10] proposes a robust methodology to guarantee problem

well-posedness and the proper imposition of the Dirichlet boundary conditions. cgFEM [11, 12] also

uses stabilization methods based on smoothed stress fields for imposing Dirichlet boundary condi-

tions guaranteeing the coercivity of the problem. These stabilization procedures can guarantee the

solvability of the problem at hand for direct solvers.
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However, when iterative solvers are needed, not only solvability must be guaranteed but also that

the condition number of the system of equations is under control to improve the performance of the

iterative solver. In that sense, the use of standard preconditioners (those prepared for body-fitted

meshes) is not adequate in this context. Recently, some preconditioners have been developed for

FDMs but they are mainly serial non-scalable algorithms [13, 14, 15]. The other approach is to

focus on the kernel of the problem, which is the badly cut cells. Since in the FDM framework the

elements are intersected by the geometry, there are situations in which the nodes are far from the

boundary, having a small influence on the energy of the solution, as you can appreciate in Figure 1.

In other words, the value of the solution at these nodes is not relevant in the minimization of the

potential energy, therefore elevating the condition number of the system of equations. A common

approach is to use a small stiffness in the embedding domain [16], or to exclude the assembly of the

elements with small support [17, 18]. More advanced techniques, like the Ghost Penalty Method

[19], have been implemented in CutFEM. Bad́ıa et. al. [20] implemented a technique that uses

aggregates (macro-elements formed by joining together contiguous elements) to increase the stiffness

associated with nodes outside the problem domain. More recently Jomo et. al. [21] proposed the

use of preconditioners for the Finite Cell Method in the context of iterative solvers. In this paper

we propose a technique to keep under control the solution at these nodes while keeping the right

convergence rate and accuracy of the solution. This will allow us to efficiently use iterative solvers

for large problems in the FDM framework.

This paper is structured as follows: after this introduction, the problem model and the formulation

of the proposed stabilization terms are introduced in Section 2. Section 3 is devoted to recalling the

recovery procedures used for the stabilization terms and Section 4 contains a convergence analysis of

the proposed stabilization terms. Section 5 illustrates the numerical resolution algorithm. Finally,

the numerical results and conclusions are in Sections 6 and 7, respectively.
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Figure 1: Ill-conditioning issue due to the mesh-geometry intersection. Grey nodes may cause ill-

conditioning issues. Ω? corresponds to the domain of the mesh and Ωp is the domain of the element

with a grey node.

2 Problem statement

This paper is devoted to solving the 3D linear elasticity problem utilizing the cgFEM. The notation

used all along the contribution is settled in this Section. The Cauchy stress field is denoted as σ,

the displacement field as u, and the strain field as ε, all these fields being defined over the domain

Ω ⊂ R3, with boundary denoted by ∂Ω. Prescribed tractions denoted by t are imposed over the part

ΓN of the boundary, while displacements denoted by ū are prescribed over the complementary part

ΓD of the boundary. Body loads are denoted as b.
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The linear elasticity problem takes the primal variational form:

Find u ∈ (VΩ + {w}) : ∀v ∈ VΩ

a(u,v)Ω = l(v)Ω where

a(u,v)Ω =

∫
Ω

ε(u) : σ(v) dΩ

l(v)Ω =

∫
Ω

b · v dΩ +

∫
ΓN

t · v dΓ,

(1)

where VΩ = {v | v ∈ [H1(Ω)]
3
,v|ΓD

= 0}, w is a particular displacement field satisfying the Dirichlet

boundary conditions and σ(v) = D : ε(v), being D the fourth-order tensor relating the stress tensor

with the strain tensor, defined as the symmetric gradient of the displacement field. Equation (1)

settles the linear elasticity problem for the standard FEM. However, in the cgFEM framework an

additional domain, Ω?, embedding Ω as shown in Figure 2, should be introduced.

Figure 2: Representation of a problem domain Ω and the embedding domain Ω? in the cgFEM

framework.

This modification of the problem domain leads to a formal modification of the problem (1) in the
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following way:

Find u ∈ (V0 + {w}) : ∀v ∈ V0

a(u,v) = l(v) where

a(u,v) =

∫
Ω?

ε(u) : σ(v) dΩ

l(v) =

∫
Ω?

b · v dΩ +

∫
ΓN

t · v dΓ,

(2)

where V0 = {v | v ∈ [H1(Ω?)]
3
,v|ΓD

= 0}. Note that a(u,v) = a(u,v)Ω and l(v) = l(v)Ω since

D ≡ 0 and b ≡ 0 outside the domain Ω.

