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Abstract

Given an autohomeomorphism on an ordered topological space or its
subspace, we show that it is sometimes possible to introduce a new
topology-compatible order on that space so that the same map is mono-
tonic with respect to the new ordering. We note that the existence of
such a re-ordering for a given map is equivalent to the map being con-
jugate (topologically equivalent) to a monotonic map on some homeo-
morphic ordered space. We observe that the latter cannot always be
chosen to be order-isomorphic to the original space. Also, we identify
other routes that may lead to similar affirmative statements for other
classes of spaces and maps.
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1. Introduction

It is one of classical problems of various areas of topology if a given con-
tinuous map on a topological space with perhaps a richer structure has nice
properties related to this rich structure. For clarity of exposition, let us agree on
terminology. An autohomeomorphism on a topological space X is any home-
omorphism of X onto itself. An open interval with end points a and b of a
linearly ordered set L will be denoted by (a, b)L. If it is clear what ordered set
is under consideration, we simply write (a, b). The same concerns other types
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of intervals. Linearly ordered topological spaces are abbreviated as LOTS and
their subspaces as GO-spaces. We will mostly be concerned with GO-spaces.
It is due to Čech ([4]) that a Hausdorff space X is a GO-space if and only
if a family of convex sets with respect to some ordering on X is a basis for
the topology of X . Given a GO-space X , an order ≺ on X is said to be GO-
compatible if some collection of ≺-convex subsets of 〈X,≺〉 is a basis for the
topology of X . Note that if X is a LOTS, a GO-compatible order on X need
not witness the fact that X is a LOTS. Some of our attention will be directed
at topological groups. Recall that G is a topological group if it is a topological
space with a group operation · such that both · and the operation of taking
the inverse (inversion) are continuous with respect to the topology of G. If G
is Abelian and a ∈ G, the map g 7→ ag is called a shift. We will be concerned
with the following general problem.

Problem 1.1. Let X be a GO-space and let f be an autohomeomorphism on
X. What conditions on X and/or f guarantee that X has a GO-compatible
ordering with respect to which f is monotonic?

Since monotonicity is an order-dependent concept, we will specify with re-
spect to which ordering a map is monotonic. If no clarification is given, the
assumed order is the original one and should be clear from the context. Since
our discussion will be around Problem 1.1, we will isolate the target property
into a definition.

Definition 1.2. An autohomeomorphism f on a GO-space X is potentially
monotonic if there exists a GO-compatible order on X with respect to which
f is monotonic.

Definition 1.2 is equivalent to the following definition:

Definition 1.3 (Equivalent to 1.2). An autohomeomorphism f on a GO-space
X is potentially monotonic if there exists a GO-space Y , a homeomorphism
h : X → Y , and a monotonic autohomeomorphism m on Y such that f =
h−1 ◦m ◦ h.

To see why these two definitions are equivalent, let f be an autohomeomor-
phism on a GO-space X . Assume f is potentially monotonic by Definition
1.2. Fix a GO-compatible order ≺ on X with respect to which X is mono-
tonic. Put Y = 〈X,≺〉, h = idX (the identity map), and m = f . Clearly,
f = id−1

