
@ Appl. Gen. Topol. 22, no. 1 (2021), 31-46

doi:10.4995/agt.2021.13148

© AGT, UPV, 2021

Further remarks on group-2-groupoids

Sedat Temel

Department of Mathematics, Recep Tayyip Erdogan University, Turkey (sedat.temel@erdogan.edu.tr)

Communicated by E. Minguzzi

Abstract

The aim of this paper is to obtain a group-2-groupoid as a 2-groupoid

object in the category of groups and also as a special kind of an inter-

nal category in the category of group-groupoids. Corresponding group-

2-groupoids, we obtain some categorical structures related to crossed

modules and group-groupoids and prove categorical equivalences be-

tween them. These results enable us to obtain 2-dimensional notions

of group-groupoids.
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1. Introduction

There are several 2-dimensional notions of groupoids such as double groupoids,
2-groupoids, and crossed modules over groupoids. The purpose of this pa-
per is to obtain 2-dimensional notions of group-groupoids which are internal
groupoids in the category of groups and widely used under the name of 2-
groups.

The term ”categorification”, which was first used by Louis Crane [13] in the
context of mathematical physics, is the process of replacing set-theoretic theo-
rems by category-theoretic concepts. The aim of categorification is to develop a
richer case of existing mathematics by replacing sets with categories, functions
with functors and equations between functions with natural isomorphisms be-
tween functors. In this approach, the categorified version of a group is called a
group-groupoid [2, 5]. Group-groupoids, which are also known as G-groupoids
[6] or 2-groups [4], are internal categories (hence internal groupoids) in the
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category Gp of groups [22, 23]. Equivalently, group-groupoids can be thought
as group objects in the category Cat of small categories [6, 23].

Another useful viewpoint of group-groupoids is to think them as crossed
modules over groups. Crossed modules which can be viewed as 2-dimensional
groups [7] are widely used in homotopy theory [8], homological algebra [16],
and algebraic K-theory [21]. The well-known categorical equivalence between
crossed modules and group-groupoids is proved by Brown and Spencer [6]. This
equivalence is introduced in [4] by obtaining a group-groupoid as a 2-category
with a unique object. Crossed modules, and their higher dimensional analogues,
provide algebraic models for homotopy n-types; the group-2-groupoids of this
paper in principle provide algebraic models for certain homotopy 3-types.

In the previous paper [1], the notions of a group-2-groupoid were introduced
and compared with a corresponding structure related to crossed modules over
groups. On the other hand, the main objective of this paper is to obtain
the structure of a group-2-groupoid as a 2-groupoid object in the category of
groups and also as a special kind of internal category in the category of group-
groupoids. In section 4, we present the notion of crossed modules over group-
groupoids and prove that there is a categorical equivalence between group-
2-groupoids and crossed modules over group-groupoids using the categorical
equivalence between 2-groupoids and crossed modules over groupoids given in
[17]. In section 5, we show that group-2-groupoids are categorically equivalent
to special kind of internal categories in the category of crossed modules.

2. Preliminaries

Let C be a finitely complete category and D0, D1 are objects of the ambient
category C. An internal category D = (D0, D1, s, t, ε,m) in C consists of an
object D0 in C called the object of objects and an object D1 in C called the
object of arrows (i.e. morphisms), together with morphisms s, t : D1 → D0,
ε : D0 → D1 in C called the source, the target and the identity maps, respec-
tively,

D1

s //
t

// D0

εtt

such that sε = tε = 1D0 and a morphism m : D1 ×D0 D1 → D1 of C called
the composition map (usually expressed as m(f, g) = g ◦ f) where D1 ×D0 D1

is the pullback of s, t such that εs(f) ◦ f = f = f ◦ εs(f) [22]. An internal

groupoid in C is an internal category with a morphism η : D1 → D1, η(f) = f

in C called inverse such that f ◦ f = 1s(f), f ◦ f = 1t(f).
We write C(x, y) for all morphisms from x to y where x, y ∈ C0. If C(x, y) =

∅ for all x, y ∈ C0 such that x 6= y, then C is called totally disconnected cate-
gory.