2.1 Boundary conditions in cgFEM

When using the cgFEM for numerically solving the problem (2), we find out that the Dirichlet

boundary conditions cannot be directly applied as in the standard FEM since, in general, there are not

any nodes over the boundary, as in Figure 2. As problem (2) is a constrained optimization problem,

the Lagrange Multipliers technique can be applied. To do that, a Lagrange multipliers discretization

over the Dirichlet boundaries is needed. The choice of the Lagrange multipliers space is crucial for

the appropriate behavior of the proposed method. In this sense, some authors [22, 23] proposed the

Vital Vertex Method for the 2D case which, a prioiri, defines an appropriate discretization for the

Lagrange multiplier space. However, the extension of this procedure to the 3D case is not trivial. One

alternative to these methods is the use of stabilized methods such as the ones proposed by Hansbo et.

al. [24] and Burman and Hansbo [25] which are an adaptation of the Nitsche’s method to the FDM

framework, using the element traction jumps for stabilization purposes. In the context of the Finite

Cell Method, the authors propose the use of a Nitsche’s based approach for imposing the essential

boundary conditions [9]. More recently Tur et. al. [11] propose a stabilization technique that makes

use of recovery procedures easing the implementation of the method, especially for the 3D case. This

last method is adopted in this contribution. To impose the Dirichlet boundary conditions in a weak

sense implies the use of Lagrange multipliers. Therefore, solving problem (2) is equivalent to find

the saddle point (u,λ) of the following Lagrangian:

L0(w,χ) = a(w,w) + b(χh,w)− l(w), (3)
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where Lagrange multipliers belongs to the Hilbert space, λ,χ ∈ M , M = {H− 1
2 (ΓD)}3, w belongs

to V = {v | v ∈ [H1(Ω?)]
3} and

b(χ,w) =

∫
ΓD

χh ·wh dΓ. (4)

Note that, in general, the appropriate Lagrange multipliers space is not easy to find since, in the dis-

crete counterpart, it is problem-dependent and it also depends on the way the mesh and the geometry

intersect. In this work, the approach first presented in [26], which introduces a Lagrange multiplier

at each integration point of the surface defining a polynomial approximation (piece-wise discontinu-

ous polynomial approximation), is followed. This discretization does not fulfill the Ladyzhenskaya-

Babuška-Brezzi (LBB) condition in general, therefore an additional stabilization term is added:

LS(wh,χh) = L0(wh,χh)− h

k1

∫
ΓD

χh · (λh + T(ũh)) dΓ, (5)

where wh ∈ V h, the discrete counterpart of V , χh ∈ Mh, the discrete counterpart of M , k1 is a

parameter defined by the user, h is the characteristic mesh size and T(ũh) is a recovered traction

field depending on the FE solution ũh computed in previous Richardson’s iterations. Note that since

the solution depends on the FE solution ũh, Richardson’s iterations will be used to solve the problem

as described in Section 5. Further details can be found in [11].

Expression (5) is similar to the one used in the Nitsche’s method in which the operator T(ũh)

is replaced by the tractions over the Dirichlet boundary (σ(uh)). In the proposed approach, the

operator T(ũh) is a postprocess of the solution, guaranteeing the correct convergence of the method

[11]. Further details about the evaluation of this operator are given in Section 3.1. Problem (5)

is already solvable since essential boundary conditions are properly imposed, thanks to the proper

stabilization of the Lagrange multipliers field.

However, the problem can become ill-conditioned depending on how the mesh and the geometry

intersect. This is not an important issue for small problems since direct solvers can solve them

without major difficulties. In the case of larger problems, iterative solvers are used. The convergence

of the iterative solvers is strongly affected by the condition number of the system to solve [27]. In the

case of FDM in general, and particularly in the case of cgFEM, there are some mesh configurations

in which the cutting pattern causes ill-conditioning issues, preventing the use of iterative solvers.
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Figure 1 showed an example in which the numerical problem is likely to be ill-conditioned. If the

stiffness associated to the nodes outside the domain is small it leads to an ill-conditioning of the

system of equations. This is because large variations of the solution at those pathological nodes

do not affect the energy of the problem. That is, the global energy remains practically the same

regardless of the solution at those nodes. In other words, the sensitivity of the energy to the variation

of the solution at those nodes is small. Burman [19] found similar issues and addressed them adding

an extra term, the ghost penalty, which stabilizes the solution of the pathological nodes by defining

a polynomial expansion over a patch containing a sufficient number of elements into the physical

domain Ω. However, this effective methodology requires to construct an additional operator build as

the L2 projection of the solution in the patch to a polynomial expansion, which is no standard in the

FE framework. More recently, Bad́ıa et. al. [20] proposed a method in which they also add stiffness

to those external nodes by generating aggregates. These aggregates are formed by the union of

several elements surrounding an element with a small intersected area, thus forming a macro element

that modifies the initial Cartesian structure of the mesh.

