Further remarks on group-2-groupoids

Sedat Temel
Department of Mathematics, Recep Tayyip Erdogan University, Turkey (sedat.temel@erdogan.edu.tr)
Communicated by E. Minguzzi

Abstract

Abstract

The aim of this paper is to obtain a group-2-groupoid as a 2-groupoid object in the category of groups and also as a special kind of an internal category in the category of group-groupoids. Corresponding group-2-groupoids, we obtain some categorical structures related to crossed modules and group-groupoids and prove categorical equivalences between them. These results enable us to obtain 2-dimensional notions of group-groupoids.

2010 MSC: 20L05; 18D05; 18D35; $20 J 15$.
KEYWORDS: crossed module; group-groupoid; 2-groupoid.

1. Introduction

There are several 2-dimensional notions of groupoids such as double groupoids, 2 -groupoids, and crossed modules over groupoids. The purpose of this paper is to obtain 2-dimensional notions of group-groupoids which are internal groupoids in the category of groups and widely used under the name of 2groups.

The term "categorification", which was first used by Louis Crane [13] in the context of mathematical physics, is the process of replacing set-theoretic theorems by category-theoretic concepts. The aim of categorification is to develop a richer case of existing mathematics by replacing sets with categories, functions with functors and equations between functions with natural isomorphisms between functors. In this approach, the categorified version of a group is called a group-groupoid [2,5]. Group-groupoids, which are also known as \mathcal{G}-groupoids [6] or 2-groups [4], are internal categories (hence internal groupoids) in the
category Gp of groups [22, 23]. Equivalently, group-groupoids can be thought as group objects in the category Cat of small categories [6, 23].

Another useful viewpoint of group-groupoids is to think them as crossed modules over groups. Crossed modules which can be viewed as 2-dimensional groups [7] are widely used in homotopy theory [8], homological algebra [16], and algebraic K-theory [21]. The well-known categorical equivalence between crossed modules and group-groupoids is proved by Brown and Spencer [6]. This equivalence is introduced in [4] by obtaining a group-groupoid as a 2-category with a unique object. Crossed modules, and their higher dimensional analogues, provide algebraic models for homotopy n-types; the group-2-groupoids of this paper in principle provide algebraic models for certain homotopy 3 -types.

In the previous paper [1], the notions of a group-2-groupoid were introduced and compared with a corresponding structure related to crossed modules over groups. On the other hand, the main objective of this paper is to obtain the structure of a group-2-groupoid as a 2-groupoid object in the category of groups and also as a special kind of internal category in the category of groupgroupoids. In section 4, we present the notion of crossed modules over groupgroupoids and prove that there is a categorical equivalence between group2 -groupoids and crossed modules over group-groupoids using the categorical equivalence between 2 -groupoids and crossed modules over groupoids given in [17]. In section 5 , we show that group-2-groupoids are categorically equivalent to special kind of internal categories in the category of crossed modules.

2. Preliminaries

Let \mathcal{C} be a finitely complete category and D_{0}, D_{1} are objects of the ambient category \mathcal{C}. An internal category $\mathcal{D}=\left(D_{0}, D_{1}, s, t, \varepsilon, m\right)$ in \mathcal{C} consists of an object D_{0} in \mathcal{C} called the object of objects and an object D_{1} in \mathcal{C} called the object of arrows (i.e. morphisms), together with morphisms $s, t: D_{1} \rightarrow D_{0}$, $\varepsilon: D_{0} \rightarrow D_{1}$ in \mathcal{C} called the source, the target and the identity maps, respectively,

$$
D_{1} \stackrel{\substack{s} \stackrel{\varepsilon}{\leftrightarrows}}{\stackrel{\varepsilon}{\leftrightarrows}} D_{0}
$$

such that $s \varepsilon=t \varepsilon=1_{D_{0}}$ and a morphism $m: D_{1} \times_{D_{0}} D_{1} \rightarrow D_{1}$ of \mathcal{C} called the composition map (usually expressed as $m(f, g)=g \circ f$) where $D_{1} \times{ }_{D_{0}} D_{1}$ is the pullback of s, t such that $\varepsilon s(f) \circ f=f=f \circ \varepsilon s(f)$ [22]. An internal groupoid in \mathcal{C} is an internal category with a morphism $\eta: D_{1} \rightarrow D_{1}, \eta(f)=\bar{f}$ in \mathcal{C} called inverse such that $\bar{f} \circ f=1_{s(f)}, \quad f \circ \bar{f}=1_{t(f)}$.

We write $C(x, y)$ for all morphisms from x to y where $x, y \in C_{0}$. If $C(x, y)=$ \varnothing for all $x, y \in C_{0}$ such that $x \neq y$, then \mathcal{C} is called totally disconnected category.

We introduce the definition of a 2-category as given in [4]. A 2-category $\mathcal{C}=\left(C_{0}, C_{1}, C_{2}\right)$ consists of a set of objects C_{0}, a set of 1-morphisms C_{1}, and
a set of 2-morphisms C_{2} as follows:

with maps $s: C_{1} \rightarrow C_{0}, s(f)=x, s_{h}: C_{2} \rightarrow C_{0}, s_{h}(\alpha)=x, s_{v}: C_{2} \rightarrow$ $C_{1}, s_{v}(\alpha)=f, t: C_{1} \rightarrow C_{0}, t(f)=y, t_{h}: C_{2} \rightarrow C_{0}, t_{h}(\alpha)=y, t_{v}: C_{2} \rightarrow$ $C_{1}, t_{v}(\alpha)=g$, called the source and the target maps, respectively, the composition of 1-morphisms as in an ordinary category, the associative horizontal composition of 2-morphisms $\circ_{h}: C_{2} \times{ }_{C_{0}} C_{2} \rightarrow C_{2}$ as

where $C_{2} \times_{C_{0}} C_{2}=\left\{(\alpha, \delta) \in C_{2} \times C_{2} \mid s_{h}(\delta)=t_{h}(\alpha)\right\}$ and the associative vertical composition of 2-morphisms $\circ_{v}: C_{2} \times C_{1} C_{2} \rightarrow C_{2}$ as

where $C_{2} \times_{C_{1}} C_{2}=\left\{(\alpha, \beta) \in C_{2} \times C_{2} \mid s_{v}(\beta)=t_{v}(\alpha)\right\}$ such that satisfying the following interchange rule:

$$
\left(\theta \circ_{v} \delta\right) \circ_{h}\left(\beta \circ_{v} \alpha\right)=\left(\theta \circ_{h} \beta\right) \circ_{v}\left(\delta \circ_{h} \alpha\right)
$$

whenever one side makes sense, and the identity maps $\varepsilon: C_{0} \rightarrow C_{1}, \varepsilon(x)=1_{x}$, $\varepsilon_{h}: C_{0} \rightarrow C_{2}, \varepsilon_{h}(x)=1_{1_{x}}$ such that $\alpha \circ_{h} 1_{1_{x}}=\alpha=1_{1_{y}} \circ_{h} \alpha$ and $\varepsilon_{v}: C_{1} \rightarrow C_{2}$, $\varepsilon_{v}(f)=1_{f}$ such that $\alpha \circ_{v} 1_{f}=\alpha=1_{g} \circ_{v} \alpha$. Therefore, the construction of a 2-category $\mathcal{C}=\left(C_{0}, C_{1}, C_{2}\right)$ contains compatible category structures $\mathcal{C}_{1}=$ $\left(C_{0}, C_{1}, s, t, \varepsilon, \circ\right), \mathcal{C}_{2}=\left(C_{0}, C_{2}, s_{h}, t_{h}, \varepsilon_{h}, \circ_{h}\right)$, and $\mathcal{C}_{3}=\left(C_{1}, C_{2}, s_{v}, t_{v}, \varepsilon_{v}, \circ_{v}\right)$ such that the following diagram commutes.

