

Appl. Gen. Topol. 22, no. 1 (2021), 31-46 doi:10.4995/agt.2021.13148 © AGT, UPV, 2021

Further remarks on group-2-groupoids

SEDAT TEMEL

Department of Mathematics, Recep Tayyip Erdogan University, Turkey (sedat.temel@erdogan.edu.tr)

 $Communicated\ by\ E.\ Minguzzi$

Abstract

The aim of this paper is to obtain a group-2-groupoid as a 2-groupoid object in the category of groups and also as a special kind of an internal category in the category of group-groupoids. Corresponding group-2-groupoids, we obtain some categorical structures related to crossed modules and group-groupoids and prove categorical equivalences between them. These results enable us to obtain 2-dimensional notions of group-groupoids.

2010 MSC: 20L05; 18D05; 18D35; 20J15.

KEYWORDS: crossed module; group-groupoid; 2-groupoid.

1. INTRODUCTION

There are several 2-dimensional notions of groupoids such as double groupoids, 2-groupoids, and crossed modules over groupoids. The purpose of this paper is to obtain 2-dimensional notions of group-groupoids which are internal groupoids in the category of groups and widely used under the name of 2-groups.

The term "categorification", which was first used by Louis Crane [13] in the context of mathematical physics, is the process of replacing set-theoretic theorems by category-theoretic concepts. The aim of categorification is to develop a richer case of existing mathematics by replacing sets with categories, functions with functors and equations between functions with natural isomorphisms between functors. In this approach, the categorified version of a group is called a group-groupoid [2, 5]. Group-groupoids, which are also known as \mathcal{G} -groupoids [6] or 2-groups [4], are internal categories (hence internal groupoids) in the

Received 17 February 2020 - Accepted 07 November 2020

category **Gp** of groups [22, 23]. Equivalently, group-groupoids can be thought as group objects in the category **Cat** of small categories [6, 23].

Another useful viewpoint of group-groupoids is to think them as crossed modules over groups. Crossed modules which can be viewed as 2-dimensional groups [7] are widely used in homotopy theory [8], homological algebra [16], and algebraic K-theory [21]. The well-known categorical equivalence between crossed modules and group-groupoids is proved by Brown and Spencer [6]. This equivalence is introduced in [4] by obtaining a group-groupoid as a 2-category with a unique object. Crossed modules, and their higher dimensional analogues, provide algebraic models for homotopy n-types; the group-2-groupoids of this paper in principle provide algebraic models for certain homotopy 3-types.

In the previous paper [1], the notions of a group-2-groupoid were introduced and compared with a corresponding structure related to crossed modules over groups. On the other hand, the main objective of this paper is to obtain the structure of a group-2-groupoid as a 2-groupoid object in the category of groups and also as a special kind of internal category in the category of groupgroupoids. In section 4, we present the notion of crossed modules over groupgroupoids and prove that there is a categorical equivalence between group-2-groupoids and crossed modules over group-groupoids using the categorical equivalence between 2-groupoids and crossed modules over groupoids given in [17]. In section 5, we show that group-2-groupoids are categorically equivalent to special kind of internal categories in the category of crossed modules.

2. Preliminaries

Let \mathcal{C} be a finitely complete category and D_0, D_1 are objects of the ambient category \mathcal{C} . An *internal category* $\mathcal{D} = (D_0, D_1, s, t, \varepsilon, m)$ in \mathcal{C} consists of an object D_0 in \mathcal{C} called the object of objects and an object D_1 in \mathcal{C} called the object of arrows (i.e. morphisms), together with morphisms $s, t: D_1 \to D_0$, $\varepsilon: D_0 \to D_1$ in \mathcal{C} called the source, the target and the identity maps, respectively,

$$D_1 \xrightarrow[t]{\varepsilon} D_0$$

such that $s\varepsilon = t\varepsilon = 1_{D_0}$ and a morphism $m: D_1 \times_{D_0} D_1 \to D_1$ of \mathcal{C} called the composition map (usually expressed as $m(f,g) = g \circ f$) where $D_1 \times_{D_0} D_1$ is the pullback of s, t such that $\varepsilon s(f) \circ f = f = f \circ \varepsilon s(f)$ [22]. An internal groupoid in \mathcal{C} is an internal category with a morphism $\eta: D_1 \to D_1, \ \eta(f) = \overline{f}$ in \mathcal{C} called inverse such that $\overline{f} \circ f = 1_{s(f)}, \ f \circ \overline{f} = 1_{t(f)}.$

We write C(x, y) for all morphisms from x to y where $x, y \in C_0$. If $C(x, y) = \emptyset$ for all $x, y \in C_0$ such that $x \neq y$, then \mathcal{C} is called totally disconnected category.

We introduce the definition of a 2-category as given in [4]. A 2-category $C = (C_0, C_1, C_2)$ consists of a set of objects C_0 , a set of 1-morphisms C_1 , and

Further remarks on group-2-groupoids

a set of 2-morphisms C_2 as follows:

$$x \underbrace{ \bigvee_{q}^{f} y}_{q} y$$

with maps $s: C_1 \to C_0$, s(f) = x, $s_h: C_2 \to C_0$, $s_h(\alpha) = x$, $s_v: C_2 \to C_1$, $s_v(\alpha) = f$, $t: C_1 \to C_0$, t(f) = y, $t_h: C_2 \to C_0$, $t_h(\alpha) = y$, $t_v: C_2 \to C_1$, $t_v(\alpha) = g$, called the source and the target maps, respectively, the composition of 1-morphisms as in an ordinary category, the associative horizontal composition of 2-morphisms $\circ_h: C_2 \times_{C_0} C_2 \to C_2$ as