We introduce the definition of a 2-category as given in [4]. A 2-category

C = (C0, C1, C2) consists of a set of objects C0, a set of 1-morphisms C1, and
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a set of 2-morphisms C2 as follows:

x

f

((

g

66
✤✤ ✤✤
�� α y

with maps s : C1 → C0, s(f) = x, sh : C2 → C0, sh(α) = x, sv : C2 →
C1, sv(α) = f , t : C1 → C0, t(f) = y, th : C2 → C0, th(α) = y, tv : C2 →
C1, tv(α) = g, called the source and the target maps, respectively, the com-
position of 1-morphisms as in an ordinary category, the associative horizontal
composition of 2-morphisms ◦h : C2 ×C0 C2 → C2 as

x

f

((

g

66
✤✤ ✤✤
�� α y

f1

((

g1

66
✤✤ ✤✤
�� δ z = x

f1◦f

((

g1◦g

66
✤✤ ✤✤
�� δ◦hα z ,

where C2 ×C0 C2 = {(α, δ) ∈ C2 × C2|sh(δ) = th(α)} and the associative verti-
cal composition of 2-morphisms ◦v : C2 ×C1 C2 → C2 as

x

f

!!
✤✤ ✤✤
�� α

==

h

✤✤ ✤✤
�� β

g // y = x

f

((

h

66
✤✤ ✤✤
�� β◦vα y

where C2 ×C1 C2 = {(α, β) ∈ C2 × C2|sv(β) = tv(α)} such that satisfying the
following interchange rule:

(θ ◦v δ) ◦h (β ◦v α) = (θ ◦h β) ◦v (δ ◦h α)

whenever one side makes sense, and the identity maps ε : C0 → C1, ε(x) = 1x,
εh : C0 → C2, εh(x) = 11x such that α ◦h 11x = α = 11y ◦h α and εv : C1 → C2,
εv(f) = 1f such that α ◦v 1f = α = 1g ◦v α. Therefore, the construction of
a 2-category C = (C0, C1, C2) contains compatible category structures C1 =
(C0, C1, s, t, ε, ◦), C2 = (C0, C2, sh, th, εh, ◦h), and C3 = (C1, C2, sv, tv, εv, ◦v)
such that the following diagram commutes.

C2

sv //
tv

//

th

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸

sh

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
C1

εv
ss

C0

��

t

☞☞☞☞☞☞☞☞☞☞☞☞☞ ��

s

☞☞☞☞☞☞☞☞☞☞☞☞☞

εh

TT

ε

JJ

Let C and C′ be 2-categories. A 2-functor is a map F : C → C′ sending each
object of C to an object of C′, each 1-morphism of C to 1-morphism of C′ and
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2-morphism of C to 2-morphism of C′ as follows:

x

f

((

g

66
✤✤ ✤✤
�� α y 7→ F (x)

F (f)
**

F (g)

44
✤✤ ✤✤
�� F (α) F (y)

such that F (f1 ◦ f) = F (f1) ◦ F (f), F (δ ◦h α) = F (δ) ◦h F (α), F (β ◦v α) =
F (β) ◦v F (α), F (11x) = 1F (1x) = 11F (x)

, F (1f ) = 1F (f). Hence 2-categories

form a category which is denoted by 2Cat [24].

A strict 2-groupoid is a 2-category all of whose 1-morphisms are invertible
and in which all 2-morphisms are invertible horizontally and vertically.

x

f

((

g

66
✤✤ ✤✤
�� α y

f̄

''

ḡ

77
✤✤ ✤✤
�� ᾱh x = x

1x
((

1x

66
✤✤ ✤✤
�� 11x x , x

f

��
✤✤ ✤✤
�� α

>>

f

✤✤ ✤✤
�� ᾱ

v

g // y = x

f

((

f

66
✤✤ ✤✤
�� 1f y

Let G,G′ be 2-groupoids. A morphism of 2-groupoids is a 2-functor F : G →
G′ which preserves the 2-groupoid structures. Thus, 2-groupoids and their mor-
phisms form a category which is denoted by 2Gpd [24].

A group-groupoid is an internal category in Gp [22]. Also, a group-groupoid
can be obtained as a group object in the category Cat of small categories (or in
Gpd). A morphism of group-groupoids is a morphism of groupoids which pre-
serves group structures. Hence we can define the category of group-groupoids,
which is denoted by 2Gp orGpGd. For further details about group-groupoids,
see [24, 6, 4].

By a crossed module as defined by Whitehead, it is meant a pair M,N

of groups together with an action • : N ×M → M of groups and a morphism
∂ : M → N of groups such that ∂(n•m) = n∂(m)n−1 and ∂(m)•m′ = mm′m−1

[28, 29].

LetK = (M,N, ∂, •), K ′ = (M ′, N ′, ∂′, •′) be crossed modules and λ1 : N →
N ′, λ2 : M → M ′ be morphisms of groups. If λ1, λ2 satisfies the conditions
λ1∂ = ∂′λ2 and λ2(n •m) = λ1(n) •

′ λ2(m), then 〈λ2, λ1〉 : K → K ′ is called
morphism of crossed modules [6]. Hence crossed modules and their morphisms
form a category which we denote by Cm.

The following theorem was proved by Brown and Spencer in [6]:

Theorem 2.1. The category of group-groupoids and the category of crossed

modules are equivalent.