In this contribution, a new technique based on the use of recovered fields is introduced with the aim

of, at least, solve the issue, common for the FDM, with the minimal interference on the Cartesian

structure of the mesh and avoiding the construction of non-usual operators in FE. The proposed

technique adds a term to (5) according to equation (6):

L (wh,χh) = L0(wh,χh)− h

k1

∫
ΓD

χh · (λh + T(ũh)) dΓ + S (wh, ũh), (6)

where

S (wh, ũh) =
k2

h2

∫
Ω̂?

wh · (uh − S(ũh)) dΩ, (7)

k1 = κ1E (κ1 > 0) and k2 = κ2E (κ2 > 0) are user-defined parameters, being E the Young’s modulus.

Note that Ω̂? =
⋃

p Ωp∩Ω?, being Ωp the domain of an element p containing at least one pathological

node, i.e. a node associated to a small stiffness. The additional term, S (wh, ũh), in equation (6)

penalizes the “free” displacement of those pathological nodes. It introduces an artificial stiffness that

is compensated with an artificial force as shown in Figure 3. In this term, the integration domain Ω̂?
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Figure 3: Scheme of an element subjected to ill-conditioning issues. Effect of the additional term.

corresponds to the volume (not the surface) of the elements containing pathological nodes. Thus, the

integration domain now considers also the part of the element falling outside the problem domain.

The operator S(ũh) is a smoothed displacement field obtained as a postprocess of the FE solution

ũh. Further details of operator S are in Section 3.2. Note that one of the most important benefits

of the method is that the additional term can be constructed as a lumped mass matrix, standard in

the FE set.

Finally, the resulting saddle point reads as follows: find (uh,λh) ∈ V h ×Mh such that:

a(uh,vh) + b(λh,vh) +
k2

h2

∫
Ω̂?

uh · vh dΩ = c(vh) +
k2

h2

∫
Ω̂?

S(ũh) · vh dΩ

b(µh,uh)− h

k1

∫
ΓD

µh · λh dΓ = b(µh, ū) +
h

k1

∫
ΓD

µh ·T(ũh) dΓ,
(8)

where vh ∈ V h and µh ∈Mh are the variations of the displacement and multiplier fields and (uh,λh)

is the solution. Note that the variations of S(ũh) and T(ũh) are zero since they depend on the solution

of previous Richardson’s iterations but not on the current one. Additionally, the formulation can be

simplified by eliminating the Lagrange multipliers. Since the Lagrange multiplier field lives in Mh

which can be defined as a element-wise L2 broken space, and following the method proposed in [28],
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the second equation in (8) can be solved for each element:

λhe = Πh

(
k1

h

(
uh − ū

)
−T(ũh)

)
, (9)

where Πh is the L2 projection onto Mh. Finally, substituting (9) in the first equation of (8) and

operating as in [28] we obtain the following modified problem: find the displacement field uh ∈ V h

such that:

a(uh,vh) +
k1

h

∫
ΓD

uh · vh dΓ +
k2

h2

∫
Ω̂?

uh · vh dΩ = c(vh) +
k1

h

∫
ΓD

ūh · vh dΓ+∫
ΓD

vh ·T(ũh) dΓ +
k2

h2

∫
Ω̂?

S(ũh) · vh dΩ. (10)

Note that the second and third terms of the left hand side in (10) are penalty terms with constants

k1
h

and k2
h2

, respectively. The two last terms of the right hand side are a correction for the penalty

term and a stabilization of the displacement field, respectively.

2.2 Iterative solver

Note that for solving problem (10) an iterative process is required since operators T and S depend on

the solution. In this contribution the Richardson’s method is implemented, considering T = S = 0

for the first iteration. Once the first iteration is obtained, the operators T and S are obtained as

explained in Section 3, considering T(ũh) and S(ũh), being ũh the solution obtained in the previous

Richardson’s iteration. The convergence of this iterative process is demonstrated in Section 4.2.

This strategy for solving problem (10) results in an iterative solver. However, the system matrix

remains constant in the proposed approach and only the right hand side is modified between the

iterations. This considerably decreases the computational cost since it is possible to factorize the

system matrix when direct solvers are used. Additionally, for large problems in which iterative solvers

are needed (in this work the conjugate gradient method is considered), the preconditioner is only

calculated once (the system matrix remains constant) and the solutions of the previous iterations

can be used as an initial guess, speeding up the iterative solver. Note that the variations between

the Richardson’s iterations are small since they affect only a limited number of degrees of freedom
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along the boundary. Additionally, the proposed method can be directly applied to solve problems

with non-linear constitutive material behavior [11] without further modifications of terms in (10),

only an external non-linear solver (i.e. Newton-Raphson) would be required as usual.