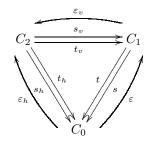
$$x \underbrace{ \underbrace{ \begin{array}{c} f \\ \ } g \end{array}}^{f} y \underbrace{ \begin{array}{c} f_1 \\ \ \\ \ \\ g_1 \end{array}}^{f_1} z = x \underbrace{ \begin{array}{c} f_1 \circ f \\ \ \\ \ \\ \ \\ g_1 \circ g \end{array}}^{f_1 \circ f} z ,$$

where $C_2 \times_{C_0} C_2 = \{(\alpha, \delta) \in C_2 \times C_2 | s_h(\delta) = t_h(\alpha)\}$ and the associative vertical composition of 2-morphisms $\circ_v : C_2 \times_{C_1} C_2 \to C_2$ as

where $C_2 \times_{C_1} C_2 = \{(\alpha, \beta) \in C_2 \times C_2 | s_v(\beta) = t_v(\alpha)\}$ such that satisfying the following interchange rule:

$$(\theta \circ_v \delta) \circ_h (\beta \circ_v \alpha) = (\theta \circ_h \beta) \circ_v (\delta \circ_h \alpha)$$

whenever one side makes sense, and the identity maps $\varepsilon \colon C_0 \to C_1, \varepsilon(x) = 1_x$, $\varepsilon_h \colon C_0 \to C_2, \varepsilon_h(x) = 1_{1_x}$ such that $\alpha \circ_h 1_{1_x} = \alpha = 1_{1_y} \circ_h \alpha$ and $\varepsilon_v \colon C_1 \to C_2$, $\varepsilon_v(f) = 1_f$ such that $\alpha \circ_v 1_f = \alpha = 1_g \circ_v \alpha$. Therefore, the construction of a 2-category $\mathcal{C} = (C_0, C_1, C_2)$ contains compatible category structures $\mathcal{C}_1 = (C_0, C_1, s, t, \varepsilon, \circ), \ \mathcal{C}_2 = (C_0, C_2, s_h, t_h, \varepsilon_h, \circ_h),$ and $\mathcal{C}_3 = (C_1, C_2, s_v, t_v, \varepsilon_v, \circ_v)$ such that the following diagram commutes.



Let \mathcal{C} and \mathcal{C}' be 2-categories. A 2-functor is a map $F: \mathcal{C} \to \mathcal{C}'$ sending each object of \mathcal{C} to an object of \mathcal{C}' , each 1-morphism of \mathcal{C} to 1-morphism of \mathcal{C}' and

2-morphism of \mathcal{C} to 2-morphism of \mathcal{C}' as follows:

such that $F(f_1 \circ f) = F(f_1) \circ F(f)$, $F(\delta \circ_h \alpha) = F(\delta) \circ_h F(\alpha)$, $F(\beta \circ_v \alpha) = F(\beta) \circ_v F(\alpha)$, $F(1_{1_x}) = 1_{F(1_x)} = 1_{1_{F(x)}}$, $F(1_f) = 1_{F(f)}$. Hence 2-categories form a category which is denoted by **2Cat** [24].

A strict 2-groupoid is a 2-category all of whose 1-morphisms are invertible and in which all 2-morphisms are invertible horizontally and vertically.

Let $\mathcal{G}, \mathcal{G}'$ be 2-groupoids. A morphism of 2-groupoids is a 2-functor $F: \mathcal{G} \to \mathcal{G}'$ which preserves the 2-groupoid structures. Thus, 2-groupoids and their morphisms form a category which is denoted by **2Gpd** [24].

A group-groupoid is an internal category in **Gp** [22]. Also, a group-groupoid can be obtained as a group object in the category **Cat** of small categories (or in **Gpd**). A morphism of group-groupoids is a morphism of group-groupoids which preserves group structures. Hence we can define the category of group-groupoids, which is denoted by **2Gp** or **GpGd**. For further details about group-groupoids, see [24, 6, 4].

By a crossed module as defined by Whitehead, it is meant a pair M, N of groups together with an action $\bullet: N \times M \to M$ of groups and a morphism $\partial: M \to N$ of groups such that $\partial(n \bullet m) = n\partial(m)n^{-1}$ and $\partial(m) \bullet m' = mm'm^{-1}$ [28, 29].

Let $K = (M, N, \partial, \bullet)$, $K' = (M', N', \partial', \bullet')$ be crossed modules and $\lambda_1 : N \to N'$, $\lambda_2 : M \to M'$ be morphisms of groups. If λ_1, λ_2 satisfies the conditions $\lambda_1 \partial = \partial' \lambda_2$ and $\lambda_2(n \bullet m) = \lambda_1(n) \bullet' \lambda_2(m)$, then $\langle \lambda_2, \lambda_1 \rangle : K \to K'$ is called *morphism of crossed modules* [6]. Hence crossed modules and their morphisms form a category which we denote by **Cm**.

The following theorem was proved by Brown and Spencer in [6]:

Theorem 2.1. The category of group-groupoids and the category of crossed modules are equivalent.

Let $\mathcal{G} = (X, G)$ and $\mathcal{H} = (X, H)$ be groupoids over the same object set X such that \mathcal{H} is totally disconnected. We recall from [8, 17, 11] that an action

of \mathcal{G} on \mathcal{H} is a partially defined map

$$\bullet : G \times H \to H, \ (g,h) \mapsto g \bullet h$$

such that the following conditions satisfies

- [AG 1] $g \bullet h$ is defined iff t(h) = s(g), and $t(g \bullet h) = t(g)$,
- $[AG 2] (g_2 \circ g_1) \bullet h = g_2 \bullet (g_1 \bullet h),$
- $\begin{array}{ll} [\mathrm{AG}\ 3] & g \bullet (h_2 \circ h_1) = (g \bullet h_2) \circ (g \bullet h_1), \, \mathrm{for}\ h_1, h_2 \in H(x,x) \ \mathrm{and}\ g \in G(x,y), \\ [\mathrm{AG}\ 4] & 1_x \bullet h = h, \ \mathrm{for}\ h \in H(x,x). \end{array}$

From this conditions, it can be easily obtain that $g \bullet 1_x = 1_y$, for $g \in G(x, y)$.

Using this action of \mathcal{G} on \mathcal{H} , we can obtain a groupoid which is called semidirect product of \mathcal{G} and \mathcal{H} denoted by $G \ltimes H$. Let $x \xrightarrow{g} y \xrightarrow{h} y$ are morphisms of \mathcal{G} and \mathcal{H} , respectively, then (g, h) is a morphism as follows

$$x \xrightarrow{(g,h)} y$$

where the structure maps are defined by $s(g,h) = s(g), t(g,h) = t(g), \varepsilon(x) = (1_x, 1_x)$. If

$$x \xrightarrow{g} y \xrightarrow{h} y \xrightarrow{g_1} z \xrightarrow{h_1} z$$

then the composition of morphisms is defined by

$$(g_1, h_1) \circ (g, h) = (g_1 \circ g, h_1 \circ (g_1 \bullet h)).$$

The notion of crossed modules over groupoids is introduced by Brown-Higgins [9, 10] and Brown-Icen [11]. Let $\mathcal{G} = (X, G)$ and $\mathcal{H} = (X, H)$ be groupoids over the same object set X such that \mathcal{H} is totally disconnected. A crossed module $\mathcal{K} = (\mathcal{H}, \mathcal{G}, \partial, \bullet)$ over groupoids consists of a morphism $\partial = (1, \partial) : \mathcal{H} \to \mathcal{G}$ of groupoids which is identity on objects together with an action $\bullet : G \times H \to H$ of groupoids which satisfies $\partial(g \bullet h) = g \circ \partial(h) \circ \overline{g}$ and $\partial(h) \bullet h_1 = h \circ h_1 \circ \overline{h}$, for $h, h_1 \in H(x, x)$ and $g \in G(x, y)$.