X ◦ m ◦ idX . Hence, f is potentially monotonic with respect to Def-
inition 1.3. We now assume that f is potentially monotonic with respect to
Definition 1.3. Fix Y, f,m as in the definition. The order on Y induces an
order ≺ on X as follows: a ≺ b if and only if h(a) < h(b). Since h is a homeo-
morphism, ≺ is compatible with the GO-topology of X . Next, let us show that
f is ≺-monotonic. We have a ≺ b is equivalent to h(a) < h(b). By the choice
of m, the latter is equivalent to m◦h(a) < m◦h(b). By the definition of ≺, the
latter is equivalent to h−1 ◦m ◦ h(a) ≺ h−1 ◦m ◦ h(b). Since f = h−1 ◦m ◦ h,
we conclude that f(a) ≺ f(b).
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One may wonder if the property in Definition 1.2 is equivalent to the prop-
erty of being topologically equivalent to a monotonic map with respect to the
existing order. Recall that homeomorphisms f, g : X → X are topologically
equivalent (or conjugate) if there exists a homeomorphism t : X → X such
that t ◦ f = g ◦ t. A supported explanation will be given later in Remark
2.9 that a map can be potentially monotonic but not topologically equivalent
to a monotonic map (with respect to the existing order). It is clear, how-
ever, from Definition 1.3 that a map topologically equivalent to a monotonic
map is potentially monotonic. In our arguments, given a monotonic function
f on a GO-space L and an x ∈ L, we will make a frequent use of the set
{fn(x) : n ∈ Z}. In literature, similarly defined sets are often referred to as the
orbit of x under f . We will also refer to this set as the f -orbit of x. Similarly,
the f -orbit of a set A ⊂ X is the collection {fn(A) : n ∈ Z}. Recall that an
indexed family {Si : i ∈ I} of subsets of a space X is called discrete if any point
x ∈ X has a neighborhood U such that |{i ∈ I : Si ∩ U 6= ∅}| ≤ 1. By looking
at the behavior of monotonic maps on the reals, we quickly observe that the
orbit of each point under such maps exhibits very strong properties. Namely,
the following holds.

Proposition 1.4. Let f be a fixed-point free monotonic autohomeomorphism
on a GO-space L and x ∈ L. Then there exists an open neighborhood I of x
such that the family {fn(I) : n ∈ Z} is discrete.

Proof. Without loss of generality, we may assume that f is strictly increasing.
To avoid repetition, we next isolate a useful statement into a claim:

Claim. S = {fn({x}) : n ∈ Z} is a discrete family of sets for any x ∈ L.

To prove the claim, we first observe that the elements of S are distinct sin-
gletons. Indeed, by strict monotonicity, fn(x) 6= fm(x) for distinct integers n
and m.Therefore it suffices to show that S has no limit points. Assume the
contrary and let y be a limit point for S. By monotonicity, lim

n→∞

fn(x) = y

or lim
n→∞

f−n(x) = y. By continuity, f(y) = y, contradicting the fact that f is

fixed-point free. The claim is proved.
Fix x ∈ L. If x is isolated, then I = {x} is as desired by Claim. Assume now

that x is not isolated. Since f is an increasing homeomorphism, the intervals
(x, f(x)) and (f−1(x), x) are not empty. Pick and fix a ∈ (f−1(x), x). Since
f is strictly increasing, f(a) ∈ (x, f(x)). Let I be an open neighborhood of
x such that the closure of I is a subset of (a, f(a)). Let us show that I is as
desired. Fix y ∈ L. We need to find an open neighborhood U of y that meets
fn(I) for at most one n ∈ Z. We have three cases.

Case (y ∈ (fn(a), fn+1(a)) for some integer n): By monotonicity of f , the

interval (fn(a), fn+1(a)) contains fn(I) and misses fm(I) for every
other m. Therefore, U = (fn(a), fn+1(a)) is as desired.

Case (y = fn(a) for some integer n): Then (fn−1(a), fn+1(a)) contains y

and meets fm(I) only for m = n− 1 and m = n. Since the closure of I
is in (a, f(a)), we conclude that fn(a) is not in the closure of fn−1(I) or
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fn(I). Hence, there exists an neighborhood U of y that misses fm(I)
for any m.

Case (y 6∈ [fn(a), fn+1(a)] for any integer n): If y is not in the closure of
⋃

n[f
n(a), fn+1(a)], then some neighborhood of y misses [fn(a), fn+1(a)]

for any n. Assume y is in the closure of
⋃

n[f
n(a), fn+1(a)]. By the

case’s condition, y must be a limit point for {fn({a}) : n ∈ Z}, which
is impossible by Claim.