Let G = (X,G) and H = (X,H) be groupoids over the same object set X

such that H is totally disconnected. We recall from [8, 17, 11] that an action
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of G on H is a partially defined map

• : G×H → H, (g, h) 7→ g • h

such that the following conditions satisfies

[AG 1] g • h is defined iff t(h) = s(g), and t(g • h) = t(g),
[AG 2] (g2 ◦ g1) • h = g2 • (g1 • h),
[AG 3] g•(h2◦h1) = (g•h2)◦(g•h1), for h1, h2 ∈ H(x, x) and g ∈ G(x, y),
[AG 4] 1x • h = h, for h ∈ H(x, x).

From this conditions, it can be easily obtain that g•1x = 1y, for g ∈ G(x, y).

Using this action of G on H, we can obtain a groupoid which is called semi-

direct product of G and H denoted by G ⋉ H . Let x
g // y

h // y are

morphisms of G and H, respectively, then (g, h) is a morphism as follows

x
(g,h) // y

where the structure maps are defined by s(g, h) = s(g), t(g, h) = t(g), ε(x) =
(1x, 1x). If

x
g // y

h // y
g1 // z

h1 // z

then the composition of morphisms is defined by

(g1, h1) ◦ (g, h) = (g1 ◦ g, h1 ◦ (g1 • h)).

The notion of crossed modules over groupoids is introduced by Brown-
Higgins [9, 10] and Brown-Icen [11]. Let G = (X,G) and H = (X,H) be
groupoids over the same object set X such that H is totally disconnected.
A crossed module K = (H,G, ∂, •) over groupoids consists of a morphism
∂ = (1, ∂) : H → G of groupoids which is identity on objects together with
an action • : G × H → H of groupoids which satisfies ∂(g • h) = g ◦ ∂(h) ◦ g

and ∂(h) • h1 = h ◦ h1 ◦ h, for h, h1 ∈ H(x, x) and g ∈ G(x, y).

LetK = (H,G, ∂, •) andK′ = (H′,G′, ∂′, •′) be crossed modules over groupoids.
Amorphism of crossed modules over groupoids is a mapping λ = 〈λ2, λ1, λ0〉 : K →
K′ which satisfies λ2∂ = ∂′λ1 and λ1(g•h) = λ2(g)•

′λ1(h) where (λ0, λ1) : H →
H′ and (λ0, λ2) : G → G′ are morphisms of groupoids. Hence the category of
crossed modules over groupoids can be defined which we denoted by Cmg.

The following result was proved by Icen in [17]. Since we need some details
in section 4, we give a sketch proof in terms of our notations.

Theorem 2.2. The categories of 2-groupoids and of crossed module over groupoids

are equivalent.

Proof. For any 2-groupoid G = (G0, G1, G2), we know that B = (G0, G1) is a
groupoid. Let A(x) = {α ∈ G2|sv(α) = ε(x)}, for x ∈ G0 and A = {A(x)}x∈G0 .
Then A = (G0, A) is a totally disconnected groupoid. Now we define a functor
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γ : 2Gpd → Cmg as an equivalence of categories such that γ(G) = (A,B, ∂) is
a crossed module over groupoids with ∂ : A → B, ∂(α) = tv(α) and an action
of groupoids such that f • α = 1f ◦h α ◦h 1f .

y

1y

((

∂(f•α)

66
✤✤ ✤✤
�� f•α y = y

f

((

f

66
✤✤ ✤✤
�� 1f x

1x
((

∂(α)

66
✤✤ ✤✤
�� α x

f

((

f

66
✤✤ ✤✤
�� 1f y

Clearly ∂(f • α) = f ◦ ∂(α) ◦ f and ∂(α) • α1 = α ◦h α1 ◦h α
h, for f ∈ G1(x, y)

and α, α1 ∈ A(x).
Let F = (F0, F1, F2) be a morphism of 2-groupoids. Then γ(F ) = 〈F2

∣

∣

A
, F1, F0〉

is a morphism of crossed modules over groupoids.
Now we define a functor θ : Cmg → 2Gpd which is an equivalence of cat-

egories. Let K = (A,B, ∂) be a crossed module over groupoids A = (X,A)
and B = (X,B). Then 2-groupoid θ(K) = (X,B,B ⋉ A) is a 2-groupoid
which is constructed as in the following way. The set of 2-morphisms is the
semi-direct product B ⋉ A = {(b, a)|b ∈ B, a ∈ A, s(a) = t(a) = t(b)}. If

x
b // y

a // y , then (b, a) is a 2-morphism as follows:

x

b

((

∂(a)◦b

66
✤✤ ✤✤
�� (b,a) y

where the horizontal composition of 2-morphisms is defined by

(b1, a1) ◦h (b, a) = (b1 ◦ b, a1 ◦ (b1 • a))

when y
b1 // z

a1 // z and the vertical composition of 2-morphisms is defined

by
(

∂(a) ◦ b, a2

)

◦v (b, a) = (b, a2 ◦ a)

when y
a2 // y . The source and the target maps are defined by sh(b, a) =

s(b), sv(b, a) = b, th(b, a) = t(b), tv(b, a) = ∂(a) ◦ b, respectively, the identity
maps are defined by εh(x) = (1x, 1x), εv(b) = (b, 1y), and the inversion maps

are defined by (b, a)
v
= (∂(a) ◦ b, a), (b, a)

h
= (b, b • a).

