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Preface

Engineering or physical systems are used to be uncertain. Its uncertainty is
manifested whenever the system shows behaviors that are relatively di�erent
than the ones predicted by its model; being mostly caused by: modeling errors;
unknown dynamics; changes in the system properties; random interactions with
other systems; or changes in the operating conditions.

Through the last 40 years, it has been persistently proved that the system
uncertainties could have very negative e�ects in the performance of a feedback
regulator if they are not properly considered in the mathematical formulations
of the employed algorithms. Thus, an important part of the recent research is
focused on this topic; searching for the most appropriate ways to mathemat-
ically represent the system uncertainties and looking for new mathematical-
tools that permit to make use of such uncertainty-representation in order to
design robust control algorithms.

In this thesis, new contributions in this line are provided. Concretely, novel
methodologies to design Disturbance Observer-Based Controllers (DOBCs)
and Predictors (DOBPs) for uncertain dynamic systems are developed. The
main contribution is to show that the DOBCs can be constructed from an
optimality-based approach, with the main objective of approximating the �un-
realizable� optimal control signal that minimizes a quadratic-cost performance
index subject to a LTI disturbed model constraint. This novel robust con-
trol design is indistinctly valid for SISO/MIMO models with single/multiple
matched/mismatched disturbances; o�ering also a highly intuitive and versatile
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tuning through the weighting matrices. Similarly, the DOBPs are synthesized
in order to approximate the time-domain solution of LTI disturbed models.

For the sake of completeness, the document also includes a brief review of the
main robust control methods and the impact that they have had on the tech-
nological revolution of the 21st century; some discussions about the usefulness
of the LTI disturbed models for representing uncertain dynamic systems; and
di�erent relationships, comparisons and numerical simulations, of the proposed
methods with other control approaches.

-
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Prefacio

Los sistemas de ingeniería o físicos suelen ser inciertos. Su incertidumbre se
mani�esta cuando el sistema muestra comportamientos que son relativamente
diferentes a los que su modelo predice; estando principalmente causada por:
errores de modelado; dinámicas desconocidas; cambios en las propiedades del
sistema; interacciones aleatorias con otros sistemas; o cambios en las condi-
ciones de operación.

Durante los últimos 40 años, se ha demostrado reiteradamente que las incer-
tidumbres de los sistemas pueden tener efectos muy negativos sobre el com-
portamiento de un controlador si éstas no se consideran adecuadamente sus
formulaciones matemáticas. Por esta razón, una parte importante de la inves-
tigación actual está centrada en este tema; buscando las formas mas adecuadas
para representar matemáticamente las incertidumbres de los sistemas, así como
buscando nuevas herramientas matemáticas que permitan hacer uso de ésta
representación de la incertidumbre con el objetivo de diseñar algoritmos de
control robustos.

En esta tesis se presentan nuevas aportaciones en esta línea. Concretamente,
se desarrollan nuevas metodologías para diseñar controladores (DOBCs) y pre-
dictores (DOBPs) para sistemas dinámicos inciertos basados en observadores
de perturbaciones. La principal aportación es demostrar que los DOBCs se
pueden sintetizar desde un enfoque de control óptimo; siendo su principal cri-
terio de diseño el de aproximar la �irrealizable� señal de control óptima que
minimiza un índice de coste cuadrático sujeto a un modelo dinámico lineal
(LTI). Este nuevo enfoque de diseño es indistintamente válido para modelos
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SISO/MIMO con múltiples o únicas perturbaciones. Además permite un ajuste
del controlador muy intuitivo gracias a las matrices de ponderación del coste.
De forma similar; los DOBPs se construyen con el objetivo de aproximar la
solución temporal un sistema dinámico perturbado.

Con el objetivo de contextualizar la aportación, el documento también in-
cluye un breve resumen de los principales métodos de control robusto y el
impacto que han tenido en la revolución tecnológica del siglo XXI; algunas
discusiones sobre la utilidad de los modelos LTI perturbados para representar
sistemas dinámicos inciertos; y algunas relaciones, comparaciones y simula-
ciones numéricas de los métodos propuestos con otras técnicas de control.

-
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Prefaci

Els sistemes d'enginyeria o físics solen ser incerts. La seua incertesa es mani-
festa quan el sistema mostra comportaments que són relativament diferents als
que el seu model prediu; sent principalment causada per: errors de modelatge;
dinàmiques desconegudes; canvis en les propietats del sistema; interaccions
aleatòries amb altres sistemes; o canvis en les condicions d'operació.

Durant els últims 40 anys, s'ha demostrat reiteradament que les incerteses
dels sistemes poden tindre efectes molt negatius sobre el comportament d'un
controlador si aquestes no es consideren adequadament les seues formulacions
matemàtiques. Per aquesta raó, una part important de la investigació actual
està centrada en aquest tema; buscant les formes mes adequades per a rep-
resentar matemàticament les incerteses dels sistemes, així com buscant noves
tècniques matemàtiques que permeten fer ús d'aquesta representació de la in-
certesa amb l'objectiu de dissenyar algorismes de control robustos.

En aquesta tesi es presenten noves aportacions en aquesta línia. Concretament,
es desenvolupen noves metodologies per a dissenyar controladors (DOBCs) i
predictors (DOBPs) per a sistemes dinàmics incerts basats en observadors de
pertorbacions. La principal aportació és demostrar que els DOBCs es poden
sintetitzar des d'un punt de vista de control òptim; sent el seu principal criteri
de disseny el d'aproximar la -irrealitzable- senyal de control òptima que minim-
itza un índex de cost quadràtic restringit a un model dinàmic lineal (LTI).
Aquest nou plantejament és indistintament vàlid per a models SISO/MIMO
amb múltiples o úniques pertorbacions. A més permet un ajust del controlador
molt intuitiu gràcies a les matrius de ponderació del cost. De manera similar;
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els DOBPs es construeixen amb l'objectiu d'aproximar la solució temporal un
sistema dinàmic pertorbat.

Amb l'objectiu de contextualitzar l'aportació, el document també inclou un
breu resum dels principals mètodes de control robust i l'impacte que han tingut
en la revolució tecnològica del segle XXI; algunes discussions sobre la utilitat
dels models LTI pertorbats per a representar sistemes dinàmics incerts; i al-
gunes relacions, comparacions i simulacions numèriques dels mètodes proposats
amb altres tècniques de control.

-
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Chapter 1. Introduction

1.1 Introduction: robust control of uncertain systems

A system is said to be uncertain if, with more or less frequency, it manifests
behaviors that are relatively di�erent than the ones predicted by its model.
The most common sources of uncertainty are: modeling errors; unknown/un-
modeled dynamics; changes in the system properties; random interactions with
other systems; or changes in the operating conditions.

In this sense, if it is not possible to construct an accurate1 model for a system
�due to, for example; its complexity, its economical cost, its apparent random
behavior or the lack of knowledge about how some parts of the system behave�
one is simply forced to assume that the system is relatively uncertain.

Most of the engineering; natural; economical or biological systems are used
to be uncertain. Even the most apparently simple ones. For example, let us
consider the accelerator pedal in a car and the e�ect that it has on the car's
velocity. This is a rather simple system with one input �pedal accelerator�
and one output �car's acceleration. Depicted its conceptual simplicity, the
system is still uncertain. Although it is quite sure that pressing the accelerator
always generates positive accelerations, it is not so sure how much does in fact
the car accelerates. One could try to take the car in order to perform some
experiments with the main objective of building a model �i.e. called a nominal
model� that quantitatively gives its acceleration in terms of how much the
pedal has been pressed. However, the resulting model will be likely to give
errors once the experimental conditions are changed. In fact, the acceleration
depends �among many other factors� on the number of passengers, on the road
slope, on the wind velocity and on its direction. Developing a car-model that
considers all these factors becomes, in many cases, excessively complex; so, at
the end, the control-designer is simply forced to assume that car acceleration
is relatively uncertain with respect to the nominal model that was identi�ed.

The development of the robust control methods (1960-2000)

These system uncertainties have posed a fundamental question in the control
theory, that is: how to design e�ective controllers for uncertain systems. This
issue has been progressively gaining importance since the early beginnings of
1960s; to the point that, during 1970s it generated an important paradigm-
shift towards the so-called robust control (Petersen et al. 2014; Safonov 2012;
Gao 2014; Sariyildiz et al. 2020).

1By accurate it is meant a model that is capable of quantitatively predicting the system behavior
in all the possible circumstances and operating conditions.
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1.1 Introduction: robust control of uncertain systems

The main idea behind the robust control methods is clear: the system uncer-
tainties cannot be just neglected. Instead, they should be considered �some-
how� in the nominal models that are used to design and test controllers.

This design-premise is supported on di�erent researches and experimental re-
sults that have revealed that the system uncertainties could have very negative
e�ects in a feedback controlled system if they are not properly considered. One
of the �rst analyses in this line came from Horowitz 1963. He mathematically
proved that the system uncertainty is a dominant factor in determining what
can be achieved with feedback control. He postulated that there exist a trade-
o� between the controller robustness �i.e. the amount of uncertainty in the
nominal model that can be tolerated� and its performance.

Other signi�cant results appeared during 1970s. Di�erent works �e.g. (Rosen-
brock et al. 1971; Athans 1971; Doyle 1978)� reported strong failures of some
optimal control techniques that were caused, mainly, by the system uncertain-
ties. It was proved that an arbitrarily small di�erence between the real system
behavior and its nominal model could be theoretically capable of destabilizing
the �popular� LQG controller. Similar problems were experimentally observed
during the same decade. Safonov 2012 makes reference to some attempts to
apply the LQG controller in a Trident submarine and in a F-8C crusader air-
craft. It was reported that the LQG caused the submarine to unexpectedly go
to surface in simulations under moderately rough seas; whereas some �weak-
nesses� of the theory were the main reasons attributed to problems in the F-8C
aircraft.

It is said that these failures of the LQG controller during 1970 were the main
trigger for all the subsequent developments of robust control techniques (Sa-
fonov 2012; Sariyildiz et al. 2020). During 1970-2000 a wide number of papers
were published with di�erent methodologies in order to build robust controllers
for uncertain systems. The works developed during this period can be cate-
gorized into two areas: robust control designs and robust control analyses (Pe-
tersen et al. 2014). The �rst one deals with the problem of designing the �best�
controller for a given nominal model with some prede�ned uncertainty. The
second one deals with the companion problem: �nding the maximum �amount�
of model-uncertainty that can be tolerated by a given controller.

Some noteworthy results developed during this period for robust control anal-
yses are: the multi-variable stability margins (Safonov 1980); the small gain-
theorem (Sandberg 1964; Zames 1966); the Kharitonov theorem (Chapellat
et al. 1989); the Lyapunov-based robustness analyses (Freeman et al. 2008;
Khalil et al. 2002) or the Linear Matrix Inequality (LMI) approach (Scherer
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Chapter 1. Introduction

et al. 2000). These mathematical methods basically allow to check the e�ects
that some type of system uncertainty may have on a given controller.

On the other hand, the most distinguished approaches to design robust con-
trollers are: the H∞, H2 or µ-controllers (Doyle et al. 1988; Doyle et al.
1989; Khargonekar et al. 1991); the �recently popular� Disturbance Observer-
Based Controllers (DOBCs) and related methods (Ohishi 1983; Sariyildiz et
al. 2020; Chen et al. 2016; Schweppe 1968; Johnson 1975; Meditch et al. 1973;
Bhattacharyya 1978; Darouach et al. 1994); the Active Disturbance Rejection-
based Control (ADRC) (Han 2009; Wu et al. 2020); the sliding-mode con-
trollers (Edwards et al. 1998); the Disturbance Accommodating Control (DAC)
theory (Johnson 1971; Johnson 1986); and the Internal Model-based Con-
trol (IMC) (Francis et al. 1976; Garcia et al. 1982). All these results can be
employed to design controllers for uncertain dynamic systems. Thus, they
share the peculiarity that some type of system uncertainty is explicitly consid-
ered during the control-design process.

The robust control methods during the technological revolution
(2000-2020)

Some of these robust control methods have been proved to be quite e�ective,
being widely known today by the successful results that they have achieved
in practice. In particular, the DOBCs, the ADRC and the sliding-mode con-
trollers are becoming very popular among scientist as they permit to synthe-
size high-precision feedback regulators with just very basic system informa-
tion (Han 2009; Huang et al. 2014; Sariyildiz et al. 2020; Gao 2006; Gao et al.
2001; Chen et al. 2016).

This can be appreciated in Fig. 1.1, which contains the approximate number of
new IEEE papers that were published during 2000-2020 containing keywords
of the main robust control techniques2. It can be seen a signi�cant growth
on their use; being remarkable the exponential rise of DOBCs, ADRCs, and
sliding mode controllers. Interestingly, the �gure illustrates that around the
50% of the total number of papers referencing to these controllers have been
published during the last 5 years. This indicates that, nowadays, these robust
controllers are being developed/applied faster than in any other period.

2The search has been performed by Google Scholar with the following commands: i) ("disturbance
observer" OR "Unknown input observer" OR "Extended state observer") source:"IEEE"; ii) ("H
in�nity" OR "H_{\infty}" OR "H in�nite" OR "H/sub in�nity") source:"IEEE"; iii)("sliding mode
control") source:"IEEE"; iv) ("internal model principle" OR "internal model control" OR "IMC")
source:"IEEE"; v) ("active disturbance rejection" OR "ADRC") source:"IEEE"
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1.1 Introduction: robust control of uncertain systems
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Figure 1.1: Top plot: Approximate number of new IEEE papers �in intervals of 5 years�
containing keywords related with the di�erent robust control strategies. Bottom plot: (num-
ber of new papers)/(total number of papers)·100.

Furthermore, if the search is focused on speci�c application areas, it is found
that robust controllers �speci�cally DOBCs, ADRCs and sliding mode con-
trollers� are being applied in: motion control (Umeno et al. 1991; Choi et al.
1999; Sariyildiz et al. 2015), power electronics (Yokoyama et al. 1994; Jain
et al. 2020), fault diagnosis (Wang et al. 1996; Han et al. 2018; Bernardi et al.
2020), automobiles (Bünte et al. 2002; Kadowaki et al. 2002; Fujimoto et al.
2004), underwater vehicles (Peng et al. 2017), networks (Natori et al. 2008),
missile seekers (Sadhu et al. 2010), spacecrafts (Liu et al. 2018), UAVs (Castillo
et al. 2019a), surgery/rehabilitation robots (Ugurlu et al. 2014), long-distance
laser positioning (Deng et al. 2020) and magnetic levitation (Yang et al. 2011);
among many others.

In addition, their application to other �elds, such as: economics (Bernhard
2003; Hansen et al. 2008), game-theory (Ba³ar et al. 1998) or biotechnol-
ogy (Sala-Mira et al. 2019; Sanz et al. 2020); is also being explored.

However, despite the positive evolution of these control methods, in many cases
scientists are still �nding di�culties on how to proceed when designing robust
feedback regulators; specially, for relatively complex multi-variable systems
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Chapter 1. Introduction

that are sensitive to external disturbances or uncertain factors (Guo et al.
2014; Sariyildiz et al. 2020; Chen et al. 2016; Lamnabhi-Lagarrigue et al. 2017;
Petersen et al. 2014). This is mainly caused by a lack of more generalized �and
conceptually simple� robust control-design methods.

1.2 Contributions of this thesis

In this thesis, new strategies to design robust Disturbance Observer-Based
Controllers (DOBCs) and Predictors (DOBPs) for uncertain dynamic systems
are developed.

As mentioned above, the Disturbance Observer (DOB) approach is becoming
one of the most popular solutions for dealing with uncertain dynamic systems;
mainly, due to its conceptual simplicity. The operating principle of a DOB is
rather simple: a nominal-model �normally Linear and Time-Invariant (LTI):
ẋ(t) = Ax(t) + B2u(t) ∈ Rn, y(t) = Cx(t) ∈ Rp� that was identi�ed for the
system is taken and, then, some unknown inputs �called disturbances, ω(t)� are
added to it. This conforms the following LTI disturbed model for the system:

ẋ(t) = Ax(t) +B2u(t) +B1ω(t),

y(t) = Cx(t);

whose chief characteristic is that it includes some extra degrees of freedom
�given, precisely, by the disturbances� that easily permit to account for the
possible uncertain behaviors of the system with respect to the nominal-model3.

The DOB approach makes use of the historical set of sensor readings, y(t), in
order to compute estimates of the nominal model-state, x̂(t), as well as the
disturbance signals, ω̂(t), that are a�ecting to it.

In this sense, the computed estimates, [x̂(t), ω̂(t)], contain information about
the current state of the system according to the LTI disturbed model and the
historical set of sensor readings. Due to this property, DOBs are mainly used
to for: i) feedback Control �i.e. DOBCs� (Han 2009; Shim et al. 2009; She
et al. 2008; Li et al. 2012; Castillo et al. 2018; Khlebnikov 2016); ii) Prediction
of the future system-state �i.e. DOBPs� (Sanz et al. 2016b; Castillo et al.
2020b); and iii) Failure Detection �i.e. DOBFDs� (Wang et al. 1996; Han
et al. 2018; Bernardi et al. 2020).

New design-methodologies to solve the �rst two problems are developed in this
thesis.

3More speci�c details on this are given in Chapter 2
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1.2 Contributions of this thesis

A novel strategy to synthesize DOBCs

The main problem in DOBC concerns the issue of how to design an appropriate
feedback, e.g. u(t) = Kxx̂(t) + Kωω̂(t), that sets the control action, u(t), in
terms of both the nominal model-state, x̂(t), and its disturbances, ω̂(t).

Designing this feedback is a crucial step when constructing robust DOBCs
for any application, as it mainly de�nes the closed-loop system behavior. Its
design can be relatively easy for models satisfying the so-called matched condi-
tion (Chen et al. 2016; Sariyildiz et al. 2020); but �without a proper method-
ology� it could become considerably complex for multi-variable models with
mismatched and/or multiple disturbances. Currently, there is an increasing
interest in exploring new solutions to this feedback-design problem, e.g. (Li et
al. 2012; Castillo et al. 2018; Guo et al. 2014; Pu et al. 2020; Khlebnikov 2016),
as any new strategy may contribute to increase and simplify the applicability
of this robust control technique.

This thesis provides a novel approach to this feedback-design problem, which
is developed from the optimal control theory. It is shown how DOBCs of the
form u(t) = Kxx̂(t)+

∑r
i=0Kω,iω̂

(i)(t), r ∈ N, can be synthesized with the main
objective of approximating the �unrealizable� optimal control signal, uγ(t),
minimizing a quadratic-cost index subject to the LTI disturbed model.

This novel feedback design strategy contains signi�cant di�erences �from both
conceptual and technical points of view� if compared with the previous meth-
ods; which mostly design the DOBCs in order to reject the disturbance signals
in some channel �e.g. (Chen et al. 2016; Sariyildiz et al. 2020; Yang et al.
2011; She et al. 2008; Castillo et al. 2018; Li et al. 2012)� or with ellipsoidal
Lyapunov-based methods �e.g. (Khlebnikov 2016).