Since we exhausted all cases, the proof is complete. �

We will next isolate the necessary condition identified in Proposition 1.4 into
a property.

Definition 1.5. Let f : X → X be a map and A ⊂ X . The f -orbit of A is
strongly discrete if there exists an open neighborhood U of A such that the
family {fn(U) : n ∈ Z} is discrete. The f -orbit of x ∈ X is strongly discrete if
the f -orbit of {x} is strongly discrete.

In this note we will present partial results addressing Problem 1.1. At the
end of our study we will identify a few questions that may have a good chance
for an affirmative resolution.

In notation and terminology we will follow [3]. In particular, if ≺ is an order
on L and A,B ⊂ L, by A ≺ B we denote the fact that a ≺ b for any a ∈ A and
b ∈ B.

2. Study

One may wonder if our introduction of the concepts of strongly discrete or-
bits is really necessary. Can we use the requirement of being ”period-point
free” instead? The next example shows that a periodic-point free autohomeo-
morphism even on a nice space need not have strongly discrete orbits.

Example 2.1. There exist a periodic-point free autohomeomorphism f of the
space of rationals Q and a point q ∈ Q such that the f -orbit of q is not strongly
discrete.

Proof. Example [1, Example 2.5 ] provides a construction of a fixed point au-
tohomeomorphism f on the rationals that satisfies the hypothesis of Lemma
[1, Lemma 2.4]. For convenience, the cited hypotheses is copied next:

Hypothesis of Lemma [1, Lemma 2.4]: ”Suppose f : Q → Q is not an iden-

tity map and p ∈ Q satisfy the following property:

(*) ∀n > 0∃m > 0 such that fm+1((p−1/n, p+1/n)Q) meets f−m((p−1/n, p+
1/n)Q).”

Clearly an f that satisfies the above hypothesis fails having a strong f -orbit
at p. �

For our next affirmative result we need a technical statement that incorpo-
rates our general strategy for showing that a map is potentially monotonic.
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Lemma 2.2. Let L be a GO-space and f : L → L an autohomeomorphism.
Suppose that O is a collection of clopen subsets of L with the following proper-
ties:

(1) The f -orbit of each O ∈ O is strongly discrete.
(2) fn(O) ∩ fm(O′) = ∅ for distinct O,O′ ∈ O and n,m ∈ Z.
(3) {fn(O) : n ∈ Z, O ∈ O} is a cover of L .

Then there exists a GO-compatible order ≺ on L with respect to which f is
strictly increasing.

Proof. By < we denote some ordering with respect to which L is a generalized
ordered space. Enumerate elements of O as {Oα : α < |O|}. We will define ≺
in three stages.

Stage 1: For each O ∈ O and n ∈ ω \ {0}, define ≺ on fn(O) and f−n(O)
recursively as follows:
Step 0: Put ≺ |O =< |O.
Assumption: Assume that ≺ is defined on fk(O) and on f−k(O) for

all k = 0, 1, ..., n− 1.
Step n: If x, y ∈ fn(O), put x ≺ y if and only if f−1(x) ≺ f−1(y).

This is well defined since f−1(x), f−1(y) are in fn−1(O) and ≺ is
defined on fn−1(O) by assumption. Similarly, if x, y ∈ f−n(O),
put x ≺ y if and only if f(x) ≺ f(y).

Stage 2: For any O ∈ O and any n,m ∈ Z such that n < m, put fn(O) ≺
fm(O).

Stage 3: For any α < β < |O| and any n,m ∈ Z, put fn(Oα) ≺ fm(Oβ).

The next two claims show that ≺ is as desired.

Claim 1. ≺ is compatible with the GO-topology of L.

Proof of Claim. To prove the claim, for each O ∈ O, let TO be the collection of
all <-convex open subsets of L that are subsets of O. Since < coincides with
≺ one every O ∈ O, we conclude that every element in TO is ≺-convex. By
the constructions at Stage 1, fn(O) is ≺-convex. Since f is an autohomeomor-
phism, the collection {fn(I) : I ∈ TO, O ∈ O} is a basis for the topology of L
and consists of open ≺-convex sets. The claim is proved.