3 Recovery techniques

Zienkiewicz and Zhu developed an efficient and easy-to-implement error indicator in energy norm

[29], based on the use of a recovered solution, of a higher quality than that of the raw FE solution,

and built from this one. The accuracy of this error indicator depends, obviously, on the accuracy

recovery technique used. Therefore, many recovery techniques have been developed during the last

decades [30, 31, 32, 33, 34, 35], just to cite some. Among them, the Superconvergent Patch Recovery

technique developed by Zienkiewicz and Zhu [30], which provides a robust, efficient and easy-to-

implement error indicator can be highlighted. The recovery procedure used in this error indicator,

also proposed by Zienkiewicz and Zhu, is at the base of the recovery techniques proposed in this

contribution for the evaluation of the operators S and T used in Section 2 for the stabilization terms.

In this Section, the proposed technique and the construction of the operators T and S introduced in

Section 2 are shown.

The recovered field of an arbitrary vector field Υ at each patch of elements i, Υ̂i, is obtained by

minimizing the following functional:

Fi(Υ̂i) =

∫
Ω̂i

(Υh − Υ̂i)
2 dΩ, (11)

where the field Υh is a given FE interpolation of the field Υ (i.e. displacements, strains, stresses,

...) and the field Υ̂i is a polynomial expansion of a higher order than the FE interpolation (usually

one order higher). A patch of elements Ω̂i consists of the elements attached to the node i, also

called patch assembly node. Note that in the proposed approach the domain of the patch Ω̂i is not

restricted to the physical domain Ω since it may include the part of the element falling outside the

physical domain. Extra terms that improve the quality of the recovered field at each patch can also

be added, depending on the needs such as static admissibility for the error estimator case, see for
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instance [32, 36] or [37] for error upper bounds.

After obtaining the recovered field at each patch of elements, valid only in the patch surrounding

the node i, the recovered field in the whole domain Ω? is obtained by using the Conjoint Polynomial

Enhancement [31], which is nothing but the weighted sum of the contribution of each patch at a

given position x ∈ Ω?:

Υ̂ =
Nvn∑
j=1

N(x)jΥ̂j(x), (12)

where Nvn is the number of vertex nodes in an element and the weighting functions are the linear

shape functions of the elements.

3.1 Operator T

The operator T is the projection of the recovered stress field to the boundary. That is, Υh = σh,

Υ̂i = σ̂i and Υ̂ = σ̂ in equation (11). Therefore:

T(uh) = σ̂ · n. (13)

Note that operator T is only considered along the Dirichlet boundaries, see (5). This implies that

the reconstruction of the stress field via the minimization of the functional (11) and the use of the

Conjoint Polynomial Enhancement (12) is only required at patches cut by the Dirichlet boundary,

which has a reduced computational cost.

3.2 Operator S

The operator S corresponds to the recovered displacement field obtained with the minimization of

the functional (11). In this case Υh = uh and Υ̂i = ûi in equation (11). Therefore:

S(uh) = ûi. (14)

In this case, the operator S is only required along the part of the boundary influenced by pathological

nodes. Hence, this procedure is computationally inexpensive. In contrast with operator T, operator
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S is evaluated at each node i (only the nodal value is retained), thus avoiding the use of the Conjoint

Polynomial Enhancement (12).

4 Convergence study

In this Section, the different aspects of the convergence to the exact solution of the proposed approach

are studied. First the a priori error estimates are analyzed to demonstrate the right convergence

of all the operators involved. Then, the convergence of the iterative algorithm for the resolution of

the problem is demonstrated and finally the improvement of the condition number thanks to the

addition of the term S (vh,uh).

4.1 A priori error estimates

This Section shows that the additional term defined in equation (7) does not affect the convergence

of the approximated solution to the exact solution as the mesh is uniformly refined, i.e. it has at

least the same convergence rate than the strain energy [38], according to the following proposition.

Proposition 1. The term defined in equation (7) vanishes with h2p as the mesh is refined, being p

the order of the polynomial interpolation, that is:

κ2E

h2

∫
Ω̂?

eh · (eh − S(êh)) dΩ ≈ O(h2p), (15)

with eh = u− uh, being u the exact solution.

Proof. The additional term can be bounded by using the Cauchy-Schwarz inequality:

κ2E

h2

∫
Ω̂?

eh · (eh − S(êh)) dΩ . h−2‖eh‖L2(Ω̂?)‖e
h − S(êh)‖L2(Ω̂?), (16)

with symbol . indicating that the inequality holds up to a certain positive constant. Using the

triangular inequality for the last norm in equation (16):
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‖eh − S(êh)‖L2(Ω̂?) .
(
‖eh‖L2(Ω̂?) + ‖S(êh)‖L(Ω̂

?)