Its major advantage is that, as it is developed from an optimality-based ap-
proach, the solution is indistinctly valid for SISO/MIMO models with single/-
multiple matched/mismatched disturbances. In addition, it o�ers an intuitive
and versatile tuning through the cost-index weighting matrices.
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Chapter 1. Introduction

A novel strategy to synthesize DOBPs

The main problem in DOBP concerns the issue of how to make use of the
estimates [x̂(t), ω̂(t)] in order to predict the future nominal-state, x̂(t+ ∆t).

Predicting the value of x̂(t + ∆t) is often needed for control purposes. For
example, predictions are extensively used for closed-loop input-delay compen-
sation (Manitius et al. 1979; Artstein 1982; Krstic 2008; Krstic 2010; Mazenc
et al. 2012; Li et al. 2014); for controlling systems with delays and disturbances
(Di Loreto et al. 2005; Sanz et al. 2016b; Furtat et al. 2017; Santos et al. 2018);
for model predictive control (Mayne 2014; Binder et al. 2019); and, also, in
other applications where estimates of x(t+∆t) may be useful, such as collision
avoidance (Polychronopoulos et al. 2007).

To the best of our knowledge, there exist very few results to this prediction
problem. The existing ones have been mainly developed within the framework
of control of time-delay systems �e.g. (Sanz et al. 2016b; Furtat et al. 2017;
Léchappé et al. 2015).

This thesis shows to construct state-predictors of the form x̂(t+∆t) = Φ(∆t)x̂(t)+∑r
i=0 Γω,i(∆t)ω̂

(i)(t) +
∑N

k=0 Γu(t̃k, t̃k+1)uk; with the main purpose of approxi-
mating the time domain solution of the LTI disturbed model.

1.3 Background: why this thesis was developed and its main

motivations

Developing new tools to synthesize DOBCs and DOBPs might be very well
received by engineers and control practitioners. Specially, if they are valid
for multi-variable models with multiple or mismatched disturbances and they
o�er an intuitive and versatile tuning. Results in this line may contribute
to: save both time and resources in what respects to control-design tasks;
design DOBCs for a much wider class of systems and scenarios; and to enrich
the existing literature about this robust control strategy, which is constantly
gaining acceptance.

These are the main motivations that lead us to develop this research. The main
purpose of this section is to give a chronological picture of the main events that
conducted us to do it.
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1.3 Background: why this thesis was developed and its main motivations

Some experimental tests of DOBCs in drones

By 2015-2016, we were experimentally working with drones. Concretely, on
testing and implementing feedback-regulators to stabilize them. Drones are
systems that are quite sensitive to some uncertain elements, mainly: wind
gusts, load variations, battery discharges or changes in its geometrical dis-
tribution. These uncertainties degrade the controller performance in some
situations, being even capable of destabilizing the drone itself.

Conventional drone controllers were mostly based on PID regulators; which
suppress the e�ect of the uncertainties by the integral action. Although the
integral action is capable of rejecting constant disturbances, it has some dis-
advantages; such as: oscillatory responses and a non-trivial gain tuning. This
caused that the PID controllers failed to achieve a high-precision response in
environments with strong disturbances.

Seeking for ways to enhance the drone performance, we got interested on the
DOBCs (Chen et al. 2016; Sariyildiz et al. 2020). The current literature was
indicating that these controllers had signi�cant capabilities for detecting and
compensating the uncertainties that a�ect to the systems; allowing a high-
precision control in situations with high disturbances. In fact, its use was
growing fast �refer to Fig. 1.1. So we started to test them.

The results were surprisingly good. A �rst preliminary result was presented at
the IEEE International Conference on Information and Automation (Castillo et
al. 2016), and more complete results with experimental demonstrations were
latter published in Castillo et al. 2019a �in collaboration with the Zhejiang
University, Hangzhou, China. In that work, a DOBC was implemented in an
aerial drone. Disturbance signals, ω(t), were introduced in the nominal model
of the drone in order to account for the Coriolis e�ect and other unknown
torques that a�ect to the drone when �ying �such as payloads, wind gusts,
etc. A DOB was employed to estimate these unknown disturbance signals,
which were then used in a feedback control-law. The results were remarkable.
The drone was able to compensate for its own Coriolis e�ect without none
information about its inertia matrix. It was also capable of detecting and
compensating for signi�cant changes of weight in some of its arms.

Given that this accurate behaviour had never been achieved by us with other
control strategies, it became a good reason to explore other engineering control
problems in which DOBCs may have bene�ts.
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Chapter 1. Introduction

Attempts to design DOB controllers for other systems

We started by looking at the problem of closed-loop glucose-control for people
with type-1 diabetes; e.g. (Tecnodiabetes ai2, UPV ; Sanz et al. 2020). The
control problem consist in the following: measures of the glucose concentration
in blood are taken and it is needed to develop a controller that �based on
these measurements� automatically injects insulin to the person if needed.
The objective is to maintain the glucose concentration in some safety levels.
The uncertainties of this process are mainly related with human behaviors �i.e.
unannounced meals and sport activity that cause undesired glucose variations.

Encouraged by the results with drones, we faced this new problem and we
attempted to design DOBCs for it. The objective was that the disturbance
signals, ω(t), introduced in the nominal patient-model should detect the sit-
uations in which the patient eats something. Then, they could be employed
to automatically generate an insulin bolus in order to reduce the increase of
glucose after the meal.

A wide number of di�erent DOBC methods in a simulator running with a
clinically identi�ed model (Stocker et al. 2006; Kanderian et al. 2009; Kande-
rian et al. 2012) were tested; including the ADRC approach (Wu et al. 2020;
Huang et al. 2014), the GESO-based control (Li et al. 2012), the classical
frequency-domain DOBC (Ohishi 1983; Sariyildiz et al. 2020) as well as some
other similar approaches reported in (Sariyildiz et al. 2020; Chen et al. 2016).
All these DOBCs �which appropriately worked in drones� failed in this new
scenario, even in the most simple simulations.

The main problem was that all these DOBCs were mostly designed to achieve a
complete rejection of the disturbance signals through the control-input channel.
They directly feedback the disturbance estimates in order to cancel for the
�real� ones. Achieving a complete disturbance compensation was attainable in
drones, but it was physically impossible in this new scenario due to both the
system dynamics and the physical limitations of the actuators. These DOBCs
were, simply, too aggressive. We then realized that a suitable solution here
could be some kind of feedback design-method that allowed to penalize the
excessive use of control action at the expense of not compensating the entire
disturbances.

Subsequently, we noticed that similar problems were also found by other au-
thors that were dealing with other engineering control problems, such as:
MAGnetic LEVitation (MAGLEV) control, permanent magnet synchronous
motors or �xed-wing UAVs (Yang et al. 2011; Li et al. 2012).
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1.4 Chapters organization

Exploring new methods for synthesizing DOBCs

The lack of feedback design-tools for DOBCs started to be seen as a major
problem by us. On the one hand, it was known that this robust control strategy
was able to o�er very good behaviors in some systems � as showed by our
previous experiments with the drones. But, on the other hand, it seemed that
the absence of more generalized feedback design-strategies was braking new
applications of this technique to other control problems.

We realized that new contributions in this line could be very interesting for both
control practitioners and control theorists. Thus, the main research started to
focused on this topic, ending with the main results of this thesis. A �rst
preliminary result to the feedback-design problem was proposed in (Castillo et
al. 2018) for SISO models and, later, two additional ones �constructed from an
optimality-based approach� were developed for MIMO models with possibly
multiple disturbances (Castillo et al. 2020c; Castillo et al. 2020d).

After these results, we come to the conclusion that some parts of the technical
developments employed to solve the feedback-design problem for DOBCs could
be also applied to the prediction problem. This permitted to publish the
work (Castillo et al. 2020b), summarizing the main results on DOBPs.

It could be said that the whole process has been relatively long and it has
required a detailed study of the classical and the modern control theories in
its various branches. The �nal results are summarized here in a constructive
way, starting from what we understand to be the most basic de�nitions/ideas
and developing over them.

1.4 Chapters organization

Fig. 1.2 depicts a diagram of the remaining chapters; indicating how this thesis
could be read.

Chapter 2 contains the main de�nitions and the problem statement. Its main
purposes are: i) to better illustrate the usefulness of the LTI disturbed models
for representing systems with uncertain behaviors; ii) to de�ne more clearly
what a DOB is; iii) to introduce the generalized four-block control-design prob-
lem for LTI disturbed models; iv) to de�ne the optimal controller �namely, uγ�
and the state-predictor �x(t + ∆t)� that will be considered as the basis for
synthesizing the proposed DOBCs and DOBPs; and v) to establish some re-
lationships with other classical and recent control strategies.
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Chapter 1. Introduction

Figure 1.2: Chapter organization

Chapter 3 shows how to synthesize DOBCs of the form u(t) = Kxx̂(t) +∑r
i=0Kω,iω̂

(i)(t), r ∈ N, that approximately implement the optimal controller uγ .

Chapter 4 includes some closed-loop analyses and stability conditions for the
DOBCs.

Chapter 5 shows how to synthesize DOBPs of the form x̂(t+∆t) = Φ(∆t)x̂(t)+∑r
i=0 Γω,i(∆t)ω̂

(i)(t) +
∑N

k=0 Γu(t̃k, t̃k+1)uk, that approximate the model's so-
lution x(t+ ∆t).

Chapter 2 should be �rstly read. After it, one can indistinctly jump to Chap-
ter 3, 4 or 5; as they are mostly independent among them.

Relationships between publications and chapters

Di�erent publications have been written during this project. Some of them are
already published, i.e. (Castillo et al. 2016; Castillo et al. 2017; Castillo et al.
2018; Castillo et al. 2019a; Castillo et al. 2019b; Castillo et al. 2020b; Castillo
et al. 2020d); and some others are currently under editorial review (Castillo
et al. 2020a; Castillo et al. 2020c).

The chapters of this document can be related to some of the published papers.
Concretely, the results of Chapter 4 are mainly the ones in Castillo et al. 2019b
�being also related with the work Castillo et al. 2017. The content of Chapter 5
is published in Castillo et al. 2020b. Chapter 3 has been sent for publication
and it is under editorial review in Castillo et al. 2020c.
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Chapter 2

Problem statement

The main de�nitions and the problem statement is contained
in this chapter.

The main purposes are: i) to give insights into the LTI dis-
turbed models and their usefulness for representing systems with
uncertain behaviors; ii) to de�ne what a DOB is; iii) to introduce
the generalized four-block control-design problem for LTI disturbed
models and; iv) to de�ne the optimal controller �namely, uγ� and
the state-predictor �x(t + ∆t)� that will be considered as the basis
for synthesizing DOBCs and DOBPs.

In addition, some relationships with other classical and recent
control strategies are established.
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Chapter 2. Problem statement

2.1 LTI disturbed models: a simple framework to deal with

uncertain systems

As mentioned in Sec. 1.2, one of the key elements of the DOB methods is that
they add some unknown inputs �called disturbances� to the nominal models
in order to account for the possible uncertain behaviors. In this section, some
depeer insights into this method and the resulting LTI disturbed models are
given.

Nominal deterministic models and the inherent complexity on
making them accurate

For illustrative purposes, let us consider the following nominal model for the
vertical position of an aircraft:

ṗz(t) = vz(t),

v̇z(t) = mu(t)− g;
(2.1)

where g = 9.81 (m/s2) is the gravity constant; u(t) (N) is the vertical propul-
sion force; m (kg) is the aircraft mass; vz(t) (m/s) is the vertical velocity and
pz(t) (m) is the vertical position.

This model mostly comes from the Newtonian mechanics. Let us contemplate
the following questions: i) Is this model capable of accurately representing
the real altitude of an aircraft?; and, if not, ii) which modi�cations should be
done? Questions regarding the accuracy of a model are relatively important
from a control-design perspective as a huge number of mathematical-tools to
design controllers which, at the end, require mathematical models have been
developed within the framework of the control theory. In this sense, the more
accurate the model is, the better control results will be achieved by these tools.

In order to answer both questions, one should �rstly de�ne a clear experimental
procedure that permits to evaluate the accuracy of the model. Let us suggest
the following one: install a high-precision altitude sensor on the aircraft so that
its current altitude, y(t), is known. Then, put the aircraft on �y �for example,
by manually driving the force u(t)� and compare the measurements given by
the sensor, y(t), with the ones predicted by the model, pz(t). If the model is
accurate, then, it should be satis�ed that y(t) ≈ pz(t). In other words: an
accurate model is capable of predicting the sensor readings.

It may be noted that, without an experimental procedure like this one, which
necessarily implies to install sensors and compare the sensors readings with
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2.1 LTI disturbed models: a simple framework to deal with uncertain systems

the model output, is not possible to make statements about the accuracy of
some hypothetical model. Thus, an �accurate model� simply means that it is
capable of predicting the observed/measured data of the system.

Let us consider that an experiment like this one is performed in a real scenario
with an aircraft and the model (2.1). In all likelihood, it would be found that
the altitude measures, y(t), di�er from the ones, pz(t), predicted by (2.1).
Hence, the answer to i) would be negative in most of the experiments. The
reason is that, from previous experiences, it is known that the model (2.1)
is neglecting many other factors that actually a�ect the aircraft �such as the
wind force, the air density, how the propulsion force u(t) is being generated,
etc. All these spurned factors constitute the main source of the discrepancies
between pz(t) and y(t).

In this sense, one could think that enhancing the accuracy of (2.1) goes through
modeling new elements, such as: i) the aircraft aerodynamics, ii) the wind
force, or iii) how the vertical force u(t) is being generated. The modeling
process could be considered as concluded whenever some equations �say ṗz(t) =
f1(vz(t)), v̇z(t) = f2(vz(t), u(t)), which include information about the aircraft
aerodynamics, wind velocity, air pressure, etc� are found such that, for any
�ight that is done, the altitude predicted by the model matches with the sensor
readings; i.e. y(t) ≈ pz(t).

This pair of equations represents the well-known two-equation model �i.e. the
system dynamics plus the measurement equation� that is extensively employed
within the classical control theory. In this case, it would result in:

ṗz(t) = f1(vz(t)),
v̇z(t) = f2(vz(t), u(t)),

(2.2)

y(t) = pz(t). (2.3)

A generalized dynamical model takes the form ẋ(t) = f(x(t), u(t)) ∈ Rn,
y(t) = h(x(t), u(t)) ∈ Rp; or, if it is linear:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t);
(2.4)

where x(t) ∈ Rn is an internal variable representing the nominal model-state;
u(t) ∈ Rm, is the control input; and y(t) ∈ Rp, the sensor readings.

Certainly, a major disadvantage of these models is the strong complexity on
making them accurate. Finding some deterministic function, f(·) �or matrices
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Chapter 2. Problem statement

(A,B,C,D)� which, simply by receiving the control inputs, is capable of pre-
dicting the aircraft altitude �that is, the measurement equation holds for all
the time and all the possible circumstances� would never be simple.

LTI disturbed models: an alternative way to mathematically
represent the systems

In order to solve this disadvantage, let us now consider the following slightly
modi�ed LTI disturbed model:

ṗz(t) = vz(t),

v̇z(t) = mu(t)− g + ω(t);
(2.5)

where ω(t) is an unknown input �called disturbance� that can take, a priory,
any waveform without none speci�c physical meaning.

The main di�erence with respect to (2.1) is that (2.5) contains the unknown
input, ω(t). By this reason �in contrast to (2.1)� the output of the model (2.5)
is not entirely de�ned. Now, for the same control input u(t) and the same
initial states, pz(t0), vz(t0); model (2.5) can generate a whole set of di�erent
outputs, one for each ω(t).

Thence, if we refer to the same question regarding the capability of (2.5)
for representing the real aircraft altitude, it can be easily concluded that the
answer is now positive in most cases. In order to verify it, a similar experiment
could be done: the aircraft is put on �y and all the data given by the altitude
sensor, y(t), together with the control inputs, u(t), are recorded. After the
�y, the data could be taken and it could be corroborated that �in fact� there
exists one function, ω(t), so that the altitude given by (2.5) matches with the
measurements provided by the sensors, i.e. pz(t) ≈ y(t).

The experiment could be repeated again, but this time performing new maneu-
vers and �ying with other environmental conditions. After this second �ight,
the new recorded data could be taken and it could be corroborated that there
exists another di�erent function, i.e. ω2(t); so that the output of the same
model (2.5) matches with the altitude measurements. The experiment could
be repeated again and again. With every �ight that is done, a new �and prob-
ably di�erent� function ω(t) so that y(t) ≈ pz(t) will be found. In fact, under
some non-strong assumptions over the sensor readings, y(t), it can be proved
that there always exist some ω(t) so that y(t) = pz(t).
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2.1 LTI disturbed models: a simple framework to deal with uncertain systems

This viewpoint �which is rather di�erent than the previous one� is also math-
ematically represented by the well-known two-equations model:

ṗz(t) = vz(t),
v̇z(t) = mu(t)− g + ω(t),

y(t) = pz(t). (2.6)

A generalized LTI disturbed model takes the form:

ẋ(t) = Ax(t) +B2u(t) +B1ω(t) ∈ Rn

y(t) = Cx(t) +D2u(t) +D1ω(t) ∈ Rp
(2.7)

where the �rst equation represents the system dynamics �with its respective
unknown disturbance inputs� while the second one represents the measurement
equation.

Main di�erences between both modeling approaches

There are two substantial di�erences that should be established. The �rst �and
probably the most important� one is about the measurement equations in (2.4)
and (2.7). In the case of the nominal model (2.4), the measurement equation,
more than a strict equality, should be understood as something that may hold
only if the model is su�ciently accurate. This equality is a consequence of the
model accuracy as it is comparing two things that are originally di�erent, say:
the sensor readings with the deterministic and unique solution of the model.
Therefore, the measurement equation will not hold if the model is inaccurate.

However, in the case disturbed models (2.7), the measurement equation is forced
to be a strict equality. This can be done because, now, the model includes some
unde�ned functions, ω(t), whose value can be freely chosen in order to force
the measurement equation as an strict equality1. So, from a mathematical per-
spective, ω(t) gives an extra degree of freedom that can be used to strictly force
the measurement equation. And, from a control perspective, this is equivalent
to say that our trust in the sensor readings is greater than in the model and,
consequently, we construct an uncertain model that continuously adapts itself
to the sensor readings. In other words, it is being assumed that the sensor

1Clearly, there is an inherent assumption here which is that �there exist some ω(t) so that the
measurement equation is satis�ed�. This does not necessarily hold in practice if the disturbances
are introduced wrongly in the models, if the models contain excessive errors, or if the environmental
circumstances dramatically change. Models should be constructed with prior information about the
process and the environment; and the disturbances should be placed correctly in the models. In any
case, this assumption can be checked experimentally.
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Chapter 2. Problem statement

Figure 2.1: DOB block diagram. It receives as inputs the measured information, y(s), and
the control input, u(s), with s ∈ [t0, t], t0 < t; and it provides estimates of ω(t) and x(t).

readings are generated by an uncertain system of the form (2.7), whose degree
of freedom is ω(t).

