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Resum
En el present TFG es proposa la construcció d’un sistema per al reconeixement d’ac-

tivitats docents a partir de transcripcions d’gravacions d’àudio a l’aula. Per a això, iden-
tifiquem un conjunt d’activitats docents que cobreixen tots els tipus de discurs acadèmic
que un docent pot emprar a l’aula quan imparteix un curs, com per exemple, "teoria",
"resolució d’exercicis", "exemples pràctics del món real", ”interacció entre professor i es-
tudiant", "organització i gestió de l’assignatura", etc. A més, creem un dataset a partir de
les transcripcions de classes gravades amb el servei VideoApuntes de la UPV i etiquetem
segments de les transcripcions amb el tipus de discurs corresponent. Posteriorment, dis-
senyem una tasca de classificació que es resol amb el model XLM-RoBERTa, una versió
millorada de BERT (Bidirectional Encoder Representations from Transformers) sobre el
que s’ha dissenyat una capa de classificació. Els resultats mostren un alt nivell de precisió
en la classificació de segments de text del discurs acadèmic que empren els professors en
la impartició d’assignatures. Finalment, es pretén dissenyar un mètode per a identificar
el tipus d’activitat docent que es reflecteix en un segment de transcripció a partir d’un
arbre de classificació binari.

Paraules clau: Activitats docents, Transcripcions, Classificació, Xarxes Neuronals, Pro-
cessament de Llenguatge Natural

Resumen
En el presente TFG se propone la construcción de un sistema para el reconocimiento

de actividades docentes a partir de transcripciones de grabaciones de audio en el aula. Pa-
ra ello, identificamos un conjunto de actividades docentes que cubren todos los tipos de
discurso académico que un docente puede emplear en el aula cuando imparte un curso
tales como por ejemplo, "teoría", ’resolución de ejercicios",”ejemplos prácticos del mundo
real", ”interacción entre profesor y estudiante", ”organización y gestión de la asignatura",
etc. Además, creamos un dataset a partir de las transcripciones de clases grabadas con el
servicio VideoApuntes de la UPV y etiquetamos segmentos de las transcripciones con el
tipo de discurso correspondiente. Posteriormente, diseñamos una tarea de clasificación
que se resuelve con el modelo XLM-RoBERTa, una versión mejorada de BERT (Bidirec-
tional Encoder Representations from Transformers) sobre el que se ha diseñado una capa
de clasificación. Los resultados muestran un alto nivel de precisión en la clasificación de
segmentos de texto del discurso académico que emplean los profesores en la impartición
de asignaturas. Por último, se pretende diseñar un método para identificar el tipo de ac-
tividad docente que se refleja en un segmento de transcripción a partir de un arbol de
clasificación binario.

Palabras clave: Actividades docentes, Transcripciones, Clasificación, Redes Neuronales,
Procesamiento de Lenguaje Natural
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Abstract
In this project, we propose to build a system for recognizing teaching activities from

automatic transcriptions of classroom video recordings. To this end, we identified var-
ious teaching activities that cover the nature of the lecturer discourse when giving a
course eg. ’theoretical explanation’, ’problem solving’, ’real-world practical example’,
’interation lecturer-student’, ’course-related asides’, etc. We labeled a dataset of lecture
transcriptions from the VideoApuntes repository of UPV and we solved a classification
task with the XLM-RoBERTa model, an improved version of BERT (Bidirectional Encoder
Representations from Transformers) with a classification layer on top of it. The results
will show the high accuracy in classifying text segments of the discourse. Finally, we aim
to conduct an experiment in order to identify the type of teaching activity reflected in a
text segment using a binary decision tree.

Key words: Teaching activities, Transcriptions, Classification, Neural Networks, Natural
Language Processing
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CHAPTER 1

Introduction

1.1 Motivation

University lectures have been taught in the same way for hundreds of years, where pro-
fessors have a monologue about the topic being exposed and occasionally a student may
interrupt for questioning. This dominant trend is changing rapidly with new advances
in technologies. Nowadays, students may learn where and when they want and, more
importantly, at a pace of their choosing, thanks to lecture recording. This has been es-
pecially notable during the ongoing SARS CoV-2 pandemic. Building on this basis, we
propose a project to design a tool that will automatically classify the audio transcription
of a lecture into the teaching activities employed by the teacher for delivering the lecture
and thus improving the experience of students when watching prerecorded lectures.

This project stems from a PROMETEO research project entitled ’CAR: CLASS AC-
TIVITY RECOGNITION’ [1] supported by the Conselleria d’Educació Cultura i Esport of
Generalitat Valenciana. The CAR project aims to analyze the degree of engagement of
the listeners (students) to a class given by an orator (lecturer). The primary focus is on
helping teachers to visualize and improve their discourse management skills. It also puts
focus on the students and takes a step towards the elicitation of a student participation
model to identify reactive/proactive and female/male behaviors during lectures as well
as determining different participation models depending on the type of lecture (theory,
exercises, practice). The main objectives of CAR are:

1. To provide high-quality automatic transcriptions of classroom video recordings,

2. To provide an automatic classification of activities from classroom transcriptions,

3. To provide a behavioral pattern model of students and lecturers,

4. To provide an academic performance assessment model.
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2 Introduction

1.2 Objectives of the thesis

This project is positioned within the second objective of the research initiative CAR men-
tioned above; i.e., to provide an automatic classification of activities from classroom transcrip-
tions.

The starting point of this project is the automatic transcriptions of audio recordings
of lectures delivered at UPV and stored in a repository of the University. The objective is
to analyze the audio & transcriptions files and recognize the teaching activity the lecturer
is employing in class at each time. To this end, the particular sub-objectives of this work
are:

• to propose a classification of teaching activities commonly used in university lec-
tures,

• to build a system for recognition of teaching activities through automatic transcrip-
tions of classroom audio recordings,

• to analyze the differences between an automated recognition of teaching activities
and an experienced human’s approach to the same classification task.

1.3 Structure

This thesis is structured as follows:

• In chapter 2 we give some context on what the state of the art is in terms of spoken
academic discourse, giving some information on how it is divided and what the
literature says about it. It also describes what transformer-based models are in
use nowadays, in particular the BERT (Bidirectional Encoder Representations from
Transformers)) Transformer and its family.

• In chapter 3 we describe the problem and define where all the data we used is taken
from, how the transcriptions are made, how the data segmentation and labeling is
done and describe what each label is defined as and how one can identify them.

• In chapter 4 we dive into the neural network classification, on the specifications of
the XLM-RoBERTa model, tokenization, experimental evaluation and its results.

• In chapter 5 we develop a human-like classification binary tree based off of the
shared vocabularies between classification segments and possible labels. We finally
compare the results from this method with the neural network method.

• In chapter 6 we describe the conclusions we extract from the whole project and
suggest some adjustments and further improvements for a future work.



CHAPTER 2

State of the Art

The aim of this project is to build a system that recognizes teaching activities from au-
tomated lecture transcriptions, particularly from lectures delivered at the Universitat
Politècnica de València (UPV). In order to position our work within the relevant liter-
ature, we will study works that are principally concerned with two topics: the spoken
discourse in academic lectures and the use of neural network models for common Natu-
ral Language Processing tasks.

2.1 Spoken academic discourse

In linguistics, the term genre refers to types of spoken and written discourse recognized
by a discourse community. Examples of spoken and written genres include lectures,
conversations, speeches, notices, advertisements, novels, diaries, shopping lists, paper
or poster presentations, seminar discussions, research articles, interviews, questions in a
lecture, justification of a research proposal, and many more. Since this project is devoted
to examining the speech used in classes delivered at UPV, our focus is on the academic
spoken discourse genre.

CLASSROOM GENRES
- Lecture
- Seminar
- Tutorial interview
- Students' 
  presentations
- Oral exams

INSTITUTIONAL GENRES
- Academic year opening
  lectures
- Commencement addresses
- Honoris Causa speeches
- Prize acceptance speeches
- Presidents' or Rectors'
  addresses to the faculty
- Memorial services for
  recently departed professors 

CONFERENCE
GENRES

- Plenary lecture
- Paper presentation
- Poster presentation
- Workshop
- Research meeting

OTHER RESEARCH
GENRES

- PhD thesis defences
- Master's thesis
  presentations
- Research projects

SPOKEN ACADEMIC DISCOURSE

RESEARCH GENRES

Figure 2.1: Classification of academic genres according to their purpose (taken from [2]).

Figure 2.1 shows a classification of spoken academic genres according to criteria of
purpose [2]. This classification identifies (1) research genres, as faculty’s academic life in-
volves presenting papers at conferences, defending doctoral thesis or even research and
lecturing in other universities; (2) institutional genres, mostly used by university repre-
sentatives and authorities in official and institutional speeches; and (3) classroom genres,
which are regarded as paramount for both students and faculty. Hence, the language and

3



4 State of the Art

speech used in a PhD. thesis defence differs from the ones used, for instance, in an aca-
demic year opening speech and both in turn differ from those used in classroom genres.

Among the classroom genres, the seminar, tutorial, presentation and oral exams are
one kind of interactive genres as they involve a higher level of interaction between the
presenter and the audience which the activity is addressed to [2]. In contrast, the academ-
ic lecture is mostly considered an expository genre even though interaction and commu-
nication between teachers and students can take place as well.

In this work, we put our attention specifically on the academic lecture genre among
all possible classroom genres.

2.1.1. Academic lecture

Among the classroom genres, the lecture is regarded as a central spoken genre in higher
education in Europe and many countries worldwide. Research on the discourse of lec-
tures is becoming more and more relevant due to the increasing internationalization of
higher education both from the point of view of students and lecturers [3].

The discourse community of our study is the university faculty and students who
attend lectures. Students attending a lecture need to listen and understand first to be
able to take notes. Additionally, while lectures mainly belong to the expository genre
and have a monological style, there are parts of the lecture which involve an dialogue
with the students, for example in the form of question-answer interaction initiated by a
student or by the lecturer.

Academic lectures can be considered as an oral/literate mixture, where oral refers to
stereotypical speaking such as conversation, and literate refers to stereotypical writing
as in academic prose. That is, lectures share several situational characteristics of both
academic prose and face-to-face conversations [4]. Lectures have a highly informational
focus, similarly to academic prose, and, at the same time, have interactive features as they
are delivered under on-line production circumstances that resemble face-to-face conver-
sations in the spoken mode [5]. And it is precisely this twofold aspect of the lectures that
we are particularly interested in analyzing.