Let \mathcal{C} and \mathcal{C}^{\prime} be 2-categories. A 2-functor is a map $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ sending each object of \mathcal{C} to an object of \mathcal{C}^{\prime}, each 1-morphism of \mathcal{C} to 1 -morphism of \mathcal{C}^{\prime} and

2-morphism of \mathcal{C} to 2 -morphism of \mathcal{C}^{\prime} as follows:

such that $F\left(f_{1} \circ f\right)=F\left(f_{1}\right) \circ F(f), \quad F\left(\delta \circ_{h} \alpha\right)=F(\delta) \circ_{h} F(\alpha), \quad F\left(\beta \circ_{v} \alpha\right)=$ $F(\beta) \circ_{v} F(\alpha), \quad F\left(1_{1_{x}}\right)=1_{F\left(1_{x}\right)}=1_{1_{F(x)}}, \quad F\left(1_{f}\right)=1_{F(f)}$. Hence 2-categories form a category which is denoted by 2Cat [24].

A strict 2-groupoid is a 2-category all of whose 1-morphisms are invertible and in which all 2-morphisms are invertible horizontally and vertically.

Let $\mathcal{G}, \mathcal{G}^{\prime}$ be 2-groupoids. A morphism of 2-groupoids is a 2-functor $F: \mathcal{G} \rightarrow$ \mathcal{G}^{\prime} which preserves the 2 -groupoid structures. Thus, 2 -groupoids and their morphisms form a category which is denoted by 2Gpd [24].

A group-groupoid is an internal category in Gp [22]. Also, a group-groupoid can be obtained as a group object in the category Cat of small categories (or in Gpd). A morphism of group-groupoids is a morphism of groupoids which preserves group structures. Hence we can define the category of group-groupoids, which is denoted by $\mathbf{2 G p}$ or $\mathbf{G p G d}$. For further details about group-groupoids, see $[24,6,4]$.

By a crossed module as defined by Whitehead, it is meant a pair M, N of groups together with an action $\bullet: N \times M \rightarrow M$ of groups and a morphism $\partial: M \rightarrow N$ of groups such that $\partial(n \bullet m)=n \partial(m) n^{-1}$ and $\partial(m) \bullet m^{\prime}=m m^{\prime} m^{-1}$ [28, 29].

Let $K=(M, N, \partial, \bullet), K^{\prime}=\left(M^{\prime}, N^{\prime}, \partial^{\prime}, \bullet\right)$ be crossed modules and $\lambda_{1}: N \rightarrow$ $N^{\prime}, \lambda_{2}: M \rightarrow M^{\prime}$ be morphisms of groups. If λ_{1}, λ_{2} satisfies the conditions $\lambda_{1} \partial=\partial^{\prime} \lambda_{2}$ and $\lambda_{2}(n \bullet m)=\lambda_{1}(n) \bullet^{\prime} \lambda_{2}(m)$, then $\left\langle\lambda_{2}, \lambda_{1}\right\rangle: K \rightarrow K^{\prime}$ is called morphism of crossed modules [6]. Hence crossed modules and their morphisms form a category which we denote by $\mathbf{C m}$.

The following theorem was proved by Brown and Spencer in [6]:
Theorem 2.1. The category of group-groupoids and the category of crossed modules are equivalent.

Let $\mathcal{G}=(X, G)$ and $\mathcal{H}=(X, H)$ be groupoids over the same object set X such that \mathcal{H} is totally disconnected. We recall from $[8,17,11]$ that an action
of \mathcal{G} on \mathcal{H} is a partially defined map

$$
\bullet: G \times H \rightarrow H, \quad(g, h) \mapsto g \bullet h
$$

such that the following conditions satisfies
[AG 1] $g \bullet h$ is defined iff $t(h)=s(g)$, and $t(g \bullet h)=t(g)$,
[AG 2] $\left(g_{2} \circ g_{1}\right) \bullet h=g_{2} \bullet\left(g_{1} \bullet h\right)$,
[AG 3] $g \bullet\left(h_{2} \circ h_{1}\right)=\left(g \bullet h_{2}\right) \circ\left(g \bullet h_{1}\right)$, for $h_{1}, h_{2} \in H(x, x)$ and $g \in G(x, y)$,
[AG 4] $1_{x} \bullet h=h$, for $h \in H(x, x)$.
From this conditions, it can be easily obtain that $g \bullet 1_{x}=1_{y}$, for $g \in G(x, y)$.
Using this action of \mathcal{G} on \mathcal{H}, we can obtain a groupoid which is called semidirect product of \mathcal{G} and \mathcal{H} denoted by $G \ltimes H$. Let $x \xrightarrow{g} y \xrightarrow{h} y$ are morphisms of \mathcal{G} and \mathcal{H}, respectively, then (g, h) is a morphism as follows

$$
x \xrightarrow{(g, h)} y
$$

where the structure maps are defined by $s(g, h)=s(g), t(g, h)=t(g), \varepsilon(x)=$ $\left(1_{x}, 1_{x}\right)$. If

$$
x \xrightarrow{g} y \xrightarrow{h} y \xrightarrow{g_{1}} z \xrightarrow{h_{1}} z
$$

then the composition of morphisms is defined by

$$
\left(g_{1}, h_{1}\right) \circ(g, h)=\left(g_{1} \circ g, h_{1} \circ\left(g_{1} \bullet h\right)\right)
$$

The notion of crossed modules over groupoids is introduced by BrownHiggins [9, 10] and Brown-Icen [11]. Let $\mathcal{G}=(X, G)$ and $\mathcal{H}=(X, H)$ be groupoids over the same object set X such that \mathcal{H} is totally disconnected. A crossed module $\mathcal{K}=(\mathcal{H}, \mathcal{G}, \partial, \bullet)$ over groupoids consists of a morphism $\partial=(1, \partial): \mathcal{H} \rightarrow \mathcal{G}$ of groupoids which is identity on objects together with an action $\bullet: G \times H \rightarrow \underline{H}$ of groupoids which satisfies $\partial(g \bullet h)=g \circ \partial(h) \circ \bar{g}$ and $\partial(h) \bullet h_{1}=h \circ h_{1} \circ \bar{h}$, for $h, h_{1} \in H(x, x)$ and $g \in G(x, y)$.