The second di�erence lie in the non-de�ned nature of the disturbed models.
Disturbed models are just well-de�ned up to the current time t �in the sense
that, for a given initial states pz(t0), vz(t0), t0 < t, a given control input, u(s),
and a given sensor readings, y(s), s ∈ (−t0, t]; one could �nd a disturbance
signal, ω(s), and a nominal system states, pz(s), vz(s), so that (2.7) holds
for all s ∈ (−t0, t]. However, the future states and the future disturbance
signals will never be known until time moves forward and new sensor readings
are available. This is not the case with undisturbed models; which just by
de�ning the initial states and the control input, its solution can be integrated
for all the time.

2.2 DOBs: numerical methods for estimating disturbance

signals

A DOB is an algorithm �normally a recursive/di�erential equation� whose
inputs are the sensor readings, y(s), and the control signals u(s), s ∈ [t0, t]
and it provides as an output real-time estimates, x̂(t), ω̂(t), of the system-
state, x(t), and its disturbance signals, ω(t). The estimates are computed under
the assumption that the sensor readings y(t) are generated by an hypothetical
LTI disturbed model of the form (2.7).

In this sense, a DOB gives useful information in real-time about the state of
the system according the model and the historical set of sensor readings. By
this reason, the estimated pair [x̂(t), ω̂(t)] has been successfully employed for
feedback control �i.e. DOBC� (Han 2009; Shim et al. 2009; She et al. 2008;
Li et al. 2012; Castillo et al. 2018; Khlebnikov 2016); for failure detection �i.e.
DOBFD� (Wang et al. 1996; Han et al. 2018; Bernardi et al. 2020); and to
make predictions of the future system-state �i.e. DOBP� (Sanz et al. 2016b;
Castillo et al. 2020b).
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Figure 2.2: The four-block control problem.

In reference to this, during the last decades an important number of DOB algo-
rithms have been developed. Some prominent examples are the ones by Med-
itch et al. 1973; Bhattacharyya 1978; Darouach et al. 1994; Corless et al. 1998;
Xiong et al. 2003; Chang 2006; Kim et al. 2010; Chen et al. 2016; Chakrabarty
et al. 2017; Su et al. 2018.

2.3 De�nition of the optimal controller, uγ, and the

state-predictor, x(t+ ∆t)

After these introductory sections, we are in position to set the things up and
present the main optimal controller �namely, uγ� that will be considered as
the basis for synthesizing new DOBCs; as well as the state-predictor �namely,
x(t+ ∆t)� that will be considered as the basis to construct DOBPs.

The �standard� four-block control problem for LTI disturbed models

Figure 2.2 represents the so-called four-block control problem; a generalized
control formulation widely employed within the robust control theory (Petersen
et al. 2014; Åström et al. 2014; Doyle et al. 1989; Tadmor 1990).

The block G represents the system to be controlled, which is assumed to be
given by the following LTI disturbed model:

G ,


ẋ(t) = Ax(t) +B2u(t) +B1ω(t),

y(t) = C2x(t),

z(t) = C1x(t),

(2.8)

being x(t) ∈ Rn an internal variable representing the nominal system-state;
u(t) ∈ Rm, the control inputs; ω(t) ∈ Rq, the unknown disturbance inputs;
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y(t) ∈ Rp, the sensor readings; z(t) ∈ Rr, the controlled variable; and A, B1,
B2, C1, C2, nominal matrices of appropriate dimensions, which de�ne the main
interactions between the model variables.

The modelG contains two inputs �i.e. the control input, u(t), and the unknown
disturbances, ω(t)� and two outputs �i.e. the sensor readings, y(t), and the
controlled variable, z(t). The disturbances, the sensor readings and the control
inputs should be understood as described in Sec. 2.1. The role of the controller
is to take the sensor readings, y(t), in order to generate a control input, u(t),
that maintains the controlled variable, z(t), close to zero2.

This constitutes the so-called four-block control-design problem, which is a
quite versatile framework to design regulators. Control problems that could
be radically di�erent in nature may be equivalently represented by Fig. 2.2
and Eq. (2.8). Some examples will be given through the document, which in-
cludes simulations for MAGLEV and glucose control for type-1 diabetic people.
Demonstrations of how to design collision avoidance controllers in uncertain
environments have been also developed within this framework and experimen-
tally tested with successful results �refer to the conclusions of the document.
However, the scope of applicability is even larger; models like (2.8) are em-
ployed, not only for representing physical or engineering processes, but also for
biological and economic systems (Kanderian et al. 2009; Hansen et al. 2008; Al-
bertos et al. 2010). This framework has also been used in game-theory (Ba³ar
et al. 1998).

De�nition of the optimal controller uγ

The optimal control signal to be considered is:

uγ(t) , arg min
∀u

∫ ∞
t

[
z(s)T z(s) + γ uT (s)Ru(s)

]
ds,

s.t. Model (2.8);
(2.9)

being γ > 0 and R > 0. Without loss of generality, R can be assumed to be
normalized to ‖R‖ = 1 � as it is being scaled by γ.

Controller (2.9) reads as follows: from all the possible control signals, u, is
chosen the one �i.e. uγ� that minimizes

∫∞
t
z(s)T z(s)+γ uT (s)Ru(s)ds; subject

to the model-dynamics (2.8).
2Many control problems, such as: stabilization, reference tracking or trajectory tracking can be

reduced to maintain some internal variable close to zero. This variable is normally de�ned during
the modeling process by an appropriate choice of the internal states x(t).
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The tuning parameters R, γ, can be set to de�ne how much control action is
used for control purposes. As γ → 0; the controller minimizes

∫∞
t
z(s)T z(s)ds.

This implies �if possible� that z(t)→ 0; which is the desired objective. How-
ever, for γ → ∞, the controller tries to minimize

∫∞
t
γ uT (s)Ru(s)ds; which

leads to the trivial solution u(t) = 0; i.e. there is no control because the cost
index mainly penalizes the use of control action. For intermediate values, the
controller will drive z(t)→ 0 but without wasting excessive control action.

Eqs. (2.8)-(2.9), together with the interpretation of the disturbance signals
given in Sec. 2.1, represent the main basis over which the new DOBCs will
be developed. Chapter 3 is mainly focused on how to construct DOBCs that
approximately implement, at each time-instant, the optimal control signal uγ ;
while Chapter 4 is focused on analyzing its closed-loop stability.

De�nition of the state-predictor x(t+ ∆t)

The state-predictor to be considered is:

x(t+ ∆t) = eATx(t) +

∫ t+∆t

t

eA(t+∆t−s)Buu(s)ds+

∫ t+∆t

t

eA(t+∆t−s)Bωω(s)ds;

(2.10)
which corresponds to the time-domain solution of (2.8).

Predicting the future state, x(t+ ∆t), ∆t ≥ 0, is often needed for control pur-
poses. For example, predictions are extensively used for closed-loop input-delay
compensation by (Manitius et al. 1979; Artstein 1982; Krstic 2010; Mazenc et
al. 2012; Li et al. 2014); for controlling systems with delays and disturbances
(Di Loreto et al. 2005; Sanz et al. 2016b; Furtat et al. 2017; Santos et al.
2018); in model predictive control (Mayne 2014; Binder et al. 2019); and,
also, in other applications where estimates of x(t+ ∆t) may be useful, such as
collision avoidance (Polychronopoulos et al. 2007; Castillo et al. 2020a).

However, as Eq. (2.10) highlights, whether the model contains unknown distur-
bances, the future nominal-state is dependent on the forthcoming disturbance;
which, as mentioned in Sec. 2.1, cannot be known at the current time � i.e.
we should wait until the future sensor readings in order to determine the fu-
ture disturbance signals. By this reason, making predictions of the future
nominal-state is not straightforward and �indeed� there are scarce contribu-
tions provided to this issue.

Chapter 5 shows how Eq. (2.10) can be approximated by disturbance observers;
providing a new procedure to synthesize DOBPs.
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2.4 Relationships of uγ with other controllers

At this point, it is interesting to establish relationships of the optimal controller
being considered �i.e. uγ (2.9)� with respect to other controller de�nitions
that already exist in the literature. These relationships should be seen as an
important motivation for the choice of uγ as a base-controller.

Relationships with the Linear Quadratic Regulator (LQR)

Of special interest is the relationship of uγ with respect to the famous Linear
Quadratic Regulator (LQR). In fact, if the system-model (2.8) is considered
without disturbance inputs �i.e. ω = 0� then, uγ reduces to the de�nition of
classical LQR, whose realization is given by:

uLQR(t) = Kxx(t); (2.11)

with Kx , −(γR)−1BT
2 ST , being ST the solution to the ARE: ATST + STA−

STB2(γR)−1BT
2 ST + CT

1 C1 = 0.

Thus, for null disturbance signals, it should be expected that the mathematical
expression of uγ reduces to (2.11). This will be corroborated in Chapter 3.

For non-null disturbances, controller uγ could be interpreted as a �robusti�ed�
version of the classical LQR; or as a LQR for uncertain or disturbed systems.

Relationships with the H∞ control and related MinMax strategies

Controller uγ can be also related to theH∞ control and related MinMax formu-
lations. These strategies de�ne a robust controller by considering a di�erential
game of the form:

min
u

max
∀ω∈L2

∫ ∞
t0

[
z(s)T z(s) + γ uT (s)Ru(s)− δω(t)Tω(t)

]
ds,

s.t. Eq.(2.8);
(2.12)

a problem that is equivalent to the minimization of the following upper bound:∫∞
t0

[z(s)T z(s) + γ uT (s)Ru(s)] ds∫∞
t0
ωT (s)ω(s)ds

< δ; (2.13)

for any ω ∈ L2 and subject to the system dynamics.
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2.4 Relationships of uγ with other controllers

In this sense, it can be seen that the H∞ control approach minimizes (2.9)
under the assumption that the disturbances actively try to maximize it. This
conducts to a MinMax optimization problem �such as (2.12)� for which there is
plenty of literature about how to solve it, e.g. (Doyle et al. 1989; Tadmor 1990;
Gahinet et al. 1994; Khargonekar et al. 1991; Iwasaki et al. 1994; Mahmoud
et al. 1996; Zhou et al. 1996; Petersen et al. 2014).

Note that the H∞ approach represents a worst-case based design. Hence,
it imposes a strong assumption on the disturbance behavior that does not
necessarily hold in practice �i.e. that it will actively try to maximize3 the
cost (2.9). If compared with it, the controller uγ avoids the �Max� part. In
this sense, it does not impose none prior assumption on the behavior of ω(t).

Relationships with preview control

Solving problems of the form (2.9) for scenarios where ω is totally known
�meaning that we know its past, present and future values� has been coined as
�preview� control in the classical literature (Tomizuka 1974; Tomizuka 1975).
The term preview alludes to the fact that it is needed to anticipate the future
evolution of ω(t) in order to implement the controller.

Although �with the de�nition of disturbances in Sec. 2.1� it is senseless to
consider that the disturbances as known, as well as, to consider its future
values as known; the preview control has found its applications for trajectory
tracking (Tomizuka 1975); where ω is not understood as a disturbance in the
same sense as in this work, but it is seen as a known exogenous term which
depends on the trajectory to be followed. The main motivation behind preview
control, as stated by Tomizuka 1974, is to �nd ways to e�ectively make use of
the trajectory information in order to design optimized controllers.

This assessment directly translates to one of the main motivations behind uγ
and its approximation by DOBCs �i.e. to e�ectively make use of the estimated
disturbance information for an optimized control design.

3This is incompatible with the ideas of Sec. 2.1, where disturbances are just some unknown
functions that are included in the models in order to strictly guarantee the measurement equation.
At �rst, they will not try to disturb the system in none prede�ned way. This MinMax nature of the
H∞ control is the main reason for which is attributed its excessive conservativeness.
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Chapter 2. Problem statement

Relationships with the DAC theory

Similarly, the DAC theory of Johnson �e.g. (Johnson 1971; Johnson 1986)�
also deals with controllers of the form (2.9).

Johnson considered that, if some e�orts are put on modeling the disturbances
�i.e. to express ω(t) as the output of an exogenous system driven by unknown
impulse inputs� then, the Eq. (2.8) could be augmented with the disturbance
model, resulting in a system with a non-controllable part. By proceeding in
this way, a problem of the form (2.9) could be solved and implemented in
practice without excessive di�culties.

However, the need of modeling the disturbances is a major drawback of the
DAC theory. Although it is theoretically possible �as, at the end, disturbances
are nothing more than modeling errors or interconnections with other sys-
tems (Albertos et al. 2010)�, if something characterizes them is the complexity
to understand and to model its nature �as highlighted in Sec. 2.1.

Relationships with the feedforward-based control strategies

If one refers to the recent literature on control design-strategies for disturbed
systems, it may be seen that a popular approach is the use of DOBs in com-
bination with feedforward strategies (Chen et al. 2016; Sariyildiz et al. 2020).

These control-methods basically split the control action into to terms: u =
ufb(x)+uff (ω); being ufb(x), uff (ω), a state feedback and disturbance feedfor-
ward terms, respectively. The state-feedback, ufb(x), is normally designed for
system stabilization or reference tracking, while the disturbance-feedforward,
uff (ω), is designed for disturbance rejection. In the case of unknown distur-
bance signals, the term uff (ω) is approximately implemented by DOBs.

In general, one can �nd a very large number of control results based on this
splitting policy, (e.g. Khlebnikov 2016; Guo et al. 2005; Shim et al. 2009; She
et al. 2008; Jingqing 1995; Zhong et al. 2004; Ohishi et al. 1987); as well as an
extensive number of practical applications that employ it (e.g. Oh et al. 1999;
Castillo et al. 2019a; Zhou et al. 2014).

Interestingly, it will be found that the resulting mathematical expression of uγ
also takes the form uγ = ufb(x) + uff (ω). However, in contrast to all these
previous works, the controller uγ does not assume beforehand this composite
structure. Rather, the feedback and feedforward terms appear in a natural
way; being something inherent of the mathematical formulation of the control-
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2.5 Conclusions

problem itself. In addition, the feed-forward term, uff (ω), will be found to be
rather di�erent than the ones normally employed in the current literature.

2.5 Conclusions

The main concepts over which the DOBCs and DOBPs will be built have
been de�ned in this chapter. Concretely, the usefulness of the LTI models and
the DOBs for dealing systems with uncertain or complex behaviors has been
�rstly de�ned. Then, the generalized four-block control-design problem for LTI
disturbed models has been introduced and the main optimal controller, uγ , and
state-predictor, x(t+ ∆t), that will be considered as a basis to synthesize the
DOBCs and DOBPs have been introduced.

Some relationships of the considered controller, uγ , with respect to other pop-
ular control de�nitions have been also established.

The remain chapters are focused on �nding the mathematical expression of uγ
as well as ways to approximately implement it by DOBCs. Also, it will be
shown how x(t+ ∆t) can be estimated through disturbance observers.

25





Chapter 3

DOBC: Optimality-based

design, uγ(t)

In this chapter, the synthesis of DOBCs of the form u(t) =
Kxx̂(t)+

∑r
i=0Kω,iω̂

(i)(t), r ∈ N, that approximately implement the
optimal controller uγ(t) �Eq. (2.9)� is developed. Comparisons with
other DOBC designs are established through numerical simulations
for magnetic levitation and glucose control for type-1 diabetes.

Part of the content of this chapter is under editorial review.
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Chapter 3. DOBC: Optimality-based design, uγ(t)

3.1 Introduction

In this chapter, it is shown how to synthesize DOBCs of the form u(t) =
Kxx̂(t)+

∑r
i=0Kω,iω̂

(i)(t) that approximately implement the optimal controller
uγ(t) �Eq. (2.9)�. To this end, the analytical expression of uγ(t) is �rstly
developed and, then, it is provided the manner in which it can be approximated
by these type of DOBCs.

Under the umbrella of the optimal control theory, an entire mathematical appa-
ratus in order to explicitly solve problems similar to (2.9) has been developed.
Thus, the way to proceed is: i) to reformulate problem (2.9) into an equiva-
lent �nite-horizon one, which can be explicitly solved by the standard tools of
optimal control; ii) to invoke the optimal control theory to provide with the
conditions that uγ(t) may satisfy in order to minimize (2.9); iii) to re-express
the minimizing conditions as an analytical control-law of the form uγ(t) =
Kxx(t)+uff (ω), being uff (ω) a functional depending on the future disturbance
signals; iv) to show how this �unrealizable� control-law can be approximately
implemented by DOBCs of the form u(t) = Kxx̂(t) +

∑r
i=0Kω,iω̂

(i)(t).

The main contribution of this chapter is featured in the iii) and iv) points. To
the best of our knowledge, this is the �rst methodology enabling an approxi-
mate implementation of the unrealizable optimal controller (2.9) by DOBCs.
In addition to this, the implementation errors will be mathematically de�ned
and upper bounded.

Main assumptions

Throughout this chapter, the next assumptions are considered:

Assumption 3.1. (A,B2) is controllable and (A,C1) is detectable.

Assumption 3.2. The disturbance signal, ω, is (r + 1)-times continuously
di�erentiable, with ‖ω(r+1)(t)‖ < εr+1.

Asm. 3.1 is standard for controller design, as it guarantees the existence of a
unique solution to the Algebraic Riccati Equation (ARE) (Lewis et al. 2012).

Asm. 3.2 refers to disturbance signals that exhibit a certain degree of di�er-
entiability or continuity/regularity. Such property allows to predict its wave-
form over relatively short time-horizons. In general, disturbances of this kind
widely appear in practice, coming from di�erent sources, such as: external
forces, torques, friction, set-point/servo tracking commands, actuators failures
or modeling errors (Johnson 1986; Gao 2014).
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3.2 Mathematical expression of uγ(t)

3.2 Mathematical expression of uγ(t)

The analytical expression of uγ(t), in (2.9), is developed in this section.

Minimizing conditions for the �nite-horizon case

The problem (2.9) is �rstly re-formulated as a �nite-horizon optimal-control
problem with a �xed terminal cost:

uγ , arg min
∀u

xT (T )STx(T ) +

∫ T

t

[
z(s)T z(s) + γ uT (s)Ru(s)

]
ds,

s.t. Eq.(2.8);
(3.1)

where [t, T ] represents the control-interval and ST is restricted to be the solu-
tion to the Algebraic Ricatti Equation (ARE):

ATST + STA− STB2(γR)−1BT
2 ST + CT

1 C1 = 0, (3.2)

which, by Asm. 3.1, exists and is unique.

For any ST , Problem (3.1) is equivalent to (2.9) as T →∞ (Lewis et al. 2012).
Thus, the solution for the �nite-horizon case can be taken as an starting point
and, then, it can be done T →∞ in order to get the solution to (2.9).