In order to categorize a lecture, we need to define features that capture the informa-
tional purpose of the lecture as well as displaying features of the spoken discourse. In
this line, some researchers have examined the macro-structure of university lectures and
the micro-features that contribute to this structure [6]. According to Young, the phases
which mark university lectures are [6]:

• Interaction: this is an important feature that indicates to which extent lecturers
maintain contact with their audience in order to both reduce the distance between
themselves and their listeners, and to ensure that what has been taught is in fact
understood.

• Theory or Content: this is used to reflect the lecturer’s purpose, which is to transmit
theoretical information.

• Examples: it is in this phase in which the speakers illustrate theoretical concepts
through concrete examples familiar to students in the audience.
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In more recent research, the academic lecture is characterized, among others, by the
following features [7]:

1. The purpose of a lecture is to convey knowledge to a large number of students.

2. Lecturers are able to give examples of practical application and to relate personal
experience to the content of the lectures.

3. An appropriate setting for a lecture is one in which the teacher not only presents
information to the audience but also expresses their attitudes and evaluation of
materials.

4. A lecture is a mixing of genres: formal and informal language, spoken and written
(text in slideshows or other forms of text).

5. A lecture is determined by the individual stylistic features of the presenter; e.g. pre-
ferring reading aloud, whereas another speaker choosing to interact with students
and to engage them in communication.

6. There is no direct distinction between a sentence and an utterance in the speech.
This may cause a problem with grabbing the knowledge while listening to an aca-
demic lecture if pauses are not properly used during the discourse.

With all this information in mind, we will come up with a set of features that help
us identify the part of the speech of a university lecture devoted to convey informational
knowledge (theory and examples), and the part of the speech devoted to informal regis-
ters (interaction).

2.2 Transformer-based models for NLP tasks

Natural Language Processing (NLP) is a research field which studies the interactions be-
tween computers and natural human language like speech or text, with the aim of build-
ing an agent capable of understanding and/or producing human language in a human-
like way.

NLP techniques are used in multiple applications of textual data analysis such as in
social media to recognize fake news, offensive language or sentiment analysis as well
as in tasks of classification and organization of collections of documents for topic anal-
ysis. Traditional NLP tasks for the treatment of textual data include tasks like morpho-
syntactic tokenization, lemmatization and stemming, stopword removal, syntactic pars-
ing, part-of-speech tagging, semantic labels, word sense disambiguation, etc. The ap-
plication of these linguistic-based methods requires to have prior knowledge of the lan-
guage.

Deep Learning (DL) methods have proven to outperform traditional linguistic-based
methods by replacing them by end-to-end architectures where no prior knowledge on
the language is needed. In contrast, DL methods have the ability to learn the underlying
linguistic nature of the text provided that a large amount of data is available. In the
following sections, we briefly summarize the most relevant advances in DL methods
applied to NLP.

2.2.1. Transformer models in NLP

Over the past three years, the emergence of transformer-based language models has rev-
olutionized the field of NLP. The Transformer is a DL model introduced in 2017 that has
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proven to be especially effective for common NLP tasks. It is a novel encoder-decoder
architecture for sequence-to-sequence (Seq2Seq) models that is based solely on attention
mechanisms [8].

Seq2Seq models consist of (1) an encoder that takes an input sequence and maps it
into a higher dimensional space and (2) a decoder that takes the abstract vector returned
by the encoder and turns it into another sequence. The output sequence of the decoder
can be a sentence in a different language from the input sequence (translation task), a se-
quence of symbols, etc. One choice for training the encoder and the decoder of a Seq2Seq
model is to use a Long-Short Term Memory (LSTM) neural network for each of them (one
for the encoder, one for the decoder). This dominant trend for training Seq2Seq models is
based upon complex recurrent or convolutional neural networks in an encoder-decoder
configuration [9].

The groundbreaking idea proposed in [8] lies in exploiting attention mechanisms
which put the attention on the parts of the sequence that are relevant at each step. That
is, humans not only read words but their minds hold the important aspects of a sentence
to provide context. Capturing the relationships among words in a sentence is vital to
understand natural language. And it is precisely here where the Transformer comes into
play.

The attention mechanism in DL is based on putting the focus on the relevant aspects,
paying more attention to certain factors when processing the data. The attention mecha-
nism is a part of a neural architecture that enables the dynamical highlighting of relevant
features of the input data. Specifically, in NLP, these relevant features typically represent
a sequence of textual elements [10].

At the time of writing this document, there exist several leading transformer-based
language models, namely BERT [11], GPT-2 [12] and TRANSFORMER-XL [13]. We opted
for using the BERT model since one of its latest versions has shown to offer very good
results as well as an efficient memory saving model.

2.2.2. BERT Transformer and its family

BERT (Bidirectional Encoder Representations from Transformers) is a recent language
representation model designed to pre-train deep bidirectional representations from un-
labeled text by jointly conditioning on both left and right contexts of a target word in all
layers. In consequence, BERT can be easily fine-tuned by adding just one output layer to
create state-of-the-art models for a wide range of NLP tasks [11].

BERT’s model architecture is composed of multiple layers of bidirectional Trans-
former encoder blocks. This Transformer blocks are encoder-decoders which employ
stacked self-attention and point-wise, fully connected layers for both the encoder and
the decoder [14]. The model is pre-trained over two unsupervised tasks: (1) Masked
Language Model (MLM), which consists in masking a percentage of the input tokens at
random and predict those masked tokens, and (2) Next Sentence Prediction (NSP), in
which the input is made of two sentences, A and B, and 50% of the time B is the actual
sentence that comes after sentence A.

RoBERTa (Robustly optimized BERT approach) [15] brings a significant improvement
over BERT, matching or exceeding the performance of the BERT-based methods. RoBER-
Ta increases the amount of training data and the number of training passes through the
data, and it modifies the pre-training regime as follows:

• Dynamic MLM: instead of performing the masking once during preprocessing, the
masking is performed every time the model is fed a sequence.
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• Full-Sentences without NSP loss: instead of two sentences, the model is fed full
contiguous sentences and the NSP Loss is removed.

• Large mini-batches: the batch size is increased from 256 to 8192 samples.

• Larger byte-level Byte Pair Encoding: instead of using a unicode character-level
BPE vocabulary of 30k subwords units, RoBERTa uses a larger byte-level BPE vo-
cabulary of 50k subwords units.

The XLM (Cross-Lingual Language Model) [16] extends previous efforts to obtain
state-of-the-art results on cross-lingual classification of unsupervised and supervised ma-
chine translation by processing all languages with the same shared vocabulary created
through Byte Pair Encoding and two new training tasks besides MLM:

• Causal Language Modeling: this task consists in training the language model to
learn the probability of a word given the previous words in a sentence.

• Translation Language Modeling: similar to Masked Language Modeling, the model
is fed two sentences that are direct translations in different languages with random-
ly masked words.

Finally, XLM-RoBERTa is a multilingual model resulting from training a transformer-
based MLM on 100 different languages and using more that two terabytes of filtered
CommonCrawl data [17]. It does not require to understand which language is used and
determines the correct language from the input ids.

XLM-RoBERTa achieved a new state-of-the-art on a variety of cross-lingual bench-
marks while also obtaining a comparable performance with monolingual models like
RoBERTa. The improvement stems from:

• Increasing the training data by several orders of magnitude from Wiki-100 to a total
of 2.5 TB,

• Using a large vocabulary size of 250k subwords and changing the Byte Pair Encod-
ing to SentencePiece with a unigram language model,

• Training the model in the MLM task with 100 languages using the same sampling
distribution as XLM but changing learning rate to α = 0.3.

The authors of XLM-RoBERTa remark the surprising effectiveness of multilingual
models over monolingual models, and show strong improvements of multilingual mod-
els on low-resource languages [17].





CHAPTER 3

Problem description and data
processing

3.1 Overview of the Problem

The problem we address in this project is about the recognition of academic lecture activ-
ities from automatic transcriptions of classroom audio recordings. The process of classi-
fying the academic activities is tackled in four stages:

1. Selection of audio recordings. In this step we select the audio recordings of lec-
tures delivered at UPV which are stored in the repository VIDEOAPUNTES. The
quality of the audio recordings is a determinant factor in the quality of the corre-
sponding transcriptions. Section 3.2 presents the list of selected audio recordings
and section 3.3 outlines the automated transcription process that yields the tran-
script files.

2. Segmentation and labeling. This is the task devoted to dividing the text of the
transcriptions into meaningful units (segments) and labeling each segment with
one type of academic feature. This task is undertaken by a group of human labelers
and it is detailed in sections 3.4 and 3.5.

3. Classification model. In this stage, we train a Neural Network (NN)-based model
to learn classify the segments of the transcriptions. The NN model builds upon the
XLM-RoBERTa multi-lingual model explained in the previous chapter. Chapter 4
offers a thorough explanation on the classification task and the obtained results.

4. Human-like validation of classification results. We were also interested in com-
paring the results obtained with the NN model versus a more human-like classifica-
tion. To this end, we designed an alternative classification model for only a subset
of labels representing particular academic lecture activities, and we performed a
comparison of the results obtained with the NN and the ones obtained with the
human-like classification.

3.2 Audio recordings from VideoApuntes repository

The Universitat Politècnica de València (UPV) provides an automatic recording system
that allows lecturers to record their lectures and upload the videos to the internet for the
students to watch them back. VIDEOAPUNTES [18] is the name of the service provided by

9
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UPV to make desktop and/or webcam recordings (Screencast) of a lecture from a com-
puter located at home or from a tablet or mobile phone. The VIDEOAPUNTES service can
only be used in rooms equipped with the required facilities for the automatic recording.
At the time of writing this document, VIDEOAPUNTES is available in 36 lecture halls of
UPV across all three campuses [18].