Let $\mathcal{K} = (\mathcal{H}, \mathcal{G}, \partial, \bullet)$ and $\mathcal{K}' = (\mathcal{H}', \mathcal{G}', \partial', \bullet')$ be crossed modules over groupoids. A morphism of crossed modules over groupoids is a mapping $\lambda = \langle \lambda_2, \lambda_1, \lambda_0 \rangle \colon \mathcal{K} \to \mathcal{K}'$ which satisfies $\lambda_2 \partial = \partial' \lambda_1$ and $\lambda_1(g \bullet h) = \lambda_2(g) \bullet' \lambda_1(h)$ where $(\lambda_0, \lambda_1) \colon \mathcal{H} \to \mathcal{H}'$ and $(\lambda_0, \lambda_2) \colon \mathcal{G} \to \mathcal{G}'$ are morphisms of groupoids. Hence the category of crossed modules over groupoids can be defined which we denoted by **Cmg**.

The following result was proved by Icen in [17]. Since we need some details in section 4, we give a sketch proof in terms of our notations.

Theorem 2.2. The categories of 2-groupoids and of crossed module over groupoids are equivalent.

Proof. For any 2-groupoid $\mathcal{G} = (G_0, G_1, G_2)$, we know that $\mathcal{B} = (G_0, G_1)$ is a groupoid. Let $A(x) = \{\alpha \in G_2 | s_v(\alpha) = \varepsilon(x)\}$, for $x \in G_0$ and $A = \{A(x)\}_{x \in G_0}$. Then $\mathcal{A} = (G_0, A)$ is a totally disconnected groupoid. Now we define a functor

 $\gamma: \mathbf{2Gpd} \to \mathbf{Cmg}$ as an equivalence of categories such that $\gamma(\mathcal{G}) = (\mathcal{A}, \mathcal{B}, \partial)$ is a crossed module over groupoids with $\partial: \mathcal{A} \to \mathcal{B}, \quad \partial(\alpha) = t_v(\alpha)$ and an action of groupoids such that $f \bullet \alpha = 1_f \circ_h \alpha \circ_h 1_{\overline{f}}$.

$$y\underbrace{\overset{1_y}{\underbrace{\qquad}}_{\partial(f\bullet\alpha)}y}_{\partial(f\bullet\alpha)}y = y\underbrace{\overset{\overline{f}}{\underbrace{\qquad}}_{\overline{f}}x}_{\overline{f}}x\underbrace{\overset{1_x}{\underbrace{\qquad}}_{\partial(\alpha)}x}_{\partial(\alpha)}x\underbrace{\overset{f}{\underbrace{\qquad}}_{f}y}_{f}$$

Clearly $\partial(f \bullet \alpha) = f \circ \partial(\alpha) \circ \overline{f}$ and $\partial(\alpha) \bullet \alpha_1 = \alpha \circ_h \alpha_1 \circ_h \overline{\alpha}^h$, for $f \in G_1(x, y)$ and $\alpha, \alpha_1 \in A(x)$.

Let $F = (F_0, F_1, F_2)$ be a morphism of 2-groupoids. Then $\gamma(F) = \langle F_2 |_A, F_1, F_0 \rangle$ is a morphism of crossed modules over groupoids.

Now we define a functor $\theta: \mathbf{Cmg} \to \mathbf{2Gpd}$ which is an equivalence of categories. Let $\mathcal{K} = (\mathcal{A}, \mathcal{B}, \partial)$ be a crossed module over groupoids $\mathcal{A} = (X, A)$ and $\mathcal{B} = (X, B)$. Then 2-groupoid $\theta(\mathcal{K}) = (X, B, B \ltimes A)$ is a 2-groupoid which is constructed as in the following way. The set of 2-morphisms is the semi-direct product $B \ltimes A = \{(b, a) | b \in B, a \in A, s(a) = t(a) = t(b)\}$. If

 $x \xrightarrow{b} y \xrightarrow{a} y$, then (b,a) is a 2-morphism as follows:

where the horizontal composition of 2-morphisms is defined by

$$(b_1, a_1) \circ_h (b, a) = (b_1 \circ b, a_1 \circ (b_1 \bullet a))$$

when $y \xrightarrow{b_1} z \xrightarrow{a_1} z$ and the vertical composition of 2-morphisms is defined by

$$(\partial(a) \circ b, a_2) \circ_v (b, a) = (b, a_2 \circ a)$$

when $y \xrightarrow{a_2} y$. The source and the target maps are defined by $s_h(b, a) = s(b), s_v(b, a) = b, t_h(b, a) = t(b), t_v(b, a) = \partial(a) \circ b$, respectively, the identity maps are defined by $\varepsilon_h(x) = (1_x, 1_x), \varepsilon_v(b) = (b, 1_y)$, and the inversion maps are defined by $\overline{(b, a)}^v = (\partial(a) \circ b, \overline{a}), \overline{(b, a)}^h = (\overline{b}, \overline{b} \bullet \overline{a}).$

Let $\lambda = \langle \lambda_2, \lambda_1, \lambda_0 \rangle$ be a morphism of crossed modules over groupoids. Then

$$\theta(\lambda) = (\lambda_0, \lambda_2, \lambda_2 \times \lambda_1)$$

is a morphism of 2-groupoids.

A natural equivalence $S: \theta \gamma \to \mathbf{1}_{2\mathbf{Gpd}}$ is defined via the map $S_{\mathcal{G}}: \theta \gamma(\mathcal{G}) \to \mathcal{G}$ which is defined to be identity on objects and on 1-morphisms, on 2-morphisms is defined by $\alpha \mapsto (f, \alpha \circ_h 1_{\overline{f}})$. Clearly $S_{\mathcal{G}}$ is an isomorphism and preserves compositions.

Now, given a crossed module $\mathcal{K} = (\mathcal{A}, \mathcal{B}, \partial, \bullet)$ over groupoids, we define a natural equivalence $T: \mathbf{1}_{\mathbf{Cmg}} \to \gamma \theta$ by a map $T_{\mathcal{K}}: \mathcal{K} \to \gamma \theta(\mathcal{K})$ which is defined to be identity on objects and on B, while on A is defined by $a \mapsto (s(a), a)$. \Box

Further remarks on group-2-groupoids

3. Group-2-groupoids

In [1], a group-2-groupoid is defined as a group object in **2Cat** using similar methods given in [6, 23]. In other words, a group-2-groupoid \mathcal{G} is a small 2-groupoid equipped with the following 2-functors satisfying group axioms, written out as commutative diagrams

- (1) $\mu: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ called product,
- (2) $inv: \mathcal{G} \to \mathcal{G}$ called inverse and
- (3) $id: \{*\} \to \mathcal{G}$ (where $\{*\}$ is a singleton) called unit or identity.