Let λ = 〈λ2, λ1, λ0〉 be a morphism of crossed modules over groupoids. Then

θ(λ) = (λ0, λ2, λ2 × λ1)

is a morphism of 2-groupoids.
A natural equivalence S : θγ → 12Gpd is defined via the map SG : θγ(G) → G

which is defined to be identity on objects and on 1-morphisms, on 2-morphisms
is defined by α 7→ (f, α ◦h 1f). Clearly SG is an isomorphism and preserves
compositions.

Now, given a crossed module K = (A,B, ∂, •) over groupoids, we define a
natural equivalence T : 1Cmg → γθ by a map TK : K → γθ(K) which is defined
to be identity on objects and on B, while on A is defined by a 7→ (s(a), a). �
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3. Group-2-groupoids

In [1], a group-2-groupoid is defined as a group object in 2Cat using similar
methods given in [6, 23]. In other words, a group-2-groupoid G is a small
2-groupoid equipped with the following 2-functors satisfying group axioms,
written out as commutative diagrams

(1) µ : G × G → G called product,
(2) inv : G → G called inverse and
(3) id : {∗} → G (where {∗} is a singleton) called unit or identity.

Then, the product of x

a

''

b

77
✤✤ ✤✤
�� α y and x′

a′

((

b′

77
✤✤ ✤✤
�� α′ y′ is written by

x · x′

a·a′

**

b·b′
44

✤✤ ✤✤
�� α·α′ y · y′ , the inverse of x

a

''

b

77
✤✤ ✤✤
�� α y is x−1

a−1

))

b−1

55
✤✤ ✤✤
�� α−1 y−1

where id{∗} = e

1e
''

1e

77
✤✤ ✤✤
�� 11e e . The condition 1 above gives us the following

interchange rules

(a1 ◦ a) · (a
′
1 ◦ a

′) = (a1 · a
′
1) ◦ (a · a′),

(δ ◦h α) · (δ′ ◦h α′) = (δ · δ′) ◦h (αα′),

(β ◦v α) · (β
′ ◦v α

′) = (β · β′) ◦v (α · α′)

whenever compositions are defined. We can obtain from the condition 2 that
(a1 ◦ a)−1 = a−1

1 ◦ a−1, (δ ◦h α)−1 = δ−1 ◦h α−1, (β ◦v α)−1 = β−1 ◦v α−1,

1−1
x = 1x−1, 1−1

1x
= 11

x−1 and 1−1
a = 1a−1 . Moreover, the structure of a

group-2-groupoid G = (G0, G1, G2) contains compatible group-groupoids G =
(G0, G1), G′ = (G0, G2) and G′′ = (G1, G2) [1].

Equivalently we shall describe a group-2-groupoid as a 2-groupoid object
in the category Gp of groups. Let C0, C1 and C2 be objects of a finitely
complete category C. If C1 = (C0, C1, s, t, ε, ◦), C2 = (C0, C2, sh, th, εh, ◦h), and
C3 = (C1, C2, sv, tv, εv, ◦v) are internal categories in C such that the following
diagram commutes whenever the usual interchange rule satisfies between ◦h
and ◦v, then (C0, C1, C2) is called an internal 2-category in C.

C2

sv //
tv

//

th

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸

sh

��✸
✸✸

✸✸
✸✸

✸✸
✸✸

✸✸
C1

εv
ss

C0

��

t

☞☞☞☞☞☞☞☞☞☞☞☞☞ ��

s

☞☞☞☞☞☞☞☞☞☞☞☞☞

εh

TT

ε

JJ
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Proposition 3.1. A 2-category object in Gp is a group-2-groupoid.