Lecturers willing to use this service set up and schedule the recordings of their lec-
tures, including video, audio and multimedia of a lecture. VIDEOAPUNTES works with
lavalier microphones, also referred to as lav mic, a body mic, a clip mic, or a personal
mic, that lecturers need to clip onto their clothing. The sound reproduction of this type of
microphones is sensitive to voice proximity, therefore a sudden move or head turn by the
lecturer may largely affect the audio quality. Furthermore, since the recording of a class
is scheduled at a particular time slot, some recordings may have silent parts or recording
faults due to, for instance, a rescheduling, a delay in the starting of the class or a record-
ing hardware malfunction. It may also be the case that recordings contain background
noise or microphone feedback, especially at the starting and/or end of the lecture. This
usually happens if the beginning of the lecture is delayed or when the lecturer is setting
up the equipment. Other audio problems that make it hard for transcriptions stem from
overlapping conversations between lecturers and students or among the students them-
selves. These side conversations typically cause inaudible parts and therefore problems
for transcriptions.

On a first instance, our idea was to use the students’ transcriptions as well as the
professors’. However, there exist many situations in which students ask a question or
talk during a lecture and the microphones do not pick up their voice and hence this is not
reflected in the transcription file. Consequently, the focus of this work revolves around
the academic discourse of the lecturer.

Since this project heavily relies on NLP tasks, it is vital for us to have the best possible
audio transcriptions from the recordings. Therefore, we are particularly interested in
selecting good-quality audio recordings that contain as few issues as possible so as to
ensure good transcriptions.

3.2.1. Data collection

The VIDEOAPUNTES repository contains video and audio recordings of multiple lectures
of the UPV faculty. UPV mostly offers engineering degrees, which means that a very
large number of the courses taught at UPV are about technical and scientific matters.

Our aim was to select a broad selection of subjects to ensure as much diversity as
possible and no bias towards a specific field. We included recordings of lectures that
may be qualified as rather theoretical-based courses, and others that have a more hands-
on orientation. We were also interested in gathering recordings that covered male and
female lecturers so as to have a sample that accounts for gender balance. It is important
to keep in mind as well that the overall duration of the audio recordings for all the courses
must be approximately the same.

Finding a good sample of female professor recordings was challenging due to a gen-
eral absence of women in STEM subjects. Fortunately, we got to select a balanced number
of hours of lecture recordings for male and female lecturers across a broad diversity of
subjects.

Table 3.1 shows the seven different subjects covered by the selected video files along
with the recording time (in minutes) and the academic degree in which they are deliv-
ered. The three most relevant criteria we used to select the recordings are:
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• good-quality audio that facilitates transcriptions as accurate as possible,

• subject diversity: many of the subjects are from the Telecommunications degree but
they cover a significantly large and diverse corpus of concepts and contain a vast
range of vocabulary,

• gender variety so as to avoid a bias towards how gender may affect the way of
teaching.

Tables 3.1 and 3.2 depict some statistics of the collection of video files retrieved from
VIDEOAPUNTES for our analysis. Table 3.2 shows the seven courses or subjects covered
by the transcription files, the total number of video recordings (total number of delivered
letures) as well as the total number of lecturers involved in the recordings divided by
gender.

Course name Male Female Academic Degree
Statistics - 345’ Public Administration
Electronic Devices - 301’ Telecommunications
Mathematics 302’ 332’ Telecommunications
Digital Signal Treatment - 311’ Telecommunications
Oceanographic Physics 302’ - MSc. Marine Ecosystems
Networks and Teledetection 353’ - MSc. Marine Ecosystems
Microprocessed Systems 360’ - Telecommunications
Total 1499’ 1483’ -

Table 3.1: Division of minutes per course and per gender.

Number of Subjects 7
Number of Videos 27
Number of Lecturers 8

Number of Male Lecturers 4
Number of Female Lecturers 4

Table 3.2: Analysis of the data from the videos used.

3.3 Transcriptions from audio recordings

As commented in the previous section, we selected 27 recordings of lectures for our pur-
poses. Once selected the audio files, we retrieved the corresponding transcriptions files
using an automatic transcription software.

The MLLP transcription and translation platform is an online platform for automated
and assisted multilingual media subtitling and text translation created by UPV’s Machine
Learning and Language Processing (MLLP) research group. It provides support for the
transcription and translation of video, audio and the full content of massive open online
courses (MOOCs). It also integrates other MLLP-developed technologies such as Text-
to-Speech synthesis for enhanced accessibility [19]. For this project 6 out of the 27 total
number of videos selected were human-reviewed, these videos have a much more precise
and accurate transcription and are very helpful for segmentation and labeling.
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An excerpt of the output file returned by the MLLP tool that contains the transcription
of one of the recorded lectures is shown in Figure 3.1. In this figure, the transcription
contains various sections numbered from 23 to 27. This number represents the order
in which the text of each section will appear on screen as a caption, so the text below
number 23 is the 23rd caption, 24 is the 24th and so on. The second line represents the
time interval in format HH:MM:SS,ms at which the caption is found in the video file.
The following lines contain the transcription of the audio (caption) as it will be seen by
the viewer on the screen. Currently, the MLLP tool supports 10 transcription languages
including, for instance, Catalan, English or Italian. We will only use transcriptions into
Spanish since all the recordings are lectures delivered in Spanish.

Figure 3.1: Sample output of MLLP processing of transcriptions.

3.3.1. Manual revision of transcriptions

Many transcription services include, besides the automated transcription, a manual re-
view process to ensure accuracy and a high success rate with the transcription. Around
10% of the video transcriptions made with the MLLP tool and stored in VIDEOAPUNTES

went through a human review process. Specifically, 6 out of the 27 selected videos were
manually reviewed (a more detailed explanation is given in Table 4.2). This means that
the transcriptions of these lectures are much more reliable and accurate to the original
discourse of the speaker.

The MLLP research group uses a tool called Transcriber [20] to help them transcribe
the videos. Transcriber is a tool for assisting the manual annotation of speech signals. It
enables segmenting, transcribing and labeling of long-duration speech recordings all via
a user-friendly graphical user interface. It also provides facilities for annotating speech
turns, topic changes and acoustic conditions. Transcriber is more specifically designed for
the annotation of broadcast news recordings but its features are found generally useful
for the transcription and annotation of speech signals for linguistic research.
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The manual revision done by the MLLP members follow some basic transcription
guidelines like:

• when possible, each segment must represent a complete meaningful sentence,

• correction of repetitions in the discourse (e.g., "there was a a a problem with ..."),

• correction of hesitations (e.g., "hmmmmm ..."),

• correction of long silences (more than a second) in the middle of a sentence,

• correction of numbers (must be written in words), variable names, equations,

• etc.

3.4 Data segmentation and labeling

In this section, we explain the characteristics we wish to analyze from the academic dis-
course used by lecturers in the transcribed lectures. In subsection 3.4.1 we present the
categories (labels) we propose to classify the discourse of a university lecture. Section
3.4.2 details the protocol we used for segmenting the transcription files and labeling each
segment.

3.4.1. Label hierarchy of an audio & transcription file

In section 2.1 we discussed the structure and features that some linguists distinguish in
university lectures. Our aim is to define a set of lecture features based on language choic-
es that help us identify the contents and purpose of segments of the academic discourse
from a transcription file.

For the definition of the lecture features we decided to not only use the transcrip-
tion files but also listen to the audios as an aid. Hence, we first watched several videos
of lectures from YouTube and VIDEOAPUNTES, listening to the audio and reading the
transcriptions to figure out the nature and purpose of the academic discourse along the
transcription. We learned that situations of several kinds may appear as a result of the
quality of the audio recordings, the lecturer’s speech itself, the students’ chat and the
content of the speech, all of which, in turn, affect the quality of transcriptions.

After a thorough analysis, we put forward the hierarchy of labels shown in Figure
3.2, where the colored nodes represent the hirearchy of the lecture features and the white
nodes are labels that help us identify sections of the audio & transcription files. Specif-
ically, the white nodes are labels to denote parts of the audio file which do not have a
readable transcription. In the following, we explain the label hierarchy of Figure 3.2.

Level 1: filtering out sounds from the audio file. We found that the audio files of
some recordings contained corrupted sections or unwanted sounds due to the lecture
starting several minutes after the start of the recording, the recording being suddenly cut
off, background noise, errors in the recording or microphone feedback. We identify these
damaged sections of the audio file as Miscellaneous and the rest is classified as audio that
belongs to the Lecture.

Level 2: speaker identification. The purpose of the labels at level 2 is to distinguish
the parts of the file in which the speaker (the lecturer) is talking from those in which they
are not. The four labels, Indistinct Chat, Speaker, Pause and Multimedia are easily identified
by just listening to the audio. Particularly, these labels are used to mark sections of the
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audio file that contain an indistinguishable speaker (Indistinct Chat, Multimedia and Pause)
and audio sections that clearly identify the target speaker (Speaker). In general, we can
affirm that, except for the Speaker, the rest of labels represent sections of the audio that do
not comprise enough speech or information and thus cannot be transcribed.

Level 3: lecture-audience relationship. From level 3 and downwards, all of the fea-
tures can be retrieved from the transcription file, as after the filtering of labels at level 1
and level 2 we obtain a file that exclusively contains the discourse of the speaker.

The four labels at level 3 denote different ways that the lecturer can address the stu-
dents, thus creating a different atmosphere depending on the type of discourse. The
key label is Syllabus, which comprises the entire academic discourse around the special-
ized subject. The other three labels are Interaction (exchange of communication between
the lecturer and students), Digression (a lecturer shifts to a more personal self and offers
course-related asides) and Other (speech that cannot be classified under any of the other
three labels and usually refers to the overall functioning of delivering the class and to
non-course-related matters) [7].

Audio and
Transcription File

MiscellaneousLecture

Interaction

Indistinct
Chat PauseSpeaker Multimedia

Syllabus

Organization issuesExample / Real
Application

Theory /
Concept

Digression

Exercise /
Problem

Other

Figure 3.2: Label hierarchy of an audio & transcription file

Level 4: content-based lecture structure. This is the level that includes the phases
of a regular expository class around the syllabus of a subject, namely Theory/Concept,
Example/Real Application, Exercise/Problem and Organizational issues. Two observations that
are worth mentioning:

• We include the label Exercise/Problem because our dataset comprises recordings of
scientific/technical subjects. This label can however be ignored in the case of hu-
manities and social science subjects.

• We include the label Organizational issues under Syllabus because providing general
course information about schedules, teaching practice or policy grading is of inter-
est for the carrying out of the syllabus. Nevertheless, we could also regard the label
Organization as a sub-category of Speaker rather than Syllabus if we assume that
students generally put much attention when the lecturer talks about organization
matters.