Let $\mathcal{K}=(\mathcal{H}, \mathcal{G}, \partial, \bullet)$ and $\mathcal{K}^{\prime}=\left(\mathcal{H}^{\prime}, \mathcal{G}^{\prime}, \partial^{\prime}, \bullet^{\prime}\right)$ be crossed modules over groupoids. A morphism of crossed modules over groupoids is a mapping $\lambda=\left\langle\lambda_{2}, \lambda_{1}, \lambda_{0}\right\rangle: \mathcal{K} \rightarrow$ \mathcal{K}^{\prime} which satisfies $\lambda_{2} \partial=\partial^{\prime} \lambda_{1}$ and $\lambda_{1}(g \bullet h)=\lambda_{2}(g) \bullet^{\prime} \lambda_{1}(h)$ where $\left(\lambda_{0}, \lambda_{1}\right): \mathcal{H} \rightarrow$ \mathcal{H}^{\prime} and $\left(\lambda_{0}, \lambda_{2}\right): \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ are morphisms of groupoids. Hence the category of crossed modules over groupoids can be defined which we denoted by Cmg.

The following result was proved by Icen in [17]. Since we need some details in section 4 , we give a sketch proof in terms of our notations.

Theorem 2.2. The categories of 2-groupoids and of crossed module over groupoids are equivalent.

Proof. For any 2-groupoid $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$, we know that $\mathcal{B}=\left(G_{0}, G_{1}\right)$ is a groupoid. Let $A(x)=\left\{\alpha \in G_{2} \mid s_{v}(\alpha)=\varepsilon(x)\right\}$, for $x \in G_{0}$ and $A=\{A(x)\}_{x \in G_{0}}$. Then $\mathcal{A}=\left(G_{0}, A\right)$ is a totally disconnected groupoid. Now we define a functor
$\gamma: \mathbf{2 G p d} \rightarrow \mathbf{C m g}$ as an equivalence of categories such that $\gamma(\mathcal{G})=(\mathcal{A}, \mathcal{B}, \partial)$ is a crossed module over groupoids with $\partial: \mathcal{A} \rightarrow \mathcal{B}, \quad \partial(\alpha)=t_{v}(\alpha)$ and an action of groupoids such that $f \bullet \alpha=1_{f} \circ_{h} \alpha \circ_{h} 1_{\bar{f}}$.

Clearly $\partial(f \bullet \alpha)=f \circ \partial(\alpha) \circ \bar{f}$ and $\partial(\alpha) \bullet \alpha_{1}=\alpha \circ_{h} \alpha_{1} \circ_{h} \bar{\alpha}^{h}$, for $f \in G_{1}(x, y)$ and $\alpha, \alpha_{1} \in A(x)$.

Let $F=\left(F_{0}, F_{1}, F_{2}\right)$ be a morphism of 2-groupoids. Then $\gamma(F)=\left\langle\left. F_{2}\right|_{A}, F_{1}, F_{0}\right\rangle$ is a morphism of crossed modules over groupoids.

Now we define a functor $\theta: \mathbf{C m g} \rightarrow \mathbf{2 G p d}$ which is an equivalence of categories. Let $\mathcal{K}=(\mathcal{A}, \mathcal{B}, \partial)$ be a crossed module over groupoids $\mathcal{A}=(X, A)$ and $\mathcal{B}=(X, B)$. Then 2-groupoid $\theta(\mathcal{K})=(X, B, B \ltimes A)$ is a 2-groupoid which is constructed as in the following way. The set of 2 -morphisms is the semi-direct product $B \ltimes A=\{(b, a) \mid b \in B, a \in A, s(a)=t(a)=t(b)\}$. If $x \xrightarrow{b} y \xrightarrow{a} y$, then (b, a) is a 2-morphism as follows:

where the horizontal composition of 2-morphisms is defined by

$$
\left(b_{1}, a_{1}\right) \circ_{h}(b, a)=\left(b_{1} \circ b, a_{1} \circ\left(b_{1} \bullet a\right)\right)
$$

when $y \xrightarrow{b_{1}} z \xrightarrow{a_{1}} z$ and the vertical composition of 2-morphisms is defined by

$$
\left(\partial(a) \circ b, a_{2}\right) \circ_{v}(b, a)=\left(b, a_{2} \circ a\right)
$$

when $y \xrightarrow{a_{2}} y$. The source and the target maps are defined by $s_{h}(b, a)=$ $s(b), s_{v}(b, a)=b, t_{h}(b, a)=t(b), t_{v}(b, a)=\partial(a) \circ b$, respectively, the identity maps are defined by $\varepsilon_{h}(x)=\left(1_{x}, 1_{x}\right), \varepsilon_{v}(b)=\left(b, 1_{y}\right)$, and the inversion maps are defined by $\overline{(b, a)}^{v}=(\partial(a) \circ b, \bar{a}), \overline{(b, a)}^{h}=(\bar{b}, \bar{b} \bullet \bar{a})$.

Let $\lambda=\left\langle\lambda_{2}, \lambda_{1}, \lambda_{0}\right\rangle$ be a morphism of crossed modules over groupoids. Then

$$
\theta(\lambda)=\left(\lambda_{0}, \lambda_{2}, \lambda_{2} \times \lambda_{1}\right)
$$

is a morphism of 2 -groupoids.
A natural equivalence $S: \theta \gamma \rightarrow \mathbf{1}_{\mathbf{2 G p d}}$ is defined via the map $S_{\mathcal{G}}: \theta \gamma(\mathcal{G}) \rightarrow \mathcal{G}$ which is defined to be identity on objects and on 1-morphisms, on 2-morphisms is defined by $\alpha \mapsto\left(f, \alpha \circ_{h} 1_{\bar{f}}\right)$. Clearly $S_{\mathcal{G}}$ is an isomorphism and preserves compositions.

Now, given a crossed module $\mathcal{K}=(\mathcal{A}, \mathcal{B}, \partial, \bullet)$ over groupoids, we define a natural equivalence $T: \mathbf{1}_{\mathbf{C m g}} \rightarrow \gamma \theta$ by a map $T_{\mathcal{K}}: \mathcal{K} \rightarrow \gamma \theta(\mathcal{K})$ which is defined to be identity on objects and on B, while on A is defined by $a \mapsto(s(a), a)$.

3. Group-2-Groupoids

In [1], a group-2-groupoid is defined as a group object in 2Cat using similar methods given in [6, 23]. In other words, a group-2-groupoid \mathcal{G} is a small 2 -groupoid equipped with the following 2 -functors satisfying group axioms, written out as commutative diagrams
(1) $\mu: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ called product,
(2) inv: $\mathcal{G} \rightarrow \mathcal{G}$ called inverse and
(3) id: $\{*\} \rightarrow \mathcal{G}$ (where $\{*\}$ is a singleton) called unit or identity.