From the standard theory of the calculus of variations, it follows that the
control signal minimizing (3.1) is given by (Lewis et al. 2012; Gelfand et al.
2000):

uγ(s) = −(γR)−1BT
2

[
S(s)xγ(s) + v(s)

]
, s ∈ [t, T ) (3.3)

with S(s) and v(s) satisfying

− Ṡ(s) = ATS(s) + S(s)A− S(s)B2(γR)−1BT
2 S(s) + CT

1 C1, (3.4a)

− v̇(s) =
[
A−B2(γR)−1BT

2 S(s)
]T
v(s) + S(s)B1ω(s) (3.4b)

with terminal conditions S(T ) = ST and v(T ) = 0; and xγ(s) being the state-
trajectory that, starting from xγ(t) , x(t), results from applying uγ(s) to the
model (2.8).

The solution (3.3)-(3.4) has been developed within the classical optimal control
theory; however, not too much attention has been put on it. In fact, we suspect
that great majority of the current robust control scientists are not aware of
the existence of this solution. Probably, one of the main reasons that have
lead to its oblivion is its unrealizable nature. Note that, in order to compute
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Chapter 3. DOBC: Optimality-based design, uγ(t)

uγ(t), the equations (3.4a)-(3.4b) should be solved backwards time; starting
from the terminal conditions S(T ) = ST , v(T ) = 0 and integrating up to the
current time t. This implies that the disturbances should be known during all1

the future time interval in order to compute the current value of uγ . Needless
to say, this is not the case in practical applications �where, at least with the
de�nition of the disturbance signals given in Sec. 2.1, the future disturbances
are always unknown.

Albeit if it was assumed that ω is perfectly known, Eqs. (3.4a)-(3.4b) are not
very �friendly� for a practical implementation. Specially due to (3.4a), which
involves the integration of a matrix di�erential equation that necessarily needs
to be performed by iterative numerical methods (Lewis et al. 2012).

In what follows, it is shown that this apparently complex controller can be
analytically re-expressed in a highly simple form: uγ(t) = Kxx(t) + uff (ω);
being uff (ω) a functional depending on the future disturbance.

Rewriting uγ(t) in an explicit �i.e. non-di�erential� form

First of all, from all the signal uγ(s) in (3.3), we are only interested on its
current value, uγ(t); as this is the one that is truly valid for control purposes.
Note that, the rest of the control signal �i.e. u∗(s), s > t� can be simply
discarded because, at the next time instant, the problem will be re-evaluated
again according to the new system state. Thus, taking (3.3) at s = t gives:

uγ(t) = −(γR)−1BT
2

[
S(t)x(t) + v(t)

]
. (3.5)

The variables S(t) and v(t) can be computed by integrating (3.4) from T to t.
To this end, note that in Eq. (3.4a) the terminal cost ST was intentionally
chosen to be the solution to the ARE (3.2). This notably simpli�es the treat-
ment of Eq. (3.4a) and it has no in�uence on the cost (3.1) as T →∞. As the
matrix ST makes the RHS of (3.4a) null, the integration of (3.4a) backwards
in time, starting from T up to the current time t, simply results in:

Ṡ(s) = 0, S(s) = ST , for all s ∈ [t, T ]. (3.6)

This notably simpli�es the management of Eq. (3.4) as, now, the RHS of the
involved matrices �i.e.

[
A − B2(γR)−1BT

2 S(s)
]T

and S(s)B1� become time-

1As it may be seen at the end of the following section, not all the future time instants should be
considered but just a nearby future time interval.
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3.2 Mathematical expression of uγ(t)

invariant. This equation can now be written as follows:

− v̇(s) = ATclv(s) + STB1ω(s), v(T ) = 0, s ∈ [t, T ) (3.7)

being Acl ,
[
A−B2(γR)−1BT

2 ST
]
a Hurwitz �i.e. stable� matrix2.

With the simpli�cation of (3.4a)-(3.4b) into (3.6)-(3.7); the mathematical ex-
pression of uγ(t) can be straightforwardly obtained. To this purpose, it is just
needed to integrate (3.7) from T to t and apply its terminal condition, giving:

v(t) =

∫ T

t

eA
T
cl(s−t)STB1ω(s) ds, s ∈ [t, T ]; (3.8)

where it can be checked that v(T ) = 0 �i.e. it satis�es the terminal condition�
and, by Leibniz, it also satis�es the di�erential equation (3.7).

Substituting (3.6) and (3.8) into (3.3), and taking T → ∞, the analytical
expression of the controller uγ(t) is obtained as:

uγ(t) = Kxx(t) +Kv

∫ ∞
t

eA
T
cl(s−t)STB1ω(s) ds, (3.9)

where Kx , −(γR)−1BT
2 ST ; Kv , −(γR)−1BT

2 ; ST is the solution to (3.2);
and Acl ,

[
A−B2(γR)−1BT

2 ST
]
.

Comments about uγ(t)

Note that �as discussed in Sec. 2.4� the controller uγ(t) contains the classical
composite structure formed by state-feedback plus disturbance feed-forward.
However, this composite structure has not been assumed beforehand and,
moreover, the disturbance feed-forward term appears as a future-dependent
integral and not as the commonly employed static-gain or stable �lter multi-
plied by the actual disturbance; e.g. (Li et al. 2012; Khlebnikov 2016; Yang
et al. 2011; Castillo et al. 2019b).

In the absence of disturbances, the integral is null and uγ(t) is reduced to the
standard LQR. This property was also mentioned in Sec. 2.4.

Finally, for any bounded disturbance, the integral in (3.9) is �nite as eA
T
cl(s−t),

with s ∈ [t,∞), exponentially vanish to zero. Thus, in order to implement uγ(t),
2In fact Acl is the closed-loop matrix of the standard LQR regulator; which is proved to be

Hurwitz (Lewis et al. 2012)
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Chapter 3. DOBC: Optimality-based design, uγ(t)

the disturbance should be known just from the present, ω(t), to a near future,
ω(t+ h), where h makes eA

T
clh almost null.

Clearly, due to this property, the controller uγ(t) is unrealizable in practice
as it depends on the future disturbance. However its mathematical expres-
sion (3.9) opens the door to new methodologies for synthesizing DOBCs that
approximately implement it. How to do develop this approach is the main
purpose of the following sections.

3.3 Synthesizing DOBCs that approximately implement uγ(t)

The following theorem constitutes the main result of this chapter, as it shows
how to synthesize DOBCs of the form u(t) = Kxx̂(t) +

∑r
i=0Kω,iω̂

(i)(t) that
approximately implement uγ(t):

Theorem 3.3.1. Under Assumptions 3.1-3.2, consider any estimations, x̂(t),
ω̂r(t), of the variables x(t) and ωr(t) , [ωT (t), ω̇T (t), . . . , ω(r)T (t)]T in (2.8),
respectively. Then, the optimal controller uγ(t) �(2.9), (3.9)� can be approxi-
mately implemented by:

u(t) = Kxx̂(t) +KvΦ ω̂r(t) (3.10)

with an error equal to:

uγ(t)− u(t) = Oe(t) +Or(t); (3.11)

being Kx , −(γR)−1BT
2 ST ; Kv , −(γR)−1BT

2 ; and

Φ , [(−ATcl)−1STB1, (−ATcl)−2STB1, [. . .] , (−ATcl)−(r+1)STB1],

Oe(t) , Kx

[
x(t)− x̂(t)

]
+KvΦ(τ)

[
ωr(t)− ω̂r(t)

]
,

Or(t) , Kv(−ATcl)−(r+1)

∫ ∞
t

eA
T
cl(s−t)STB1ω

(r+1)(s)ds.

(3.12)

with Acl ,
[
A−B2(γR)−1BT

2 ST
]
and ST the solution to the ARE (3.2).

Proof. The proof follows by recursively integrating by parts the disturbance de-
pendent term in (3.9). Let φi ,

∫∞
t

(−ATcl)−ie(−ATcl)(t−s)STB1ω
(i)(s)ds. Under

Ass. 3.2, φi can be integrated by parts for any i < r + 1:

φi =
[
−(−ATcl)−(i+1)e(−ATcl)(t−s)STB1ω

(i)(t)
]s→∞
s=t

+

∫ ∞
t

(−ATcl)−(i+1)e(−ATcl)(t−s)STB1ω
(i+1)(s)ds. (3.13)
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3.3 Synthesizing DOBCs that approximately implement uγ(t)

The integral term in the RHS (3.13) equals to φi+1. In addition, as Acl is
Hurwitz, the exponential e(−ATcl)(t−s) vanishes with s → ∞. Therefore, (3.13)
provides the following recursive equation:

φi = (−ATcl)−(i+1)STB1ω
(i)(t) + φi+1; (3.14)

which straightforwardly enables to express φ0 as:

φ0 = (−ATcl)−1SB1ω(t) + [...] + (−ATcl)−(r+1)SB1ω
(r)(t) + φr+1. (3.15)

The theorem follows by substituting φ0 =
∫∞
t
eA

T
cl(s−t)STB1ω(s)ds into (3.9);

and denoting φr+1 , Or.

As mentioned in Sec. 2.2, the existing literature on DOBs has provided with
a wide number of e�cient algorithms and numerical methods for estimating
�in real-time� the variables x(t) and ωr(t), in (3.10), through the historical
set of sensor readings y(t). Some examples are the ones by Luenberger 1964;
Luenberger 1966; Schweppe 1968; Meditch et al. 1973; Bhattacharyya 1978;
Darouach et al. 1994; Corless et al. 1998; Xiong et al. 2003; Chang 2006; Kim
et al. 2010; Chakrabarty et al. 2017; Su et al. 2018. Any of these DOBs could
be combined with Thm. 3.3.1 in order to produce a DOBC that approximates
the optimal controller uγ(t).

Resulting implementation errors

The approximation of uγ(t) by Thm. 3.3.1 is subject to unavoidable errors �i.e.
Oe(t) and Or(t). These errors appear as a direct consequence of not having
all the necessary information in order to directly compute the optimal control
signal uγ(t). They deserve a bit further discussion as they mainly de�ne the
degree of sub-optimality of the DOBC approximation.

By Thm. 3.3.1, the implementation error is caused by two terms: i)Oe(t), which
just depends on the current observation errors: x(t)− x̂(t), ωr(t)− ω̂r(t); and
ii) Or(t), which, under perfect observation conditions (i.e. Oe(t) = 0), repre-
sents the error caused by computing uγ(t) just with the current disturbance
state, ωr(t), instead of computing it by (3.9) with the whole disturbance func-
tion: ω : [t,∞)→ Rq. This error can be nicely seen as the unavoidable error
appearing as a consequence of not knowing the future disturbance behavior.

On the one hand, the term Or(t) can be bounded by:

‖Or(t)‖ ≤ µ
∥∥Kv(−ATcl)−(r+1)

∥∥εr+1; (3.16)
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Chapter 3. DOBC: Optimality-based design, uγ(t)

being µ ,
∫∞
t
‖eATcl(s−t)STB1‖ds.

Bound (3.16) shows that it is possible to make ‖Or(t)‖ arbitrarily small through
an appropriate choice of the parameters γ and/or r. Reducing γ makes the
eigenvalues of Acl = A − B2(γR)−1BT

2 ST more negative (Di Ruscio 1992);.
This contributes to reduce the RHS of (3.16). On the other hand, �if ω is
su�ciently di�erentiable3� increasing r contributes to exponentially decrease
the size of Or.

Conversely, the term Oe entirely depends on how the observations are com-
puted. It mainly depends on the capability of the DOB to give accurate es-
timates of x(t) and ωr(t). Thus, accurate observations should be required in
order to reduce this term.

3.4 Application: design of a high-order ESO-based controller

For the sake of completeness, let us show how a high-order Extended State
Observer (ESO)-based feedback controller could be easily synthesized with
this new methodology. The ESOs are, nowadays, one of the most popular
algorithms to estimate in real-time the system and disturbance states due to
their simplicity �e.g. (Castillo et al. 2018; Chen et al. 2016; Chang 2006;
Castillo et al. 2020b). Let us show how they could be employed under this
novel feedback design.

Consider the following high-order ESO-based controller:

˙̂η(t) =
[
Ā− LC̄2

]
η̂(t) + B̄2u(t) + Ly(t), (3.17a)

u(t) = Kη̂(t), (3.17b)

being η̂ ∈ Rl, l = n+ (r + 1)q,

Ā ,

[
A B1Π
0 Υ

]
, B̄2 ,

[
B2

0(r+1)q×m

]
, C̄2 ,

[
C2 0p×(r+1)q

]
,

Υ ,

[
0rq×q Irq
0q×q 0q×rq

]
, Π ,

[
Iq 0q×rq

]
K ,

[
Kx KvΦ

]
,

and L ∈ Rl×p a free-design matrix.
3meaning that its high-order derivatives exist and that their associated upper bounds εr+1 are

su�ciently-small.
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3.4 Application: design of a high-order ESO-based controller

Eq. (3.17a) is a conventional high-order ESO for the augmented system η(t) ,
[xT (t), ωr

T (t)]T ; whose dynamics �under Asm. 3.2� is given by:

η̇(t) = Āη(t) + B̄2u(t) + B̄1ω
(r+1)(t), (3.18)

with B̄1 , [0q×(n+rq), Iq]
T .

It thus provides with the needed estimates x̂(t), ω̂r(t) to implement Eq. (3.10)
�which has been inserted in (3.17b).

By Thm. 3.3.1, Eq. (3.17) is approximately implementing uγ(t) with an error
equal to (3.11); where Oe(t) is, in this case, given by:

ėη(t) = (Ā− LC̄2)eη(t) + B̄1ω
(r+1)(t),

Oe(t) = Keη(t),
(3.19)

being eη , η(t)− η̂(t).

The gain L could be tuned through Eq. (3.19) in order to explicitly minimize
Oe(t). This can be done by standard numerical methods, such as Lyapunov-
based convex-optimization or H∞ designs (Scherer et al. 2000). In what fol-
lows, let us introduce a LMI-design methodology that guarantees: i) an upper

bound of the form: ‖Oe(t)‖ ≤ εr+1

√
1

2αδ
, being αδ a positive constant to be

maximized; ii) that the eigenvalues of (Ā−LC̄2) belong to a given closed region
of the complex plane.

LMI-based design methodology

Let us consider that:

Assumption 3.3. (Ā, C̄2) is observable.

The design procedure is summarized in the next lemma:

Lemma 3.4.1. Consider a closed subset D of the complex plane de�ned by
D ,

{
z ∈ C

∣∣N + zM + z∗MT ≺ 0
}
, where N = NT and M are real matrices4

and z∗ denotes the conjugate of z. Under Asm. 3.3, let there exist positive
constants α > 0, δ > 0, a symmetric and positive de�nite matrix P ∈ Rl×l and

4 Some examples of subsets D are given in Chilali et al. 1996; Chilali et al. 1999.
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a matrix Y ∈ Rl×p such that[
PĀ+ ĀTP − Y C̄2 − C̄T

2 Y
T + 2δP PB̄1

B̄T
1 P −Iq

]
� 0, (3.20a)

P − αKTK � 0, (3.20b)

N ⊗ P +M ⊗ (PĀ− Y C̄2) +MT ⊗ (PĀ− Y C̄2)T ≺ 0, (3.20c)

Then, if L = P−1Y , the error term Oe(t), in (3.19), exponentially approaches
to the ball

‖Oe(t)‖ ≤ εr+1

√
1

2αδ
(3.21)

for any eη(0) and, moreover, eig(Ā− LC̄2) ∈ D.

Proof. Refer to Castillo et al. 2020b.

Remark 3.1. In order to minimize Oe, Lemma 3.4.1 can be optimized to
maximize the product αδ. This can be performed by standard LMI solvers
as (3.20a)-(3.20c) becomes an LMI in all its variables if δ is set as a �xed
parameter. An LMI solver can be employed to maximize α, subject to (3.20a)-
(3.20c), for di�erent �xed values of δ until �nding the maximum αδ.

Conclusion

The main contents of this section summarizes as:

Theorem 3.4.1. Under Assumptions 3.1-3.3, consider a matrix L ∈ Rl×p sat-
isfying the conditions of Lemma 3.4.1. Then, the controller uγ(t) �de�ned
in (2.9)� can be approximately implemented by the high-order ESO-based con-
troller (3.17) with an error equal to: uγ(t)− ûγ(t) = Oe(t) +Or(t); where Or(t)
satisfy the bound (3.16) and Oe(t) is ultimately bounded by (3.21); being both
null if εr+1 = 0.
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3.5 Comparative example: magnetic levitation control

Param. Meaning Value
mc Carriage mass 1000 kg
g Gravity constant 9.81 m/s2

kf Force constant 9810 N/T2

kb Flux constant 0.0015 Tm/A
Rc Coil's resistance 10 Ω
Lc Coil's inductance 0.1 H
Nc Number of turns 2000
Ap Pole face area 0.01 m2

B0 Nominal �ux density 1 T
I0 Nominal current 10 A

zt,0 − z0 Nominal air gap 0.015 m
Vc,0 Nominal voltage 100 V

Table 3.1: Operating conditions and parameters Michail 2009; Yang et al. 2011.

3.5 Comparative example: magnetic levitation control

Let us consider a MAGLEV system; whose identi�ed dynamics is (Michail
2009; Yang et al. 2011):

d2z

dt2
= g − kf

mc

(
I

z − zt

)2

,

Vc = RcI +
dI
dt
Lc +NcAp

dB
dt
,

B = kb
I

z − zt
,

(3.22)

where z represents the electromagnet position, zt is the rail's position, z − zt
stands for the air gap between the magnet and the rail, I is the coil's current,
Vc is the coil's voltage and B is the magnetic �ux.

3.5.1 Simulation scenario

The simulation scenario is the same as the one reported in (Yang et al. 2011;
Michail 2009). The system parameters, as well as the operating conditions,
are summarized in Table 3.1.

The simulation emulates �as illustrated in Figs. 3.1-3.2� changes in the rail's
position, zt(t). The �rst one �Fig. 3.1� is the same than the one reported (Yang
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Figure 3.1: Change in the rail's slope (Michail 2009; Yang et al. 2011).
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Figure 3.2: Sinusoidal variation of the rail's position (Frequency: 0.2 Hz. Amplitude: 0.5.
Filter order: 3. Cut-o� frequency = 1Hz).

et al. 2011); it represents a smooth change in the rail's slope. The second one
�Fig. 3.2� represents a smooth sinusoidal variation of the rail's position. In
both cases, the controller needs to automatically generate a voltage input Vc(t)
in order to maintain the nominal air-gap; i.e. z(t)− zt(t) ≈ zt,0 − z0 = 0.015 m.

The simulator solves Eq. (3.22), starting from steady-state conditions, and tak-
ing as inputs the rail position, zt(t), and the voltage, Vc(t), which is generated
by the controller. In order to generate this voltage, the controller has access
to the variables z− zt, I, and ż; which represent the measured variables of the
MAGLEV system.