3.4 Data segmentation and labeling 15

All in all, after analyzing the class video recordings from VIDEOAPUNTES, we came
up with seven specific labels (the seven colored leaf nodes in Figure 3.2) that enables us
to split a lecture into segments and classify the contents of each segment. The selection
of these labels is also supported by the common features used to categorize a university
lecture in the literature (see, for example, [3].).

3.4.2. Segmentation and Labeling Procedure

This section explains the procedure we used to perform the data segmentation of the tran-
scription file and the labeling of the segments under one of the seven classes discussed in
the preceding section.

First and foremost, we segmented the transcription by identifying situations which
pointed to a context switch and we determined whether said context change was associ-
ated to a change in the professor’s discourse or not. Figure 3.3 is an example of a segment
and Figure 3.4 shows the segment that comes right after the one in Figure 3.3.

bueno entonces cómo van las correcciones esta tenéis hecha a hacer una cor-
rección no lo hago a porque está bien claro ya o sea ya en las condiciones ejer-
cicio pone si se va por decir vale es poco que decir como bueno a decir porque
haya un decimal tomando como bueno vale está ahí en las condiciones [...] te
pone probabilidad y tú has puesto ahí un porcentaje

Figure 3.3: Example of a segment.

bueno veréis que hay que hay una segunda tanda de poder subir los trabajos
bueno la primera tanda aunque a la un segundo aunque alargamos el el mo-
mento de subir el ejercicio desde el viernes a las tres hasta el sábado a las tres
solamente cinco alumnos subieron ese intervalo solamente cinco alumnos

Figure 3.4: Segment that comes after the segment in Figure 3.3.

As we can see, both segments start with the word bueno, which generally implies a
context switch. In the first segment, the lecturer talks about the correction of an exer-
cise with the students. Figure 3.4 is the next segment after the one in Figure 3.3 and it
also starts with the word bueno. In this case, the lecturer is talking about due dates of
homework.

The labeling or classification of segments was performed by two members of the re-
search group including the author of this work. We used a simple procedure to guide us
when labeling: read the transcription segment and listen to the audio file until a change
in context, tone or intonation was detected. This way we were able to determine when a
section of audio was considered its own segment and we classified it by deciding the la-
bel that best fit the segment from the seven shown in the colored leaf nodes in Figure 3.2.
Later, the discrepancies encountered between the two researchers were reviewed by the
group supervisor and agreed by consensus.

Once data segmentation and labeling of the audio and transcription files were fin-
ished, we selected a group of people external to the project to label small fragments of
audio files in order to ensure there was no bias in our labeling. The people we reached
out to had no computer science related background and were as diverse as possible in
regards to their professional background and age.
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During labeling we used Audacity [21] as a guidance tool. Audacity is an open-source
audio editor that enables to export a label track with our annotations, which, in our case,
we used to label each section of the audio file. Audacity turned out to be a very helpful
tool because it allowed us to export each label with time stamps automatically.

3.5 Label Description

The objective of this section is to describe each of the labels that appear in Figure 3.2.
There are two main categories to take into account, the labels that do not have a tran-
scription associated with them, which are out of the scope of the natural language analy-
sis, and those that do have a transcription to work with. The first group of labels are the
ones that belong to level 2 of Figure 3.2; that is, Indistinct Chat, Pause and Multimedia. The
second group of labels are those of level 3 and level 4 in Figure 3.2.

3.5.1. Labels at level 2

An Indistinct Chat situation arises when there are background noises and the speaker
(the lecturer) is not talking. We considered a segment of audio as Indistinct Chat when the
speaker is indistinguishable but we can appreciate one or more people speaking and the
content is inaudible and/or individual words are not identifiable.

A Pause is a situation that occurs when the lecturer pauses momentarily their dis-
course or talk. Segments of audio that are typically labeled as Pause include periods of
silence between two other labels or situations in which the lecturer is performing an ac-
tion other than speaking, for example, erasing the board, opening a slide presentation or
handling the computer.

A Multimedia label appears when the audio & transcription file includes an external
recording. Multimedia is regarded as a period of time during which the lecturer plays
some type of external piece of audiovisual content such as, for example, a video. A
Multimedia section of a class is not associated to a transcription since the lecturer is not
the main speaker.

3.5.2. Labels at levels 3 and 4

The subtree rooted at Speaker depicts two hierarchy levels (levels 3 and 4 in Figure 3.2):

• Labels at level 3 denote the different types of lecturer speech that in turn determine
a different kind of interpersonal relationship between the lecturer and the students,

• Labels at level 4 focus exclusively on the lecturer discourse and characterize the
syllabus content,

In the following, we detail the labels at level 3, Interaction, Digression and Other, and
subsequently we present the breakdown of the label Syllabus.

Interaction

This is a very common situation that arises when the professor talks, asks, or interacts
with the students. A situation of lecturer-student interaction arises when a lecturer for-
wards a question to the audience or when a student raises a question about the contents
of the lecture.
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We regard Interaction as a part of the transcription that may be interspersed by paus-
es (a pause in the speaker’s speech may involve a student asking a question) and that
forwards a question or an answer directly to someone. In addition, responses to ques-
tions may come preceded by words like yes, no, sure, not quite, etc. Table 3.3 shows the
transcription of an Interaction label and a more human readable version (correction).

Transcription
lo me dejas acabar me dejas me dejas me dejas el pero me dejas que lo
explique vale gracias evelyn

Correction ¿Me dejas? ¿Me dejas que lo explique? Vale, gracias Evelyn.

Table 3.3: Sample of an Interaction transcription and its correction.

Digression

Digressions allow the lecturer to offer students course-related asides and they are com-
monly used to lighten up the content of the lecture, for example, self-mention or joking
[7]. Digressions take the form of personal comments or anecdotes and help create a re-
laxed environment and maintain a positive lecturer–audience relationship.

A digression arises when the lecturer makes a comment or gives an opinion about
something related to the lecture exposition. We will use the Digression label for comments
made by the lecturer related to the lecture exposition and based on an experience or a
particular circumstance. An example is shown in Table 3.4, sometimes transcriptions are
directly human readable.

Transcription
Sí al principio os parece un poco raro pero es lo que hay
nos tenemos que ir acostumbrando.

Correction
Sí, al principio os parece un poco raro pero es lo que hay,
nos tenemos que ir acostumbrando.

Table 3.4: Sample of a Digression transcription and its correction.

Other

The Other label is the category where we classify anything the lecturer says that is out of
the scope of all of the other labels. It is, in some sense, the juxtaposition of the course-
related asides label; that is, it is a situation that occurs during the lecture but it is unrelated
to it. As an example of Other, we can mention a situation in which the lecturer asks the
students if the temperature of the classroom is adequate so as to regulate the heating.
Table 3.5 shows the transcription of an Other label and a more human readable version.

Transcription Por, la hoja de firmas por favor que pase, vale.
Correction Por favor, la hoja de firmas, por favor, que pase, vale.

Table 3.5: Sample of a Other transcription and its correction.

The Syllabus label encompasses labels that represent the academic discourse of the
lecturer to teach the contents of the matter. All the labels under Syllabus identify a single
speaker, the lecturer, and their speech is usually fluid and concise.
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Syllabus::Theory/Concept

The Theory labels are the most common, they arises when the lecturer is explaining some-
thing from the syllabus. We identified as Theory those sections of audio where the profes-
sor would introduce a concept and then explain what it is or what it means.

Transcription
el timer dos tiene un pre divisor y un post divisor este no se utiliza
en la modulación de ancho de pulso la salida se obtiene de aquí
de la serie al timer dos por tanto en la ecuación no aparece

Correction
El timer 2 tiene un predivisor y un postdivisor. Este no se utiliza en la
modulación de ancho de pulso. La salida se obtiene de aquí, de la
serie al timer 2, por tanto en la ecuación no aparece.

Table 3.6: Sample of a Theory/Concept transcription and its correction.

Table 3.6, the lecturer introduces the concept of the difference between two matters
and immediately explains what the difference is.

As we can see in Table 3.6, many times the difference between the raw transcription
and the human readable version is just a matter of punctuation.

Syllabus::Example/Real Application

An example is a lapse of time during a lecture where the professor is illustrating or exem-
plifying the concepts being taught. We shall consider an Example/Real Application when
the lecturer uses a real-life application or a circumstance to explain the theory or concept
previously explained. Table 3.7 shows the transcription of an Example/Real Application
label and a more human readable version.

Transcription
por ejemplo la probabilidad de que salga el seis en un dado no trucado
de acuerdo a el ocho en un dado no trucado

Correction
Por ejemplo, la probabilidad de que salga el 6 en un dado no trucado,
de acuerdo, el 8 en otro dado no trucado.

Table 3.7: Sample of a Example/Real Application transcription and its correction.

Syllabus::Exercise/Problem

A Problem label can be regarded as those where the professor is applying the knowledge
previously explained into a practical situation that could be taken into account on a real-
life application. Since we are labeling science-based subjects, it is easier to detect these
kind of segments because they normally include numbers and formulae. Table 3.8 shows
the transcription of an Exercise label and a more human readable version.

Transcription
En este caso la resistencia a ese R, la que vamos a diseñar a calcular
el valor para el cual no se superan la potencia máxima de en el diodo. Vale

Correction
En este caso la resistencia es R, la que vamos a diseñar, calcular el valor
para el cual no se supera la potencia máxima del diodo.

Table 3.8: Sample of a Exercise/Problem transcription and its correction.
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Syllabus::Organization Issues

The Organization Issue label happens when the lecturer talks about other course-related
activities such as lab sessions, assignments or exams. It refers as a part where the main
focus of the matter has some relation with the subject but not with the lecture per se.
Table 3.9 shows the transcription of an Exercise label and a more human readable version.

Transcription
vale a ver poliformat este ratón greg resolución es mi poliformat ing
esto ha cambiado a ver ana porque me ha cambiado bueno nada
asignaturas matemáticas todos vale hoy ha cambiado esto muy bien

Correction
Vale, a ver PoliformaT. Esto ha cambiado. A ver, Ana. ¿Por qué me
ha cambiado? Asignaturas, Matemáticas, todos, ¿vale? Hoy ha
cambiado esto. Muy bien.

Table 3.9: Sample of a Organizational Issues transcription and its correction.