Then, the product of
$$x \underbrace{ \begin{array}{c} a \\ \psi \\ \phi \end{array}}^{a} y$$
 and $x' \underbrace{ \begin{array}{c} a' \\ \psi \\ \alpha' \end{array}}^{a'} y'$ is written by
 $x \cdot x' \underbrace{ \begin{array}{c} a \cdot a' \\ \psi \\ \phi \cdot a' \end{array}}_{b \cdot b'} y \cdot y'$, the inverse of $x \underbrace{ \begin{array}{c} a \\ \psi \\ \phi \end{array}}^{a} y$ is $x^{-1} \underbrace{ \begin{array}{c} a^{-1} \\ \psi \\ \alpha^{-1} \end{array}}_{b^{-1}} y^{-1}$

where $id\{*\} = e \underbrace{\Downarrow_{1_e}}_{1_e} e$. The condition 1 above gives us the following

interchange rules

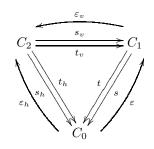
$$(a_1 \circ a) \cdot (a'_1 \circ a') = (a_1 \cdot a'_1) \circ (a \cdot a'),$$

$$(\delta \circ_h \alpha) \cdot (\delta' \circ_h \alpha') = (\delta \cdot \delta') \circ_h (\alpha \alpha'),$$

$$(\beta \circ_v \alpha) \cdot (\beta' \circ_v \alpha') = (\beta \cdot \beta') \circ_v (\alpha \cdot \alpha')$$

whenever compositions are defined. We can obtain from the condition 2 that $(a_1 \circ a)^{-1} = a_1^{-1} \circ a^{-1}, \ (\delta \circ_h \alpha)^{-1} = \delta^{-1} \circ_h \alpha^{-1}, \ (\beta \circ_v \alpha)^{-1} = \beta^{-1} \circ_v \alpha^{-1}, \ 1_x^{-1} = 1_{x^{-1}}, \ 1_{1x}^{-1} = 1_{1x^{-1}} \text{ and } 1_a^{-1} = 1_{a^{-1}}.$ Moreover, the structure of a group-2-groupoid $\mathcal{G} = (G_0, G_1, G_2)$ contains compatible group-groupoids $G = (G_0, G_1), \ G' = (G_0, G_2)$ and $G'' = (G_1, G_2)$ [1].

Equivalently we shall describe a group-2-groupoid as a 2-groupoid object in the category **Gp** of groups. Let C_0, C_1 and C_2 be objects of a finitely complete category \mathcal{C} . If $\mathcal{C}_1 = (C_0, C_1, s, t, \varepsilon, \circ), \mathcal{C}_2 = (C_0, C_2, s_h, t_h, \varepsilon_h, \circ_h)$, and $\mathcal{C}_3 = (C_1, C_2, s_v, t_v, \varepsilon_v, \circ_v)$ are internal categories in \mathcal{C} such that the following diagram commutes whenever the usual interchange rule satisfies between \circ_h and \circ_v , then (C_0, C_1, C_2) is called an internal 2-category in \mathcal{C} .



Appl. Gen. Topol. 22, no. 1 37

Proposition 3.1. A 2-category object in **Gp** is a group-2-groupoid.

Proof. Let $\mathcal{G} = (G_0, G_1, G_2)$ is a 2-category object in **Gp** and μ_0, μ_1, μ_2 be multiplications of groups G_0, G_1, G_2 , respectively. Then, we can define a multiplication $\mu: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ as a 2-functor such that $\mu = \mu_0$ on objects, $\mu = \mu_1$ on 1-morphisms and $\mu = \mu_2$ on 2-morphisms. Similarly, we can define 2-functors $id: \mathbf{1} \to \mathcal{G}$ (where **1** is the terminal object of **2Cat**, i.e. the oneobject discrete 2-category) which picks out an identity object, an identity 1morphism and an identity 2-morphism and $inv: \mathcal{G} \to \mathcal{G}$ picks out inverses for multiplications. Since $\overline{a} = \mathbf{1}_{s(a)}a^{-1}\mathbf{1}_{t(a)}$ from [**6**] and $\overline{\alpha}^v = \mathbf{1}_{s_v(\alpha)}\alpha^{-1}\mathbf{1}_{t_v(\alpha)}$, $\overline{\alpha}^h = \mathbf{1}_{1_{s_h(\alpha)}}\alpha^{-1}\mathbf{1}_{1_{t_h(\alpha)}}$ from [**1**], \mathcal{G} is a 2-groupoid. Then, \mathcal{G} is a group object in **2Cat** and so \mathcal{G} is a group-2-groupoid.

Example 3.2. Every group-groupoid can be thought as a group-2-groupoid in which all 2-morphisms are identities as follows:

$$x\underbrace{\overset{a}{\underbrace{\Downarrow} 1_{a}}}_{a}y \quad \cdot \quad x'\underbrace{\overset{a'}{\underbrace{\Downarrow} 1_{a}'}}_{a'}y' \quad = \quad x\cdot x'\underbrace{\overset{a\cdot a'}{\underbrace{\underbrace{\Downarrow} 1_{a\cdot a'}}}_{a\cdot a'}y\cdot y'$$

It is mentioned that a group-groupoid is a 2-category with a single object [4]. Then, we shall need a different viewpoint on group-groupoids as a special kind of group-2-groupoids:

Proposition 3.3. A group-2-groupoid with a single object is a group-groupoid in which both groups are necessarily abelian.

