
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/165276

Albero-Sancho, J.; Peng, Y.; García Gómez, H. (2020). Photocatalytic CO2 Reduction to
C2+Products. ACS Catalysis. 10(10):5734-5749. https://doi.org/10.1021/acscatal.0c00478

https://doi.org/10.1021/acscatal.0c00478

American Chemical Society

This document is the Accepted Manuscript version of a Published Work that appeared in
final form in ACS Catalysis, copyright © American Chemical Society after peer review and
technical editing by the publisher. To access the final edited and published work see
https://doi.org/10.1021/acscatal.0c00478



 1 

Photocatalytic CO2 reduction to C2+ products  

Josep Albero, Yong Peng and Hermenegildo García* 

Instituto Universitario de Tecnología Química CSIC-UPV, Universitat Politècnica de València, 

Avda. De los Naranjos s/n 46022, Valencia, Spain. 

KEYWORDS.  Photocatalysis, CO2 reduction, solar fuel, selectivity, C2+ products. 

 

ABSTRACT  

There is a considerable interest in the development of photocatalytic CO2 conversion by 

sunlight since this process has similarities with natural photosynthesis on which life on Earth is 

based. At the moment, most of the efforts in this field have been aimed at increasing the 

productivity, rather than at the control of the product distribution. Particularly, compounds with 

two or more carbons (C2+) have higher added value than methane, carbon monoxide or formate 

that are typically the major products of CO2 reduction. This review focuses on those reports that 

have described the formation of compounds of two or more carbon atoms (C2+) in the 

photocatalytic CO2 reduction either by H2O or as H2 as source of electrons and protons. The 

existing literature has been organized according to the main factor considered as responsible for 

the selectivity to C2+ products, including photocatalyst structuration, co-catalyst nature, influence 

of defects, effects of surface plasmon band. Emphasis has been made on remarking the current 
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empirical knowledge based on experimental results and the lack of predictive capability that could 

lead to the development of efficient photocatalytic systems for C2+ production. 

 

1. INTRODUCTION  

The light-driven conversion of CO2 and water into chemicals and fuels with the aid of a 

photocatalyst, mimicking the natural photosynthetic process, is considered among the most 

promising approaches for decreasing atmospheric CO2 emissions,1-7 an action that would 

contribute to climate change mitigation, while providing renewable fuels. When using solar light 

and a photocatalyst, this process is generally known as artificial photosynthesis,8-12 since the 

system and the products are different from those of natural photosynthesis that transforms the same 

reagents in the leaf chloroplasts to produce O2 and glucose (Scheme 1). 

Photocatalytic CO2 reduction 

 

Artificial 

photosynthesis 

Hydrogenation 

Source of e- and H+ H2O H2 

Typical productivity µmol×g-1 mmol×g-1 

Typical temperature Ambient >150 oC 
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Operation batch Possibility of continuous flow 

 

Scheme 1. Specific features of photocatalytic CO2 reduction either by H2O or by H2.  

 

The current solar-to-fuel efficiency of artificial photosynthesis is, however, below or 

nearby 1 %, and it has to be increased in most of the cases. It has been suggested that an ideal 

solar-to-fuel efficiency > 10 % is required for artificial photosynthesis to be economically 

feasible.13 In addition, the transformation should be performed under continuous flow, before it 

can be considered as a potentially viable large-scale process.  

Chemical reduction of CO2 by H2O into useful fuels and chemicals faces a high energy 

penalty as consequence of the high dissociation energy of the C=O bonds (approximately 750 

KJ/mol)14 and the strength of the O-H bonds. The extremely high endothermicity of the process 

determines that most of the studied photocatalysts are wide bandgap semiconductors, particularly 

transition metal oxides (TiO2, SrTiO3, ZnO, SiC, ZnS etc.),15 that can provide enough 

thermodynamic driving-force for CO2 reduction and H2O oxidation. Scheme 2 indicates some 

typical semiconductors and their redox potential of conduction (CB) and valence (VB) bands in 

comparison with thermodynamic potentials of some CO2 reduction reactions. 
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Scheme 2. Conduction and valence band energies of different semiconductor photocatalysts, as 

well as the electrochemical potentials of some CO2 reduction reactions to derived compounds and 

H2O reduction and oxidation potentials. 