)
. (17)

Finally combining equation (17) in (16) is obtained that:

κ2E

h2

∫
Ω̂?

eh · (eh − S(êh)) dΩ . h−2‖eh‖L2(Ω̂?)

(
‖eh‖L2(Ω̂?) + ‖S(êh)‖L2(Ω̂?)

)
. (18)

To check the convergence, attention must be paid to the term ‖S(êh)‖L2(Ω̂?). This term is built as the

L2−projection to a local and richer space, i.e. a higher-order polynomial space, thus the convergence

of ‖S(êh)‖L2(Ω̂?) is the same as the convergence of ‖eh‖L2(Ω̂?) due to the orthogonality of (11), then:

κ2E

h2

∫
Ω̂?

eh · (eh − S(êh)) dΩ . h−2‖eh‖2
L2(Ω̂?)

≈ O(h2p). (19)

4.2 Iterative solver convergence

As observed in equation (10), the RHS of the system of equations depends on the solution of the

same system. Then, the Richardson’s method is used for solving the linear system of equations.

In matrix notation, equation (10) can be expressed as follows:

Adi = c + Bdi−1, (20)

being di the solution at iteration i. The matrix A is obtained from:

a(vh,vh) +
κ1E

h

∫
ΓD

vh · vh dΓ +
κ2E

h2

∫
Ω̂?

vh · vh dΩ, (21)

and matrix B is obtained from
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∫
ΓD

vh ·T(v̂h) dΓ +
κ2E

h2

∫
Ω̂?

vh · S(v̂h) dΩ, (22)

where v̂h is the solution of iteration i − 1, which in practice will never be assembled. Richardson’s

method is proved to converge if the spectral radius of the matrix A−1B is smaller than one.

Proposition 2. The spectral radius of A−1B is smaller than 1, that is ρ(A−1B) ≤ 1, for appropriate

values of κ1 and κ2, independent of h.

Proof. In this case, any eigenvalue λ satisfies:

A−1Bd = λd. (23)

Pre-multiplying both sides by dTA we obtain:

dTBd = λdTAd. (24)

It can be observed that the LHS of equation (24) corresponds to the stabilization terms for a given

field vh, then:

dTBd =

∫
ΓD

vh ·T(vh) dΓ +
k2

h2

∫
Ω̂?

vh · S(vh) dΩ. (25)

In the same way:

dTAd = a(vh,vh) +
κ1

h

∫
ΓD

vh · vh dΓ +
k2

h2

∫
Ω̂?

vh · vh dΩ. (26)

Then, after some algebra and applying the Cauchy-Schwarz inequality, the following expression is

obtained:
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λdTAd = dTBd ≤ ‖vh‖L2(ΓD)‖T(vh)‖L2(ΓD) +
k2

h2
‖vh‖L2(Ω?)‖S(vh)‖L2(Ω?). (27)

According to [11], the term ‖T(vh)‖L2(ΓD) can be bounded by the energy norm of the problem, thus

the first term of the RHS in equation (27) can be bounded by the energy norm as follows:

‖vh‖L2(ΓD)‖T(vh)‖L2(ΓD) ≤ ‖vh‖L2(ΓD)

(
CECpCr

h

) 1
2

‖vh‖E, (28)

where ‖vh‖E stands for the energy norm, CE = E
1+2ν

, Cp stands for the Poincaré inequality and Cr is

the constant relating a recovered field with the FE field into a bounded domain, i.e. ‖T(vh)‖2
L2(·) ≤

Cr‖σ(vh)‖2
L2(·). It is important to note that CE, Cp and Cr are independent of the mesh size. Further

details on these constants can be found in [11].

Finally, applying the triangular inequality (2xy ≤ x2

2
+ y2

2
) the following equation is obtained:

‖vh‖L2(ΓD)‖T(vh)‖L2(ΓD) ≤ ‖vh‖2
E +

CECpCr
4h

‖vh‖2
L2(ΓD). (29)

On the other hand, it is also necessary to bound the second term of the RHS in equation (27). Con-

sidering the relation between a recovered solution and the corresponding FE solution is ‖Υ̂
h

i ‖2
L2(·) ≤

‖Υh‖2
L2(·), due to the orthogonality of the operator (11), the following expression is written:

‖vh‖L2(Ω̂?)‖S(vh)‖L2(Ω̂?) ≤ ‖v
h‖2

L2(Ω̂?)
. (30)

Note that equation (30) holds for an appropriate selection of the patches for evaluating operator S

such that ⊕iΩ̂i = Ω̂?. Finally, substituting (29) and (30) in (27) the next equation is found:

λdTAd ≤ ‖vh‖2
E +

CECpCr
4h

‖vh‖2
L2(ΓD) +

k2

h2
‖vh‖2

L2(Ω̂?)
. (31)

Considering that:
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dTAd = ‖vh‖2
E +

k1

h
‖vh‖2

L2(ΓD) +
k2

h2
‖vh‖L2(Ω̂?), (32)

it suffices in taking k1 >
CECpCr

4h
for any value of k2 to ensure that λ < 1.