Proof. Let G = (G0, G1, G2) is a 2-category object in Gp and µ0, µ1, µ2 be
multiplications of groups G0, G1, G2, respectively. Then, we can define a
multiplication µ : G × G → G as a 2-functor such that µ = µ0 on objects,
µ = µ1 on 1-morphisms and µ = µ2 on 2-morphisms. Similarly, we can define
2-functors id : 1 → G (where 1 is the terminal object of 2Cat, i.e. the one-
object discrete 2-category) which picks out an identity object, an identity 1-
morphism and an identity 2-morphism and inv : G → G picks out inverses for
multiplications. Since a = 1s(a)a

−11t(a) from [6] and αv = 1sv(α)α
−11tv(α),

αh = 11sh(α)
α−111th(α)

from [1], G is a 2-groupoid. Then, G is a group object

in 2Cat and so G is a group-2-groupoid. �

Example 3.2. Every group-groupoid can be thought as a group-2-groupoid in
which all 2-morphisms are identities as follows:

x

a

''

a

77
✤✤ ✤✤
�� 1a y · x′

a′

((

a′

77
✤✤ ✤✤
�� 1

′

a y′ = x · x′

a·a′

**

a·a′

44
✤✤ ✤✤
�� 1a·a′ y · y′

It is mentioned that a group-groupoid is a 2-category with a single object
[4]. Then, we shall need a different viewpoint on group-groupoids as a special
kind of group-2-groupoids:

Proposition 3.3. A group-2-groupoid with a single object is a group-groupoid

in which both groups are necessarily abelian.

Proof. In this approach, the composition of 1-morphisms and the horizontal
composition of 2-morphisms are defined by multiplications of groups as follows:

⋆

a

((

b

66
✤✤ ✤✤
�� α ⋆

a′

((

b′

66
✤✤ ✤✤
�� α′ ⋆ = ⋆

a′∗a
((

b′∗b

66
✤✤ ✤✤
�� α′∗α ⋆

It is proved in [23] that a′ ∗ a = a′ · a = a · a′. Using similar way, we get

α′ ∗ α = (α′ · 1e) ∗ (1e · α) = (α′ ∗ 1e) · (1e ∗ α) = α′ · α

and

α′ · α = (1e ∗ α
′) · (α ∗ 1e) = (1e · α) ∗ (α

′ · 1e) = α · α′.

�

A third way to understand group-2-groupoids is to view them as double
group-groupoids which are defined in [26] (see also [27]). Recall that a double
category is a category object internal to Cat. Hence the structure of a double
category contains four different but compatible category structures as partially
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shown in the following diagram

D2

s //
t

//

t

��
s

��

DV
1

t

��
s

��

εtt

DH
1

s //
t

//

ε

II

D0

ε

UU

ε
kk

where DH
1 and DV

1 are called horizontal and vertical edge categories, respec-
tively, andD2 is called the set of squares. For further details, see [12, 14, 15, 20].
The structure of a 2-category may be regarded as a double category in which
all vertical morphisms are identities (or D2 and DH

1 have the same objects)
[12, 20]. Therefore, a group-2-groupoid is a special kind of an internal category
in the category GpGd of group-groupoids.

4. Crossed modules over group-groupoids

In this section, we work on crossed modules over groupoids by replacing
such groupoids with group-groupoids. Using the natural equivalence between
crossed modules over groupoids and 2-groupoids given in [17], we will prove
that there is a categorical equivalence between group-2-groupoids and crossed
modules over group-groupoids.

Definition 4.1. Let G = (X,G) and H = (X,H) are group-groupoids over
the same object set, H be totally disconnected and K = (H,G, ∂) be a crossed
module over G and H such that ∂ is a homomorphism of group-groupoids and
the following interchange rule holds:

(g • h) · (g′ • h′) = (g · g′) • (h · h′)

where g, g′ ∈ G, h, h′ ∈ H . Then K is called a crossed module over group-
groupoids.

A morphism of crossed modules over group-groupoids is a morphism of
crossed modules of groupoids which preserves group structures. Then, we can
construct the category of crossed modules over group-groupoids which we de-
note by Cmg*.

Theorem 4.2. The categories Cmg* and Gp2Gd are equivalent.

Proof. The idea of the proof is to show that the functor of 2.2 restricts to an
equivalence of categories. Let A = (X,A) and B = (X,B) are group-groupoids
andK = (A,B, ∂) is a crossed module overA and B. Then θ(K) = (X,B,B⋉A)
is a group-2-groupoid via the process of the proof 2.2. The group multiplication
of 2-morphisms in θ(K) is defined by

(b, a) · (b′, a′) = (b · b′, a · a′).
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We draw such pairs as

x

b

((

∂(a)◦b

66
✤✤ ✤✤
�� (b,a) y · x′

b′

))

∂(a′)◦b′

55
✤✤ ✤✤
�� (b

′,a′) y′ = x · x′

b·b′

,,

∂(a·a′)◦(b·b′)

22
✤✤ ✤✤
�� (b·b′,a·a′) y · y′

Now we will verify that compositions and the group multiplication satisfy the
interchange rule.