3.5.2 DOBC design comparative

A DOBC was proposed to this problem by Yang et al. 2011. It was based on
the following LTI disturbed model:

G ,


ẋ(t) = Ax(t) +B2u(t) +B1ω(t),

y(t) = C2x(t),

z(t) = I3x(t),

(3.23)

being x , [∆I, ż, ∆(zt − z)]T , with ∆I = I − I0 and ∆(zt − z) = (zt − z) −
(zt,0 − z0) variations in I and z − zt with respect to the operating point;
u = ∆Vc = Vc − Vc,0 variations in the coil's voltage; ω(t) ∈ R3 three unknown
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3.5 Comparative example: magnetic levitation control

disturbance inputs and:

A =


− Rc

Lc+
kbNcAp
G0

− kbNcApI0

G2
0(Lc+

kbNcAp
G0

)
0

− 2kfk
2
bI0

mcG2
0

0 2kfk
2
bI

2
0

mcG3
0

0 −1 0

 , B2 =


1

Lc+
kbNcAp
G0

0
0

 , B1 = I3

C2 = I3.

The nominal part of (3.23) �i.e. (A,B2, C2)� corresponds to a linearized version
of (3.22) around the operating point. The variable y(t) = [∆I, ż, ∆(zt − z)]T
represents the measurements taken from the system. In this case, these mea-
sures come from the simulator solving (3.22) � but, in a real application,
it will directly come from the sensors. The variable z(t) corresponds to the
controlled variable; i.e. the one that should be maintained close to zero by
the controller. It has been chosen to be equal to x(t) �i.e. we want all the
variations close to zero� however, it could be also set to z(t) = [0, 0, 1]x(t)
in order to explicitly say that we are only interested in maintaining ∆(zt − z)
close to zero. Finally, three disturbance signals have been introduced in order
to account for the unknown changes of the rail's position, zt(t), as well as the
linearization residuals5.

The DOBC design considered by Yang et al. 2011 and Li et al. 2012 is:

u(t) = Kxx̂(t) + K̃ωω̂(t); (3.24)

with Kx = [−60.58, 591.18, 40061], and

K̃ω , −[Θ(A+B2Kx)
−1B2]−1Θ(A+B2Kx)

−1B1,

= [−2.1, 35.97, 742.16];

being Θ , [0, 0, 1].

The gain Kx corresponds to the resulting LQR gain (2.11) with weighting
matrices C1 = I3, R = 1 and γ = 0.1; whereas K̃ω has been designed in order
to reject constant disturbance signals in the state z(t) = Θx(t), i.e. the air
gap. Refer to Yang et al. 2011 or Li et al. 2012 for further details.

This DOBC feedback design is, nowadays, one of the most popular solutions. In
fact, it has been employed, analyzed and mentioned by many di�erent works

5Note that, following the words given in Sec. 2.1, the measurement equation in (3.23) is comparing
two things that are originally di�erent. On the one hand, y(t) comes from the solution of the non-
linear system (3.22); whereas C2x(t) represents the solution of (3.23). The disturbances need to be
included in order to account for their possible discrepancies.
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Figure 3.3: Simulation with respect to the change of the rail's slope.

� e.g. (Chen et al. 2016; Li et al. 2012; Castillo et al. 2019b; Khlebnikov
2016). Let us compare it with the feedback control derived in this chapter.
If Thm. 3.3.1 is applied with the same values of R and γ, it produces the
following controllers:

u(t) = Kxx̂(t) +
r∑
i=0

Kω,iω̂
(i)(t), r ∈ N; (3.25)

where, now, Kω,0 = [−0.098, 30.63, −529.13], Kω,1 = [0.17, −0.4, −137.5],
Kω,2 = [0.007, −0.105, −4.08], ... .

The integer r is the parameter truncating the matrix Φ∞ in Thm. 3.3.1. As
shown in (3.16), increasing this parameter may contribute to reduce Or(t).

3.5.3 Simulation results

Simulation results can be appreciated in Figs. 3.3-3.4; where it is seen that
the DOBC design of this chapter is able to give better behavior in terms of
performance and control e�ort.
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Figure 3.4: Simulation with respect to the sinusoidal variation of the rail's position.

In the simulations, the high-order ESO (3.17) has been employed in order to
get the needed estimates x̂(t), ω̂(t), ˆ̇ω(t), ˆ̈ω(t). The gain L has been tuned
to make (Ā − LC̄) Hurwitz, with poles approximately at s = −20; resulting
in L = [75.98, -634.9, 9.207e-4; -1.96, 80.75, 1308; 0.001644, -0.9928, 80.7;
2464, -0.1201, 0.05615; 0.1273, 2464, -0.8936; 0.09981, 0.5729, 2461; 33670,
-2.195, 1.155; 2.875, 33680, -15.43; 2.044, 14.36, 33620; 1.739e+05, -13.21,
8.021; 21.61, 1.74e+05, -86.04; 14.13, 117, 1.735e+05].

The green line corresponds to the controller (3.24); whereas the blue and purple
lines correspond to the controller (3.25) with r = 0 and r = 2; respectively. As
it can be seen, there is a signi�cant jump in the controller performance from
r = 0 to r = 2. The performance between (3.24) and (3.25), with r = 0, is
almost the same; however, the design criteria �and, consequently, the matrices
K̃ω andKω,0� are still di�erent. The brown line represents the same simulation
as (Yang et al. 2011); whose major change is how the estimates are obtained.
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Param. Value Quanti�es
τ1 49 (min−1) Delay in absorption
τ2 47 (min−1) Delay in absorption
Cl 2020 (ml/min) Insulin clearance
p2 1.6e-2 (min−1) Delay in insulin action
SI 8.11e-4 (ml/µU) Insulin sensitivity
kgezi 2.20e-3 (min−1) E�ect of glucose to

reduce glucose itself
kegp 1.33 (mg/dl/min) Glucose production rate

Table 3.2: Parameters in (3.26). Numerical values corresponding to the ones identi�ed for
Patient 1 in Kanderian et al. 2009.

3.6 Comparative example: closed-loop glucose control

Let us consider the following clinically identi�ed glucose-insulin system for
persons with type-1 diabetes (Stocker et al. 2006; Kanderian et al. 2009; Kan-
derian et al. 2012):

v̇1(t) = − 1

τ1

v1(t) +
1

τ1Cl
uI(t),

v̇2(t) =
1

τ2

v1(t)− 1

τ2

v2(t),

v̇3(t) = p2SI v2(t)− p2 v3(t),

v̇4(t) = −kgeziv4(t)− v3(t)v4(t) + kegp + d(t),

y(tk) = v4(tk),

(3.26)

where uI(t) represents the insulin delivery at Sub-Cutaneous (SC) level, v1(t) is
the insulin concentration at SC level, v2(t) is the plasma insulin concentration,
v3(t) is the insulin e�ect, v4(t) is the Glucose Concentration (GC) and d(t)
represents the glucose appearance following a meal.

Simulation scenario

System (3.26) is a clinically identi�ed model for patients with type-1 diabetes.
It represents �for a given person� how the GC in blood, v4(t), is a�ected by: i)
insulin deliveries at sub-cutaneous level, i.e. uI(t); and ii) meals that the per-
son takes, i.e. d(t). All the parameters are de�ned in Table 3.2; corresponding
to the ones identi�ed for the Patient 1 by Kanderian et al. 2009.
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3.6 Comparative example: closed-loop glucose control

Variable De�nition
v1(t) Insulin concentration at SC level
v2(t) Plasma insulin concentration
v3(t) Insulin e�ect
v4(t) Glucose concentration
uI(t) Insulin delivery at Sub-Cutaneous (SC) level
d(t) Glucose appearance following a meal

Table 3.3: De�nition of variables in (3.26).
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Figure 3.5: Disturbances caused by unannounced meals.

The simulation emulates a 24h-day where the patient eats 50g of Carbohydrates
(CHO) at 8h, 90g CHO at 14h, and 70g CHO at 22h. These meals generate a
glucose appearance as follows (Kanderian et al. 2009):

d(t) =
CH(t)

VGτ 2
m

te−
t
τm , (3.27)

where CH represents the amount of consumed carbohydrates, while VG = 0.123
and τm = 47 are the parameters identi�ed for Patient 1 (Kanderian et al. 2009).

The waveform of d(t) due to these meals is shown in Fig. 3.5.

The main objective is to design a controller that automatically injects insulin,
uI(t), in response to unannounced/unknown meals that the person takes, d(t).
The GC should be kept at v4(0) = 100 (mg/dl). In no case can be higher than
250 (mg/dl) or lower than 54 (mg/dl) as it may lead to severe hyperglycemia or
hypoglycemia, respectively. After a meal, optimal values should range between
70 (mg/dl) < v4(t) < 180 (mg/dl).

The main limitations for the controller are: i) uI(t) ≥ 0, i.e. insulin can be
injected but not subtracted; ii) d(t) is unknown for the controller, i.e. the
controller does not have information about when and how much the patient
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eats; iii) the controller only has access to discrete values of v4(t) with period
T = 5 min; which represents the measured variable.

The simulator solves Eq. (3.26), starting from steady state conditions �i.e.
v1(0) = v2(0) = 13.68, v3(0) = 0.011, v4(0) = 100, uI(0) = 2.77e4� and
receiving as inputs d(t) and the insulin deliveries uI(t), which are generated
by the controller.

3.6.1 DOBC design comparative

A DOBC can be designed based on the following LTI disturbed model:

G ,


ẋ(t) = Ax(t) +B2u(t) +B1ω(t),

y(tk) = C2x(tk),

z(t) = C1x(t),

(3.28)

where x(t) , [v1(t)− v1(0), v2(t)− v2(0), v3(t)− v3(0), v4(t)− v4(0)] represents
variations with respect to the steady-state conditions; u(t) = uI(t) − uI(0);
ω(t) ∈ R an unknown disturbance signal; and

A =


−1/τ1 0 0 0
1/τ2 −1/τ2 0 0

0 p2SI −p2 0
0 0 −v4(0) −v3(0)− kgezi

 , B2 =


1/(τ1Cl)

0
0
0


T

, B1 =


0
0
0
1


T

,

C2 = C1 =
[
0 0 0 1

]
.

The nominal part of (3.28) �i.e. (A,B2, C2)� corresponds to a linearized
version of (3.26) around the steady-state conditions. The variable y(tk) =
v4(tk)− v4(0) represents the measurements taken from the system. In this
case, these measures come from the simulator solving (3.22) � but, in a real
application, it will directly come from glucose sensors. The variable z(t) = y(t)
corresponds to the controlled variable; i.e. the one that should be maintained
close to zero by the controller. In this case, we want to reduce the variations
of glucose with respect to the nominal value v4(0) = 100. Finally, one distur-
bance signal is introduced in order to account for the unknown meals, d(t), as
well as the linearization residuals6.

6As mentioned in footnote 5. This is done in order to deal with the possible discrepancies between
y(t) and C2x(t).
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Similarly to Sec. 3.5; the DOBC feedback design considered by Yang et al.
2011 and Li et al. 2012 is:

u(t) = Kxx̂(t) + K̃ωω̂(t); (3.29)

with Kx = [−23.255, −22.434, −31920, 3.0263], and

K̃ω , −[C1(A+B2Kx)
−1B2]−1C1(A+B2Kx)

−1B1,

= 25790.

The gain Kx corresponds to the resulting LQR gain (2.11) with weighting
matrices R = 1, γ = 1e− 4; whereas K̃ω is designed in order to reject constant
disturbance signals in the controlled variable z(t).

Similarly to Sec. 3.5, if Thm. 3.3.1 is applied with the same values of R and γ,
it produces the following controllers:

u(t) = Kxx̂(t) +
r∑
i=0

Kω,iω̂
(i)(t), r ∈ N; (3.30)

where, now, Kω,0 = 1945.3, Kω,1 = 3.495e5, Kω,2 = 4.438e7, ... .

Simulation results

Simulation results can be appreciated in Fig. 3.6; where it is seen that the
DOBC design of this chapter is able to give better behavior.

In the simulations, the high-order ESO (3.17) has been employed in order to
get the needed estimates x̂(t), ω̂(t), ˆ̇ω(t), ˆ̈ω(t). The gain L has been optimized
according to the procedure of Lemma 3.4.1; with the poles constrained in a
closed circle around the origin with radius equal to 0.5. The optimization
procedure gives L = [2.55e-9; -4.34e-9; 1.34e-9; 0.935; 0.497; 0.157; 0.0255].

The high-order ESO has been discretized by the �rst-order-hold method with
period T = 5 as there is only discrete measurements available. The computed
control action is introduced to the system via a ZOH.

In the simulations, the black line corresponds to the controller (3.29); whereas
the blue and purple lines correspond to the controller (3.30) with r = 0 and
r = 2; respectively. As it can be seen, there is a signi�cant jump in the
controller performance from r = 0 to r = 2. In fact, with r = 0, the controller
does almost nothing �note that the control action is almost null if compared
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Figure 3.6: Comparative simulation results.

with the others. This is because, as it can be appreciated in Eq. (3.30), the
matrices Kω,r give more importance to the �rst and second derivatives of the
disturbance signals instead of its absolute value. With r = 2, the controller
accurately generates a peak of insulin �i.e. an insulin bolus� at the same instant
when a meal is detected. This is almost the same behavior that people with
type-1 diabetes normally do �i.e. they inject an insulin bolus to themselves
before each meal.

Note that this behavior could not be achieved with the feedback (3.29), as it
does not consider the disturbance derivatives.

3.7 Conclusions

In this chapter, DOBCs that approximately implement the optimal controller
uγ(t) have been synthesized. To this end, the analytical formula for uγ(t) has
been �rstly developed and, then, it has been shown how to approximate it by
DOBCs of the form u(t) = Kxx̂(t) +

∑r
i=0Kω,iω̂

(i)(t).

This novel DOBC feedback design is easily computable as it just requires to
solve the standard Algebraic Ricatti Equation (ARE) and perform matrix mul-
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3.7 Conclusions

tiplications. Its major advantage is that it is indistinctly valid for MIMO sys-
tems with single/multiple matched/mismatched disturbances and, in addition
to this, it o�ers an intuitive control tuning through the weighting parameters
R and γ.
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Chapter 4

DOBC: Stability conditions

In this chapter, some analyses about the resulting closed-loop
formed by a DOBC and the system are given.

The main purpose is to make a clear distinction between two
possible cases: i) the disturbance signals are not coupled with the
nominal system-state; ii) the disturbance signals are coupled with
the system-state. This distinction is crucial as it has di�erent im-
plications on the closed-loop performance and, even, on its stability.
And both type of disturbances regularly appear in practice.

The technical contents of this chapter has been mainly ex-
tracted from (Castillo et al. 2019b; Castillo et al. 2017).
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4.1 Introduction

In Chapter 2, the disturbance signals were de�ned as some unknown inputs
that are included in the model in order to guarantee that its output follows
the information given by the sensors. It was mentioned that these signals can
be estimated by DOB algorithms and, in Chapter 3, it was shown how to
make use of these estimates in order to design controllers of the form u(t) =
Kxx̂(t) +

∑r
i=0Kω,iω̂

(i)(t), r ∈ N, that approximately implement the optimal
control signal uγ � i.e. Eq. (2.9).

In this chapter, the attention is focused on the origin of those disturbance
signals. In fact, two cases should be distinguished as they have di�erent impli-
cations on the closed-loop performance and, even, on its stability. The question
is: are the disturbance signals coupled with the system-state or not?

If the disturbances are coupled with the system, it means that a change in
the system-state �e.g. changes of movement, velocity, position, temperature,
pressure, �ow-direction, etc� will also cause signi�cant changes on the observed
disturbance signals. On the other hand, non-coupled disturbances are signals
that are mostly independent of the system-state.

Disturbances that mostly arise from modeling errors are coupled disturbances;
whereas disturbances that mostly arise from interconnections with other in-
dependent systems are non-coupled disturbances. For example, in a drone
�ying at hover, the wind gusts are clearly non-coupled disturbances as they
are mostly independent of the drone position. However, in a submarine div-
ing in calm waters, the friction with the water is a coupled disturbance as it
is mainly dependent on the submarine velocity. In the �rst case, the distur-
bances arise from the interconnection with other independent system; say, the
environmental weather. In the second case, they mostly arise from modeling
errors as, in fact, the friction of the submarine with the static water forms part
of the submarine-system1.

In practice, disturbance signals would be a mixture of both � sometimes even
hard to be distinguished. In fact, many authors �e.g. Han 2009; Wu et al. 2020;
Huang et al. 2014; Xie et al. 2000� state that there is no point in establishing
such distinction as, in the end, the disturbances are caused by something whose
origin is uncertain and, from a control design perspective, they could be just
regarded as some unknown time-varying functions.

1However, quantifying this e�ect could be excessively complex and, for simplicity, this friction is
just �translated� to the disturbance signals.
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4.1 Introduction

Nevertheless, from a control analysis point of view �i.e. making statements
about how the controller will behave when applied to the system�, the distinc-
tion is crucial. Note that a controller that depends on the disturbance signals
is being applied to the system and this controller modi�es the system behavior
and the system-state; therefore, if the disturbances are coupled with the sys-
tem, the controller will be also modifying the disturbance signals to which it
is dependent. There exist a clear feedback-loop here that, in some cases, could
have very negative e�ects in the system performance2.

This section aims to analyze this closed-loop in order to establish the following
result: the closed-loop system will always be stable in scenarios with coupled
disturbances if the coupling is su�ciently weak. For non-coupled disturbances,
the resulting closed-loop is always stable. Thus, analyzing this feedback pro-
vides the control-designer with some qualitative clues, say: i) although this
robust control approach is able to deal with inner modeling errors3, it is im-
portant �in terms of stability and performance� that the nominal model con-
tains the most relevant information about the system behavior. ii) the DOB
bandwidth should be notably faster than the closed-loop system dynamics. In
this way, �although there exist coupling between both the system-state and
the disturbances� the DOBC is able to detect variations in the disturbances
generated by the controlled system itself.

Problem formulation and main assumptions

Fig. 4.1 contains a block-diagram of the problem considered in this chapter.
It is basically the same than the one of Fig. 2.2, but with the particularity
that the disturbance input is now dependent on the system-state, x, and other
non-coupled disturbances, ω̃.

System G is therefore rewritten as:

G ,


ẋ(t) = Ax(t) +B2u(t) +B1ω(x, ω̃(t)),

y(t) = C2x(t),

z(t) = C1x(t).

(4.1)

2In fact, these e�ects where experimentally observed in Castillo et al. 2019a; where the transient
response of the drone rotors needed to be properly modeled and included as a part of the nominal
model for the DOB. Neglecting this part of the model �or better said, accommodating this part
of the model through the disturbance signals� had negative e�ects in closed-loop for high-observer
bandwidths due to the coupling between the drone movements and the observed disturbances.

3In fact, in many cases, it is able to deal with unbelievable large modeling errors � refer, for
example, to the ADRC literature (Huang et al. 2014; Han 2009; Gao 2006).
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Figure 4.1: Four-block control problem with coupled disturbances.