Then, the product of $x=\frac{\Downarrow^{\alpha}}{b} y$ and x^{\prime} $x \cdot x^{\prime} \xrightarrow[b \cdot b^{\prime}]{\Downarrow \alpha \cdot \alpha^{\prime}} y \cdot y^{\prime}$, the inverse of $x \underbrace{\frac{a}{\Downarrow \alpha}}_{b} y$ is $x^{-1} \frac{a^{-1}}{\Downarrow_{\alpha^{-1}}^{\alpha^{-1}}} y^{-1}$ where $i d\{*\}=e \xlongequal[1_{1_{e}}]{\frac{1_{e}}{\downarrow_{1_{e}}}} e$. The condition 1 above gives us the following interchange rules

$$
\begin{gathered}
\left(a_{1} \circ a\right) \cdot\left(a_{1}^{\prime} \circ a^{\prime}\right)=\left(a_{1} \cdot a_{1}^{\prime}\right) \circ\left(a \cdot a^{\prime}\right) \\
\left(\delta \circ_{h} \alpha\right) \cdot\left(\delta^{\prime} \circ_{h} \alpha^{\prime}\right)=\left(\delta \cdot \delta^{\prime}\right) \circ_{h}\left(\alpha \alpha^{\prime}\right) \\
\left(\beta \circ_{v} \alpha\right) \cdot\left(\beta^{\prime} \circ_{v} \alpha^{\prime}\right)=\left(\beta \cdot \beta^{\prime}\right) \circ_{v}\left(\alpha \cdot \alpha^{\prime}\right)
\end{gathered}
$$

whenever compositions are defined. We can obtain from the condition 2 that $\left(a_{1} \circ a\right)^{-1}=a_{1}^{-1} \circ a^{-1},\left(\delta \circ_{h} \alpha\right)^{-1}=\delta^{-1} \circ_{h} \alpha^{-1},\left(\beta \circ_{v} \alpha\right)^{-1}=\beta^{-1} \circ_{v} \alpha^{-1}$, $1_{x}^{-1}=1_{x^{-1}}, 1_{1_{x}}^{-1}=1_{1_{x^{-1}}}$ and $1_{a}^{-1}=1_{a^{-1}}$. Moreover, the structure of a group-2-groupoid $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ contains compatible group-groupoids $G=$ $\left(G_{0}, G_{1}\right), \quad G^{\prime}=\left(G_{0}, G_{2}\right)$ and $G^{\prime \prime}=\left(G_{1}, G_{2}\right)[1]$.

Equivalently we shall describe a group-2-groupoid as a 2 -groupoid object in the category $\mathbf{G p}$ of groups. Let C_{0}, C_{1} and C_{2} be objects of a finitely complete category \mathcal{C}. If $\mathcal{C}_{1}=\left(C_{0}, C_{1}, s, t, \varepsilon, \circ\right), \mathcal{C}_{2}=\left(C_{0}, C_{2}, s_{h}, t_{h}, \varepsilon_{h}, \circ_{h}\right)$, and $\mathcal{C}_{3}=\left(C_{1}, C_{2}, s_{v}, t_{v}, \varepsilon_{v}, \circ_{v}\right)$ are internal categories in \mathcal{C} such that the following diagram commutes whenever the usual interchange rule satisfies between \circ_{h} and \circ_{v}, then $\left(C_{0}, C_{1}, C_{2}\right)$ is called an internal 2-category in \mathcal{C}.

Proposition 3.1. A 2-category object in Gp is a group-2-groupoid.
Proof. Let $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ is a 2-category object in Gp and $\mu_{0}, \mu_{1}, \mu_{2}$ be multiplications of groups G_{0}, G_{1}, G_{2}, respectively. Then, we can define a multiplication $\mu: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ as a 2 -functor such that $\mu=\mu_{0}$ on objects, $\mu=\mu_{1}$ on 1-morphisms and $\mu=\mu_{2}$ on 2-morphisms. Similarly, we can define 2 -functors id: $\mathbf{1} \rightarrow \mathcal{G}$ (where $\mathbf{1}$ is the terminal object of $\mathbf{2 C a t}$, i.e. the oneobject discrete 2 -category) which picks out an identity object, an identity 1morphism and an identity 2-morphism and inv: $\mathcal{G} \rightarrow \mathcal{G}$ picks out inverses for multiplications. Since $\bar{a}=1_{s(a)} a^{-1} 1_{t(a)}$ from [6] and $\bar{\alpha}^{v}=1_{s_{v}(\alpha)} \alpha^{-1} 1_{t_{v}(\alpha)}$, $\bar{\alpha}^{h}=1_{1_{s_{h}(\alpha)}} \alpha^{-1} 1_{1_{t_{h}(\alpha)}}$ from [1], \mathcal{G} is a 2 -groupoid. Then, \mathcal{G} is a group object in 2Cat and so \mathcal{G} is a group-2-groupoid.

Example 3.2. Every group-groupoid can be thought as a group-2-groupoid in which all 2 -morphisms are identities as follows:

It is mentioned that a group-groupoid is a 2-category with a single object [4]. Then, we shall need a different viewpoint on group-groupoids as a special kind of group-2-groupoids:

Proposition 3.3. A group-2-groupoid with a single object is a group-groupoid in which both groups are necessarily abelian.

Proof. In this approach, the composition of 1-morphisms and the horizontal composition of 2-morphisms are defined by multiplications of groups as follows:

It is proved in [23] that $a^{\prime} * a=a^{\prime} \cdot a=a \cdot a^{\prime}$. Using similar way, we get

$$
\alpha^{\prime} * \alpha=\left(\alpha^{\prime} \cdot 1_{e}\right) *\left(1_{e} \cdot \alpha\right)=\left(\alpha^{\prime} * 1_{e}\right) \cdot\left(1_{e} * \alpha\right)=\alpha^{\prime} \cdot \alpha
$$

and

$$
\alpha^{\prime} \cdot \alpha=\left(1_{e} * \alpha^{\prime}\right) \cdot\left(\alpha * 1_{e}\right)=\left(1_{e} \cdot \alpha\right) *\left(\alpha^{\prime} \cdot 1_{e}\right)=\alpha \cdot \alpha^{\prime}
$$

A third way to understand group-2-groupoids is to view them as double group-groupoids which are defined in [26] (see also [27]). Recall that a double category is a category object internal to Cat. Hence the structure of a double category contains four different but compatible category structures as partially
shown in the following diagram

where D_{1}^{H} and D_{1}^{V} are called horizontal and vertical edge categories, respectively, and D_{2} is called the set of squares. For further details, see [12, 14, 15, 20]. The structure of a 2 -category may be regarded as a double category in which all vertical morphisms are identities (or D_{2} and D_{1}^{H} have the same objects) [12, 20]. Therefore, a group-2-groupoid is a special kind of an internal category in the category GpGd of group-groupoids.

4. Crossed modules over group-Groupoids

In this section, we work on crossed modules over groupoids by replacing such groupoids with group-groupoids. Using the natural equivalence between crossed modules over groupoids and 2-groupoids given in [17], we will prove that there is a categorical equivalence between group-2-groupoids and crossed modules over group-groupoids.