[

(b1, a1) ◦h (b, a)
]

·
[

(b′1, a
′
1) ◦h (b′, a′)

]

=
[

(b1 ◦ b, a1 ◦ (b1 • a))
]

·
[

(b′1 ◦ b
′, a′1 ◦ (b

′
1 • a

′))
]

=
(

(b1 ◦ b) · (b
′
1 ◦ b

′), (a1 ◦ (b1 • a) · (a
′
1 ◦ (b

′
1 • a

′))
)

=
(

(b1 · b
′
1) ◦ (b · b

′), (a1 · a
′
1) ◦

(

(b1 • a) · (b
′
1 • a

′)
)

)

=
(

(b1 · b
′
1) ◦ (b · b

′), (a1 · a
′
1) ◦

(

(b1 · b
′
1) • (a · a

′)
)

)

= (b1 · b
′
1, a1 · a

′
1) ◦h (b · b′, a · a′)

=
[

(b1, a1) · (b
′
1, a

′
1)
]

◦h

[

(b, a) · (b′, a′)
]

and
[

(∂(a) ◦ b, a2) ◦v (b, a)
]

·
[

(∂(a′) ◦ b′, a′2) ◦v (b
′, a′)

]

= (b, a2 ◦ a) · (b
′, a′2 ◦ a

′)

= (b · b′, (a2 · a
′
2) ◦ (a · a′))

=
[

∂(a · a′) ◦ (b · b′), a2 · a
′
2

]

◦v (b · b
′, a · a′)

=
[

(∂(a) ◦ b, a2) · (∂(a
′) ◦ b′, a′2)

]

◦v

[

(b, a) · (b′, a′)
]

whenever all above compositions are defined.

Now let G = (G0, G1, G2) be a group-2-groupoid. Then γ(G) is a crossed
module over groupoids internal to Gp. We will verify that the interchange law
holds:

(f•α)·(f ′•α′) = (1f◦hα◦h1f )·(1f ′◦hα
′◦h1f ′) = 1f ·f ′◦h(α·α

′)◦h1f ·f ′ = (f ·f ′)•(α·α′)

Now we will show that SG preserves the group multiplication:

SG(α · α′) = (f · f ′, (α · α′) ◦h 1f ·f ′)

=
(

f · f ′ , (α · α′) ◦h (1f · 1f ′)
)

=
(

f · f ′ , (α ◦h 1f ) · (α
′ ◦h 1f ′)

)

= (f, α ◦h 1f ) · (f
′, α′ ◦h 1f ′)

= SG(α) · SG(α
′)

Other details are straightforward and so are omitted. �
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5. Group-2-groupoids as internal categories in Cm

A group-2-groupoid can be also thought as a special case of an internal
category in the category Cm of crossed modules (see, e.g., [25] and [26] for
more details about internal categories in Cm). This idea comes from that
the structure of a group-2-groupoid contains three compatible group-groupoid
structures. Given a group-2-groupoid, we can extract crossed modules as fol-
lows:

G2

sv //
tv

//

th

��✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷

sh

��✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷✷
✷

G1

εv
ss

Ker(sh)
sv //
tv

//

th|Ker(sh)

��✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼✼

Ker(s)

t|Ker(s)

��✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟✟
✟

εvqq

7→

G0

��

t

☞☞☞☞☞☞☞☞☞☞☞☞☞☞ ��

s

☞☞☞☞☞☞☞☞☞☞☞☞☞☞

εh

TT

ε

JJ

G0

Then, we obtain an internal groupoid in Cm

(Ker(sh), G0)
s //
t

// (Ker(s), G0)

ǫpp

where the structure maps are defined by s = 〈sv, 1〉, t = 〈tv, 1〉, ǫ = 〈εv, 1〉 as
morphisms of crossed modules. Here s, t, ǫ are equivariant maps, since sv(x •
α) = x • sv(α), tv(x • α) = x • tv(α) and εv(x • f) = x • εv(f), for all x ∈ G0

and α ∈ Ker(sh). The actions of G0 on Ker(sh) and on Ker(s) are drawn in
the following diagram:

e

x•f
++

x•g

33
✤✤ ✤✤
�� x•α xyx−1 := x

1x
((

1x

66
✤✤ ✤✤
�� 11x x · e

f

((

g

66
✤✤ ✤✤
�� α y · x−1

1−1
x **

1−1
x

44
✤✤ ✤✤
�� 1

−1
1x x−1

We denote the category of such internal groupoids in Cm by IGCm. We
know from [25, 26] that internal categories in the category Cm of crossed mod-
ules are naturally equivalent to crossed squares which in turn should be viewed
as a ”crossed module of crossed modules”. Hence an object of the category
IGCm can be viewed as a special kind of crossed square.

Let G = (G0, G1, X, ∂0, ∂1) be an object of IGCm. Then, the following
diagram is commutative.