Note that, in this model, the control inputs, u(t), a�ect the system-state, x(t),
which also a�ects the disturbance input. This de�nes the closed-loop above
mentioned, which is illustrated in Fig. 4.1.

The following assumption on the disturbance signal is considered for the sub-
sequent analyses:

Assumption 4.1. There exist scalars, βω ≥ 0, β ˙̃ω ≥ 0, βdx ≥ 0, βdω̃ ≥ 0, such
that,

‖ω(x, ω̃(t))‖ ≤ βω, ‖ ˙̃ω(t)‖ ≤ β ˙̃ω,∥∥∥∂ω
∂x

(
x, ω̃(t)

)∥∥∥ ≤ βdx, ∥∥∥∂ω
∂ω̃

(
x, ω̃(t)

)∥∥∥ ≤ βdω̃,
for all x ∈ Br, Br ,

{
x ∈ Rn

∣∣ ‖x‖ ≤ ρ}, ρ > 0, t ≥ t0.

Assumption 4.1 states that ω(x, ω̃(t)) and its partial derivatives are bounded
in a closed set, Br, around the origin � not necessarily globally bounded.
This basically states that, nearby an operating condition, the disturbance has
a continuous dependency on x � i.e. continuous variations in the nominal-
state, x, generate continuous variations in ω. This is what normally happens
in practice.

The most important parameter in Asm. 4.1 is βdx; which represents the cou-
pling between ω and x. Big βdx implies that small variations in the system-state
could cause big variations in the disturbance signal. As it may be seen, the
closed-loop stability is strongly dependent on this parameter. Instability may
appear for big βdx.
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4.2 Closed-loop stability conditions

Thusly, what we look for is to �nd conditions for which any closed-loop system
trajectory starting inside a set �say x(t0) ∈ E0 ⊆ Br� will remain inside Br for
all t > t0. This implies stability. In order to analyze this problem, it is
considered that the control action is generated by

u(t) = Kxx̂(t) +Kω,0ω̂(t); (4.2)

which corresponds to the one de�ned in Thm. 3.3.1 with r = 0 �or with the
control laws employed in other works, such as: Li et al. 2012; Huang et al. 2014;
Khlebnikov 2016; She et al. 2008. Also, it is considered that the estimates are
given by the ESO (3.17a) with r = 0. Similar results may hold for r > 0 or for
other type of observers.

Notation

The maximum and minimum eigenvalues of a given matrix, P , are denoted by
λ(P ) and λ(P ), respectively.

Let ξ , [xT , eTo ]T ∈ R2n+q, with x ∈ Rn and eo ∈ Rn+q. A symmetric matrix
0 < Pi ∈ R(2n+q)×(2n+q), de�nes an ellipsoid in R2n+q given by

Ei ,
{
ξ ∈ R2n+q

∣∣ ξTPiξ ≤ ki, ki > 0
}
,

whose projection onto Rn, E⊥i , is automatically de�ned by P⊥i ∈ Rn:

E⊥i ,
{
x ∈ Rn

∣∣xTP⊥i x ≤ ki, ki > 0
}
.

4.2 Closed-loop stability conditions

Let us de�ne the observation error as

eη ,

[
eη,x
eη,ω

]
,

[
x− x̂

ω(x, ω̃(t))− ω̂

]
= η − η̂; (4.3)

which, for the observer (3.17a) with r = 0, it was proved to satisfy the following
di�erential equation �i.e. (3.19):

ėη =
(
Ā− LC̄

)
eη + B̄f ω̇(x, ω̃(t)); (4.4)

where, now, ω̇(x, ω̃(t)) = ∂ω
∂x
ẋ+ ∂ω

∂ω̃
˙̃ω.

The control action in (4.2) can be rewritten as:

u = Kxx̂+Kω,0ω̂ = Kxx+Kω,0ω(x, ω̃(t))−Kxeη,x −Kω,0eη,ω

= Kxx+Kω,0ω(x, ω̃(t)) + Eηeη
(4.5)
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Chapter 4. DOBC: Stability conditions

where Eη , −
[
Kx, Kω,0

]
.

Finally, by substituting (4.5) into (4.1) and incorporating (4.4), the following
closed-loop is obtained:

ξ̇ = Φcξ + Γ1ω(x, ω̃(t)) + Γ2ω̇(x, ω̃(t)), (4.6)

where ξ , [xT , eTη ]T and

Φc ,

[
A+B2Kx B2Eη

0 Ā− LC̄

]
, Γ1 ,

[
B2Kω,0 +B1

0

]
, Γ2 ,

[
0
B̄f

]
.

In the next sections, the stability of the closed-loop (4.6) is analyzed. The
main purpose is to �nd conditions for which any system trajectory starting
inside a set �say x(t0) ∈ E0 ⊆ Br� will remain inside Br for all t > t0.

Stability conditions

Let us recall the next well-known result over which the subsequent stability
conditions are developed:

Lemma 4.2.1. (ISS). De�ne V (ξ(t)) = ξ(t)TPξ(t), with P > 0. Let V̄ (t) ,
V (ξ(t)) be absolutely continuous and let g1(x(t), t), g2(x(t), t) be essentially
bounded functions, i.e. ‖g1(x(t), t)‖ ≤ α1, ‖g2(x(t), t)‖ ≤ α2, for all t ≥ t0,
with α1 ≥ 0, α2 ≥ 0. If there exist δ > 0, γ1 ≥ 0, γ2 ≥ 0 such that

˙̄V (t) + δV̄ (t)− γ1‖g1(x(t), t)‖2 − γ2‖g2(x(t), t)‖2 ≤ 0, ∀t ≥ t0 (4.7)

then, the ellipsoid E ,
{
ξ ∈ R2n+q

∣∣ ξTPξ ≤ γ1α
2
1+γ2α

2
2

δ

}
, is a positively invari-

ant and exponentially attractive set, with decay rate δ/2, for ξ(t).

Proof. The proof is similar to the one presented in Lemma 4.1 of Fridman 2014,
where the term b‖ω̃(t)‖2 is substituted by γ1‖g1(x(t), t)‖2+γ2‖g2(x(t), t)‖2.

Lemma 4.2.1 states that, if we are able to �nd one Lyapunov function, V (ξ(t)) =
ξ(t)TPξ(t), such that (4.7) holds along the trajectories of (4.6); then the el-
lipsoidal set E satis�es: i) any trajectory of (4.6) starting inside it, remains
inside forever; ii) any trajectory starting outside it, exponentially approaches
to the interior of the ellipsoid �and then remains inside.

The above lemma is employed to establish the following result; which contains
conditions to: i) guarantee that the trajectories of the closed-loop (4.6) remain
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4.2 Closed-loop stability conditions

Figure 4.2: Illustration of the sets being considered in this problem.

inside the ball Br; ii) �nd the largest ellipsoidal set of allowable initial states;
iii) �nd the smallest ellipsoidal set to which the trajectories converge.

Theorem 4.2.1. Let i , {0,∞}. Under Asm. 4.1, let there exist positive
de�nite Pi ∈ R(2n+q)×(2n+q) and scalars δi > 0, τi > 0, γ1i ≥ 0, γ2i ≥ 0, that
satisfy the following LMIs:

Ψi
iss ,


ψiiss PiΓ1 + τiβ

2
dx∆

T
ξ ∆f PiΓ2 PiΓ2

(∗) −γ1i + τiβ
2
dx∆

T
f ∆f 0 0

(∗) (∗) −τi 0
(∗) (∗) (∗) −γ2i

 ≤ 0, (4.8)

with ψiiss , PiΦc + ΦT
c Pi + δiPi + τiβ

2
dx∆

T
ξ ∆ξ; ∆ξ , [(A+B2Kx), B2Eη] and

∆ω , (B2Kω,0 +B1); and the following inequalities:√
γ1iβ

2
f + γ2i(βdω̃β ˙̃ω)2

λ(P⊥i )δi
< ρ. (4.9)

Then, for any trajectory, ξ, starting from the set:

E0 ,

{
ξ ∈ R2n+q

∣∣ ξTP0ξ ≤
γ10
β2
f + γ20

(βdω̃β ˙̃ω)2

δ0

}
;

the state-trajectory, x, of the closed-loop (4.6) does not leave the ball Br and it
exponentially approaches, with a decay rate δ∞/2, to the attractive ellipsoid

E⊥∞ ,

{
x ∈ Rn

∣∣xTP⊥∞x ≤ γ1∞β
2
f + γ2∞(βdω̃β ˙̃ω)2

δ∞

}
.
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Chapter 4. DOBC: Stability conditions

Proof. Refer to Annex 1.

Figure 4.2 represents an illustration of the sets that are being considered in
this problem. Br is the ball where Assumption 4.1 has been established and,
therefore, it is where the trajectories of the closed-loop system are required to
belong. Theorem 4.2.1 states that, if it is possible to �nd two sets of parameters
�i.e. {P0, δ0, τ0, γ10

, γ20
} and {P∞, δ∞, τ∞, γ1∞ , γ2∞}� such that (4.8)-(4.9) hold,

then for any initial state ξ(t0) , [xT (t0), eTη (t0)]T ∈ E0, the trajectory of x(t)

will not leave Br and, moreover, it approaches to the attractive ellipsoid E⊥∞.

This was the required result, but still there is one main issue to be tackled: is
it possible to �nd a set of parameters {Pi, δi, τi, γ1i , γ2i} such that (4.8)-(4.9)
hold? There are two options here. The �rst one is to employ a computer in
order to look for those parameters and check the conditions. This can be done
by standard LMI solvers. The second one is to prove that both conditions will
always be satis�ed provided that some parameters in Asm. 4.1 are su�ciently
small or su�ciently big.

Both approaches are addressed in the following lines. In Sec. 4.3, it is shown
how the LMIs (4.8) can be numerically optimized in order to get the speci�c
values of {P0, δ0, τ0, γ10

, γ20
} and {P∞, δ∞, τ∞, γ1∞ , γ2∞} maximizing E0 and

minimizing E∞; respectively. Optimizing these parameters may be useful to
make quantitative predictions of how the possible closed-loop trajectories will
behave � provided that the numerical values of the bounds in Asm. 4.1 are
known. This will be illustrated in Section 4.4.

Corollary 4.1 follows the second approach: it states that the closed-loop system
will be stable for small-enough βdx.

Corollary 4.1. (Stability for weakly-coupled disturbances). Consider that As-
sumption 4.1 is satis�ed with a small-enough βdx and long-enough ρ. Then,
if (A + B2Kx) and (Ā − LC̄) are Hurwitz, the trajectory, x(t), of the closed-
loop system (4.6) will lie inside Br for any initial-state ξ(t0) , [xT (t0), eTη (t0)]T

su�ciently close to the origin.

Proof. Since (A+B2Kx) and (Ā− LC̄) are Hurwitz, there exist Pi such that
PiΦc + ΦT

c Pi + δiPi < 0 for any given δi. Then, by Schur complements, the
LMI (4.8) �with γ1i ≥ 0, γ2i ≥ 0, τi > 0� holds for small-enough βdx. On the
other hand, condition (4.9) is always satis�ed if ρ is big-enough.

56



4.3 Numerical optimization of the stability conditions

As a particular case, if the disturbances are not coupled with the system �i.e.
they do not depend on x or, directly, βdx = 0� then, the closed-loop system
will always be stable provided that (A+B2Kx) and (Ā− LC̄) are Hurwitz.

4.3 Numerical optimization of the stability conditions

In this section, it is shown how the sets of parameters {P0, δ0, τ0, γ10
, γ20
}

and {P∞, δ∞, τ∞, γ1∞ , γ2∞} can be numerically optimized in order to �nd the
biggest initial-state ellipsoid E0 and the smallest attractive ellipsoid E∞.

The terminal ellipsoid E∞ can be minimized by solving the following problem:

max
{s∞,α}

α

s.t. Ψ∞iss ≤ 0, P∞ > αI2n+q,

γ1∞β
2
f + γ2∞(βdω̃β ˙̃ω)2 = δ∞,

α > 0, δ∞ > 0, τ∞ > 0, γ1∞ ≥ 0, γ2∞ ≥ 0;

(4.10)

where the �rst constrain assures that condition (4.8) of Theorem 4.2.1 is sat-
is�ed. The second constraint assures that λ(P∞) ≥ α. The third constraint

forces the LHS of (4.9) to take the form r∞ =
√

1
λ(P⊥

∞)
≤
√

1
α
. So, if α is max-

imized, then the sphere containing E∞ is being minimized �and consequently
the size of E∞ is being reduced.

Maximizing E0 can be done by minimizing the condition number of P0 (so that
E0 is as similar as possible to a sphere), while forcing condition (4.9) to be
strictly satis�ed; i.e. as an equality. In this way, the largest ellipsoid such
that its projection strictly �ts inside Br is obtained. This can be performed
by solving the next optimization problem for di�erent �xed (and decreasing)
values of α, until (4.9) holds as an equality:

min
{s0,α,γ}

γ,

s.t. Ψ0
iss ≤ 0, P0 = αP, γI2n+q > P > I2n+q,

γ10
β2
f + γ20

(βdω̃β ˙̃ω)2 = δ0,

γ ≥ 1, α > 0, δ0 > 0, τ0 > 0, γ10
≥ 0, γ20

≥ 0;

(4.11)

where, the second and third constraints force E0 to have the following form
E0 =

{
ξ ∈ R2n+q

∣∣ ξT (αP )ξ ≤ 1
}
.

Hence, if γ is minimized, then P0 is forced to be as similar as possible to a
sphere; while, by decreasing α, E0 is enlarged.
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Chapter 4. DOBC: Stability conditions

4.4 An illustrative simulation

Consider an uncertain system de�ned by:

{
ẋ(t) = (1 + β)x(t) + u(t) + ω̃(t),

y(t) = x(t),
(4.12)

where β ∈ [0, 2] is an unknown parameter that represents modeling errors and
ω̃(t) = sin(t) is an exogenous disturbance.

4.4.1 DOBC design

A DOBC is designed according to the following LTI disturbed model:

G ,


ẋ(t) = x(t) + u(t) + ω(x, ω̃(t)),

y(t) = x(t),

z(t) = x(t);

(4.13)

where it can be easily seen that it corresponds to (4.12), where the uncer-
tainty caused by the parameter β has been translated to the disturbance signal:
ω(·) , βx(t) + ω̃(t).

The considered DOBC is:

u(t) = Kxx̂(t) +Kω,0ω̂(t); (4.14)

with Kx = −2 and Kω,0 = −1.

The estimates x̂(t), ω̂(t) are computed by the ESO (3.17a), with r = 0 and
L = [41, 400]T .

From the point of view of model (4.13), the disturbance ω(t) is clearly coupled
with the nominal-state. In fact, the disturbance gets bigger as the nominal-
state does. Let us consider that we want to evaluate if the closed-loop system
is stable and, furthermore, if its trajectories belong to the domain |x| < 1. Let
us also check if there exist some value, βlim, so that, for any β > βlim, the
closed-loop system becomes unstable.
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4.4 An illustrative simulation

P∞ δ∞ τ∞ γ1∞ γ2∞[
45.4 −248 2.95
−248 151e3 −3.17e3
2.95 −3.17e3 81.7

]
1.33 5.57 0 1.33

P0 δ0 τ0 γ10
γ20[

1 0.14 −0.052
0.14 13.4 −0.70
−0.052 −0.70 0.15

]
0.5 0.1 0 0.5

Table 4.1: Optimized parameters for β = 2.

4.4.2 Application of the stability conditions

In this case, Asm. 4.1 is satis�ed with ρ = 1 and

‖ω(x, ω̃(t))‖ ≤ β + 1, ‖ ˙̃ω(t)‖ ≤ 1∥∥∥∂ω
∂x

(
x, ω̃(t)

)∥∥∥ ≤ β, ∥∥∥∂ω
∂ω̃

(
x, ω̃(t)

)∥∥∥ ≤ 1,
(4.15)

Theorem 4.2.1 is numerically optimized according to (4.10)-(4.11) and consid-
ering the worst case: β = 2. The resulting sets of parameters are summarized
in Table 4.1 and, with those parameters, both conditions of Thm. 4.2.1 hold.
Hence, it is concluded that any trajectory starting from ξ(0) ∈ E0 will expo-
nentially converge to E∞.

A simulation result is presented in Figure 4.3, where three trajectories have
been simulated for β = 2 and di�erent initial states belonging to E0. All the
trajectories lie inside Br and exponentially approach to E∞ �which is repre-
sented by the green dotted line. In fact, this behavior holds for the in�nite
possibilities that already exist; i.e. all the possible initial states and, in fact,
any possible disturbance ω(x, ω̃(t)) that satis�es the bounds (4.15); i.e. not
necessarily the speci�c one considered here: ω(x, ω̃(t)) = βx(t) + ω̃(t).

This illustrates the usefulness of Thm. 4.2.1 for making assessments of the
closed-loop behavior as �in the end� the stability result does not depend on
the speci�c waveform of the disturbance, but just on how it could vary with
respect to the nominal-state.

On the other hand, the system is stable. From the point of view of Corol-
lary 4.1, this occurs because we are considering a �su�ciently-low� β. Hence-
forth, let us check if there exist some β for which Thm. 4.2.1 becomes infeasible.
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Figure 4.3: Simulation of three trajectories starting from di�erent initial states.

To this purpose, we reproduce the same optimization procedure for increasing
values of β. And it is found that, if β > 10.04, it does not exist none combi-
nation of parameters {Pi, δi, τi, γ1i , γ2i} such that the LMI (4.8) holds. This
means that stability cannot be guaranteed for β > 10.04. By simulations, it is
found that the closed-loop becomes unstable for β ≥ 10.17.

Finally, some words about the robustness introduced by the disturbance com-
pensation term Kω,0ω̂(t) should be highlighted. The main advantage of work-
ing with LTI disturbed models is that the resulting control law depends on the
disturbance itself. Thus, it helps to increase the robustness of the controller.
For instance, in this case, if the disturbances are not considered �i.e. ω = 0;
then, the resulting control law would be simply u(t) = Kxx(t) = −2x(t). This
control law is only capable to stabilize the system for β < 1. Whereas using
the control law that considers the disturbance, i.e. u(t) = −2x̂(t)− ω̂(t); sta-
bility is guaranteed for β < 10.17. The increase on robustness achieved by
considering the disturbance signal is remarkable.
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4.5 Conclusions

4.5 Conclusions

An analysis of the resulting cloose-loop formed by a DOBC and the system
has been provided in this chapter.

Its aim was to highlight that one of the most important elements to guaran-
tee a successful closed-loop behavior is the origin of the disturbance signals.
Therefore, if the disturbance signals are highly coupled with the system �in the
sense that a small change of the nominal system-state could cause signi�cant
changes on the observed disturbances� then the resulting closed-loop could be
instabilized. Hence, when constructing the LTI disturbed model for the sys-
tem, the control-designer should consider that the nominal part of the model
should include the most relevant information about the system behavior, with
the main purpose of minimizing the dependency between both the disturbances
and the nominal system-state.
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Chapter 5

DOBP: Design based on the

model's solution, x(t + ∆t).