Definition 4.1. Let $\mathcal{G}=(X, G)$ and $\mathcal{H}=(X, H)$ are group-groupoids over the same object set, \mathcal{H} be totally disconnected and $\mathcal{K}=(\mathcal{H}, \mathcal{G}, \partial)$ be a crossed module over \mathcal{G} and \mathcal{H} such that ∂ is a homomorphism of group-groupoids and the following interchange rule holds:

$$
(g \bullet h) \cdot\left(g^{\prime} \bullet h^{\prime}\right)=\left(g \cdot g^{\prime}\right) \bullet\left(h \cdot h^{\prime}\right)
$$

where $g, g^{\prime} \in G, h, h^{\prime} \in H$. Then \mathcal{K} is called a crossed module over groupgroupoids.

A morphism of crossed modules over group-groupoids is a morphism of crossed modules of groupoids which preserves group structures. Then, we can construct the category of crossed modules over group-groupoids which we denote by Cmg*.

Theorem 4.2. The categories Cmg* and Gp2Gd are equivalent.
Proof. The idea of the proof is to show that the functor of 2.2 restricts to an equivalence of categories. Let $\mathcal{A}=(X, A)$ and $\mathcal{B}=(X, B)$ are group-groupoids and $\mathcal{K}=(\mathcal{A}, \mathcal{B}, \partial)$ is a crossed module over \mathcal{A} and \mathcal{B}. Then $\theta(\mathcal{K})=(X, B, B \ltimes A)$ is a group-2-groupoid via the process of the proof 2.2. The group multiplication of 2 -morphisms in $\theta(\mathcal{K})$ is defined by

$$
(b, a) \cdot\left(b^{\prime}, a^{\prime}\right)=\left(b \cdot b^{\prime}, a \cdot a^{\prime}\right)
$$

We draw such pairs as

Now we will verify that compositions and the group multiplication satisfy the interchange rule.

$$
\begin{aligned}
{\left[\left(b_{1}, a_{1}\right) \circ_{h}(b, a)\right] \cdot\left[\left(b_{1}^{\prime}, a_{1}^{\prime}\right) \circ_{h}\left(b^{\prime}, a^{\prime}\right)\right] } & =\left[\left(b_{1} \circ b, a_{1} \circ\left(b_{1} \bullet a\right)\right)\right] \cdot\left[\left(b_{1}^{\prime} \circ b^{\prime}, a_{1}^{\prime} \circ\left(b_{1}^{\prime} \bullet a^{\prime}\right)\right)\right] \\
& =\left(\left(b_{1} \circ b\right) \cdot\left(b_{1}^{\prime} \circ b^{\prime}\right),\left(a_{1} \circ\left(b_{1} \bullet a\right) \cdot\left(a_{1}^{\prime} \circ\left(b_{1}^{\prime} \bullet a^{\prime}\right)\right)\right)\right. \\
& =\left(\left(b_{1} \cdot b_{1}^{\prime}\right) \circ\left(b \cdot b^{\prime}\right),\left(a_{1} \cdot a_{1}^{\prime}\right) \circ\left(\left(b_{1} \bullet a\right) \cdot\left(b_{1}^{\prime} \bullet a^{\prime}\right)\right)\right) \\
& =\left(\left(b_{1} \cdot b_{1}^{\prime}\right) \circ\left(b \cdot b^{\prime}\right),\left(a_{1} \cdot a_{1}^{\prime}\right) \circ\left(\left(b_{1} \cdot b_{1}^{\prime}\right) \bullet\left(a \cdot a^{\prime}\right)\right)\right) \\
& =\left(b_{1} \cdot b_{1}^{\prime}, a_{1} \cdot a_{1}^{\prime}\right) \circ_{h}\left(b \cdot b^{\prime}, a \cdot a^{\prime}\right) \\
& =\left[\left(b_{1}, a_{1}\right) \cdot\left(b_{1}^{\prime}, a_{1}^{\prime}\right)\right] \circ_{h}\left[(b, a) \cdot\left(b^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\left(\partial(a) \circ b, a_{2}\right) \circ_{v}(b, a)\right] \cdot\left[\left(\partial\left(a^{\prime}\right) \circ b^{\prime}, a_{2}^{\prime}\right) \circ_{v}\left(b^{\prime}, a^{\prime}\right)\right] } & =\left(b, a_{2} \circ a\right) \cdot\left(b^{\prime}, a_{2}^{\prime} \circ a^{\prime}\right) \\
& =\left(b \cdot b^{\prime},\left(a_{2} \cdot a_{2}^{\prime}\right) \circ\left(a \cdot a^{\prime}\right)\right) \\
& =\left[\partial\left(a \cdot a^{\prime}\right) \circ\left(b \cdot b^{\prime}\right), a_{2} \cdot a_{2}^{\prime}\right] \circ_{v}\left(b \cdot b^{\prime}, a \cdot a^{\prime}\right) \\
& =\left[\left(\partial(a) \circ b, a_{2}\right) \cdot\left(\partial\left(a^{\prime}\right) \circ b^{\prime}, a_{2}^{\prime}\right)\right] \circ_{v}\left[(b, a) \cdot\left(b^{\prime}, a^{\prime}\right)\right]
\end{aligned}
$$

whenever all above compositions are defined.
Now let $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ be a group-2-groupoid. Then $\gamma(\mathcal{G})$ is a crossed module over groupoids internal to $\mathbf{G p}$. We will verify that the interchange law holds:
$(f \bullet \alpha) \cdot\left(f^{\prime} \bullet \alpha^{\prime}\right)=\left(1_{f} \circ_{h} \alpha \circ_{h} 1_{\bar{f}}\right) \cdot\left(1_{f^{\prime}} \circ_{h} \alpha^{\prime} \circ_{h} 1_{\overline{f^{\prime}}}\right)=1_{f \cdot f^{\prime} \circ_{h}}\left(\alpha \cdot \alpha^{\prime}\right) \circ_{h} 1_{\overline{f \cdot f^{\prime}}}=\left(f \cdot f^{\prime}\right) \bullet\left(\alpha \cdot \alpha^{\prime}\right)$
Now we will show that $S_{\mathcal{G}}$ preserves the group multiplication:

$$
\begin{aligned}
S_{\mathcal{G}}\left(\alpha \cdot \alpha^{\prime}\right) & =\left(f \cdot f^{\prime},\left(\alpha \cdot \alpha^{\prime}\right) \circ_{h} 1_{\overline{f \cdot f^{\prime}}}\right) \\
& =\left(f \cdot f^{\prime}, \quad\left(\alpha \cdot \alpha^{\prime}\right) \circ_{h}\left(1_{\bar{f}} \cdot 1_{\overline{f^{\prime}}}\right)\right) \\
& =\left(f \cdot f^{\prime}, \quad\left(\alpha \circ_{h} 1_{\bar{f}}\right) \cdot\left(\alpha^{\prime} \circ_{h} 1_{\overline{f^{\prime}}}\right)\right) \\
& =\left(f, \alpha \circ_{h} 1_{\bar{f}}\right) \cdot\left(f^{\prime}, \alpha^{\prime} \circ_{h} 1_{\overline{f^{\prime}}}\right) \\
& =S_{\mathcal{G}}(\alpha) \cdot S_{\mathcal{G}}\left(\alpha^{\prime}\right)
\end{aligned}
$$