Proof. In this approach, the composition of 1-morphisms and the horizontal composition of 2-morphisms are defined by multiplications of groups as follows:

$$\star \underbrace{ \begin{array}{c} a \\ b \end{array}}_{b} \star \underbrace{ \begin{array}{c} a' \\ \psi \alpha' \end{array}}_{b'} \star = \star \underbrace{ \begin{array}{c} a' * a \\ \psi \alpha' * \alpha \end{array}}_{b' * b} \star$$

It is proved in [23] that $a' * a = a' \cdot a = a \cdot a'$. Using similar way, we get

$$\alpha' \ast \alpha = (\alpha' \cdot 1_e) \ast (1_e \cdot \alpha) = (\alpha' \ast 1_e) \cdot (1_e \ast \alpha) = \alpha' \cdot \alpha$$

and

$$\alpha' \cdot \alpha = (1_e * \alpha') \cdot (\alpha * 1_e) = (1_e \cdot \alpha) * (\alpha' \cdot 1_e) = \alpha \cdot \alpha'.$$

A third way to understand group-2-groupoids is to view them as double group-groupoids which are defined in [26] (see also [27]). Recall that a double category is a category object internal to **Cat**. Hence the structure of a double category contains four different but compatible category structures as partially

Appl. Gen. Topol. 22, no. 1 38

shown in the following diagram

where D_1^H and D_1^V are called horizontal and vertical edge categories, respectively, and D_2 is called the set of squares. For further details, see [12, 14, 15, 20]. The structure of a 2-category may be regarded as a double category in which all vertical morphisms are identities (or D_2 and D_1^H have the same objects) [12, 20]. Therefore, a group-2-groupoid is a special kind of an internal category in the category **GpGd** of group-groupoids.

4. Crossed modules over group-groupoids

In this section, we work on crossed modules over groupoids by replacing such groupoids with group-groupoids. Using the natural equivalence between crossed modules over groupoids and 2-groupoids given in [17], we will prove that there is a categorical equivalence between group-2-groupoids and crossed modules over group-groupoids.

Definition 4.1. Let $\mathcal{G} = (X, G)$ and $\mathcal{H} = (X, H)$ are group-groupoids over the same object set, \mathcal{H} be totally disconnected and $\mathcal{K} = (\mathcal{H}, \mathcal{G}, \partial)$ be a crossed module over \mathcal{G} and \mathcal{H} such that ∂ is a homomorphism of group-groupoids and the following interchange rule holds:

$$(g \bullet h) \cdot (g' \bullet h') = (g \cdot g') \bullet (h \cdot h')$$

where $g, g' \in G, h, h' \in H$. Then \mathcal{K} is called a crossed module over groupgroupoids.

A morphism of crossed modules over group-groupoids is a morphism of crossed modules of groupoids which preserves group structures. Then, we can construct the category of crossed modules over group-groupoids which we denote by **Cmg***.

Theorem 4.2. The categories Cmg* and Gp2Gd are equivalent.

Proof. The idea of the proof is to show that the functor of 2.2 restricts to an equivalence of categories. Let $\mathcal{A} = (X, A)$ and $\mathcal{B} = (X, B)$ are group-groupoids and $\mathcal{K} = (\mathcal{A}, \mathcal{B}, \partial)$ is a crossed module over \mathcal{A} and \mathcal{B} . Then $\theta(\mathcal{K}) = (X, B, B \ltimes A)$ is a group-2-groupoid via the process of the proof 2.2. The group multiplication of 2-morphisms in $\theta(\mathcal{K})$ is defined by

$$(b,a) \cdot (b',a') = (b \cdot b', a \cdot a').$$

© AGT, UPV, 2021

Appl. Gen. Topol. 22, no. 1 39

We draw such pairs as

$$x \underbrace{\underbrace{\psi(b,a)}_{\partial(a)\circ b}}^{b} y \quad \cdot \quad x' \underbrace{\underbrace{\psi(b',a')}_{\partial(a')\circ b'}}^{b'} y' \quad = \quad x \cdot x' \underbrace{\underbrace{\psi(b,b',a \cdot a')}_{\partial(a \cdot a')\circ (b \cdot b')}}^{b \cdot b'} y \cdot y'$$

Now we will verify that compositions and the group multiplication satisfy the interchange rule.

$$\begin{split} \left[(b_1, a_1) \circ_h (b, a) \right] \cdot \left[(b'_1, a'_1) \circ_h (b', a') \right] &= \left[(b_1 \circ b, a_1 \circ (b_1 \bullet a)) \right] \cdot \left[(b'_1 \circ b', a'_1 \circ (b'_1 \bullet a')) \right] \\ &= \left((b_1 \circ b) \cdot (b'_1 \circ b'), (a_1 \circ (b_1 \bullet a) \cdot (a'_1 \circ (b'_1 \bullet a'))) \right) \\ &= \left((b_1 \cdot b'_1) \circ (b \cdot b'), (a_1 \cdot a'_1) \circ ((b_1 \bullet a) \cdot (b'_1 \bullet a')) \right) \\ &= \left((b_1 \cdot b'_1) \circ (b \cdot b'), (a_1 \cdot a'_1) \circ ((b_1 \cdot b'_1) \bullet (a \cdot a')) \right) \\ &= \left(b_1 \cdot b'_1, a_1 \cdot a'_1 \circ (b \cdot b', a \cdot a') \\ &= \left[(b_1, a_1) \cdot (b'_1, a'_1) \right] \circ_h \left[(b, a) \cdot (b', a') \right] \end{split}$$

and

$$\begin{bmatrix} (\partial(a) \circ b, a_2) \circ_v (b, a) \end{bmatrix} \cdot \begin{bmatrix} (\partial(a') \circ b', a'_2) \circ_v (b', a') \end{bmatrix} = (b, a_2 \circ a) \cdot (b', a'_2 \circ a')$$

$$= (b \cdot b', (a_2 \cdot a'_2) \circ (a \cdot a'))$$

$$= \begin{bmatrix} \partial(a \cdot a') \circ (b \cdot b'), a_2 \cdot a'_2 \end{bmatrix} \circ_v (b \cdot b', a \cdot a')$$

$$= \begin{bmatrix} (\partial(a) \circ b, a_2) \cdot (\partial(a') \circ b', a'_2) \end{bmatrix} \circ_v \begin{bmatrix} (b, a) \cdot (b', a') \end{bmatrix}$$

whenever all above compositions are defined.

Now let $\mathcal{G} = (G_0, G_1, G_2)$ be a group-2-groupoid. Then $\gamma(\mathcal{G})$ is a crossed module over groupoids internal to **Gp**. We will verify that the interchange law holds:

$$(f \bullet \alpha) \cdot (f' \bullet \alpha') = (1_f \circ_h \alpha \circ_h 1_{\overline{f}}) \cdot (1_{f'} \circ_h \alpha' \circ_h 1_{\overline{f'}}) = 1_{f \cdot f'} \circ_h (\alpha \cdot \alpha') \circ_h 1_{\overline{f \cdot f'}} = (f \cdot f') \bullet (\alpha \cdot \alpha')$$

Now we will show that $S_{\mathcal{G}}$ preserves the group multiplication:

$$\begin{aligned} S_{\mathcal{G}}(\alpha \cdot \alpha') &= (f \cdot f', (\alpha \cdot \alpha') \circ_h \mathbf{1}_{\overline{f \cdot f'}}) \\ &= \left(f \cdot f' \ , \ (\alpha \cdot \alpha') \circ_h (\mathbf{1}_{\overline{f}} \cdot \mathbf{1}_{\overline{f'}}) \right) \\ &= \left(f \cdot f' \ , \ (\alpha \circ_h \mathbf{1}_{\overline{f}}) \cdot (\alpha' \circ_h \mathbf{1}_{\overline{f'}}) \right) \\ &= (f, \alpha \circ_h \mathbf{1}_{\overline{f}}) \cdot (f', \alpha' \circ_h \mathbf{1}_{\overline{f'}}) \\ &= S_{\mathcal{G}}(\alpha) \cdot S_{\mathcal{G}}(\alpha') \end{aligned}$$

Other details are straightforward and so are omitted.