In this chapter, the synthesis of DOBPs with the structure
x̂(t+ ∆t) = Φ(∆t)x̂(t)+

∑r
i=0 Γω,i(∆t)ω̂

(i)(t)+
∑N

k=0 Γu(t̃k, t̃k+1)uk
�where r ∈ N, N ∈ N, t̃i ∈ R, uk ∈ Rm� is presented. These
DOBPs are constructed in order to approximate the time domain
solution of the LTI disturbed model (2.10). Comparisons with other
predictive strategies are also established.

The contents of this chapter have been published in (Castillo
et al. 2020b).
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Chapter 5. DOBP: Design based on the model's solution, x(t+ ∆t).

5.1 Introduction

The synthesis of DOBPs of the form x̂(t+∆t) = Φ(∆t)x̂(t)+
∑r

i=0 Γω,i(∆t)ω̂
(i)(t)+∑N

k=0 Γu(t̃k, t̃k+1)uk �where r ∈ N, N ∈ N, t̃i ∈ R, uk ∈ Rm� is presented
through this chapter. These DOBPs are constructed in order to approximate
the time domain solution, x(t+ ∆t), of the LTI disturbed model (2.10).

For the sake of completeness, the model (2.8) and its solution (2.10) can be
considered with an additional control input-delay; leading to:

G ,


ẋ(t) = Ax(t) +B2u(t− h) +B1ω(t),

y(t) = C2x(t),

z(t) = C1x(t).

(5.1)

and

x(t+∆t) = Φ(∆t)x(t)+

∫ t+∆t

t

eA(t+∆t−s)Buu(s−h)ds+

∫ t+∆t

t

eA(t+∆t−s)Bωω(s)ds,

(5.2)
being eA∆t , Φ(∆t).

The insertion of the input-delay is motivated by the fact that state-predictors
are highly employed to control systems with input-delays �e.g. (Krstic 2008;
Krstic 2010). This delay does not really play any important role in the technical
analyses of this chapter. The results are valid for h = 0 or h > 0.

One can easily perceive the analogy between the disturbance-dependent in-
tegral in (5.2) and the one that appeared in the analytical expression of the
optimal control signal (3.9). Therefore, throughout this last chapter, the pro-
cedure that was applied in Chapter 3 in order to construct DOBCs of the
form u(t) = Kxx̂(t) +

∑r
i=0Kω,iω̂

(i)(t) has been similarly employed in order to
construct DOBPs of the form x̂(t+ ∆t) = Φ(∆t)x̂(t) +

∑r
i=0 Γω,i(∆t)ω̂

(i)(t) +∑N
k=0 Γu(t̃k, t̃k+1)uk; with the peculiarity that the in�uence of the control ac-

tion �i.e.
∑N

k=0 Γu(t̃k, t̃k+1)uk� needs to be also considered.

Main assumptions and de�nitions

Through this chapter, the next assumptions are considered:

Assumption 5.1. The disturbance, ω(t), is (r+ 1)-times continuously di�er-
entiable with ‖ω(r+1)(t)‖ ≤ εr; ∀t ∈ R.
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5.2 Synthesizing DOBPs that approximate x(t+ ∆t)

Assumption 5.2. The control action, u(φ), is piece-wise constant and it is
de�ned for all φ ∈ [t− h, t+ ∆t − h].

Asm. 5.1 is the same than the one taken in Chapter 3. It refers to disturbances
that exhibit a certain degree of di�erentiability or continuity/regularity. Such
property allows to predict its waveform over relatively short time-horizons.

Asm. 5.2 states that the control action is generated discretely and it is intro-
duced to the system via a Zero-Order-Hold (ZOH). This is actually the case
in almost all computer-based control applications (Åström et al. 2013). In ad-
dition, it says that all its jumping instants, tk ∈ [t− h, t+ ∆t − h], k ∈ N, and
its associated control values, uk ∈ Rm, are well-de�ned and, for prediction pur-
poses, they can be considered as known. This is summarized in the following
de�nition:

De�nition 5.1. Let tk ∈ R, k ∈ {1, ..., N}, N ∈ N; be the set of time-instants,
with t1 > t− h, tk < tk+1, tN < t+ ∆t − h; such that:

u(φ) = u0 ∈ Rm, ∀φ ∈ [t− h, t1),

u(φ) = uk ∈ Rm, ∀φ ∈ [tk, tk+1), 1 ≤ k ≤ N − 1,

u(φ) = uN ∈ Rm, ∀φ ∈ [tN , t+ ∆t − h].

5.2 Synthesizing DOBPs that approximate x(t+ ∆t)

In what follows, the �rst and second integrals in (5.2) are rewritten as the
sums:

∑N
k=0 Γu(t̃k, t̃k+1)uk and

∑r
i=0 Γω,i(∆t)ω̂

(i)(t); respectively. This techni-
cal result is the key step permitting to synthesize the desired DOBPs.

On the one hand, under Asm. 5.2 and Def. 5.1, the interval [t, t + ∆t] can
be divided into N+1 sub-intervals where the delayed control action remains
constant. Thus:∫ t+∆t

t

eA(t+∆t−s)B2u(s− h)ds =
N∑
k=0

Γu(t̃k, t̃k+1)uk; (5.3)
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where, t̃0 = t; t̃k = tk+h for k ∈ [1, N ], with tk de�ned in Def. 5.1; t̃N+1 = t+∆t

and:

Γu(t̃k, t̃k+1) ,
∫ t̃k+1

t̃k

eA(t+∆t−s)B2ds,

=
∞∑
j=1

[
(t+ ∆t − t̃k)j − (t+ ∆t − t̃k+1)j

j!
Aj−1

]
B2.

(5.4)

On the other hand, the next lemma can be established for the disturbance-
dependent integral:

Lemma 5.2.1. Under Asm. 5.1:∫ t+∆t

t

eA(t+∆t−s)B1 ω(s)ds =
r∑
i=0

Γω,i(∆t)ω
(i)(t) +Rr(t); (5.5)

where Γω,i(∆t) ,
∑∞

j=0

[
∆i+1+j
t

(i+1+j)!
Aj
]
B1; and

Rr(t) ,
∫ t+∆t

t

(t+ ∆t − s)r+1

(r + 1)!
Γω,r(t+ ∆t − s)B1 ω

(r+1)(s)ds. (5.6)

Proof. Let vi ,
∫ t+∆t

t
A−ieA(t+∆t−s)B1ω

(i)(s)ds. Under Ass. 5.1, vi can be
integrated by parts for any i < r + 1; leading to:

vi = −A−(i+1)B1ω
(i)(t+ ∆t) +A−(i+1)eA∆tB1ω

(i)(t) + vi+1 (5.7)

The recursive Eq. (5.7) allows to express v0 as:

v0 = −
[
A−1B1ω(t+ ∆t) + ...+A−(r+1)B1ω

(r)(t+ ∆t)
]

+
[
A−1eA∆tB1ω(t) + ...+A−(r+1)eA∆tB1ω

(r)(t)
]

+ vr+1. (5.8)

Let hi ,
∫ t+∆t

t
(t+∆t−s)i

i!
ω(r+1)(s)ds. By Taylor, it holds that:

ω(t+ ∆t) = ω(t) + ∆tω̇(t) + ...+
∆r
t

r!
ω(r)(t) + hr

ω̇(t+ ∆t) = ω̇(t) + ∆tω̈(t) + ...+
∆r−1
t

(r − 1)!
ω(r)(t) + hr−1

...

ω(r)(t+ ∆t) = ω(r)(t) + h0

(5.9)
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Thus, by substituting (5.9) into (5.8), and after rearranging terms, the integral
v0 results in:

v0 =
[
−A−1 +A−1eA∆t

]
B1ω(t)

+
[
−A−2 −∆tA

−1 +A−2eA∆t
]
B1ω

(1)(t)

...

+
[
−A−(r+1) −∆tA

−r − ∆2
t

2!
A−r−1 − ...− ∆r

t

r!
A−1 +A−(r+1)eA∆t

]
B1ω

(r)(t)

+ vr+1 −A−1B1hr − ...−A−(r+1)B1h0.
(5.10)

Equality (5.5) follows by: i) noting that v0 equals to the integral in the LHS
of (5.5); and ii) expressing eA∆t as power-series and canceling the terms that
are added and subtracted in each term of the RHS of (5.10).

The equalities (5.3), (5.5) enable to immediately prove the following theorem;
which states how to construct the desired DOBPs:

Theorem 5.2.1. Under Assumptions 5.1-5.2, let t + ∆t, ∆t ≥ 0, be a future
time-instant. Consider the set of control inputs, u0−N , [uT0 , u

T
1 , . . . , u

T
N ]T ,

of De�nition 5.1 that have been, or could be1, introduced to the system during
the time-interval [t− h, t+ ∆t − h]. Then, with any estimations, x̂(t), ω̂r(t),
of the variables x(t) and ωr(t) , [ωT (t), ω̇T (t), . . . , ω(r)T (t)]T in (2.8), respec-
tively; the future-state, x(t+ ∆t), can be predicted by:

x̂(t + ∆t) = Φ(∆t)x̂(t) + Γω(∆t)ω̂r(t) + Γu(t̃0, ..., t̃N+1)u0−N , (5.11)

with an error equal to

x(t+ ∆t)− x̂(t+ ∆t) = Re(t) +Rr(t); (5.12)

being:

Γω(∆t) , [Γω,0(∆t),Γω,1(∆t), . . . ,Γω,r(∆t)],

Γu(t̃0, ..., t̃N+1) , [Γu(t̃0, t̃1), Γu(t̃1, t̃2), . . . , Γu(t̃N , t̃N+1)],

Re(t) , eAT [x(t)− x̂(t)] + Γω(∆t)[ωr(t)− ω̂r(t)],

Rr(t) ,
∫ t+∆t

t

(t+ ∆t − s)r+1

(r + 1)!
Γω,r(t+ ∆t − s)B1 ω

(r+1)(s)ds;

where Γω,i(∆t) and Γu(t̃k, t̃k+1) are de�ned in (5.5) and (5.4), respectively.
1Note that, if ∆t > h, then Def. 5.1 includes a set of future control actions that could be introduced

to the system. Those control actions, needless to say, a�ect to the future state.
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Proof. The proof follows by substituting (5.3), (5.5) into (5.2) and subtract-
ing (5.11) from it.

Thm. 5.2.1 closely resembles to Thm. 3.3.1 in Chapter 3; but, in this case,
the theorem permits to predict the future-state x(t + ∆t) by the DOBs. As
mentioned in Sec. 2.2, the existing literature on DOBs has provided with a
wide number of e�cient algorithms and numerical methods for estimating �in
real-time� the variables x(t) and ωr(t), in (3.10), through the historical set
of sensor readings y(t). Some examples are the ones by Luenberger 1964;
Luenberger 1966; Schweppe 1968; Meditch et al. 1973; Bhattacharyya 1978;
Darouach et al. 1994; Corless et al. 1998; Xiong et al. 2003; Chang 2006; Kim
et al. 2010; Chakrabarty et al. 2017; Su et al. 2018. Any of these DOBs could
be combined with Thm. 5.2.1 in order to produce a DOBP that predicts the
future-state x(t+ ∆t).

Resulting prediction errors

The prediction x̂(t + ∆t) by Thm. 5.2.1 is subject to unavoidable errors �i.e.
Re(t) and Rr(t)� which appear as a direct consequence of not having all the
necessary information in order to directly compute the future state x(t+ ∆t).

These errors are of the same nature than the ones in Thm. 3.3.1: i)Re(t), which
accounts for the current estimation errors, x(t) − x̂(t), ωr(t) − ω̂r(t); and
ii) Rr(t), which, under perfect observation conditions (i.e. Re = 0), repre-
sents the error caused by predicting x(t + ∆t) with only the actual distur-
bance state, ωr(t), instead of computing it with the whole disturbance func-
tion, ω : [t, t+ ∆t]→ Rq. This represents the unavoidable error appearing as
a consequence of not knowing the future disturbance behavior.

By taking norms on (5.6), Rr(t) can be bounded by:

‖Rr(t)‖ ≤
∆r+2
t

(r + 2)!
µ εr, (5.13)

where µ , maxs∈[t,t+∆t]{‖Γω,r(t+ ∆t − s)B1‖}.

It is seen that the size of Rr(t) mainly depends on the prediction horizon as
well as on the (r+ 1) disturbance-derivative bound �de�ned in Asm. 5.1. This
bound mainly shows that the prediction error rapidly increases as ∆t grows;
whereas it approaches to zero as ∆t → 0. In this sense, accurate predictions
cannot be expected for excessively long time-horizons; but it is not the case
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for relative-short time-horizons, where accurate predictions could in fact be
obtained.

On the other hand, the term Re(t) entirely depends on how the observations
are computed. It mainly depends on the capability of the DOB to give accurate
estimates of x(t) and ωr(t). Thus, accurate observations should be required in
order to reduce this term.

5.3 Application: design of a high-order ESO-based predictor

In the same way as it has been displayed in Chapter 3, let us show how a
high-order Extended State Observer (ESO)-based predictor could be easily
synthesized with this new methodology. The ESOs are, nowadays, one of the
most popular algorithms to estimate in real-time the system and disturbance
states due to their simplicity �e.g. (Castillo et al. 2018; Chen et al. 2016;
Chang 2006). Let us show how they could be employed under this novel
feedback design.

Let us consider the following high-order ESO:

˙̂η(t) = (Ā− LC̄)η̂(t) + B̄uu(t− h) + Ly(t), (5.14a)
ξ(t) = Ψ(∆t)η̂(t); (5.14b)

being η̂ ∈ Rl; Ā, C̄ and B̄u de�ned in (3.17); Ψ(∆t) , [Φ(∆t), Γω(∆t)]; and
L ∈ Rl×p a free-design matrix.

As can be seen in Sec. 3.4, Eq. (3.17a) is a conventional high-order ESO for the
augmented system η(t) , [xT (t), ωr

T (t)]T ; whose dynamics �under Asm. 3.2�
is given by:

η̇(t) = Āη(t) + B̄2u(t) + B̄1ω
(r+1)(t), (5.15)

with B̄1 , [0q×(n+rq), Iq]
T .

It, thus, provides with the needed estimates x̂(t), ω̂r(t) to implement Eq. (3.17a)
�which has been inserted in (3.17b).

By Thm. 5.2.1, the output of (5.14) can be employed to predict the future
state x(t+ ∆t) as follows:

x̂(t+ ∆t) = ξ(t) + Γu(t̃0, ..., t̃N+1)u0−N ; (5.16)

where the second term in the RHS quanti�es for the e�ect of the control action.
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In addition, the error Re(t) in (5.12) is de�ned by:

ėη(t) = (Ā− LC̄)eη(t) + B̄ωω
(r+1)(t),

Re(t) = Ψ(∆t)eη(t).
(5.17)

being eη , η(t)− η̂(t).

Just as it is appreciated in Sec. 3.4, the gain L could be tuned through
Eq. (3.19) in order to explicitly minimize Re(t). This can be done by stan-
dard numerical methods, such as Lyapunov-based convex-optimization, H∞
designs (Scherer et al. 2000), or the LMI-procedure of Lemma 3.4.1 � where
the constraint (3.20b) should be replaced by P − αΨT (∆t)Ψ(∆t) � 0.

5.4 Comparative example

Some numerical simulations and comparisons with respect to the predictors
that were previously reported by Léchappé et al. 2015 and Sanz et al. 2016a
are included in this section.

This section contains numerical simulations and comparisons with respect to
the predictors that were previously reported by Léchappé et al. 2015 and Sanz
et al. 2016a.

These works gave alternative solutions to this future-state prediction prob-
lem in LTI disturbed systems. Table 5.1 contains a brief comparison of each
method, showing how the predictions are computed. In this table, it can
be seen that the predictor by Léchappé et al. 2015 is the most easily imple-
mentable as it does not need to implement any observer. This strategy is based
on replacing the disturbance-dependent integral of the system solution (5.2)
by an error-term that compares the actual state, x(t), with the prediction,
xp(t) , eATx(t) +

∫ t+∆t

t
eA(t+∆t−s)B2u(s − h)ds, that was made at (t − ∆t).

With this method, null prediction error is assured for constant disturbances.
Conversely, the predictor by Sanz et al. 2016b was originally developed in
order to compensate for the e�ect of matched disturbances in systems with
input delays. It implements an observer of order (r + 1)q in order to predict
ω̄(t) ≈ ω(t+ ∆t). This future-disturbance prediction is then used to approxi-
mate the disturbance-dependent integral by:

∫ t
t−∆t

eA(t−s)B1ω̄(s)ds; which can
be numerically computed �e.g. by the trapezoidal or Newton-Cote methods�
as it just depends on the past values of the observed variable.
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Figure 5.1: Prediction errors for Ω = 2 rad/s and ∆t = h = 0.5.

In contrast, the solution given here permits to construct a DOB that directly es-
timates ξ(t) = Φ(∆t)x̂(t)+Γω(∆t)ω̂r(t) ≈ eATx(t)+

∫ t+∆t

t
eA(t+∆t−s)B1ω(s)ds.

This leads to signi�cant advantages in terms of implementation simplicity,
computation e�ort and, also, prediction accuracy �as shown in the following
section.

Numerical simulation

Let us evaluate the proposed DOBP with the same example considered by Léchappé
et al. 2015; Sanz et al. 2016a. Consider the following LTI disturbed model:

ẋ(t) =

[
0 1
−9 3

]
x(t) +

[
0
1

]
u(t− h) +

[
0
1

]
ω(t), (5.18)

with ω(t) = 3 sin(Ωt); Ω ≥ 0 (rad/s); and x(0) = 0.

An accurate state-prediction, x̂(t + ∆t), with ∆t = h, is required in order to
approximately implement a stabilizing feedback with FSA:

u(t) = −[45, 18]x̂(t+ ∆t). (5.19)

observed variable computed prediction
Léchappé
et al. -

x̂(t+ ∆t) = xp(t)
+x(t)− xp(t−∆t)

Sanz et al. ω̄(t) ≈ ω(t+ ∆t)
x̂(t+ ∆t) = xp(t)

+
∫ t
t−∆t

eA(t−s)B1ω̄(s)ds

This
approach

ξ(t) ≈ eATx(t)+∫ t+∆t

t
eA(t+∆t−s)B1ω(s)ds

x̂(t+ ∆t) = ξ(t) + Γu(·)u0−N

Table 5.1: Comparison of predictors; with xp(t) , eATx(t)+
∫ t+∆t
t

eA(t+∆t−s)B2u(s−h)ds.
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Ω This approach Léchappé et al. Sanz et al.
0.5 1.7e-4 0.60 8.9e-4
2 0.043 2.23 0.21
4 0.66 3.47 2.82

Table 5.2: maxt+∆t∈[∆t,∞]{‖x(t+ ∆t)− x̂(t+ ∆t)‖} for ∆t = h = 0.5.