 

The two main limitations faced by the solar-light photocatalytic CO2 conversion by H2O 

as electron source are the low efficiencies of the process and the lack of product selectivity, 

particularly to high added value chemicals. The main reasons for the low production yields include 

the use of wide bandgap semiconductors, which typically are able to harvest UV light that 

corresponds only to about 4 % of the solar spectrum, together with high charge carrier 

recombination rates. Moreover, common visible light photocatalysts, such as sulfides, selenides, 

carbides or nitrides, either do not meet the thermodynamic potentials required for simultaneous 

CO2 reduction and H2O oxidation or present serious stability issues under reaction conditions due 

to photocorrosion in the reaction media.  
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A way to overcome the low efficiencies currently reached in artificial photosynthesis in 

which H2O is the reducing agent is to use other alternative electron source with lower oxidation 

potential than H2O. Due to its availability and lack of byproducts, an important reducing agent 

alternative to H2O is molecular H2 (Scheme 1). To meet the carbon neutral balance, the 

stoichiometric H2 amounts needed to react with CO2 have to be obtained from renewable sources 

and not from fossil fuels.  

In contrast to the unfavorable thermodynamics of the CO2 with H2O reaction, 

hydrogenation of CO2 to form various products is an exothermic process, the exact reaction 

enthalpy depending on the product.16-21 Equations 1-11 summarizes the redox reactions of 

commonly reported products from photocatalytic CO2 reduction, indicating the equillibirum 

potential and reaction enthalpy. CO2 hydrogenation is more commonly performed in the dark using 

thermal catalysis. In spite of being exothermic reactions, the temperatures required for CO2 

hydrogenation are above 250 oC, typically between 300 and 500 oC, due to its slow kinetics.  

Interestingly, this CO2 reduction by H2 can also be promoted photocatalytically with the advantage 

respect to the thermal process of the possible use of solar light as energy source.22, 23 Besides, the 

efficiencies and productivities of the photocatalytic CO2 hydrogenation are much closer to the 

values needed to consider its industrial viability. In addition to reports on artificial photosynthesis, 

the present review also covers those studies on the photocatalytic CO2 hydrogenation in which the 

formation of C2+ products have been described. 
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2. Aim and scope of the review 

With the objective of increasing the process efficiency, the photocatalytic CO2 reduction 

has attracted in the last years a growing attention of the scientific community and the number of 

studies in this area has increased exponentially in the last years. There are in the literature a series 

of recent reviews covering different aspects of photocatalytic CO2 conversion, including type of 

photocatalysts, strategies to increase their efficiency and summarizing the most remarkable 

achievements reached so far.24-32 

The present review is focused on those studies on photocatalytic CO2 reduction reporting 

the appearance of products with more than one carbon, generically termed as C2+ products. Thus, 

rather than overlapping with the existing literature the present article complements them by 

covering an important aspect of photocatalytic CO2 reduction that at the moment is poorly 

understood.  

The interest on C2+ compared with C1 products rise from their wider use and, therefore, 

high added value. Table 1 summarizes the most commonly obtained C1 and C2+ products and 

their related uses. 
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C2+ product Most relevant uses 
Market price 

($/Kg)33, 34 

Formic acid 
The major use of formic acid is as a preservative and 

antibacterial agent in livestock feed. 
0.74 

Carbon 

monoxide 

The main industrial application of carbon monoxide is in the 

Fischer-Tropsch process to obtain liquid hydrocarbon fuels 

and in the production of methanol. 

0.06 

Methanol 

One of the main applications of methanol is as feedstock in 

the production of formaldehyde, acetic acid and methyl tert-

butyl ether. It is also used to produce hydrocarbons and as 

gasoline additive. 

Methane is also a relevant energy carrier since it can store 

hydrogen and methane and vehicles fuel. 

0.58 

Methane 

As the major constituent of natural gas, its mainly applied as 

fuel for electricity generation in gas turbine as well as for 

ovens, homes, water heaters, kilns, automobiles and for 

domestic heating and cooking.  

It is also used in industry as chemical feedstock to produce 

hydrogen. 

0.18 

Ethane 

Mainly used as feedstock in the production of commodity 

chemicals, mainly ethylene. Also used as refrigerant in 

cryogenic refrigeration systems. 