Other details are straightforward and so are omitted.
5. Group-2-Groupoids as internal categories in Cm

A group-2-groupoid can be also thought as a special case of an internal category in the category $\mathbf{C m}$ of crossed modules (see, e.g., [25] and [26] for more details about internal categories in Cm). This idea comes from that the structure of a group-2-groupoid contains three compatible group-groupoid structures. Given a group-2-groupoid, we can extract crossed modules as follows:

Then, we obtain an internal groupoid in $\mathbf{C m}$

$$
\left(\operatorname{Ker}\left(s_{h}\right), G_{0}\right) \stackrel{\epsilon}{\mathfrak{s}}\left(\operatorname{ter}(s), G_{0}\right)
$$

where the structure maps are defined by $\mathfrak{s}=\left\langle s_{v}, 1\right\rangle, \mathfrak{t}=\left\langle t_{v}, 1\right\rangle, \epsilon=\left\langle\varepsilon_{v}, 1\right\rangle$ as morphisms of crossed modules. Here $\mathfrak{s}, \mathfrak{t}, \epsilon$ are equivariant maps, since $s_{v}(x \bullet$ $\alpha)=x \bullet s_{v}(\alpha), t_{v}(x \bullet \alpha)=x \bullet t_{v}(\alpha)$ and $\varepsilon_{v}(x \bullet f)=x \bullet \varepsilon_{v}(f)$, for all $x \in G_{0}$ and $\alpha \in \operatorname{Ker}\left(s_{h}\right)$. The actions of G_{0} on $\operatorname{Ker}\left(s_{h}\right)$ and on $\operatorname{Ker}(s)$ are drawn in the following diagram:

We denote the category of such internal groupoids in Cm by IGCm. We know from $[25,26]$ that internal categories in the category $\mathbf{C m}$ of crossed modules are naturally equivalent to crossed squares which in turn should be viewed as a "crossed module of crossed modules". Hence an object of the category IGCm can be viewed as a special kind of crossed square.

Let $\mathfrak{G}=\left(G_{0}, G_{1}, X, \partial_{0}, \partial_{1}\right)$ be an object of IGCm. Then, the following diagram is commutative.

Let $\mathfrak{G}=\left(G_{0}, G_{1}, X, \partial_{0}, \partial_{1}\right), \mathfrak{G}^{\prime}=\left(G_{0}^{\prime}, G_{1}^{\prime}, X^{\prime}, \partial_{0}^{\prime}, \partial_{1}^{\prime}\right)$ be objects of IGCm. If $\left(\lambda_{1}, \lambda_{2}\right)$ is an endomorphism of the group-groupoid $G=\left(G_{0}, G_{1}\right)$, and $\left\langle\lambda_{1}, \lambda_{0}\right\rangle$, $\left\langle\lambda_{2}, \lambda_{0}\right\rangle$ are morphisms of crossed modules $\left(G_{0}, X, \partial_{0}\right),\left(G_{1}, X, \partial_{1}\right)$, respectively, then $\lambda=\left(\lambda_{2}, \lambda_{1}, \lambda_{0}\right)$ is called a morphism of IGCm.
Lemma 5.1. Let $\mathfrak{G}=\left(G_{0}, G_{1}, X, \partial_{0}, \partial_{1}\right)$ be an object of IGCm. Then

$$
x \bullet(\beta \circ \alpha)=(x \bullet \beta) \circ(x \bullet \alpha)
$$

for $x \in X, \alpha, \beta \in G_{1}$ where $s(\beta)=t(\alpha)$.
Proof. Let $a \xrightarrow{\alpha} b \xrightarrow{\beta} c$. We know from [6] that $\beta \circ \alpha=\beta \cdot 1_{b}^{-1} \cdot \alpha$. Then, we get

$$
\begin{aligned}
x \bullet(\beta \circ \alpha) & =x \bullet\left(\beta \cdot 1_{b}^{-1} \cdot \alpha\right) \\
& =(x \bullet \beta) \cdot\left(x \bullet 1_{b}^{-1}\right) \cdot(x \bullet \alpha) \\
& =(x \bullet \beta) \cdot\left(x \bullet 1_{b}\right)^{-1} \cdot(x \bullet \alpha) \\
& =(x \bullet \beta) \cdot 1_{(x \bullet b)}^{-1} \cdot(x \bullet \alpha) \\
& =(x \bullet \beta) \circ(x \bullet \alpha)
\end{aligned}
$$

Example 5.2. Every crossed module $\mathcal{K}=(M, N, \partial)$ over groups is an object of IGCm with the discrete groupoid of M where $n \bullet 1_{m}=1_{n \bullet m}$ and $\partial_{1}\left(1_{m}\right)=$ $\partial(m)$.

Theorem 5.3. There is an equivalence between IGCm and Gp2Gd.
Proof. A functor γ : Gp2Gd $\rightarrow \mathbf{I G C m}$ is defined in the following way. Let $\mathcal{H}=\left(H_{0}, H_{1}, H_{2}\right)$ be a group-2-groupoid. Then $\gamma(\mathcal{H})=\left(G_{0}, G_{1}, X, \partial_{0}, \partial_{1}\right)$ is an object of $\mathbf{I G C m}$ where $G_{0}=\operatorname{Ker}(s), \quad G_{1}=\operatorname{Ker}\left(s_{h}\right), \quad X=H_{0}, \quad \partial_{0}=$ $\left.t\right|_{\operatorname{Ker}(s)}$ and $\partial_{1}=\left.t_{h}\right|_{\operatorname{Ker}\left(s_{h}\right)}$

with actions $x \bullet f=1_{x} \cdot f \cdot 1_{x}^{-1}$ and $x \bullet \alpha=1_{1_{x}} \cdot \alpha \cdot 1_{1_{x}}^{-1}$, for $x \in X, f \in G_{0}, \alpha \in G_{1}$. Now we will verify that $s^{\prime}, t^{\prime}, \varepsilon^{\prime}$ are equivariant maps.
$s^{\prime}(x \bullet \alpha)=s^{\prime}\left(1_{1_{x}} \cdot \alpha \cdot 1_{1_{x}}^{-1}\right)=s_{v}\left(1_{1_{x}}\right) \cdot s_{v}(\alpha) \cdot s_{v}\left(1_{1_{x}}^{-1}\right)=1_{x} \cdot s_{v}(\alpha) \cdot 1_{x}^{-1}=x \bullet s^{\prime}(\alpha)$,
$t^{\prime}(x \bullet \alpha)=t^{\prime}\left(1_{1_{x}} \cdot \alpha \cdot 1_{1_{x}}^{-1}\right)=t_{v}\left(1_{1_{x}}\right) \cdot t_{v}(\alpha) \cdot t_{v}\left(1_{1_{x}}^{-1}\right)=1_{x} \cdot t_{v}(\alpha) \cdot 1_{x}^{-1}=x \bullet t^{\prime}(\alpha)$
and
$\varepsilon^{\prime}(x \bullet f)=\varepsilon^{\prime}\left(1_{x} \cdot f \cdot 1_{x}^{-1}\right)=\varepsilon_{v}\left(1_{x}\right) \cdot \varepsilon_{v}(f) \cdot \varepsilon_{v}\left(1_{x}^{-1}\right)=1_{1_{x}} \cdot \varepsilon_{v}(f) \cdot 1_{1_{x}}^{-1}=x \bullet \varepsilon^{\prime}(f)$.
Let $F=\left(F_{0}, F_{1}, F_{2}\right)$ be a morphism of group-2-groupoids. Then $\gamma(F)=$ $\left(\left.F_{2}\right|_{\operatorname{Ker}\left(s_{h}\right)},\left.F_{1}\right|_{\operatorname{Ker}(s)}, F_{0}\right)$ is a morphism of IGCm.