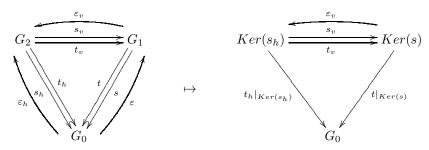
O AGT, UPV, 2021
 O

Appl. Gen. Topol. 22, no. 1 40

Further remarks on group-2-groupoids

5. Group-2-groupoids as internal categories in Cm

A group-2-groupoid can be also thought as a special case of an internal category in the category \mathbf{Cm} of crossed modules (see, e.g., [25] and [26] for more details about internal categories in \mathbf{Cm}). This idea comes from that the structure of a group-2-groupoid contains three compatible group-groupoid structures. Given a group-2-groupoid, we can extract crossed modules as follows:



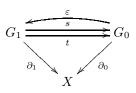
Then, we obtain an internal groupoid in **Cm**

$$(Ker(s_h), G_0) \xrightarrow[t]{\epsilon} (Ker(s), G_0)$$

where the structure maps are defined by $\mathfrak{s} = \langle s_v, 1 \rangle$, $\mathfrak{t} = \langle t_v, 1 \rangle$, $\epsilon = \langle \varepsilon_v, 1 \rangle$ as morphisms of crossed modules. Here $\mathfrak{s}, \mathfrak{t}, \epsilon$ are equivariant maps, since $s_v(x \bullet \alpha) = x \bullet s_v(\alpha)$, $t_v(x \bullet \alpha) = x \bullet t_v(\alpha)$ and $\varepsilon_v(x \bullet f) = x \bullet \varepsilon_v(f)$, for all $x \in G_0$ and $\alpha \in Ker(s_h)$. The actions of G_0 on $Ker(s_h)$ and on Ker(s) are drawn in the following diagram:

We denote the category of such internal groupoids in **Cm** by **IGCm**. We know from [25, 26] that internal categories in the category **Cm** of crossed modules are naturally equivalent to crossed squares which in turn should be viewed as a "crossed module of crossed modules". Hence an object of the category **IGCm** can be viewed as a special kind of crossed square.

Let $\mathfrak{G} = (G_0, G_1, X, \partial_0, \partial_1)$ be an object of **IGCm**. Then, the following diagram is commutative.



Appl. Gen. Topol. 22, no. 1 41

Let $\mathfrak{G} = (G_0, G_1, X, \partial_0, \partial_1), \mathfrak{G}' = (G'_0, G'_1, X', \partial'_0, \partial'_1)$ be objects of **IGCm**. If (λ_1, λ_2) is an endomorphism of the group-groupoid $G = (G_0, G_1)$, and $\langle \lambda_1, \lambda_0 \rangle$, $\langle \lambda_2, \lambda_0 \rangle$ are morphisms of crossed modules $(G_0, X, \partial_0), (G_1, X, \partial_1)$, respectively, then $\lambda = (\lambda_2, \lambda_1, \lambda_0)$ is called a morphism of **IGCm**.

Lemma 5.1. Let $\mathfrak{G} = (G_0, G_1, X, \partial_0, \partial_1)$ be an object of **IGCm**. Then

 $x \bullet (\beta \circ \alpha) = (x \bullet \beta) \circ (x \bullet \alpha)$

for $x \in X, \alpha, \beta \in G_1$ where $s(\beta) = t(\alpha)$.

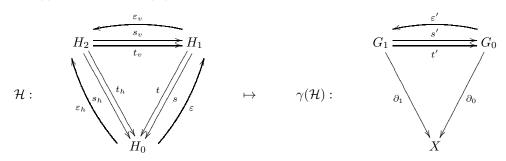
Proof. Let $a \xrightarrow{\alpha} b \xrightarrow{\beta} c$. We know from [6] that $\beta \circ \alpha = \beta \cdot 1_b^{-1} \cdot \alpha$. Then, we get

$$\begin{aligned} x \bullet (\beta \circ \alpha) &= x \bullet (\beta \cdot 1_b^{-1} \cdot \alpha) \\ &= (x \bullet \beta) \cdot (x \bullet 1_b^{-1}) \cdot (x \bullet \alpha) \\ &= (x \bullet \beta) \cdot (x \bullet 1_b)^{-1} \cdot (x \bullet \alpha) \\ &= (x \bullet \beta) \cdot 1_{(x \bullet b)}^{-1} \cdot (x \bullet \alpha) \\ &= (x \bullet \beta) \circ (x \bullet \alpha) \end{aligned}$$

Example 5.2. Every crossed module $\mathcal{K} = (M, N, \partial)$ over groups is an object of **IGCm** with the discrete groupoid of M where $n \bullet 1_m = 1_{n \bullet m}$ and $\partial_1(1_m) = \partial(m)$.

Theorem 5.3. There is an equivalence between IGCm and Gp2Gd.

Proof. A functor $\gamma: \mathbf{Gp2Gd} \to \mathbf{IGCm}$ is defined in the following way. Let $\mathcal{H} = (H_0, H_1, H_2)$ be a group-2-groupoid. Then $\gamma(\mathcal{H}) = (G_0, G_1, X, \partial_0, \partial_1)$ is an object of **IGCm** where $G_0 = Ker(s)$, $G_1 = Ker(s_h)$, $X = H_0$, $\partial_0 = t \Big|_{Ker(s)}$ and $\partial_1 = t_h \Big|_{Ker(s_h)}$



with actions $x \bullet f = 1_x \cdot f \cdot 1_x^{-1}$ and $x \bullet \alpha = 1_{1_x} \cdot \alpha \cdot 1_{1_x}^{-1}$, for $x \in X, f \in G_0, \alpha \in G_1$. Now we will verify that s', t', ε' are equivariant maps.