4.3 Improvement of the condition number

In the standard, conforming, Finite Element setting, the condition number grows with h−2. This

Section shows that the proposed method provides a condition number that grows as in the standard

FE case.

Proposition 3. The condition number of the system of equations resulting from equation (10) grows

with h−2.

Proof. The condition number is the ratio between the smaller and higher eigenvalues λmin and λmax,

κ = λmax

λmin
. In this case, it is necessary to proof i) λmin > 0 independently of h and ii) λmax is

proportional to h−2.

i) λmin > 0 independently of h

For this part of the proof it is necessary to check the coercivity, i.e. if there exists C1 > 0, independent

of h, such that:

C1‖vh‖2
L2(K) ≤ h2

(
aK∩Ω(vh,vh) +

k1

h

∫
∂K∩ΓD

vh · vh dΓ,+
k2

h2

∫
K

vh · vh dΩ

)
(33)

where K ∈ Ω? represents a single finite element of size h. Equation (33) follows from the mesh-

dependent norm definition, see lemma 4.5.3 in [39]. The previous expression indicates that the

displacement field is bounded by the energy, that is, any displacement field should produce a certain

level of energy in the problem. In this part of the proof, the stabilization term proposed plays an
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important role since it avoids the free movement of the pathological nodes without generating any

energy in the system. Under the cgFEM framework, the effective domain falling into one element

(K ∩Ω) does not depend on h but on how the geometry intersects the mesh. Therefore, the effective

domain is bounded above by K and bounded below by ∅, i.e. ∅ ⊆ K ∩ Ω ⊆ K, then, the terms:

aK∩Ω(vh,vh), and
k1

h

∫
∂K∩ΓD

vh · vh dΓ (34)

can eventually tend to zero. That would prevent from fulfilling the coercivity property. However,

making use of the last term in equation (33), since it does not depend on the physical domain Ω (i.e.

it does not depend on how the mesh and geometry intersect), in the eventual case that the two first

terms are close to zero, it will be possible to find a constant C1 > 0 which ensures the coercivity.

Since the problem is coercive, the norm of the minimum eigenvalue is higher than 0, λmin > 0.

ii) λmax ∝ h−2

On the other hand, according to the lemma 4.5.3 in [39] and adding the contributions of all the

elements, we obtain:

a(vh,vh) +
k1

h

∫
ΓD

vh · vh dΓ +
k2E

h2

∫
Ω̂?

vh · vh dΩ ≤ C2h
−2‖vh‖2

L2(Ω?). (35)

Previous equations follow from the mesh-dependent norm definition that relates the energy norm

with the norm of the solution. In this case, a bounded displacement filed will always produce a

bounded energy value (bounded values of the gradients of the solution), following the continuity of

the operators. According to the definition of spectral radius, it is known that λmax ∝ C2h
−2. Finally,

combining the two results: λmin > 0 and λmax ∝ C2h
−2 the next equation is found:

κ =
λmax
λmin

∝ h−2. (36)
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5 Solution algorithm

In each iteration of the Richardson’s method, for a given field ũh, the system of equations obtained

from (10) must be solved. It is assumed that at Richardson’s iteration i, uhi−1 is known, then the

procedure can be summarized as follows:

1. Evaluate the stabilization terms for uhi−1, S(uhi−1) and T(uhi−1) with equations (14) and (13),

respectively.

2. Solve problem (10) and obtain uhi .

3. Evaluate εRi = ||uhi − uhi−1||2.

4. If εRi < Tol stop the iterations, else go to step 1.

This Richardson’s method is initialized with uh0 = 0. Note that step 2 implies to solve several times

a system of equations with the same system matrix. This allows us to factorize for speeding up the

computations for direct solvers. For a large system of equations, when iterative solvers are required,

the iterative method uses the solution of the previous Richardson’s iteration and the tolerance of

the iterative solver (εIi ) decreases proportionally to εRi , i.e. εIi ∝ εRi . This nested procedure for both

iterative methods increases the performance of the solver.