Next, we define a functor $\theta: \mathbf{I G C m} \rightarrow \mathbf{G p 2 G d}$ is an equivalence of categories. Given an object $\mathfrak{G}=\left(G_{0}, G_{1}, X, \partial_{0}, \partial_{1}\right)$ of IGCm, we can obtain a group-2-groupoid $\theta(\mathfrak{G})=\mathcal{H}=\left(H_{0}, H_{1}, H_{2}\right)$ where $H_{0}=X, H_{1}=X \ltimes G_{0}, H_{2}=$ $X \ltimes G_{1}$ as in the following way. Let $a \xrightarrow{\alpha} b$ be a morphism of \mathfrak{G}. Then pairs $x \xrightarrow{(x, a)} \partial_{0}(a) \cdot x$ and $x \xrightarrow{(x, b)} \partial_{0}(b) \cdot x$ are obtained as morphisms of the group-groupoid $\left(H_{0}, H_{1}\right)$, and a pair $x \xrightarrow{(x, \alpha)} \partial_{1}(\alpha) \cdot x$ is obtained as a morphism of the group-groupoid $\left(H_{0}, H_{2}\right)$. Since

$$
\partial_{1}(\alpha) \cdot x=\partial_{0} s(\alpha) \cdot x=\partial_{0}(a) \cdot x, \quad \partial_{1}(\alpha) \cdot x=\partial_{0} t(\alpha) \cdot x=\partial_{0}(b) \cdot x
$$

then (x, α) can be considered as a 2 -morphism as follows:

Let $a \xrightarrow{\alpha} b \xrightarrow{\beta} c$. Then, the vertical composition of (x, α) and (x, β) is defined by

$$
(x, \beta) \circ_{v}(x, \alpha)=(x, \beta \circ \alpha)
$$

where the source and the target maps are defined by $s_{v}(x, \alpha)=(x, s(\alpha))$ and $t_{v}(x, \alpha)=(x, t(\alpha))$, respectively, and the identity map is defined by $\varepsilon_{v}(x, a)=$ $\left(x, 1_{a}\right)$. Given morphisms $a \xrightarrow{\alpha} b$ and $a_{1} \xrightarrow{\alpha_{1}} b_{1}$, we obtain pairs (x, α), $\left(\partial_{1}(\alpha) \cdot x, \alpha_{1}\right)$ and we define their horizontal composite by

$$
\left(\partial_{1}(\alpha) \cdot x, \alpha_{1}\right) \circ_{h}(x, \alpha)=\left(x, \alpha_{1} \cdot \alpha\right)
$$

where the source and the target maps are defined by $s_{h}(x, \alpha)=x, t_{h}(x, \alpha)=$ $\partial_{1}(\alpha) \cdot x$, respectively, and the identity map is defined by $\varepsilon_{h}(x)=\left(x, 1_{e}\right)$. Clearly the vertical composition and the horizontal composition satisfy the usual interchange rule. The product of (x, α) and $\left(x^{\prime}, \alpha^{\prime}\right)$ is written by

$$
(x, \alpha) \cdot\left(x^{\prime}, \alpha^{\prime}\right)=\left(x \cdot x^{\prime}, \alpha \cdot\left(x \bullet \alpha^{\prime}\right)\right)
$$

for $a \xrightarrow{\alpha} b$ and $a^{\prime} \xrightarrow{\alpha^{\prime}} b^{\prime}$.
If $\lambda=\left(\lambda_{2}, \lambda_{1}, \lambda_{0}\right)$ is a morphism of \mathfrak{G}, then $\theta(\lambda)=\left(\lambda_{0}, \lambda_{0} \times \lambda_{1}, \lambda_{0} \times \lambda_{2}\right)$ is morphism of $\theta(\mathfrak{G})$.

A natural equivalence $S: 1_{\text {Gp2Gd }} \rightarrow \theta \gamma$ is defined with a map $S_{\mathcal{G}}: \mathcal{G} \rightarrow$ $\theta \gamma(\mathcal{G})$ which is defined such that to be the identity on objects, $S_{\mathcal{G}}(f)=$
$\left(x, f \cdot 1_{x}^{-1}\right)$ and $S_{\mathcal{G}}(\alpha)=\left(x, \alpha \cdot 1_{1_{x}}^{-1}\right)$ for $f \in G_{1}, \alpha \in G_{2}$ where $x=s(f)=s_{h}(\alpha)$. Clearly $S_{\mathcal{G}}$ is an isomorphism and preserves the group operations and compositions as follows:

$$
\begin{aligned}
S_{\mathcal{G}}(\alpha) \cdot S_{\mathcal{G}}\left(\alpha^{\prime}\right) & =\left(x, \alpha \cdot 1_{1_{x}}^{-1}\right) \cdot\left(x^{\prime}, \alpha^{\prime} \cdot 1_{1_{x^{\prime}}}^{-1}\right) \\
& =\left(x \cdot x^{\prime}, \alpha \cdot 1_{1_{x}}^{-1} \cdot\left(x \cdot\left(\alpha^{\prime} \cdot 1_{1_{x^{\prime}}}^{-1}\right)\right)\right) \\
& =\left(x \cdot x^{\prime}, \alpha \cdot 1_{1_{x}}^{-1} \cdot 1_{1_{x}} \cdot \alpha^{\prime} \cdot 1_{1_{x^{\prime}}}^{-1} \cdot 1_{1_{x}}^{-1}\right) \\
& =\left(x \cdot x^{\prime}, \alpha \cdot \alpha^{\prime} \cdot 1_{1_{x x^{\prime}}}^{-1}\right) \\
& =S_{\mathcal{G}}\left(\alpha \cdot \alpha^{\prime}\right)
\end{aligned}
$$

where $s(\alpha)=x, s\left(\alpha^{\prime}\right)=x^{\prime}$,
$S_{\mathcal{G}}\left(\delta \circ_{h} \alpha\right)=S_{\mathcal{G}}\left(\delta \cdot 1_{1_{y}}^{-1} \cdot \alpha\right)=\left(x, \delta \cdot 1_{1_{y}}^{-1} \cdot \alpha \cdot 1_{1_{x}}^{-1}\right)=\left(y, \delta \cdot 1_{1_{y}}^{-1}\right) \circ_{h}\left(x, \alpha \cdot 1_{1_{x}}^{-1}\right)=S_{\mathcal{G}}(\delta) \circ_{h} S_{\mathcal{G}}(\alpha)$
where $t(\alpha)=s(\delta)=y$ and