G1

s //
t

//

∂1   ❆
❆❆

❆❆
❆❆

❆ G0

∂0~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

ε
ss

X
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Let G = (G0, G1, X, ∂0, ∂1),G
′ = (G′

0, G
′
1, X

′, ∂′
0, ∂

′
1) be objects of IGCm. If

(λ1, λ2) is an endomorphism of the group-groupoid G = (G0, G1), and 〈λ1, λ0〉,
〈λ2, λ0〉 are morphisms of crossed modules (G0, X, ∂0), (G1, X, ∂1), respectively,
then λ = (λ2, λ1, λ0) is called a morphism of IGCm.

Lemma 5.1. Let G = (G0, G1, X, ∂0, ∂1) be an object of IGCm. Then

x • (β ◦ α) = (x • β) ◦ (x • α)

for x ∈ X,α, β ∈ G1 where s(β) = t(α).

Proof. Let a
α // b

β // c . We know from [6] that β ◦α = β ·1−1
b ·α. Then,

we get

x • (β ◦ α) = x • (β · 1−1
b · α)

= (x • β) · (x • 1−1
b ) · (x • α)

= (x • β) · (x • 1b)
−1 · (x • α)

= (x • β) · 1−1
(x•b) · (x • α)

= (x • β) ◦ (x • α)

�

Example 5.2. Every crossed module K = (M,N, ∂) over groups is an object
of IGCm with the discrete groupoid of M where n • 1m = 1n•m and ∂1(1m) =
∂(m).

Theorem 5.3. There is an equivalence between IGCm and Gp2Gd.

Proof. A functor γ : Gp2Gd → IGCm is defined in the following way. Let
H = (H0, H1, H2) be a group-2-groupoid. Then γ(H) = (G0, G1, X, ∂0, ∂1) is
an object of IGCm where G0 = Ker(s), G1 = Ker(sh), X = H0, ∂0 =
t
∣

∣

Ker(s)
and ∂1 = th

∣

∣

Ker(sh)

H2

sv //
tv

//

th

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

sh

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

H1

εv
rr

G1

s′ //
t′

//

∂1

��✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵
✵✵

G0

∂0

��✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍✍
✍

ε′

ss

H : 7→ γ(H) :

H0

��

t

✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍ ��

s

✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍

εh

TT

ε

JJ

X

with actions x•f = 1x ·f ·1
−1
x and x•α = 11x ·α·1

−1
1x

, for x ∈ X, f ∈ G0, α ∈ G1.
Now we will verify that s′, t′, ε′ are equivariant maps.

s′(x•α) = s′(11x ·α ·1
−1
1x

) = sv(11x) ·sv(α) ·sv(1
−1
1x

) = 1x ·sv(α) ·1
−1
x = x•s′(α),

t′(x •α) = t′(11x ·α · 1−1
1x

) = tv(11x) · tv(α) · tv(1
−1
1x

) = 1x · tv(α) · 1
−1
x = x • t′(α)
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and

ε′(x•f) = ε′(1x ·f ·1x
−1) = εv(1x)·εv(f)·εv(1x

−1) = 11x ·εv(f)·1
−1
1x

= x•ε′(f).

Let F = (F0, F1, F2) be a morphism of group-2-groupoids. Then γ(F ) =
(F2|Ker(sh), F1|Ker(s), F0) is a morphism of IGCm.

Next, we define a functor θ : IGCm → Gp2Gd is an equivalence of cat-
egories. Given an object G = (G0, G1, X, ∂0, ∂1) of IGCm, we can obtain a
group-2-groupoid θ(G) = H = (H0, H1, H2) whereH0 = X,H1 = X⋉G0, H2 =

X ⋉ G1 as in the following way. Let a
α // b be a morphism of G. Then

pairs x
(x,a) // ∂0(a) · x and x

(x,b) // ∂0(b) · x are obtained as morphisms of

the group-groupoid (H0, H1), and a pair x
(x,α) // ∂1(α) · x is obtained as a

morphism of the group-groupoid (H0, H2). Since

∂1(α) · x = ∂0s(α) · x = ∂0(a) · x, ∂1(α) · x = ∂0t(α) · x = ∂0(b) · x,

then (x, α) can be considered as a 2-morphism as follows:

x

(x,a)
,,

(x,b)

22
✤✤ ✤✤
�� (x,α) ∂1(α) · x

Let a
α // b

β // c . Then, the vertical composition of (x, α) and (x, β) is
defined by

(x, β) ◦v (x, α) = (x, β ◦ α)

where the source and the target maps are defined by sv(x, α) = (x, s(α)) and
tv(x, α) = (x, t(α)), respectively, and the identity map is defined by εv(x, a) =

(x, 1a). Given morphisms a
α // b and a1

α1 // b1 , we obtain pairs (x, α),

(∂1(α) · x, α1) and we define their horizontal composite by

(∂1(α) · x, α1) ◦h (x, α) = (x, α1 · α)

where the source and the target maps are defined by sh(x, α) = x, th(x, α) =
∂1(α) · x, respectively, and the identity map is defined by εh(x) = (x, 1e).
Clearly the vertical composition and the horizontal composition satisfy the
usual interchange rule. The product of (x, α) and (x′, α′) is written by

(x, α) · (x′, α′) = (x · x′, α · (x • α′))

for a
α // b and a′

α′

// b′ .