6 Numerical results

In this Section, a series of numerical tests are carried out to check the improvements on the condition

number and in the solution when using the proposed approach and, therefore, in the performance of

the cgFEM.
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6.1 Problem 1. Cylinder under internal pressure

This numerical example consists of a 3D model of a cylinder under internal pressure. The analytical

solution for the plane strain case is known (37). Using a cylindrical reference system (r, θ, z), centred

in the hole, the stress field is described by the following expressions:



σrr(r, θ, z) =
Pr2

i

r2
e − r2

i

(
1 +

r2
e

r2

)
,

σθθ(t, θ, z) =
Pr2

i

r2
e − r2

i

(
1− r2

e

r2

)
,

σzz(t, θ, z) =
Pr2

i

r2
e − r2

i

(37)

being P = 10 the internal pressure, ri = 5 the internal radius and re = 20 the external radius. The

Poisson’s ratio is ν = 0.3 and the Young’s modulus is E = 1000. The 3D model and an example

of the FE mesh (Mesh Level 5, i.e. 25 divisions per direction in the octree-mesh) provided by the

cgFEM are shown in Figure 4. Symmetry boundary conditions are considered at planes x = 0 and

z = 0. Also symmetry boundary conditions at planes y = 0 and y = 20 are considered to simulate

the plane strain state. For this problem Q8 linear elements are considered. The corresponding von

Mises stress field for this problem solved with Mesh Level 5 is shown in Figure 5.

The first study consists in the analysis of the convergence of the iterative solver, considering two

situations: with and without the new stabilization term (7) introduced in this publication. The

iterative solver is the PCG solver implemented in Matlab R© configured with a null initialization

solution. A sequence of 6 uniformly refined meshes, ranging from Mesh Level 2 to Mesh Level 7,

have been considered for this problem. Table 1 shows the values of the condition numbers and the

degrees of freedom of each Mesh Level. The results show that when no stabilization is used, the

condition number takes high values and it grows with the Mesh Level. These values of the condition

number could strongly affect the convergence of the iterative solver. On the other hand, when the

stabilization is used (κ2 = 10−3 or κ2 = 10−4), the condition number takes considerably lower values.

Figure 6a shows that the number of iterations required when the proposed stabilization term is not
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Figure 4: Cylinder under internal pressure. Domain and mesh example with Mesh Level 5. Symmetry

boundary conditions on planes x = 0, y = 0, z = 0 and y = 20.

Table 1: Cylinder under internal pressure. Condition number of the system of equations.

Mesh Level DoF

2 360

3 1,890

4 11,526

5 69,750

Cond. num.

(No stabilized)

2.87 · 105

1.94 · 1021

7.55 · 1020

6.78 · 1018

Cond. num.

(κ2 = 10−3)

7.57 · 104

6.87 · 104

8.45 · 104

8.58 · 104

Cond. num.

(κ2 = 10−4)

2.27 · 105

6.87 · 105

6.87 · 105

7.53 · 105

used is considerably higher, explaining the higher computational cost. Moreover, Figure 6b shows

that the relative exact error in energy norm during the uniform refinement process for several stabi-

lized cases and the non-stabilized case is mainly the same. It can be observed that the convergence

remains unadulterated keeping a convergence rate of 1
3
, the theoretical convergence rate for linear

elements. These results numerically confirm the theoretical proof of Section 4.1 in which the stabi-

lization term properly vanishes with the mesh size at the appropriate rate. It should be mentioned

that the number of Richardson’s iterations is influenced by the value of κ2: higher values of κ2 will

require more Richardson’s iterations. For this example, for Mesh Level 6, when no stabilization

is used, the number of Richardson’s iterations is 5, 6 for κ2 = 10−4 and 12 for κ2 = 10−3. Each
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Figure 5: Cylinder under internal pressure. Von Mises stress field.

Richardson’s iteration implies solving the system of equations only once, but, for the subsequent

iterations, since an accurate initial solution is already available, the solution time is considerably

reduced. In any case, the reduction of the solution time when the stabilization is used compensates

for the increment of Richardson’s iterations.

Regarding the FE results, the displacement field at elements containing a pathological node is not

strongly influenced by solution at these nodes since they are far from the problem domain and the

interpolation decreases the influence of the pathological nodes on the solution. However, for the case

of the stress field, the influence of the solution at the pathological nodes is not attenuated since the

derivatives of the shape functions are used. Therefore the quality of the stress field at those elements

is strongly related to the use of the stabilization technique. For this problem, the results of the

relative maximum difference (infinite norm) between the exact von Mises stress field at the external

boundary and the evaluated von Mises stress field are shown in Table 2. It can be appreciated that,

when the stabilization is used, the results are similar and an improvement up to 21.9% is achieved,

with a clear increasing trend with the mesh refinement for this numerical test, compared to the
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Figure 6: Cylinder under internal pressure. Convergence analysis. κ2 = 0 means no stabilization.

non-stabilized test.