$$
\begin{aligned}
S_{\mathcal{G}}(\beta) \circ_{v} S_{\mathcal{G}}(\alpha) & =\left(x, \beta \cdot 1_{1_{x}}^{-1}\right) \circ_{v}\left(x, \alpha \cdot 1_{1_{x}}^{-1}\right) \\
& =\left(x,\left(\beta \cdot 1_{1_{x}}^{-1}\right) \circ_{v}\left(\alpha \cdot 1_{1_{x}}^{-1}\right)\right) \\
& =\left(x,\left(\beta \circ_{v} \alpha\right) \cdot\left(1_{1_{x}}^{-1} \circ_{v} 1_{1_{x}}^{-1}\right)\right) \\
& =\left(x,\left(\beta \circ_{v} \alpha\right) \cdot 1_{1_{x}}^{-1}\right) \\
& =S_{\mathcal{G}}\left(\beta \circ_{v} \alpha\right)
\end{aligned}
$$

where $s_{v}(\beta)=t_{v}(\alpha)$.
To define a natural equivalence $T: 1_{\mathbf{I G C m}} \rightarrow \gamma \theta$, a map $T_{\mathfrak{G}}$ is defined such that to be identity on $X, T_{\mathfrak{G}}(a)=(e, a)$ for $a \in G_{0}$ and $T_{\mathfrak{G}}(\alpha)=(e, \alpha)$ for $\alpha \in G_{1}$. Obviously $T_{\mathfrak{F}}$ is an isomorphism and preserves the composition and the group multiplication as follows:

$$
T_{\mathfrak{G}}(\beta \circ \alpha)=(e, \beta \circ \alpha)=(e, \beta) \circ(e, \alpha)=T_{\mathfrak{G}}(\beta) \circ T_{\mathfrak{G}}(\alpha)
$$

$$
T_{\mathfrak{G}}(\alpha) \cdot T_{\mathfrak{G}}\left(\alpha^{\prime}\right)=(e, \alpha) \cdot\left(e, \alpha^{\prime}\right)=\left(e, \alpha \cdot\left(e \bullet \alpha^{\prime}\right)\right)=\left(e, \alpha \cdot \alpha^{\prime}\right)=T_{\mathfrak{G}}\left(\alpha \cdot \alpha^{\prime}\right)
$$

Other details are straightforward and so are omitted.

Acknowledgements. We would like to thank the referee for his/her useful remarks and suggestions which help us to improve the paper.

Further remarks on group-2-groupoids

References

[1] N. Alemdar and S. Temel, Group-2-groupoids and 2G-crossed modules, Hacet. J. Math. Stat. 48, no. 5 (2019), 1388-1397.
[2] J. C. Baez and A. D. Lauda, Higher Dimensional Algebra V: 2-Groups, Theory Appl. Categ. 12, no. 14 (2004), 423-491.
[3] J. Bènabou, Introduction to bicategories, In: Reports of the Midwest Category Seminar. Lecture Notes in Mathematics 47 (1967), 1-77.
[4] J. C. Baez, A. Baratin, L. Freidel and D. K. Wise, Infinite-Dimensional Representations of 2-Groups, Mem. Amer. Math. Soc. 219, 1032 (2012).
[5] J. C. Baez and D. Stevenson, The classifying space of a topological 2-group, Abel Symposia, vol 4. Springer, Berlin, Heidelberg.
[6] R. Brown and C. B. Spencer, \mathcal{G}-groupoids, crossed modules and the fundamental groupoid of a topological group, Indagat. Math. (Proceedings) 79, no. 4 (1976), 296-302.
[7] R. Brown, Higher dimensional group theory, Low Dimensional Topology, Cambridge University Press, 1982.
[8] R. Brown, P. J. Higgins and R. Sivera, Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids, European Mathematical Society Tracts in Mathematics 15, 2011.
[9] R. Brown and P. J. Higgins, Crossed complexes and non-abelian extensions, Category Theory. Lecture Notes in Mathematics, 962, Springer, Berlin, Heidelberg 1982.
[10] R. Brown and P. J. Higgins, Tensor Products and Homotopies for ω-groupoids and crossed complexes, J. Pure and Appl. Algebra 47 (1987), 1-33.
[11] R. Brown and I. Icen, Homotopies and automorphisms of crossed module over groupoids, Appl. Categ. Structures, 11 (2003) 185-206.
[12] R. Brown and G. H. Mosa, Double categories, 2-Categories, thin structures and connections, Theory Appl. Categ. 5, no. 7 (1999), 163-175.
[13] L. Crane, Categorical physics (arXiv:hep-th/9301061v1).
[14] C. Ehresmann, Catègories doubles et catègories structurès, Comptes rendus de l'Acadèmie des Sciences 256 (1963), 1198-1201.
[15] C. Ehresmann, Catègories structurès, Annales Scientifiques de l'Ècole Normale Supèrieure 80 (1963), 349-425.
[16] J. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetici 55 (1980), 302-314.
[17] I. Icen, The equivalence of 2 -groupoids and crossed modules, Commun. Fac. Sci. Univ. Ank. Series A1 49 (2000), 39-48.
[18] G. Janelidze, L. Marki and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168 (2002), 367-386.
[19] K. H. Kamps and T. Porter, 2-Groupoid enrichments in homotopy theory and algebra, K-Theory 25 (2002), 373-409.
[20] G. M. Kelly and R. Street, Review of the Elements of 2-Categories, Category Seminar. Lecture Notes in Mathematics, vol 420. (1974) Springer, Berlin, Heidelberg.
[21] J.-L. Loday, Cohomologie et groupe de Steinberg relatifs, J. Algebra 54 (1978), 178-202.
[22] S. Maclane, Categories for the Working Mathematician, Graduate Text in Mathematics, (1971) Springer-Verlag New York.
[23] M. Forrester-Barker, Group objects and internal categories (arXiv:math/0212065).
[24] B. Noohi, Notes on 2-groupoids, 2-groups and crossed modules, Homology Homotopy Appl. 9, no. 1 (2007), 75-106.
[25] T. Sahan and J. J. Mohammed, Categories internal to crossed modules, Sakarya University Journal of Science 23, no. 4 (2019), 519-531.
[26] S. Temel, T. Şahan and O. Mucuk, Crossed modules, double group-groupoids and crossed squares, Filomat 34, no. 6 (2020), 1755-1769.
[27] S. Temel, Internal categories in crossed semimodules and Schreier internal categories, Math. Sci. Appl. E-Notes 8, no. 2 (2020), 86-95.

S. Temel

[28] J. H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949), 453-496.
[29] J. H. C. Whitehead, Note on a previous paper entitled "On adding relations to homotopy group", Ann. Math. 47 (1946), 806-810.