4 

Ethylene 

Widely used in the chemical industry for: 

- Polyethylene production, which is the most widely 

used plastic and consumes half world’s ethylene 

supply; 

- Ethylene oxide, used for the production of surfactants, 

detergents and ethylene glycol; 

- Ethylbenzene which is precursor of polystyrene; and 

- Ethylene dichloride, among others. 

1.3 

Propane 

Mainly used as domestic and industrial fuels, as well as in 

bus and tracks engines. Also used as refrigerator and 

feedstock. 

8 

Propylene 

Widely used in paint and adhesive industry as feedstock for 

the production of polypropylene, isopropanol, propylene 

oxide, acrylonitrile, cumene and acrylic acid, among others. 

0.9 

Ethanol 

It has very different applications such as: antiseptic in 

medical uses, beverages fabrication, fuel, precursor of 

feedstocks (ethyl halides, ethyl esters, diethyl ether and ethyl 

amines), solvent and low temperature liquid to keep vessels a 

temperatures bellow 0 0C.  

1 

Acetic acid 

Typically used in the industrial production of monomers 

such as vinyl acetate, esters (ethyl acetate, n-butyl acetate), 

food (vinegar) and medical uses. 

2.9 

Acetaldehyde 
Precursor of pyridine derivatives and pentaerythriol to 

produce resins. 
4.45 
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Methyl 

formate 

Primarily used to manufacture formamide and dimethyl 

formamide. 
4.5 

 

Considering the higher value of C2+ products compared to the C1 analogues, besides the 

continuous interest in increasing the activity of the photocatalytic CO2 reduction, some studies 

have been recently directed towards driving the product selectivity towards C2+ hydrocarbons. 

The present manuscript summarizes the different approaches that have been developed so far to 

control product selectivity towards C2+ products, highlighting the most promising strategies. The 

subject of the present review are those photocatalytic systems that have reported a significant 

percentage of C2+ products, trying to present the hypothesis about origin is this selectivity. The 

reader is referred to the existing literature for a comprehensive coverage of the photocatalytic CO2 

reduction.  

The emphasis will be done on describing the current state of the art and the reported 

photocatalysts to form C2+ products from photocatalytic CO2 reduction, either using H2O or H2 

as reducing agent. It will be commented that the present knowledge is rather empirical and based 

on results, there being a lack of theoretical and mechanistic understanding of the factors that 

control this selectivity. The purpose of this review is to trigger additional research and theoretical 

models with the long term to design photocatalysts with enhanced selectivity towards C2+ 

products. 

 

3. Product selectivity 
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Photocatalytic H2O splitting can only afford H2 as product. In contrast, in the case of 

photocatalytic CO2 reduction there are a wide range of gaseous and liquid possible products. 

Moreover, since H2O can be a reagent in the photocatalytic CO2 reduction, the occurrence of 

competitive H2 evolution can also be observed, frequently as the major reduction product, 

accompanying other compounds derived from CO2.  

Therefore, besides issues related to photocatalyst activity and stability, previously 

commented, another important aspect considered of lesser importance in photocatalytic CO2 

reduction, regardless the nature of the electron donor, is product selectivity.  

Photocatalytic CO2 reduction in the gas phase leads generally to CH4 or CO as major 

products, while in the liquid phase, formate is the most commonly observed prevalent product. In 

this regard, although product selectivity has received less attention so far, formation of organic 

compounds with two or more carbon atoms has been also typically observed, although in much 

lesser proportions than the major C1 product, generally in combined selectivity values below 5 %. 

However, techno-economic studies point out that direct conversion of CO2 to C2+ products, either 

saturated or unsaturated hydrocarbons or oxygenated products, such as ethane, propane, ethylene, 

ethanol and propanol, would be much more attractive considering the higher market price per ton 

of these C2+ compounds compared to the C1 products.35 The higher added value of C2+ 

compounds compared to C1 analogues is a driving force to develop selective photocatalytic 

systems that provide these C2+ products from CO2 in high yields, but this important consideration 

of the relative product value has been barely taken into account so far. 