$$s'(x \bullet \alpha) = s'(1_{1_x} \cdot \alpha \cdot 1_{1_x}^{-1}) = s_v(1_{1_x}) \cdot s_v(\alpha) \cdot s_v(1_{1_x}^{-1}) = 1_x \cdot s_v(\alpha) \cdot 1_x^{-1} = x \bullet s'(\alpha),$$

$$t'(x \bullet \alpha) = t'(1_{1_x} \cdot \alpha \cdot 1_{1_x}^{-1}) = t_v(1_{1_x}) \cdot t_v(\alpha) \cdot t_v(1_{1_x}^{-1}) = 1_x \cdot t_v(\alpha) \cdot 1_x^{-1} = x \bullet t'(\alpha)$$

Appl. Gen. Topol. 22, no. 1 42

 $\begin{aligned} \varepsilon'(x \bullet f) &= \varepsilon'(1_x \cdot f \cdot 1_x^{-1}) = \varepsilon_v(1_x) \cdot \varepsilon_v(f) \cdot \varepsilon_v(1_x^{-1}) = 1_{1_x} \cdot \varepsilon_v(f) \cdot 1_{1_x}^{-1} = x \bullet \varepsilon'(f). \\ \text{Let } F &= (F_0, F_1, F_2) \text{ be a morphism of group-2-groupoids. Then } \gamma(F) = (F_2|_{Ker(s_h)}, F_1|_{Ker(s)}, F_0) \text{ is a morphism of } \mathbf{IGCm}. \end{aligned}$

Next, we define a functor θ : **IGCm** \rightarrow **Gp2Gd** is an equivalence of categories. Given an object $\mathfrak{G} = (G_0, G_1, X, \partial_0, \partial_1)$ of **IGCm**, we can obtain a group-2-groupoid $\theta(\mathfrak{G}) = \mathcal{H} = (H_0, H_1, H_2)$ where $H_0 = X, H_1 = X \ltimes G_0, H_2 =$ $X \ltimes G_1$ as in the following way. Let $a \xrightarrow{\alpha} b$ be a morphism of \mathfrak{G} . Then pairs $x \xrightarrow{(x,a)} \partial_0(a) \cdot x$ and $x \xrightarrow{(x,b)} \partial_0(b) \cdot x$ are obtained as morphisms of the group-groupoid (H_0, H_1) , and a pair $x \xrightarrow{(x,\alpha)} \partial_1(\alpha) \cdot x$ is obtained as a morphism of the group-groupoid (H_0, H_2) . Since

$$\partial_1(\alpha) \cdot x = \partial_0 s(\alpha) \cdot x = \partial_0(a) \cdot x, \quad \partial_1(\alpha) \cdot x = \partial_0 t(\alpha) \cdot x = \partial_0(b) \cdot x,$$

then (x, α) can be considered as a 2-morphism as follows:

Let $a \xrightarrow{\alpha} b \xrightarrow{\beta} c$. Then, the vertical composition of (x, α) and (x, β) is defined by

$$(x,\beta) \circ_v (x,\alpha) = (x,\beta \circ \alpha)$$

where the source and the target maps are defined by $s_v(x, \alpha) = (x, s(\alpha))$ and $t_v(x, \alpha) = (x, t(\alpha))$, respectively, and the identity map is defined by $\varepsilon_v(x, a) = (x, 1_a)$. Given morphisms $a \xrightarrow{\alpha} b$ and $a_1 \xrightarrow{\alpha_1} b_1$, we obtain pairs (x, α) , $(\partial_1(\alpha) \cdot x, \alpha_1)$ and we define their horizontal composite by

$$(\partial_1(\alpha) \cdot x, \alpha_1) \circ_h (x, \alpha) = (x, \alpha_1 \cdot \alpha)$$

where the source and the target maps are defined by $s_h(x, \alpha) = x, t_h(x, \alpha) = \partial_1(\alpha) \cdot x$, respectively, and the identity map is defined by $\varepsilon_h(x) = (x, 1_e)$. Clearly the vertical composition and the horizontal composition satisfy the usual interchange rule. The product of (x, α) and (x', α') is written by

$$(x,\alpha) \cdot (x',\alpha') = (x \cdot x', \alpha \cdot (x \bullet \alpha'))$$

for $a \xrightarrow{\alpha} b$ and $a' \xrightarrow{\alpha'} b'$.

If $\lambda = (\lambda_2, \lambda_1, \lambda_0)$ is a morphism of \mathfrak{G} , then $\theta(\lambda) = (\lambda_0, \lambda_0 \times \lambda_1, \lambda_0 \times \lambda_2)$ is morphism of $\theta(\mathfrak{G})$.

A natural equivalence $S: 1_{\mathbf{Gp2Gd}} \to \theta \gamma$ is defined with a map $S_{\mathcal{G}}: \mathcal{G} \to \theta \gamma(\mathcal{G})$ which is defined such that to be the identity on objects, $S_{\mathcal{G}}(f) =$

③ AGT, UPV, 2021

and

Appl. Gen. Topol. 22, no. 1 43

 $(x, f \cdot 1_x^{-1})$ and $S_{\mathcal{G}}(\alpha) = (x, \alpha \cdot 1_{1_x}^{-1})$ for $f \in G_1, \alpha \in G_2$ where $x = s(f) = s_h(\alpha)$. Clearly $S_{\mathcal{G}}$ is an isomorphism and preserves the group operations and compositions as follows:

$$S_{\mathcal{G}}(\alpha) \cdot S_{\mathcal{G}}(\alpha') = (x, \alpha \cdot 1_{1_x}^{-1}) \cdot (x', \alpha' \cdot 1_{1_{x'}}^{-1})$$

$$= \left(x \cdot x', \alpha \cdot 1_{1_x}^{-1} \cdot (x \bullet (\alpha' \cdot 1_{1_{x'}}^{-1}))\right)$$

$$= \left(x \cdot x', \alpha \cdot 1_{1_x}^{-1} \cdot 1_{1_x} \cdot \alpha' \cdot 1_{1_{x'}}^{-1} \cdot 1_{1_x}^{-1}\right)$$

$$= (x \cdot x', \alpha \cdot \alpha' \cdot 1_{1_{xx'}}^{-1})$$

$$= S_{\mathcal{G}}(\alpha \cdot \alpha')$$

where $s(\alpha) = x$, $s(\alpha') = x'$,

$$S_{\mathcal{G}}(\delta \circ_h \alpha) = S_{\mathcal{G}}(\delta \cdot \mathbf{1}_{1_y}^{-1} \cdot \alpha) = (x, \delta \cdot \mathbf{1}_{1_y}^{-1} \cdot \alpha \cdot \mathbf{1}_{1_x}^{-1}) = (y, \delta \cdot \mathbf{1}_{1_y}^{-1}) \circ_h (x, \alpha \cdot \mathbf{1}_{1_x}^{-1}) = S_{\mathcal{G}}(\delta) \circ_h S_{\mathcal{G}}(\alpha)$$