Additionally, it must be taken into account that the condition number is strongly affected by the

intersection pattern when the stabilization method is not used. This fact can be seen in the following

example in which the intersection pattern has been deliberately modified, by slightly modifying

the mesh limits, to observe this effect. For this test, three analyses with different configurations

yielding three different intersection patterns with Mesh Level 4 are carried out, as shown in Figure

7. The configuration shown in Figure 7a corresponds to the configuration used for the previous

tests. The results in Table 3 show that when no stabilization is considered, the condition number

strongly depends on the intersection pattern for very similar meshes. On the other hand, when

the stabilization procedure is used, the condition number is almost independent of the intersection

pattern.
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Table 2: Cylinder under internal pressure. Infinite norm of the relative error between the exact Von

Mises stress field and the FE stress field at the external boundary and relative improvement (∆(%))

compared to κ2 = 0.

Mesh Level DoF κ2 = 0 κ2 = 10−3 ∆(%)κ2=10−3 κ2 = 10−4 ∆(%)κ2=10−4

2 360 2.45 · 10−1 2.39 · 10−1 2.51 2.45 · 10−1 0

3 1,890 1.83 · 10−1 1.61 · 10−1 13.7 1.81 · 10−1 1.1

4 11,526 8.4 · 10−2 7.86 · 10−2 6.87 7.65 · 10−2 9.8

5 69,750 3.9 · 10−2 3.36 · 10−2 16.1 3.66 · 10−2 6.56

6 512,766 1.95 · 10−2 1.6 · 10−2 21.9 1.62 · 10−2 20.4

7 3,788,127 – 7.56 · 10−3 – 8.12 · 10−3 –

(a) Mesh configuration 1. (b) Mesh configuration 2. (c) Mesh configuration 3.

Figure 7: Cylinder under internal pressure. Mesh Level 4. The mesh size is configured with different

percentages of clearance with the size of the body.

Table 3: Cylinder under internal pressure. Condition number for three different mesh configurations

with Mesh Level 4.

Configuration Mesh κ2 = 0 κ2 = 10−3 κ2 = 10−4

1 7.55 · 1020 4.45 · 104 6.778 · 105

2 2.79 · 107 6.91 · 104 6.53 · 105

3 6.63 · 109 8.69 · 104 8.64 · 105
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6.2 Problem 2. Threaded screw

This second numerical problem consists in a more challenging 3D geometry simulating a simplified

model of a threaded screw. Figure 8a shows the geometry and the boundary conditions. In this case,

homogeneous Dirichlet boundary conditions are applied to the top face of the screw (blue triangles at

x = 10) while a normal pressure P = 1 ·108Pa is applied over the red area. An isotropic linear elastic

material model is considered with Young’s modulus E = 116 · 109Pa and Poisson’s ratio ν = 0.3.

Figure 8b shows a sample of the coarsest mesh used to solve the problem. This mesh was created with

12794 h-adapted trilinear elements. The h-adaptive process was driven by the geometrical details in

this case. Finally, Figure 9 shows a representation of the von Mises stress field considering the mesh

shown in Figure 8b.

(a) Geometrical model. Blue triangles represent

the surface over which the Dirichlet boundary

conditions are applied while the red surface rep-

resents where the Neumann boundary conditions

are applied.

(b) Sample of the coarsest mesh used for solving

the problem.

Figure 8: Threaded screw model.

Two simulations, one with the mesh represented in Figure 8b and another with a more refined mesh,

were carried out in this problem. In this case, an incomplete Cholesky’s factorization was used as a

preconditioner to solve the problem using the PCG algorithm implemented in Matlab R©. The results

regarding the number of iterations of the iterative solver and the condition number are shown in

Table 4. As it can be observed, there is a substantial reduction of the condition number and also a

reduction in the number of iterations, even if the preconditioner is used.
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Figure 9: Screw. Von Mises stress field in Pa.

Table 4: Screw. Condition number and number of iterations of the PCG iterative solver, using the

incomplete Cholesky’s factorization.

NDoFs κ2 = 0 κ2 = 10−3

Condition Number Iterations Condition Number Iterations

43470 8.25 · 1023 719 2.51 · 106 614

266859 6.89 · 1037 1212 2.72 · 106 976

7 Conclusions

This contribution tries to address the common issue of the FDM, particularly the cgFEM, when

the mesh-geometry cutting pattern may yield an ill-conditioned system of equations. The proposed

approach stabilizes the formulation by adding an extra term to the weak form of the problem.

Making use of Richardson’s method used for the stabilization of the Lagrange multipliers field for

imposing the Dirichlet boundary conditions, this new term is naturally included during the solving

loop. Therefore, its evaluation is inexpensive since only requires a post-process of the solution along

the boundary while preserving the Cartesian structure of the cgFEM framework.
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The results show independence of the condition number regardless of the mesh-geometry intersection,

yielding a speed-up of the solving process while preserving the consistency of the formulation.
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