Claim 2. f is increasing with respect to ≺.

Proof of Claim. Pick distinct x and y. If x, y ∈
⋃

n f
n(O) for some O ∈ O,

then apply Stages 1 and 2. Otherwise, apply Stage 3. �

Remark to Lemma 2.2. Note that if 〈L,<〉 is a LOTS and each O in the
argument of the lemma has both extremities or each O has neither extremity,
then 〈L,≺〉 is a LOTS too.

The converse of Lemma 2.2 for fixed-point free autohomeomorphisms on
zero-dimensional GO-spaces holds too (Lemma 2.4). To prove the converse, we
need the following quite technical statement. Recall that given a continuous
self-map f : X → X , a closed set A ⊂ X is an f -color if A ∩ f(A) = ∅. For
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a review of major results on colors of continuous maps, we refer the reader to
[6].

Proposition 2.3. Let L be a zero-dimensional GO-space, f : L → L a fixed-
point free monotonic homeomorphism, and x ∈ L. Then there exists a maximal
convex clopen set I ⊂ L containing x such that the following hold:

(1)
⋃

n∈Z f
n(I) is clopen and convex.

(2) fn(I) ∩ fm(I) = ∅ for any distinct integers n and m.
(3) fn(I) is a maximal clopen convex f -color for any n ∈ Z.

Proof. We may assume that f is strictly increasing. Let dL be the largest
ordered compactification of L. That is, if A and B are clopen subsets of L with
the properties that A < B and A∪B = L, then cldL(A) and cldL(B) are clopen
as well. Therefore, dL is zero-dimensional too, and f continuously extends to
f̃ : dL → dL. The map f is an autohomeomorphism too and is increasing but
not necessarily strictly.

Since dL is a zero-dimensional compact LOTS, any neighborhood of x con-
tains a ∈ dL such that a is the right member of a gap and a ≤dL x. Since
f̃ does not fix x we can select such an a ∈ dL with an additional property
that f̃(a) >dL x. Put I = [a, f̃(a))L, where the right-hand side is an abbrevi-

ation for [a, f̃(a))dL ∩ L. Let us show that I is as desired. By monotonicity,

{fn(I) : n ∈ Z} = {..., [f̃−1(a), a)L, [a, f̃(a))L, [f̃(a), f̃
2(a))L, ...}. Enlarging

any interval in this sequence would make that interval meet its image. There-
fore, (3) is met. Visual inspection of the sequence is a convincing evidence
that the union

⋃
n f

n(I) is convex. The union is also open as the union of
open sets. Since f is fixed-point free, fn(I)’s form a discrete collection, and

hence, the union is closed. By our choice, fn+1(I) = [f̃n+1(a), f̃n+2(a))L,
which guarantees that (2) is met. �

Lemma 2.4. Let L be a zero-dimensional GO-space and let f : L → L be a
fixed-point free monotonic autohomeomorphism. Then there exists a collection
O of convex clopen subsets of L with the following properties:

(1) The f -orbit of each O ∈ O is strongly discrete.
(2) fn(O) ∩ fm(O′) = ∅ for distinct O,O′ ∈ O and n,m ∈ Z.
(3) {fn(O) : n ∈ Z, O ∈ O} is a cover of L .

Proof. Without loss of generality, we may assume that f is strictly increasing.
We will construct O = {Oα}α recursively. Assume that Oβ is constructed for
each β < α and the following properties hold:

P1:
⋃

n∈Z f
n(Oβ) is clopen and convex.

P2: fn(Oβ) ∩ fm(Oβ) = ∅ for any distinct integers n and m.
P3: fn(Oβ) is a maximal clopen convex f -color for any n ∈ Z.

Note that P1 and P2 imply the following:

P4: The f -orbit of Oβ is strongly discrete.