In addition to the data shown in Table 3.2, Table 3.10 depicts a division between gen-
ders in the percentage of time spent on each category or label of the hierarchy tree in
Figure 3.2 in lecture.

Label Name Male % Female %
Theory/Concept 32.8 12.1
Exercise/Problem 12.2 21.0
Example/Real Application 16.6 7.0
Organization Issues 7.9 5.9
Interaction 9.8 23.3
Digression 3.2 0.9
Other 0.7 1.7

Indistinct Chat 0.9 2.8
Pause 2.4 7.0
Multimedia 0.0 0.0

Miscellaneous 13.6 18.4

Table 3.10: Percentage of occurrences of each label in relation to the total number of minutes per
gender.

Finally, we would like to stress that our aim focuses on the first seven labels, each
denoting a different teaching activity deployed by the teacher to create the conditions
for learning, stimulating conceptual thinking, promoting discussion and engaging stu-
dents in critical thinking and problem solving. Ultimately, all lecturers aim to creating
the proper atmosphere that facilitates the information transmission in an interactive en-
vironment.





CHAPTER 4

Text classification

In this chapter we will show the design, development and performance of our classifica-
tion model. Since our model builds on top of XLM-RoBERTa, the first section of this chap-
ter is devoted to explaining the pre-trained multilingual language model XLM-RoBERTa;
i.e., the default characteristics that XLM-RoBERTa brings in and that we will exploit to
desing our classification model. Section 4.2 details the design choices of our proposed
model. At the end of this chapter, we report the results obtained with our model.

4.1 Pre-trained XLM-RoBERTa model

Among recent state-of-the-art NLP models, there is a significant trend for Transformer-
based models as discussed in section 2.2. The vast majority of the work on Transformer-
based models put the focus on monolingual models, mostly on English language, where-
as in our case we need a model trained in Spanish.

Out of the pool of eligible models, XLM-RoBERTa stands out as a cross-lingual model
trained in 100 languages that achieves a performance comparable to monolingual models
in a variety of tasks such as named entity recognition, question answering, sentiment
analysis, natural language inference, etc.

The XLM-RoBERTa model has 12 Transformer layers, each composed of 768 hidden-
state units, 3072 feed-forward hidden-state units and 8 self-attention heads. The model
has approximately 270M parameters and a vocabulary size of 250k tokens.

XLM-RoBERTa uses SentencePiece [22], an unsupervised, fast and easy to train text
tokenizer and detokenizer which does not depend on language-specific pre/postprocess-
ing. Besides it deals with the whitespace problem (tabs, spaces, new lines, etc.) by treating
it as a symbol since some languages like Chinese or Japanese do not use white spaces
to divide words. The SentencePiece tokenizer serves to translate the input text into a
list of numerical identifiers that can be further processed by the model. Specifically, the
tokenizer learns the subwords and assigns them a unique identifier, wherein the most
common words are categorized as a whole subword and the least common words are
split into multiple subwords. Thus, words such as articles, root words, prefixes and suf-
fixes are usually categorized as subwords. For example, the word unknowingly would be
commonly partitioned into subwords like this: [un] [know] [ing] [ly].

The tokenizer also adds some special tokens such as the beginning of sequence token
and end of sequence token at the beginning and ending of the sequence, respectively. If
padding is used, the tokenizer appends a pad token after the end of sequence token until the
length of the segment equals the specified length. The model also receives an attention
mask that indicates which tokens are words and which ones are pad tokens. The attention
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mask is a list of 0’s and 1’s that is used when the model is performing self-attention to
ignore the pad tokens.

The XLM-RoBERTa model is pre-trained on 2.5 TB of clean CommonCrawl data in
100 languages using a combination of Masked Language Modeling and Next Sentence
Prediction:

• Masked Language Modeling (MLM) is a task that consists in filling out blanks in a
sequence. Specifically, given a random token in an input sequence (mask token), a
model predicts (reconstructs) the masked word using the context words surround-
ing the mask token.

• Next Sentence Prediction (NSP) is a technique used during pre-training to model
relationships between sentences. Given a sequence of pairs of text segments as an
input, NSP is used to train a classifier telling whether the second segment of the pair
is a direct successor of the first one or not. Instead of using the beginning of sequence
token, NSP uses a classifier token, which is used when doing sequence classification
(classification of the whole sequence instead of per-token classification). Thus, NSP
trains the model to learn a sequence representation in the embedding of the classifier
token.

4.2 Classification model

In this section we will explain the NN-based model built on top of XLM-RoBERTa to learn
classifying academic transcription segments into the seven classes previously discussed
in chapter 3. In order to use XLM-RoBERTa as a classifier, we need to make some changes
in the tokenization process as well as in the XLM-RoBERTa architecture before training
the model with our dataset.

4.2.1. Tokenization

We apply the tokenization process to a given input transcription segment (sequence)
adding the classifier token used in NSP instead of the beginning of sequence token. As
explained in the above section, when doing sequence classification, the embedding of the
classifier token is a representation of the whole input sequence, thus we use it to classify
the input transcription segment.

We set the maximum sequence length to 512 tokens, which is the maximum length
supported by XLM-RoBERTa, because the longer the sequence the easier to classify a seg-
ment thanks to the larger amounf of context information comprised in it. If the segment
contains fewer than 512 tokens we apply padding. For sequences longer than 512 tokes
we split them using a sliding window with a stride of 0.8 * max_seq_length (410 tokens). All
this is done with the purpose of having all segments of the same size.

Following, we present an illustrative example that shows the tokenization process
depicted in Figure 4.1.

The raw transcription text shown in the upper excerpt of Figure 4.1 is our working
segment. First, the tokenizer divides the whole segment into subwords (the result is
shown in the middle excerpt of Figure 4.1). XLM-RoBERTa’s tokenizer has a vocabulary
of 250.000 subwords learned from 100 languages. Among these subwords, a small part is
reserved to special tokens such as the beginning of sequence token, the padding token, etc.
As we can see in the middle excerpt of Figure 4.1, some words like ’el’, ’dos’ and ’este’
have their own subword while ’divisor’, ’modulación’ and ’ecuación’ are split into multiple
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Raw text:
el timer dos tiene un pre divisor y un post divisor este no se utiliza en la
modulación de ancho de pulso la salida se obtiene de aquí de la serie al

timer dos por tanto en la ecuación no aparece el

Subword division:
’[CLS]’, ’_el’, ’_timer’, ’_dos’, ’_tiene’, ’_un’, ’_pre’, ’_di’, ’visor’, ’_y’, ’_un’,

’_post’, ’_di’, ’visor’, ’_este’, ’_no’, ’_se’, ’_utiliza’, ’_en’, ’_la’, ’_modul’,
’ación’, ’_de’, ’_an’, ’cho’, ’_de’, ’_puls’, ’o’, ’_la’, ’_salida’, ’_se’, ’_ob’,
’tiene’, ’_de’, ’_aquí’, ’_de’, ’_la’, ’_serie’, ’_al’, ’_timer’, ’_dos’, ’_por’,
’_tanto’, ’_en’, ’_la’, ’_e’, ’cu’, ’ación’, ’_no’, ’_aparece’, ’_el’, ’[EOS]’

Token ids:
0, 88, 21991, 655, 5904, 51, 479, 45, 51858, 113, 51, 1305, 45, 51858, 473, 110, 40,
24514, 22, 21, 17055, 4117, 8, 142, 3089, 8, 55111, 31, 21, 114823, 40, 995, 81228,

8, 9877, 8, 21, 6432, 144, 21991, 655, 196, 4104, 22, 21, 28, 1010, 4117, 110,
39426, 88, 2

Figure 4.1: Example of a tokenization process: (upper excerpt) raw transcription text; (middle
excerpt) subword division; (bottom excerpt) identifiers of tokens.

subwords. This happens because, as we explained earlier, SentencePiece learns to assign
a single subword to a common word, and multiple subwords to uncommon words.

We can also observe there are two special tokens, represented as ’[CLS]’ and ’[EOS]’,
which correspond to the classifier token and the ending of sequence token, respectively. The
bottom excerpt of Figure 4.1 shows that each subword has a unique token id, 0 being
the id of the classifier token and 2 the id of the ending of sequence token. Since the length
of the segment is less than 512 tokens, we apply the padding token, whose id is 1, until
completing the specified length. The resulting list of integer-valued ids is the actual input
that XLM-RoBERTa receives.

4.2.2. Tokenized dataset

As we explained in sections 3.4 and 3.5, our dataset is composed of manually labeled
transcriptions obtained from academic lectures. We identified seven relevant classes:
Theory/Concept, Exercise/Problem, Example/Real Application, Organization Issues, Interaction,
Digression and Other.

Table 4.1 shows the composition of our dataset by class or label. For each label, we
report:

• the number of segments,

• the total number of tokens ,

• the average token length of the segments ,

• the maximum length in tokens of a segment.

As we can see in Table 4.1, our dataset is rather imbalanced because some classes like
Theory/Concept or Exercise/Problem are much more frequent than other classes like
Digression or Other. This is reasonable, as it is in line with the nature of the academic
discourse, wherein the largest part of the teacher’s speech is devoted to developing the
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Label Num Segments Total Tokens Avg. Tokens Max Tokens
Theory/Concept 454 115885 255.25 3019
Exercise/Problem 537 77866 145.01 1481
Example/Real Appl. 347 63239 182.24 1845
Organization 260 37083 142.63 1989
Interaction 567 66326 116.98 3878
Digression 118 11857 100.48 647
Other 112 5416 48.36 297
Total 2395 377672 157.69 3878

Table 4.1: Distribution of our data by label. The number of tokens was obtained by using XLM-
Roberta’s tokenizer.

contents of the syllabus of the subject. As a result, the total number of tokens of the most
populated classes is obviously higher.

Looking at the figures in Table 4.1 some conclusions about the composition and struc-
ture of each class can be drawn. For example, we can observe that , token-wise, the Other
class is less than 5% in size than the Theory/Concept class . However, the Other class is
fairly regular as it is mostly composed of relatively short segments. This is indicated by
the lowest value of the maximum number of tokens (297) in a segment and also by the
lowest average number of tokens (48.36). In contrast, the Interaction class is highly irreg-
ular since it contains segments of variable length. If we look at the numbers in Table 4.1,
we can see that Interaction is the class with the largest number of segments (567) and it is
also the class with the longest segment (3878), while this class has about half the number
of tokens of the Theory/Concept class (57.23%), and its average number of tokens is closer
to the less populated classes.