Among the reasons for the observed preferential CO2 reduction to CO, CH4 or HCOOH, 

rather than yielding C2+ hydrocarbons or alcohols, the complex kinetic of these reactions, that are 
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frequently considered as a black box, as well as the lack of catalytic activity towards C-C coupling 

of the most commonly employed co-catalysts have been pointed out.36, 37 Thus, typical co-catalysts 

are transition metals with well-established activity in hydrogenation reactions, rather than in C-C 

coupling. On the other hand, there is a current gap in the understanding of the rate determining 

steps in the reaction mechanism that drive selectivity towards C2+ products.  

There are nevertheless some common traits for most of the photocatalytic systems in where 

C2+ products are observed. Since, multiple electron coupled to proton transfer (MECPT) reactions 

and C-C coupling steps have been identified as the main mechanism for C2+ products formation,36, 

38 it appears that those conditions or systems favoring MECPT also favor the formation of C2+ 

products. Thus, it turns out that since the e-/h+ recombination is a general process limiting the 

transfer of multiple electrons in a short time and at a given location, this energy waste e-/h+ 

recombination not only decreases the CO2 conversion, but it also drives product selectivity towards 

C1. Scheme 3 shows the energy diagram indicating ideal charge transfer kinetics timescale 

indicating the stoichiometric number of e- and H+. As it can be noted in this Scheme 3, all the 

reactions leading to C2+ products are characterized by a large number of e- and H+ couplings, 

higher than 8. Thus, in a simple understanding, reaction conditions or materials that favor a large 

concentration of e- photogeneration and storage are more favorable for the formation of larger 

proportions of C2+ products, while other conditions favor the exclusive observation of C1 

compounds.  These reasons justify why formation of C2+ products is very challenging in 

comparison to the C1 ones. 
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Scheme 3. Energy diagram of the different CO2 reduction products, indicating the number of e- 

and H+ required and range of the charge transfer reactions timescale, including light absorption 

(blue), charge migration (orange), charge transfer and reaction kinetics (green), and charge 

recombination (red). 

 

The scarcity of photoassisted processes generating C2+ hydrocarbons contrasts with 

conventional Fischer-Tropsch synthesis, where CO and H2 mixtures are efficiently transformed to 

liquid fuels or organic oxygenates (i.e. methanol, ethanol and mixed higher alcohols). Scheme 4 

illustrates the differences in the product distribution between photocatalytic CO2 reduction and 

Fischer-Trospch synthesis (FTS). However, FTS are usually based upon Fe or Co catalysts and 

operates under high temperature (310-340 oC for Fe and 210-260 0C for Co) and pressure (1 – 10 

Atm) ranges, which results in very high energy consumption and the associated CO2 emission due 

to the water-shift reaction.   In addition, conventional FTS presents a carbon efficiency range from 

25 to 50 % and a thermal efficiency of about 50%.39, 40. In contrast, photocatalytic or photothermal 
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processes, which energy driving force to carry out the reaction is taken from solar light, would be 

more convenient.  

 

 

Scheme 4. Typical products on CO2 reduction by H2 compared to Fischer-Trospch 

synthesis (top). Fischer-Tropsch CO insertion chain grown mechanism, indicating the possible 

selectivity (botton). 

 

The Fischer-Tropsch synthesis follows a polymerization mechanism, where CO undergoes 

activation on metal (Ru, Ni, Co or Fe) or metal carbide forming adsorbed CHx and OCHX (being 

x= 0-3) intermediates that react by a sequence of consecutive coupling to produce CnHm or CnHmO 

products (Scheme 4). Depending on the catalyst, H2/CO ratio, total pressure, temperature and other 
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reaction conditions, the primary products can eventually undergo hydrogenation or 

dehydrogenation to obtain the final paraffin or olefin compounds. In this field, it is widely accepted 

that Fe is not as efficient as Co or Ru as hydrogenating site, but instead Fe is more selective towards 

olefins and oxygenated compounds ( 60 %)41, 42 On the contrary, Co has been reported to be 

highly selective for paraffin production.43-45 Since CO2 can give rise to CO as primary product, it 

can be envisioned that analogous Fischer-Tropsch oligomerization could also be possible in CO2 

hydrogenation, although the reaction pathway will be completely different. 