If λ = (λ2, λ1, λ0) is a morphism of G, then θ(λ) = (λ0, λ0 × λ1, λ0 × λ2) is
morphism of θ(G).

A natural equivalence S : 1Gp2Gd → θγ is defined with a map SG : G →
θγ(G) which is defined such that to be the identity on objects, SG(f) =
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(x, f ·1−1
x ) and SG(α) = (x, α ·1−1

1x
) for f ∈ G1, α ∈ G2 where x = s(f) = sh(α).

Clearly SG is an isomorphism and preserves the group operations and compo-
sitions as follows:

SG(α) · SG(α
′) = (x, α · 1−1

1x
) · (x′, α′ · 1−1

1x′
)

=
(

x · x′, α · 1−1
1x

· (x • (α′ · 1−1
1x′

))
)

=
(

x · x′, α · 1−1
1x

· 11x · α′ · 1−1
1x′

· 1−1
1x

)

=
(

x · x′, α · α′ · 1−1
1xx′

)

= SG(α · α′)

where s(α) = x, s(α′) = x′,

SG(δ◦hα) = SG(δ·1
−1
1y

·α) = (x, δ·1−1
1y

·α·1−1
1x

) = (y, δ·1−1
1y

)◦h(x, α·1
−1
1x

) = SG(δ)◦hSG(α)

where t(α) = s(δ) = y and

SG(β) ◦v SG(α) = (x, β · 1−1
1x

) ◦v (x, α · 1−1
1x

)

=
(

x, (β · 1−1
1x

) ◦v (α · 1−1
1x

)
)

=
(

x, (β ◦v α) · (1
−1
1x

◦v 1
−1
1x

)
)

=
(

x, (β ◦v α) · 1
−1
1x

)

= SG(β ◦v α)

where sv(β) = tv(α).

To define a natural equivalence T : 1IGCm → γθ, a map TG is defined such
that to be identity on X , TG(a) = (e, a) for a ∈ G0 and TG(α) = (e, α) for
α ∈ G1. Obviously TG is an isomorphism and preserves the composition and
the group multiplication as follows:

TG(β ◦ α) = (e, β ◦ α) = (e, β) ◦ (e, α) = TG(β) ◦ TG(α)

TG(α) · TG(α
′) = (e, α) · (e, α′) = (e, α · (e • α′)) = (e, α · α′) = TG(α · α′).

Other details are straightforward and so are omitted. �
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[3] J. Bènabou, Introduction to bicategories, In: Reports of the Midwest Category Seminar.
Lecture Notes in Mathematics 47 (1967), 1–77.

[4] J. C. Baez, A. Baratin, L. Freidel and D. K. Wise, Infinite-Dimensional Representations
of 2-Groups, Mem. Amer. Math. Soc. 219, 1032 (2012).

[5] J. C. Baez and D. Stevenson, The classifying space of a topological 2-group, Abel Sym-
posia, vol 4. Springer, Berlin, Heidelberg.

[6] R. Brown and C. B. Spencer, G-groupoids, crossed modules and the fundamental
groupoid of a topological group, Indagat. Math. (Proceedings) 79, no. 4 (1976), 296–302.

[7] R. Brown, Higher dimensional group theory, Low Dimensional Topology, Cambridge
University Press, 1982.

[8] R. Brown, P. J. Higgins and R. Sivera, Nonabelian Algebraic Topology: filtered spaces,
crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts
in Mathematics 15, 2011.

[9] R. Brown and P. J. Higgins, Crossed complexes and non-abelian extensions, Category
Theory. Lecture Notes in Mathematics, 962, Springer, Berlin, Heidelberg 1982.

[10] R. Brown and P. J. Higgins, Tensor Products and Homotopies for ω−groupoids and
crossed complexes, J. Pure and Appl. Algebra 47 (1987), 1–33.

[11] R. Brown and I. Icen, Homotopies and automorphisms of crossed module over groupoids,
Appl. Categ. Structures, 11 (2003) 185-206.

[12] R. Brown and G. H. Mosa, Double categories, 2-Categories, thin structures and connec-
tions, Theory Appl. Categ. 5, no. 7 (1999), 163–175.

[13] L. Crane, Categorical physics (arXiv:hep-th/9301061v1).
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