∆t This approach Léchappé et al. Sanz et al.
0.5 1.7e-4 0.60 8.9e-4
1 3.8e-3 1.66 0.013
2 0.072 21.03 1.12

Table 5.3: maxt′∈[∆t,15]{‖x(t′)− x̂(t′)‖} for Ω = 0.5.

The control action is computed by (5.19) and, in order to satisfy Asm. 5.2, it
is introduced to the system via a ZOH with period 0.05 sec.

The three predictors in Table 5.3 have been implemented in order to compute
x̂(t+ ∆t). Concretely, the proposed solution has been implemented by means
of the high-order ESO (5.14), (5.16); starting from η̂(0) = η(0) and with
L =[10.28, 4.32, 512, 9680, 1.16e05, 7.96e05; 0.22, 58.8, 2960, 83900, 1.5e06,
1.38e07] � resulting from the optimization of the LMI in Lem. 3.4.1, with
r = 3, D a disk centered at (0, 0) with radius 40 and δα = 6.87e05. For
fair comparison, the variable ω̄(t) ≈ ω(t+ ∆t) of Sanz et al. 2016a has been
computed by Taylor with the same estimate ω̂r(t) given by (5.14a); while∫ t
t−∆t

eA(t−s)B1ω̄(s)ds has been numerically solved by the trapezoidal method
with 100 intervals.

Tables 5.2-5.3 and Fig. 5.1 contain the resulting prediction errors with each
method for di�erent disturbance frequencies and di�erent prediction-horizons.
It can be appreciated that this result leads to signi�cant improvements in terms
of accuracy in all the considered frequencies and prediction-horizons.
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5.5 Conclusions

Along this chapter, it has been shown how to synthesize DOBPs that approx-
imately implement the time-domain solution of an LTI disturbed model. The
proposed DOBPs are easily implementable and they yield to reduced errors if
compared with other previously published approaches.
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Conclusions and future works

In this thesis, new strategies to design robust Disturbance Observer-Based
Controllers (DOBCs) and State-Predictors (DOBPs) for uncertain dynamic
systems have been developed.

The novel DOBCs are mainly summarized in Theorem 3.3.1. They have been
constructed with the main purpose of approximating the unrealizable opti-
mal control signal for the LTI disturbed model that was de�ned in Sec. 2.3.
Similarly, the DOBPs are summarized in Theorem 5.2.1 and they have been
constructed to approximate the temporal solution of the LTI disturbed model.

At the end, these results could be understood as a tool-box that is easily imple-
mentable in MatLab® or Python®. The toolbox receives as inputs a general-
ized LTI disturbed model �plus some intuitive tuning-parameters; i.e. Q, R, γ,
r, ∆t� and it automatically produces as an output a DOBC or a DOBP; which
are computed according to the equations (3.10) or (5.11), respectively. Some
MatLab® functions implementing these results can be found in the Annex 2.
Also, the main code that was run in the simulations can be downloaded from:
https://github.com/alcasfra/New-strategies-to-design-DOBCs-and-DOBPs.git

From a theoretical perspective, the results of this thesis give a new framework
to design DOBCs; whose major advantages are that it is indistinctly valid for
SISO/MIMO models with single/multiple matched/mismatched disturbances
and that it o�ers a highly intuitive and versatile tuning through the input
parameters. In addition, these results have established some interesting con-
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nections between the optimal control theory and the robust DOBC approach;
which may lead to future works/discussions.

To �x and de�ne the framework of this research, Chapter 1 and Chapter 2
have been focused on illustrating what is understood by an uncertain dynamic
system and how it can be mathematically represented by LTI disturbed mod-
els. These chapters may provide deeper insights into the physical meaning
of the main variables on which the DOBCs and DOBPs are expressed. Fi-
nally, Chapter 4 has analyzed the closed-loop stability of the DOBCs in order
to highlighting that some stability/performance problems may appear if the
disturbance signals are highly coupled with the nominal system-state.

Publications, collaborations and future works derived from

this thesis

As a consequence of this thesis, di�erent publications have been written. Most
of them have been already published �i.e. (Castillo et al. 2016; Castillo et al.
2017; Castillo et al. 2018; Castillo et al. 2019a; Castillo et al. 2019b; Castillo
et al. 2020b; Castillo et al. 2020d)� and other ones are currently under editorial
review �i.e. (Castillo et al. 2020a; Castillo et al. 2020c).

In addition, this dissertation has given risen to some collaborations with other
research groups. The �rst one took place in China, at the Zhejiang University
(ZJU), Hangzhou. It was a 5-weeks research stay during September, 2017,
working together with prof. Chao Xu in drone control algorithms and high-
precision RTK-GPS positioning.

A second collaboration at the Universidades Federal de Santa Catarina (UFSC),
Florianopolos, Brazil began at the beginning of 2019. This collaboration con-
sisted on a three-months research stay cooperating with prof. Julio Elias
Normey-Rico. The main objective was to extend some of the methods de-
veloped through this work �concretely, the ones of Chapter 3� to models that
contain actuators saturations and other restrictions. The publication (Castillo
et al. 2020d) has been written together with the brazilian group and it goes in
this line. Currently, some enhancements are being explored.

Subsequently, at the end of 2019 a third collaboration began at the Heudyasic
Laboratory (UMR CNRS UTC 7253), Compiegne, France. It was a three-
months research stay working together with prof. Pedro Castillo. The main
purpose was to experimentally apply the DOBPs developed in Chapter 5 in
order to construct collision avoidance algorithms for aerial vehicles moving
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in uncertain environments. The idea was that the aerial vehicles employ the
DOBP reported here in order to estimate the future trajectories that other
nearby vehicles with uncertain motion will follow. Thus, if the predictor de-
tects an imminent collision, the vehicle reacts to avoid it. Successful exper-
imental results where carried out and sent for publication in Castillo et al.
2020a. The door on this line is still opened as these type of algorithms and
collision-avoidance strategies may become a daily reality with the advent of
the 5G technology (Ruggiero et al. 2018; Strategic research agenda for robotics
in Europe 2014-2020).

Finally, a recent collaboration with the project Tecnodiabetes ai2, UPV , co-
ordinated by prof. Jorge Bondia, has started. The main objective is to per-
form further tests of the DOBCs reported here to the problem of closed-loop
glucose-control for diabetic people � which was also mentioned before. Some
preliminary simulations showed satisfactory results.
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Annex 1. Proof of

Theorem 4.2.1

By Lemma 4.2.1. Let us consider the Lyapunov function Vi(ξ) = ξTPiξ, Pi > 0,
and let us set g1(x, t) = ω(x, ω̃(t)), g2(x, t) = ∂ω

∂ω̃

(
x, ω̃(t)

)
˙̃ω(t) with α1 = βf and

α2 = βdω̃β ˙̃ω. If there exist γ1i > 0, γ2i > 0, δi > 0 such that

V̇i + δi Vi − γ1i‖ω(x, ω̃(t))‖ − γ2i

∥∥∥∂ω
∂ω̃

(
x, ω̃(t)

)
˙̃ω(t)

∥∥∥2

≤ 0, (5.20)

for all t ≥ t0, then, the ellipsoid

Ei ,
{
ξ ∈ R2n+q

∣∣ ξTPiξ ≤ γ1iβ
2
f + γ2i(βdω̃β ˙̃ω)2

δi

}
(5.21)

is positively invariant and exponentially attractive.

Hence, the proof is reduced to show how (4.8)-(4.9) imply (5.20). The deriva-
tive of Vi, with ξ̇ substituted by (4.6) is

V̇i =ξT (PiΦc + ΦT
c Pi)ξ + 2ξTPiΓ1f + 2ξTPiΓ2dfx

+ 2ξTPiΓ2dft,
(5.22)

where, for simplicity, ω , ω(x, ω̃(t)), dfx , ∂ω
∂x

(
x, ω̃(t)

)
ẋ, and dft , ∂ω

∂ω̃

(
x, ω̃(t)

)
˙̃ω(t).

Substituting (5.22) into (5.20) leads to

ξT (PiΦc + ΦTc Pi)ξ + 2ξTPiΓ1f + 2ξTPiΓ2dfx+

+ 2ξTPiΓ2dft + δiξ
TPiξ − γ1iω

T f − γ2idf
T
t dft ≤ 0,
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being expressed as φT (Ψi
iss,0)φ ≤ 0, φ , [ξT , ω, dfx, dft]

T ,

Ψi
iss,0 ,


PiΦc + ΦT

c Pi + δiPi PiΓ1 PiΓ2 PiΓ2

(∗) −γ1i 0 0
(∗) (∗) 0 0
(∗) (∗) (∗) −γ2i


So, if Ψi

iss,0 ≤ 0, then (5.20) is satis�ed. The next step follows by the applica-
tion of the S-procedure in the term dfx. It is known that

dfx =
∂ω

∂x

(
x, ω̃(t)

)
[Ax+B2u+B1f ]

=
∂ω

∂x

(
x, ω̃(t)

)
[Ax+B2(Kx(x− eo,x) +Kω,0(ω − eo,ω)) +B1f ]

=
∂ω

∂x

(
x, ω̃(t)

)
[∆ξξ + ∆ff ],

with ∆ξ , [(A+B2Kx), B2Eη], ∆ω , (B2Kω,0 +B1).

Hence, by Assumption 4.1 and for all x ∈ Br, the following upper bound can
be established:

dfTx dfx ≤ β2
dx

[
ξT∆T

ξ ∆ξξ + 2ξT∆T
ξ ∆ff + ωT∆T

f ∆ff
]
, (5.23)

which can be written as φT (Ψi
iss,1)φ ≤ 0, with

Ψi
iss,1 ,


−β2

dx∆
T
ξ ∆ξ −β2

dx∆
T
ξ ∆f 0 0

(∗) −β2
dx∆

T
f ∆f 0 0

(∗) (∗) 1 0
(∗) (∗) (∗) 0

 (5.24)

The knowledge of Ψi
iss,1 ≤ 0 implies that Ψi

iss,0 ≤ 0 if there exist τi > 0 such
that φTΨi

iss,0φ ≤ τiφTΨi
iss,1φ ≤ 0. This holds if φT (Ψi

iss,0 −Ψi
iss,1)φ ≤ 0, lead-

ing to (4.8).

So, if (4.8) holds, then the ellipsoid (5.21) is attractive and positively invari-
ant. Condition (4.9) follows from a short analysis of the sets that are being
considered in this problem. Lemma 4.2.1 considers that g1(x, t) = ω(x, ω̃(t))
and g2(x, t) = ∂ω

∂ω̃
(x, ω̃(t)) ˙̃ω(t) are bounded. However, by Assumption 4.1, this

bounds can be only established in Br. So it must be required that x(t) lies
inside Br for all t ≥ t0.

94



Bibliography

As mentioned in Section 4.1, the ellipsoid (5.21) has a projection onto Rn given
by

E⊥i ,

{
x ∈ Rn

∣∣xTP⊥i x ≤ γ1iβ
2
f + γ2i(βdω̃β ˙̃ω)2

δi

}
.

Therefore, it must be imposed that E⊥i ⊆ Br, which is satis�ed if (4.9) holds.
Finally, the theorem follows by de�ning two independent solutions, given by
i , {0,∞}, such that both satisfy (4.8)-(4.9). In this case, two attractive
ellipsoids, i.e E0, E∞; are obtained. If the initial state is restricted to be inside
E0, then x(t) ∈ Br for all t ≥ t0, and x(t) approaches to E∞ with a exponential
rate δ∞/2.
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Annex 2. MatLab®

implementations

Computation of the DOBCs � matrices in Thm. 3.3.1

The following code implements a MatLab function whose inputs are the model
matrices (A,B1, B2, C1), in (2.8), plus the controller tuning parameters (R, γ, r)
�de�ned in (2.9) and (3.12)� and it gives as an output the matrices Kx and
Kω = KvΦ; which de�ne de DOBC (3.10).

1 f unc t i on [Kx,Kw] = getKxKw(A,B1 ,B2 ,C1 ,R, gam , r )
2

3 % Compute matr i ce s
4 S_T = care (A,B2 ,C1 '*C1 , gam*R) ; % Solve ARE ( 3 . 2 ) .
5 Kx = =inv (gam*R) *B2 '*S_T;
6 Kv = =inv (gam*R) *B2 ' ;
7 Acl = A+B2*Kx;
8 Phi = [ ] ;
9 f o r i = 1 : 1 : r+1

10 Phi = horzcat (Phi ,(=Acl ' ) ^(= i ) *S_T*B1) ;
11 end
12 Kw = Kv*Phi ;
13

14 end
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Computation of the DOBPs � matrices in Thm. 5.2.1

The next function computes the matrix Γω,i(∆t) by receiving as inputs: i) the
nominal-model matrices (A,B1); ii) the prediction-horizon Delta_t= ∆t; and
iii) the integer i, which refers to the ith-disturbance derivative to which this
matrix multiplies in Eq. (5.11).

1 f unc t i on [Gamma_wi] = getGamma_wi(A,B1 , Delta_t , i )
2

3 sum = ze ro s ( s i z e (A) ) ;
4 f o r j =0:1:30 % 30 i t e r a t i o n s are normally enough
5 sum=sum+(Delta_t ) ^( i+1+j ) / f a c t o r i a l ( i+1+j ) *A^( j ) ;
6 end
7 Gamma_wi = sum*B1 ;
8

9 end

In order to compute Γω(∆t) , [Γω,0(∆t),Γω,1(∆t), . . . ,Γω,r(∆t)], this func-
tion can be (r + 1)-times recursively called as follows:

1 Gamma_w = [ ] ;
2 f o r i =0:1 : r
3 Gamma_w = horzcat (Gamma_w, getGamma_wi(A,Bw, h , i ) ) ;
4 end

Similarly, the matrix Γu(t̃k, t̃k+1) can be computed through the next func-
tion, which receives as inputs: i) the nominal-model matrices (A,B2); ii) the
time values tilde_tk= t̃k , tk + h, tilde_tk1= t̃k+1 , tk+1 + h; and iii)
tPlusDelta_t= t+ ∆t.

1 f unc t i on [GammU_tk_tk1 ] = getGamma_u(A,B2 , t i lde_tk ,
t i lde_tk1 , tPlusDelta_t )

2

3 sum = ze ro s ( s i z e (A) ) ;
4 f o r j =1:1:30 % 30 i t e r a t i o n s are normally enough
5 sum = sum + A^( j=1)/ f a c t o r i a l ( j ) * ( ( tPlusDelta_t=

t i lde_tk )^j=(tPlusDelta_t=t i lde_tk1 )^ j ) ;
6 end
7 GammU_tk_tk1 = sum*B2 ;
8

9 end
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In this way, in order to compute

Γu(t̃0, ..., t̃N+1) , [Γu(t̃0, t̃1), Γu(t̃1, t̃2), . . . , Γu(t̃N , t̃N+1)]

one just needs to call repeatedly to the above function.

Note that, in order to compute Γu, it is needed to know beforehand all the time-
instants, tk, in which the control action uk has been �or will be� introduced
to the system � as de�ned in Def. 5.1. If the system has input-delays, this
requires to store in memory some past time instants and their associated control
actions. If we are computing predictions so that ∆t > h, then the future time-
instants in which the control action will change should be also established.

High-order ESO design � optimization of Lem. 3.4.1

The following code implements a MatLab function that optimizes the LMI
problem in Lem. 3.4.1.

Its inputs are: i) the model matrices (A,B1, B2, C2) in (2.8); ii) the high-order
ESO tuning parameters (r,K,M,N) � which are de�ned in Lem. 3.4.1; and
iii) the optimizing parameter δ. The function employs Yalmip+Sedumi in or-
der to solve the LMI problem (3.20a)-(3.20c); maximizing α for a �xed value
of δ � as suggested in Rmk 3.1. The function could be repeatedly called for
increasing values of δ until the maximum δα is found.

1 f unc t i on [ L , alpha ] = optimizeL (A,B1 ,B2 ,C2 , r ,K,M,N, de l t a )
2

3 % Get extended matr i ce s
4 n = s i z e (A, 1 ) ; m = s i z e (B2 , 2 ) ; q = s i z e (B1 , 2 ) ; p =

s i z e (C2 , 1 ) ;
5 l = n+(r+1)*q ;
6 Pi = [ eye (q ) z e r o s (q , r *q ) ] ;
7 Phi = [ z e r o s ( r *q , q ) eye ( r *q ) ;
8 z e r o s (q , q ) z e r o s (q , r *q ) ] ;
9 bA = [A B1*Pi ;

10 z e r o s ( ( r+1)*q , n) Phi ] ;
11 bB2 = [B2 ; z e r o s ( ( r+1)*q ,m) ] ;
12 bC2 = [C2 ze ro s (p , ( r+1)*q ) ] ;
13 bB1 = [ z e ro s (q , n+r *q ) eye (q ) ] ' ;
14

15 % LMI opt imiza t i on . ( Requires Yalmip + Sedumi )
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16 ops = sdp s e t t i n g s ( ' s o l v e r ' , ' sedumi ' , ' sedumi . eps ' ,
1e=16, ' sedumi . cg . qprec ' , 1 , ' sedumi . cg . maxiter ' ,
50 , ' sedumi . s t e p d i f ' , 2) ;

17 P = sdpvar ( l ) ;
18 Y = sdpvar ( l , p , ' f u l l ' ) ;
19 alpha = sdpvar (1 ) ;
20 Psi = [P*bA+bA'*P=Y*bC2=bC2 '*Y'+2* de l t a *P P*bB1
21 (P*bB1) ' =eye (q ) ] ;
22

23 problem = [ Psi <=0,P=alpha *(K'*K)>=0,alpha >=0 , . . .
24 kron (N,P)+kron (M,P*bA=Y*bC2)+kron (M' ,bA'*P

=bC2 '*Y' ) <=0];
25 opt imize ( problem ,=alpha )
26 di sp ( ' Optimizing L . Maximize alpha ' )
27 alpha = value ( alpha ) ;
28

29 % Observer matrix
30 L = inv ( value (P) ) * value (Y) ;
31

32 end

In this sense, once the nominal model matrices (A,B1, B2, C2) have been de-
�ned, this function can be used to get the gain L of the high-order ESO (3.17);
which could then be constructed with the matrices bA= Ā, bB2= B̄2, bC2= C̄2.
The works by Chilali et al. 1996; Chilali et al. 1999 include some examples of
matrices M , N , which enforce that the eigenvalues of (Ā − LC̄) belong to a
speci�c region of the complex plane.

In the case of using this function to construct a high-order ESO-based controller
as in Sec. 3.4, it should be called with K = [Kx,KvΦ]. In the case of using
it to construct a high-order ESO-based predictor as in Sec. 5.3, it should be
called with K = Ψ(∆t) , [Φ(∆t), Γω(∆t)]. If there is no speci�c application,
one could just call it with K = Il

Finally, the above code can be easily recon�gured in order to implement the
LMI optimizations of the stability conditions that were reported in Sec. 4.3.
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