Construction of Oα: Let Lα = L \
⋃
{fn(Oβ) : β < α, n ∈ Z}. If Lα is empty,

then the recursive construction is complete and O = {Oβ : β < α}. Otherwise,
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we have f(Lα) = f−1(Lα) = Lα. Let us show that Lα is clopen in L. Firstly,
it is closed as the complement of the union of open sets. To show that it is
open, fix x ∈ Lα. Let I be as in Proposition 2.3 for given x, f, L. If x is a limit
point for L\Lα, then it must contain some fn(Oβ) for β < α and n ∈ Z, which
contradicts property P3. Hence, I is an open neighborhood of x contained in
Lα. Since properties (1)-(3) of I in the conclusion of Proposition 2.3 coincide
with the properties P1-P3, we can put Oα = I.

The family O = {Oα}α is as desired by construction. �

Lemmas 2.2 and 2.4 form the following criterion.

Theorem 2.5. Let f be a fixed-point free autohomeomorphism on a zero-
dimensional GO-space X. Then f is potentially monotonic if and only if there
exists a collection O of convex clopen subsets of L with the following properties:

(1) The f -orbit of each O ∈ O is strongly discrete.
(2) fn(O) ∩ fm(O′) = ∅ for distinct O,O′ ∈ O and n,m ∈ Z.
(3) {fn(O) : n ∈ Z, O ∈ O} is a cover of L .

We next put one part (Lemma 2.2) of the above criterion to a good use.

Theorem 2.6. Let X be a zero-dimensional subspace of the reals and let f :
X → X be an autohomeomorphism with strongly discrete orbits at all points.
Then f is potentially monotonic.

Proof. To prove the statement, we will construct a collection O as in the hy-
pothesis of Lemma 2.2. Let x ∈ X be an arbitrary point. Let U be an open
neighborhood of x that witnesses the fact that x has a strongly discrete f -orbit.
Let V be a clopen neighborhood of x that is a subset of U . Clearly, V witnesses
the property too. Since V is its own neighborhood, V has a strongly discrete
f -orbit as well. Therefore, we can fix a countable cover F = {Fn : n ∈ ω} of
X so that each Fi is clopen and has strongly discrete f -orbit.

Step 0: Put O0 = F0.
Assumption: Assume that Ok is defined for k < n, clopen, and has

strongly discrete f -orbit. In addition, assume that
⋃

m∈Z f
m(Oi) misses⋃

m∈Z f
m(Oj), whenever i 6= j and i, j < n.

Step n: Let in be the smallest index such that Fin is not covered by
{fm(Oi) : i < n,m ∈ Z}. Put On = Fin \ ∪{fm(Oi) : i < n,m ∈ Z}.

Construction is complete. The collection O = {On : n ∈ ω} has properties
(1) and (2) in the hypothesys of Lemma 2.2 by construction. To show (3), that
is, the equality X = ∪{fm(Oi) : i ∈ ω,m ∈ Z}, fix any x ∈ X . Since F is a
cover of X , there exists n such that x ∈ Fn. If x is not in fm(Oi) for some
i < n and m ∈ ω, then Fn is the first element in F that meets the construction
requirements at step n. Therefore, x ∈ On. �

Corollary 2.7. Every periodic-point free bijection on Z is potentially mono-
tonic.
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In contrast with Corollary 2.7, we next observe that not every periodic-point
free bijection on Z is topologically equivalent to a monotonic map.

Example 2.8. There exists a periodic-point free bijection on Z that is not
topologically equivalent to a monotonic map.

Proof. First observe that every monotonic bijection on Z is a shift. Therefore,
any bijection on Z that is topologically equivalent to a monotonic map is also
topologically equivalent to a shift. It is observed in [2, Example 1.2] that if a
bijection f on Z has infinitely many points with mutually disjoint orbits, then
such a map is not topologically equivalent to a shift. Thus, any such fixed-
point free map is an example of a potentially monotonic map on Z that is not
topologically equivalent to a monotonic map. �

Remark 2.9. Corollary 2.7 and Example 2.8 imply that the property of be-
ing potentially monotonic does not imply the property of being topologically
equivalent to a monotonic map (with respect to the existing order).