4.2.3. Classification task

We used the pre-trained XLM-RoBERTa model explained in section 4.1 and we added
a classification head on top of the last Transformer layer. In this section, we describe the
architecture of the classification head, its input and its output. We also provide details on
the training process and the libraries employed.

The classification head takes as input the sequence representation (segment) con-
tained in the embedding of the classifier token ([CLS] in Figure 4.1). It consists of a dense
layer of hidden size (768 units) with tanh activation function followed by a dense layer of
seven units (one unit for each label/class associated to one academic activity) with soft-
max activation. The output of the classification head is a list containing the probability
that the input segment belongs to each of the seven classes. We used the Adam algorithm
with weight decay fix as optimizer and categorical cross-entropy as our loss function for
fine-tuning.

Among the libraries and frameworks that were used to carry out our training process,
we highlight two of them:

• HuggingFace’s Transformers library [23] is a popular Python library that offers
state-of-the-art pre-trained NLP models for Pytorch and Tensorflow 2.0. Particu-
larly, we obtained the pre-trained XLM-RoBERTa model, known as xlm-roberta-base,
from the HuggingFace’s Transformers repository.
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• SimpleTransformers [24] is a NLP library built on the HuggingFace’s Transformers
library that helps simplify the usage of Transformer models without compromising
on utility. SimpleTransformers simplifies the usage of HuggingFace’s Transformers
in a similar way as Keras does with Tensorflow.

4.3 Experimental evaluation

In this section we present the implementation details of our classification model, the eval-
uation metrics used to assess its performance and the results obtained as well as a thor-
ough analysis of the results.

4.3.1. Setup configuration

We trained our model with two computers: a Nvidia Titan V and a Nvidia Geforce RTX
3090. Although we used powerful graphics cards, we experienced problems with mem-
ory usage as the model needs many GB of GPU memory. Consequently, we were forced
to restrict our experiments to smaller batch sizes, but we were able to simulate bigger
batch sizes using the gradient accumulation steps hyperparameter, which controls the
number of required steps to update the model weights. Hence, the simulated batch size
is equal to the batch size multiplied by the gradient accumulation steps hyperparameter.
The results we report below were obtained with the Nvidia Geforce RTX 3090.

We used the Weights and Biases framework [25] to tune our hyperparameters according
to the model performance using Bayesian Optimization with the two Nvidia Titan V. Our
final hyperparameters are set as follows:

• a learning rate equal to 0.00005,

• 40 epochs,

• batch size of 8 segments (due to memory constraints),

• gradient accumulation steps of 32 (for a simulated batch size of 256 segments),

• weight decay of 0.0007.

Table 4.2 depicts the composition of the dataset we used for the experimentation. Each
row shows the details of one out of the 27 transcription files. The first three columns
indicate, respectively, the lecturer, the course name and whether the transcription was
manually corrected. The rest of the columns are:

• the number of segments comprised in the transcription file,

• the index number of the first and last segment of the transcript file,

• the dataset is partitioned in 10 equal subsamples for training and testing (see details
in the following section); the last column shows the number of the partition or the
numbers of the two consecutive partitions in which the segments of the file fall in.
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Prof. Course Manually Number Index Partition
reviewed of segments of segments

1 Statistics No 104 0 - 103 1
1 Statistics No 141 104 - 244 1(240) - 2
1 Statistics No 101 245 - 345 2
2 Mathematics No 73 346 - 418 2
2 Mathematics No 141 419 - 559 2(479) - 3
2 Mathematics No 105 560 - 664 3
2 Mathematics No 92 665 - 756 3(718) - 4
3 Oceanographic Physics No 60 757 - 816 4
3 Oceanographic Physics No 84 817 - 900 4
3 Oceanographic Physics No 60 901 - 960 4(958) - 5
4 Networks & Teledetection No 62 961 - 1022 5
4 Networks & Teledetection No 54 1023 - 1076 5
4 Networks & Teledetection No 40 1077 - 1116 5
4 Networks & Teledetection No 71 1117 - 1187 5
5 Microprocessed Systems No 43 1188 - 1230 5(1198) - 6
5 Microprocessed Systems No 64 1231 - 1294 6
5 Microprocessed Systems No 38 1295 - 1332 6
6 Electronic Devices No 110 1333 - 1442 6(1437) - 7
6 Electronic Devices Yes 110 1443 - 1552 7
6 Electronic Devices Yes 159 1553 - 1711 7(1676) - 8
7 Mathematics Yes 65 1712 - 1776 8
7 Mathematics No 46 1777 - 1822 8
7 Mathematics Yes 119 1823 - 1941 8(1916) - 9
7 Mathematics No 70 1942 - 2011 9
8 Digital Signal Treatment Yes 193 2012 - 2204 9(2156) - 10
8 Digital Signal Treatment Yes 41 2205 - 2245 10
8 Digital Signal Treatment No 149 2246 - 2394 10

Table 4.2: Dataset composition.

4.3.2. Evaluation metrics

We evaluated our classification model with the dataset whose composition is exposed in
Table 4.2 and the setup configuration described in the preceding subsection. The purpose
of the evaluation is to measure the performance of the model when classifying segments
into one of the seven classes: (1) Theory/Concept, (2) Exercise/Problem, (3) Example/Real
Application, (4) Organization issues, (5) Interaction, (6) Digression and (7) Other.

The evaluation metrics we used to assess the performance of the classifier are accuracy,
precision, recall and F-score. Firstly, we will explain the concepts of true positives, false
positives, true negatives and false negatives, which appear in the formulae that model
the metrics:

• True Positives (TP): samples (segments) that are labeled as class X and that the
model correctly classifies into class X.
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• False Positives (FP): samples (segments) that are not labeled as class X but the model
classifies into class X.

• True Negatives (TN): samples (segments) that do not belong to class X and the
model correctly classifies as not belonging to class X.

• False Negatives (FN): samples (segments) that belong to class X but that the model
incorrectly classifies as not belonging to class X.

Now, having N being the total number of samples (2395 in our dataset), and C the
set of classes (C = {Theory/Concept, Exercise/Problem, Example/Real Application, Organiza-
tion issues, Interaction, Digression and Other} and |C| = 7), the accuracy is defined as the
average number of correct predictions over all classes:

accuracy =
1
N ∑

c∈C
TPc

Since the accuracy is a global measure of the performance of the model, it gives us
no information about the performance in each class. Furthermore, accuracy may not
be a good metric in imbalanced datasets, as it may be highly influenced by the correct
classification of the most populated classes in the dataset. In problems where there is
a large class imbalance, a model that predicts the value of the majority class achieves a
high classification accuracy but may not be useful in the problem domain. For example,
let us suppose that we build a dataset with all the samples of Digression (118 samples) and
Interaction (567 samples). Now, say that we train a classifier and it turns out to be heavily
biased and classify all samples as Interaction. This classifier would have an accuracy of
0.827 while it did not learn to identify Digression at all. Because of this reason, we will
also use other metrics such as precision, recall and F-score.

Precision of a class c is defined as the fraction of samples that belong to c among
all the samples the model classifies as belonging to such class (also known as positive
predictive value). Recall (also known as sensitivity) gives us the measure of how our
model correctly identifies True Positives, i.e., the fraction of samples correctly classified
as belonging to class c among all the samples of such class.

precisionc =
TPc

TPc + FPc
recallc =

TPc

TPc + FNc

Finally, F-score of a class is the weighted harmonic mean of the precision and recall of
the class. We report a balanced F-score, meaning that we equally weighted precision and
recall with the following formula:

F-scorec =
2 · precisionc · recallc

precisionc + recallc

By using the F-score, we can evaluate the performance of our model for each class,
as a high F-score requires both high precision and recall, otherwise the resulting F-score
would be greatly affected. For example, a low precision and a high recall values for a
class means the model is unable to correctly identify the samples that belong to the class.
Conversely, a high precision and low recall for a class means that our model is biased
toward that class.
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4.3.3. Results

Table 4.3 shows the results of accuracy obtained with a 10-fold cross-validation (data are
split in 10 folds or partitions). The meaning of each column is as follows:

• first column shows the results without shuffling the data; the original partitions
that result before shuffling the data as shown in Table 4.2,

• the second column shows the results obtained when segments are shuffled random-
ly before splitting them in 10 partitions,

• the last column is the stratify 10-fold cross-validation; i.e, we shuffled the dataset
and divided it into ten partitions ensuring that each fold has the same proportion
of segments of each class.

On each iteration, one partition is taken as as a hold out or test data set and the re-
maining nine partitions as training data set.

Accuracy

Iteration without shuffling with shuffling
with shuffling

+ stratify
1 0.72803 0.74895 0.81250
2 0.72385 0.76151 0.73750
3 0.66109 0.74059 0.74583
4 0.72385 0.76569 0.72083
5 0.69874 0.75314 0.78333
6 0.73222 0.73640 0.79916
7 0.71129 0.74059 0.71548
8 0.68619 0.72803 0.73221
9 0.90795 0.76987 0.74895
10 0.93443 0.67213 0.78242

Average 0.75076 0.74169 0.75782
Variance 0.00772 0.00070 0.00104
Standard Deviation 0.08787 0.02646 0.03225

Table 4.3: Results obtained with 10-fold Cross-Validation with and without shuffling the data,
and using stratify.

An interesting result in Table 4.3 is that the accuracy values of iterations 9 and 10
when using non-shuffled data is ≈ 90%, which are significantly higher than the rest of
accuracy values. The reason for these high values is given by two factors: (1) the manu-
ally reviewed transcriptions and (2) the sensitivity of the model to unseen or rarely seen
courses/professors during the training phase. On the one hand, the quality of the man-
ually reviewed transcriptions is obviously closer to written text, which is the kind of text
XLM-RoBERTa was trained with. On the other hand, the way the segments are distribut-
ed in partitions 9 and 10 implies that there are enough manually reviewed segments of
those courses/professors outside partitions 9 and 10. These factors lead to the observed
increase in accuracy.

To illustrate how the distribution of the segments impacts the performance of the
model, let’s focus on, for example, the ninth iteration. During this iteration, the model is
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trained with partitions 1 to 8 and partition 10, and the model is evaluated with partition
9. The evaluation of the model with partition 9 involves evaluating with (see Table 4.2):

• a small section of a manually reviewed Mathematics transcription from segment
1917 to segment 1941,

• a full class of an automated transcription of Mathematics from segment 1942 to
segment 2011,

• a small section of a manually reviewed class of the course Digital Signal Treatment
from segment 2012 to segment 2156.