where $t(\alpha) = s(\delta) = y$ and

$$S_{\mathcal{G}}(\beta) \circ_{v} S_{\mathcal{G}}(\alpha) = (x, \beta \cdot 1_{1x}^{-1}) \circ_{v} (x, \alpha \cdot 1_{1x}^{-1})$$
$$= \left(x, (\beta \cdot 1_{1x}^{-1}) \circ_{v} (\alpha \cdot 1_{1x}^{-1})\right)$$
$$= \left(x, (\beta \circ_{v} \alpha) \cdot (1_{1x}^{-1} \circ_{v} 1_{1x}^{-1})\right)$$
$$= \left(x, (\beta \circ_{v} \alpha) \cdot 1_{1x}^{-1}\right)$$
$$= S_{\mathcal{G}}(\beta \circ_{v} \alpha)$$

where $s_v(\beta) = t_v(\alpha)$.

To define a natural equivalence $T: \mathbf{1}_{\mathbf{IGCm}} \to \gamma \theta$, a map $T_{\mathfrak{G}}$ is defined such that to be identity on X, $T_{\mathfrak{G}}(a) = (e, a)$ for $a \in G_0$ and $T_{\mathfrak{G}}(\alpha) = (e, \alpha)$ for $\alpha \in G_1$. Obviously $T_{\mathfrak{G}}$ is an isomorphism and preserves the composition and the group multiplication as follows:

$$T_{\mathfrak{G}}(\beta \circ \alpha) = (e, \beta \circ \alpha) = (e, \beta) \circ (e, \alpha) = T_{\mathfrak{G}}(\beta) \circ T_{\mathfrak{G}}(\alpha)$$

$$T_{\mathfrak{G}}(\alpha) \cdot T_{\mathfrak{G}}(\alpha') = (e, \alpha) \cdot (e, \alpha') = (e, \alpha \cdot (e \bullet \alpha')) = (e, \alpha \cdot \alpha') = T_{\mathfrak{G}}(\alpha \cdot \alpha').$$

Other details are straightforward and so are omitted.

ACKNOWLEDGEMENTS. We would like to thank the referee for his/her useful remarks and suggestions which help us to improve the paper.

O AGT, UPV, 2021
 O

References

- N. Alemdar and S. Temel, Group-2-groupoids and 2G-crossed modules, Hacet. J. Math. Stat. 48, no. 5 (2019), 1388–1397.
- [2] J. C. Baez and A. D. Lauda, Higher Dimensional Algebra V: 2-Groups, Theory Appl. Categ. 12, no. 14 (2004), 423–491.
- [3] J. Bènabou, Introduction to bicategories, In: Reports of the Midwest Category Seminar. Lecture Notes in Mathematics 47 (1967), 1–77.
- [4] J. C. Baez, A. Baratin, L. Freidel and D. K. Wise, Infinite-Dimensional Representations of 2-Groups, Mem. Amer. Math. Soc. 219, 1032 (2012).
- [5] J. C. Baez and D. Stevenson, The classifying space of a topological 2-group, Abel Symposia, vol 4. Springer, Berlin, Heidelberg.
- [6] R. Brown and C. B. Spencer, *G*-groupoids, crossed modules and the fundamental groupoid of a topological group, Indagat. Math. (Proceedings) 79, no. 4 (1976), 296–302.
- [7] R. Brown, Higher dimensional group theory, Low Dimensional Topology, Cambridge University Press, 1982.
- [8] R. Brown, P. J. Higgins and R. Sivera, Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics 15, 2011.
- [9] R. Brown and P. J. Higgins, Crossed complexes and non-abelian extensions, Category Theory. Lecture Notes in Mathematics, 962, Springer, Berlin, Heidelberg 1982.
- [10] R. Brown and P. J. Higgins, Tensor Products and Homotopies for ω-groupoids and crossed complexes, J. Pure and Appl. Algebra 47 (1987), 1–33.
- [11] R. Brown and I. Icen, Homotopies and automorphisms of crossed module over groupoids, Appl. Categ. Structures, 11 (2003) 185-206.
- [12] R. Brown and G. H. Mosa, Double categories, 2-Categories, thin structures and connections, Theory Appl. Categ. 5, no. 7 (1999), 163–175.
- [13] L. Crane, Categorical physics (arXiv:hep-th/9301061v1).
- [14] C. Ehresmann, Catègories doubles et catègories structurès, Comptes rendus de l'Acadèmie des Sciences 256 (1963), 1198–1201.
- [15] C. Ehresmann, Catègories structurès, Annales Scientifiques de l'École Normale Supèrieure 80 (1963), 349–425.
- [16] J. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetici 55 (1980), 302–314.
- [17] I. Icen, The equivalence of 2-groupoids and crossed modules, Commun. Fac. Sci. Univ. Ank. Series A1 49 (2000), 39–48.
- [18] G. Janelidze, L. Marki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), 367–386.
- [19] K. H. Kamps and T. Porter, 2-Groupoid enrichments in homotopy theory and algebra, K-Theory 25 (2002), 373-409.
- [20] G. M. Kelly and R. Street, Review of the Elements of 2-Categories, Category Seminar. Lecture Notes in Mathematics, vol 420. (1974) Springer, Berlin, Heidelberg.
- [21] J.-L. Loday, Cohomologie et groupe de Steinberg relatifs, J. Algebra 54 (1978), 178–202.
- [22] S. Maclane, Categories for the Working Mathematician, Graduate Text in Mathematics, (1971) Springer-Verlag New York.
- [23] M. Forrester-Barker, Group objects and internal categories (arXiv:math/0212065).
- [24] B. Noohi, Notes on 2-groupoids, 2-groups and crossed modules, Homology Homotopy Appl. 9, no. 1 (2007), 75–106.
- [25] T. Sahan and J. J. Mohammed, Categories internal to crossed modules, Sakarya University Journal of Science 23, no. 4 (2019), 519–531.
- [26] S. Temel, T. Şahan and O. Mucuk, Crossed modules, double group-groupoids and crossed squares, Filomat 34, no. 6 (2020), 1755-1769.
- [27] S. Temel, Internal categories in crossed semimodules and Schreier internal categories, Math. Sci. Appl. E-Notes 8, no. 2 (2020), 86–95.

- [28] J. H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949), 453–496.
- [29] J. H. C. Whitehead, Note on a previous paper entitled "On adding relations to homotopy group", Ann. Math. 47 (1946), 806–810.