We can strengthen Corollary 2.7 as follows.

Theorem 2.10. Let f be a periodic-point free bijection on Z. Then there exist
an ordering ≺ and a binary operation ⊕ on Z such that Z′ = 〈Z,⊕,≺〉 is a
discrete ordered topological group and f is a shift in Z′.

Proof. Let M be a minimal subset of Z with respect to the property that the
f -orbit of M covers Z.

If |M | = n, enumerate the elements of M by Zn. Clearly, Zn ×l Z is an
ordered discrete topological group with the component-wise addition. Define
a bijection h : Z → Zn ×l Z by letting g(fk(ni)) = (i, k). Since any element
of Z is in the f -orbit of exactly one element of M , the correspondence is well-
defined and is a bijection. Since g is a homeomorphism, we will next abuse
notation and will identify fk(xi) with (i, k). Let us apply f to (i, k). We have
f(fk(xi)) = fk+1(xi), and the latter is identified with (i, k + 1). Therefore, f
is a shift by (0, 1) in Z′.

If M is infinite, enumerate its elements by integers as M = {ni : i ∈ Z}.
Define h : Z → Z ×l Z by letting g(fk(ni)) = (i, k). Argument similar to the
Zn case shows that the ordering on Z induced by h is as desired. �

Note that the above statement does not hold for continuous periodic-point
free bijections on the rationals. Indeed, as shown in [1, Example 2.5] there
exists a continuous periodic-point free bijection on Q with a point with non-
strongly discrete fiber. The mentioned example [1, Example 2.5] is constructed
to satisfy the hypothesis of [1, Lemma 2.4], which is a stronger case of not
having discrete fibers. Nonetheless, the following takes place.

Theorem 2.11. A fixed-point free autohomeomorphism f : Q → Q is poten-
tially monotonic if and only if f is topologically equivalent to a shift.
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Proof. (⇒) Since f is potentially monotonic, there exists a collection O as in
the conclusion of Lemma 2.4. The argument of Theorem 2.3 in [1] shows that
f with such a collection is topologically equivalent to a non-trivial shift.

(⇐) It is proved in [2, Theorem 2.8] that a periodic-point free homeomorphism
h on Q is topologically equivalent to a shift if and only if one can introduce
a group operation ⊕ on Q compatible with the topology of Q so that the
topological group 〈Q,⊕〉 is continuously isomorphic to Q and h is a shift with
respect to new operation. Clearly such an 〈Q,⊕〉 is an ordered topological
group, and hence, any shift is monotonic. Therefore, f is potentially monotonic.

�

Recall that given a continuous selfmap f : X → X , the chromatic number
of f is the least number of f -colors needed to cover X .

Theorem 2.12. Let f be a fixed-point free autohomeomorphism on a zero-
dimensional GO-space L. If f is potentially monotonic, then the chromatic
number of f is 2.

Proof. (⇒) Since the chromatic number of f is a purely topological property
not attached to an order, we may assume that f is strictly monotonic. Let
O be as in the conclusion of 2.4 for the given f and L. Put A = ∪{fn(O) :
n is an even integer, O ∈ O} and B = ∪{fn(O) : n is an odd integer, n ∈ O}.
Clearly, {A,B} is cover of L by colors. �

Theorem 2.12 and Remark 2.9 prompt the following question.

Problem 2.13. Let f be a periodic point free homeomorphism on a zero-
dimensional GO-space L. Let the chromatic number of f be 2. Is f potentially
monotonic?

Theorem 2.6 prompts the following question.

Problem 2.14. Let X be a GO-space and let f : X → X be an autohomeomor-
phism with strongly discrete orbits at all points. Is f potentially monotonic?
What if X is hereditarily paracompact?
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