During training, the model sees two lectures from the Digital Signal Treatment course,
one of them being manually reviewed, and almost three Mathematics lectures from the
same professor, two of which are manually reviewed. Hence, the training data happen
to be very favourable when evaluating partitions 9 and 10, because they include tran-
scriptions of the same course, same lecturer and same quality as those being evaluated
later.

The worst results without shuffling are obtained when evaluating the model with
partitions 3, 5 and 8. In these evaluations, the model does not see a sufficiently significant
portion of data during training. For example, when evaluating partition 5, the model
does not see any segment belonging to professor 4 or to the Network & Teledetection
course during the training phase.

Comparing the results obtained with and without shuffling, we can see that the av-
erage accuracy drops by around ≈1%. Even though the results without shuffling may
suggest that the model is sensitive to the training data, the results in the second column
of Table 4.3 seem to indicate otherwise. That is, the model turns out not to be as data-
sensitive as the figures in the first column might in principle indicate.

The results obtained with the stratified 10-fold cross-validation are shown in the third
column of Table 4.3. We obtained an average accuracy of 75.78%, with a standard devi-
ation of 3.23% and a variance of 0.104%. We see that the accuracy across iteration varies
between 71% and 81%. Overall, the average accuracy of the stratified cross-validation
is slightly better than those obtained with the without-shuffling strategy, while the vari-
ance and deviation are closer to those of the with-shuffling strategy. This confirms that
a uniform distribution of classes in each fold yields a slightly superior performance over
the other two approaches.

Label Precision Recall F-Score
Theory/Concept 0.713 0.780 0.745
Exercise/Problem 0.741 0.785 0.762
Example/Real Appl. 0.742 0.740 0.742
Organization 0.739 0.805 0.770
Interaction 0.824 0.723 0.770
Digression 0.587 0.486 0.532
Other 0.769 0.685 0.725

Table 4.4: Precision, Recall and F-Score by class.

We also report the values of precision, recall and F-score for each class in Table 4.4.
We can observe that the metrics of the Digression class fall behind the rest of classes. This
can be due to several factors, but we believe this is mainly caused by the low number of
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Figure 4.2: Aggregated Confusion Matrix of 10-fold Cross-Validation with shuffling and stratify1.

samples of this class in our dataset and the difficulty we experienced to correctly label
this class.

It is also noticeable that the precision value of the Interaction class is somewhat higher
than its recall and also higher than the precision of the other classes. This occurs because
the number of False Positives is relatively low compared to that of False Negatives for
this class; that is, the model has some difficulty in identifying the Interaction class.

Figure 4.2 shows the confusion matrix where rows show the true label of the seg-
ments, i.e., the label we manually assigned to the segments, and columns represent the
prediction of our model. The values on the diagonal of the confusion matrix indicate
how many segments are correctly classified for each class, while the rest of the confusion
matrix shows the misclassified segments.

Let us now turn our attention to the False Positives, i.e., the values in the columns of
the confusion matrix. We can see that the majority of high values in the columns other
than the diagonals are concentrated in three classes: Theory/Concept, Example/Real Appli-
cation and Exercise/Problem. We can thus say that our model has a certain bias towards
this group of classes which otherwise is reasonable since these three classes are the main
representatives of the academic discourse of the lecturer and share a substantial part of

1The accuracy reported in the confusion matrix differs from the result reported in Table 4.3 because the
confusion matrix was generated in a different execution under the same conditions, but there is a certain
level of unavoidable randomness that makes it difficult to get the exact same results again.
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their vocabulary. Additionally, more than half of the dataset segments belong to one of
these three classes.

It is also worth mentioning that there is a significant amount of misclassifications be-
tween the Exercise/Problem and Interaction classes. This is due to the fact that Interactions
between student and lecturer typically come up during the solving of problems and ex-
ercises: either a student asking for clarification or the lecturer asking the students.

The values of the Digression row indicates a low recall for this class since the values are
relatively high in relation to the number of samples correctly classified (54). This means
that a large number of False Negatives are found for this class and show the difficulty of
the model to correctly classify segments that are labeled as Digression. This observation
about the Digression class in the confusion matrix is consistent with the value of recall
shown in Table 4.4.

The Other class column reveals a high precision value whereas, as in the case of the
Digression class, the values in the Other row indicate a lower recall value. Interestingly,
the Organization class shows the opposite behaviour: a high recall and a lower precision
value (low values in the row in comparison to the values in the column). This means the
model is pretty successful in correctly classifying many of the segments labeled as Orga-
nization but it also tends to classify as Organization segments that do not actually belong
to this class. The high recall may be explained because the Organization class comprises a
particular vocabulary that distinguishes it from other classes. We will analyze this aspect
in the next chapter.

4.3.4. Conclusions and further improvements

We can conclude that our model obtains satisfactory results despite the low number of
labeled samples for this type of NLP task. We have also observed that:

• the group of academic classes (Theory/Concept, Example/Real Application, Exercise/Prob-
lem) concentrates a large part of the errors because this group of classes makes up
more than half of the dataset and the classes within it share a large part of their
vocabulary among them,

• there is some confusion between the Interaction and Exercise/Problem classes which
happens because many interactions student-lecturer take place during examples or
exercises in class,

• the model achieves good results for the Organization class, probably because this
class has a distinctive vocabulary (dates, grading, etc.) and it was also the easiest
class to identify during labeling.

Lastly, we propose some improvements to increase the performance of our model:

• Increasing the dataset size: as shown in [15] and [17], increasing the amount of data
used for training leads to a noticeable increase in performance. We expect to come
up with an automated segmentation process and use our classification model to
help us augment the dataset.

• Employing a Language Model to correct and spellcheck the automatic transcrip-
tions. Although the quality of the automatic transcriptions is high, we believe that
the model could perform better if we increase the quality of the transcriptions, so
that it approaches the quality of written text,
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• Employing XLM-RoBERTa-large instead of XLM-RoBERTa-base. With the large
version of XLM-RoBERTa, we should obtain a better performance since it outper-
forms the base model at the cost of a more expensive training in terms of memory
consumption and training time.



CHAPTER 5

Human-like Classification

The objective of this additional analysis is to compare the results obtained with the Neu-
ral Network model versus a more human-like classification. The question we want to
answer is "would a person classify a particular segment into the same class as the neural
network model?". The design of the human decision relies on a classification tree that
compares the vocabulary shared by a segment and a teaching activity (class or label).

5.1 Introduction

One first observation is that classes Theory, Exercise and Example share a great deal of
vocabulary as these are the three key teaching activities to attain the informational trans-
mission of the subject. We also saw in the preceding chapter that most of the classifi-
cation errors of the NN model are concentrated on these three classes. Taking into ac-
count that even for a knowledgeable person it would be hard to distinguish among the
three classes, we decided to group them under a single teaching activity. Consequently,
the purpose of the human classification is recognizing a teaching activity among Theory-
Exercise-Example, Organization, Interaction, Digression and Other.

Our objectives in this chapter are:

• creating a vocabulary for each of the five aforementioned teaching activities,

• creating a vocabulary for the segment to classify,

• design a decision tree that that follows a human-like decision process,

• comparing the obtained results with those obtained with the neural network model.

5.2 Creation of a vocabulary

We created a key vocabulary for the five activities (Theory-Exercise-Example, Organization,
Interaction, Digression and Other) as well as a custom vocabulary for Organization and
Interaction. The same process used to create the vocabulary of the teaching activities was
applied to create the vocabulary of a segment.

To create a vocabulary out of a set of segments, we iterate over all the transcriptions
and create a list with the words comprised in them. We used a bag-of-words representa-
tion to create a vocabulary and to avoid repetition of words.

A bag-of-words (BoW) representation is a simplifying strategy used in NLP. In this
model, a text is represented as the bag (multiset) of its words, without taking into account

33
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grammatical structure or the order of terms but retaining multiplicity. We will use the
BoW representation in all the sections described in this chapter. Figure 5.1 is an example
of a bag of words taken from the transcriptions. It shows a word and its number of
occurrences. In this example, the word que appeared 13595 times, the word de 11565
times, etc.

{’que’: 13595, ’de’: 11565, ’la’: 9932, ’el’: 7574, ’y’: 7469, ’a’: 7221, ’es’: 6872,
’en’: 5452, ’no’: 5154, ’lo’: 4846, ’por’: 3709, [...],’incorrectas’: 1, ’dijeras’: 1 }

Figure 5.1: Sample of a bag-of-words.

The problem with the BoW representation is that stopwords appear as the most fre-
quent. Stopwords are words which do not contain enough importance to determine the
key terms of the vocabulary. Since we do not want these words to take up space in our
bag-of-words, we can remove them from our list. To this end, we opted to use the list of
stopwords of the Natural Language Toolkit (NLTK) Python library [26] (NLTK further on).

Once stopwords are removed from the vocabulary, another problem arises: many
words have the same root or stem but are counted as completely different words. To
have a more accurate picture of the semantics of the text, we need to avoid this.

One approach to group words according to their root is to use a stemming algorithm.
Stemming consists in removing prefixes and suffixes so that words with the same origin
are counted as having the same root: e.g., words that end in -ing, -ly or -ed. This seems
to be a better approach, but it still has some drawbacks. Two main disadvantages of this
method can be identified: (1) stemming does not produce actual words as an outcome,
which can cause uncertainty, for instance, if we stem the words university and universe
they will, most likely, be stemmed into univers although they have a different meaning;
and (2) many verbs have irregular conjugations, for example, the verb to be can be con-
jugated into I am, you are, she is etc which will not be stemmed into the same root.

A better approach to avoid this problem is to use lemmatization. Lemmatization
follows a similar process to stemming but it involves resolving words into their lemmas,
which are actual root words. In the previous example, using lemmatization with she is
would result in the lemmas she and be which is what we are looking for.

5.2.1. Identification of relevant terms

As a first approach, our idea was to retrieve the most frequent vocabulary for each ac-
tivity or label. That is, to create a bag-of-words of the vocabulary by applying the tech-
niques mentioned in the preceding section and ordering the words from higher to lower
frequency of appearance. However the Most Frequent Vocabulary has an important draw-
back, there are many frequent words that are not actually useful to identify which label
the bag refers to. Some example of these words are si, vale, aquí or entonces etc. In
order to identify the most characteristic terms of each activity we relied upon the Term
Frequency - Inverse Document Frequency (TF-IDF). This metric assesses the relevance
of a term in a given document. The formula for TF-IDF is:

wij = t fij × log
(

N
d fi

)
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where t fij represents the number of occurrences of the term i in document j, d fi is the
number of documents containing the term i and N is the total number of documents.

The formula tells us that a term has a greater score in a given document if it appears
frequently in such a document and/or it appears in few other documents. Equivalently,
a term is penalized if it appears in few documents or very rarely in a document.

After applying all the steps previously described, we have a list of the most represen-
tative terms for each label. Nevertheless, many terms that appear last in the bag-of-words
are not very representative, so we decided to only include the words with a TF-IDF value
over 0.3. This threshold was determined because it fitted at least 75% of the words in
each bag.

5.3 Decision tree using common words segment-label

We manually designed a binary decision tree by defining the steps a person would follow
at the time of classifying a transcription segment. The most common interpretation of a
human classification is to first identify the features or questions most discriminating that
help rule out a class. Following this principle, we built the binary decision tree shown in
Figure 5.2.

The tree is composed of four query nodes and five leaf nodes, each representing one
teaching activity. The queries drive a segment down the tree until a leaf node is reached.

As commented above, we selected questions that discriminate among classes as soon
as possible. To answer those questions we compared the vocabulary of the segment with
the vocabulary of the classes involved in the query. The tree was designed by students
and university lecturers with experience in lecture activity recognition even if none of
them was familiar with the subjects of the recordings.

Organization
Issue

Does it have
names in its
vocabulary?

Does it share more
vocabulary with

Digression?

Digression OtherInteraction
Does it share more
vocabulary with the

Organization
vocabulary?

Theory,
Example or

Exercise

Does it share more
vocabulary with the
Academic labels?

(Syllabus + Interaction)

Yes No

Yes No

Yes No

Yes No

Figure 5.2: Classification Tree.
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The principle that guided the selection of questions was that of first discarding the
labels that are easier to identify on each step. Hence, firstly we split the labels that are
the most different to the rest, that is, those that are academical based (the labels under
Syllabus and Interaction) from those which are not (Digression and Other). Also, these two
latter labels are the ones that have a lower recall value, as was shown in Table 4.4, and
are thereby easier to identify.

Under the non-academic branch, we simply compared each of the vocabularies and
classified under the greatest share among them. On the opposite branch, we split be-
tween Interaction and the rest of activities. Even though Interaction shares a great deal of
vocabulary with the Theory, Example or Exercise label, interactions typically include names
when lecturers refer to students, so we included this as a criterion. Moreover, if the an-
swer to such question is negative, the last decision is between Organizational Issues and
Theory, Example or Exercise labels. We created a custom vocabulary for the Organization
Issues class in addition to its own vocabulary. This is because many words that determine
if a segment is part of this label are given by this vocabulary, which includes names of
weekdays, names of months and many more, you may see a part of it in Figure 5.3.

[’lunes’, ’martes’, ... , ’noviembre’, ’diciembre’, ’examen’, ’semana’, ’día’,
’mes’, ’año’, ’curso’, ’practica’, ’examen’, ’horario’, ’semana’, ’mes’, ’año’,
’curso’, ’examen’, ’ejercicio’, ’subir’]

Figure 5.3: Custom Vocabulary for the Organization label.

As for the Interaction label vocabulary we created a list of the 100 most common male
and female names (100 male and 100 female). Figure 5.4 depicts a section of the names
used in this vocabulary.

[’hugo’, ’lucas’, ’martin’, ’daniel’, ’pablo’, ’mateo’, ’alejandro’, ’leo’, ’al-
varo’,’manuel’, ’lucia’, ’sofia’, ’martina’, ’maria’, ’paula’, ’julia’, ’emma’, ’va-
leria’, ’daniela’,’alba’, ’adrian’, ..., ’marco’, ’javier’, ’marcos’, ’izan’, ’anto-
nio’, ’alex’, ’miguel’, ’carlos’, ’juan’, ’gonzalo’]

Figure 5.4: Vocabulary for the Interaction label.

The results we obtained when using the tree in Figure 5.2 to classify transcription seg-
ments are shown in Figure 5.5. An initial observation can be made: in a similar fashion as
with the NN model, Organization, Interaction, Digression and Other share common vocab-
ulary with Theory, Example or Exercise, resulting several segments in these classes being
classified in the common bulk of the academic discourse.

The overall accuracy of this experiment is an acceptable value of 60.3% (see caption
label of Figure 5.5). In this experiment, we compared the segment’s vocabulary to the
label’s vocabulary word by word, completely ignoring the context of the rest of the sen-
tence or phrase. We then decided to go further and attempt to improve this result. The
new idea lies in using pairs of consecutive words (we will call them bi-terms) instead of
single words. We compared the bi-terms of the segments to the bi-terms of the activities
and retrieved the confusion matrix shown in Figure 5.6. We can observe the outcome is
much higher, obtaining a 92.7% accuracy.
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Figure 5.5: Confusion Matrix of Human-like Classification.

A deeper analysis of the confusion matrix in Figure 5.6 reveals that, although the
Theory, Example, Exercise column values are still high (low precision in the identification
of transcription segments of these activities because of the many False Positives), it is
drastically lower than in Figure 5.5, which is also the main reason for the overall accuracy
increase. Moreover, the Digression and Other classes are nearly perfectly classified except
for the False Positives of the Theory, Example, Exercise class. The class Organization still
displays some noticeable confusion with Interaction because students tend to ask many
questions when a lecturer talks about organization issues. Nevertheless, we believe this
result is within an error tolerance that indicates that the tree is not "over-fitted".

Finally, we wondered if a larger term sequence would result in a higher accuracy
value. We run a third experiment using three consecutive terms (tri-term) but the final
accuracy result dropped to 89%.
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Figure 5.6: Confusion Matrix of Human-like Classification using bi-term.

5.4 Comparing the NN and Decision Tree methods

Ultimately, the aim of this chapter is to check whether a human-like classification returns
better results or not that those obtained with the NN classification model.

Comparing the outcomes of the NN model in Figure 4.2 and the results of the decision
tree in Figure 5.6 one can conclude that a human-like classification vastly outperforms the
neural network model given that using bi-terms on the binary tree reports an accuracy
of 92% vs 74% obtained with the NN model. However, this first glance may lead us to
error. The neural network classifier struggles mostly when distinguishing between the
Theory, Example and Exercise classes. Therefore, a fair comparison should consider these
three labels as a single one too. Figure 5.7 shows the equivalent confusion matrix after
applying the grouping correction.

As we can observe, the accuracy value increases by over 10 percentage points. Even if
this is a significant improvement, vastly lower than the human-like bi-term classification.
Nevertheless, with this method we obtain a higher accuracy score than with the Human-
like approach using uni-terms. We obtain an only slightly lower result than when using
the Human-like approach with tri-terms.

Our conclusion is that that a more human-like classification is capable of distinguish-
ing better between Interaction and Theory, Exercise and Example activities since the largest
difference between both models is caused by the misclassification error between these
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Figure 5.7: Equivalent Confusion Matrix of NN classification.

two classes. In addition, we can see that the neural network classifier is generally mak-
ing more mistakes because of all the classes show some degree of misclassification, unlike
the human-like classifier that has 0 or negligible values on many cells outside the main
diagonal.





CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

The work developed in this project has relation with many hot research topics and cross-
cutting themes: corpus linguistics, genre studies theories, classification techniques, Neu-
ral Networks, Transformer models, decision trees and most importantly techniques for
analyzing teaching discourse.

The main conclusions of this work are:

• We revised several works that investigate the genre of academic lecture as one of
the most popular ways of instruction in universities in order to come up with the
hierarchy of teaching activities presented in chapter 3. The seven final classes we
worked with throughout the text were also the result of a thorough evaluation of
multiple classroom audio and video recordings of the VIDEOAPUNTES repository.

• In addition, we built a recognition system for such teaching activities through auto-
matic transcriptions of lecture recordings. Such system is built using a transformer
based model that enabled us classify based on sentence content. After pondering
various options, we chose XLM-RoBERTa-large but we came to realise it was too
large for our hardware restrictions.

• Finally, we analyzed the difference between an automatic recognition system to an
experienced human approach of the same classification method. We used a binary
classification tree comparing the segment’s vocabulary to the labels’ vocabulary
using bag-of-word representations to perform such task. Surprisingly, we obtained
better results using the human-like classification.

We hope this technology will improve the experience of students when watching pre-
recorded lectures and enable students to learn where, when they want and, more impor-
tantly, at a pace of their choosing.

6.2 Future Work

As mentioned in chapter 1, the PROMETEO project will continue to develop features for
this line of research. A favorable improvement that may be added is to introduce audio
and/or video recordings of the lectures to the neural network so other techniques like
pattern mining methods and logic-based and planning-based methods can be applied
to recognise patterns in lecturers behaviour.
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As mentioned in subsection 4.3.4, one of the major improvements we can apply is to
train the neural network with a larger, more balanced dataset. Although it is hard for
text, it probably is advisable to do some data augmentation to increase the dataset size.

It would also be interesting to employing a Language Model to correct and spellcheck
the automatic transcriptions. We believe that a source of error in our method is the exis-
tence of mistakes in transcription of the audio.

Finally, a large improvement would be to use XLM-RoBERTa large as it outperform-
s the base model. However, the tradeoff between accuracy and resource consumption
(time and memory) has to be taken into account.

6.3 Applied Knowledge

This project has applied a great deal of topics related to the subjects learnt throughout
the Computer Science degree. I have used topics related with courses like IIP (Introduc-
ción a la Programación y la Informática) course and PRG (Programación) course in terms
of basic coding and programming. In chapter 4 I have applied knowledge learnt in the
SIN (Sistemas Inteligentes) and APR (Aprendizaje Automático) courses in the training
of a neural network. Lastly, in chapter 5 the SAR (Sistemas de Almacenamiento y Re-
cuperación de Información) course has been very present in creating vocabularies and
applying metrics such as the TF-IDF.
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