In comparison to conventional thermal catalysis, the factors governing the selectivity in 

photocatalytic CO2 reduction are still poorly understood. Possible parameters that should influence 

product selectivity include light intensity, photon energy, photocatalyst properties (crystallinity, 

defects, etc.) and co-catalyst composition, among others. Understanding of the interplay of all 

these parameters with the mechanism pathway network is necessary to enhance selectivity towards 

C2 products. The complexity of the multistep mechanism of CO2 conversion to hydrocarbons  

determines a significant kinetic bottleneck compared to simpler reactions such as CO production 

or even competitive H2 evolution. Understanding of the reaction mechanism and the parameters 

influencing product selectivity should lead to the rational design of suitable photocatalytic system 

that can overcome the kinetic hindrances, reaching the appropriate balance between hydrogenating 

ability and C-C coupling in the reaction mechanism, resulting in an optimal C2+ product 

formation. 

 

4. Photocatalysts rational design 
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One of the most widely explored strategies to enhance the selectivity of the photocatalytic CO2 

reduction towards C2+ products has been photocatalyst architecture engineering. The 

photocatalytic system is typically constituted by a semiconducting material on which a metal 

and/or metal oxide co-catalyst has been deposited on its surface. Elemental composition and 

crystal phase of the semiconductor, preparation and deposition procedures, particle size and 

location on the semiconductor are typically factors that control the influence of these co-catalysts 

on the photocatalytic reaction. Due to the opposite nature of e- and h+, the complete photocatalytic 

system may contain two different co-catalysts to manage separately e- or h+ transfer. 

In one of the first examples reporting the influence of the photocatalyst structure on the 

formation of C2+ products, Xia and coworkers showed in 2007 the formation of ethanol in the 

photocatalytic CO2 reduction.46 In this study, multi-walled carbon nanotubes (MWCNTs) 

supported TiO2 were prepared. Depending on the preparation conditions, the TiO2 phase and 

morphology were anatase as NPs or rutile as nanorods (Scheme 5). Composites of MWCNT-

coated anatase TiO2 NPs were obtained by sol-gel, while hydrothermal synthesis promoted the 

formation of rutile TiO2 nanorods on the MWCNTS. These two composite photocatalysts 

produced different C2H5OH, HCOOH and CH4 amounts upon UV light irradiation (15 W UV 

lamp, = 365 nm). Thus, the selectivity towards C2H5OH (12 e- + 12 H+) in anatase NPs/MWCNTs 

composites was significantly higher (=  69.7%), while HCOOH (2 e- + 2 H+) was the main 

product of the irradiation using rutile nanorods/MWCNTs photocatalyst.  
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Scheme 5. Preparation and structure of two TiO2/MWCNTs and their different product selectivity. 

 

The authors ascribed these selectivity differences to the different TiO2 crystal phase and 

morphology, although the reason why the two TiO2 phases exhibit different selectivity still remain 

to be understood.46 In this regard, it is worth remarking that the different photocatalytic behavior 

of TiO2 crystal phases is well established. For instance, anatase TiO2 single crystals have been 

found more suitable for photocatalytic pollutant degradation, while rutile TiO2 exhibits higher 

photocatalytic activity towards H2 evolution.47 However, even accepting that different 

semiconductor phases may exhibit different photocatalytic activity, the factors that drive 

selectivity to ethanol or formic acid still remain unclear. 
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To gain further understanding on the origin of the product selectivity, a comparison of the 

catalytic activity of the TiO2/MWCNT system with those of bare TiO2 anatase NPs and rutile 

nanorods was also provided. It was observed that in the case of bare anatase TiO2 NPs, the three 

products, C2H5OH, HCOOH and CH4, are also formed in similar proportions in the absence of 

MWCNTs, although the total production obtained was lower. Conductive carbon nanoforms such 

as MWCNT and graphenes in appropriate proportion are known to increase the photocatalytic 

activity of TiO2 photocatalysts. It is widely accepted that the main reason for this positive influence 

of carbon nanoforms on the photocatalytic TiO2 activity derives from their electron conductivity 

that favors electron delocalization. In line with the general influence of carbon allotropes, in the 

present case the authors proposed that the e-/h+ pairs photogenerated in the TiO2 are prone to suffer 

fast recombination. However, the MWCNTs in close contact with the TiO2 NPs promote efficient 

charge separation, by migration of CB electrons from TiO2 to MWCNTs and fast delocalization, 

therefore, decreasing e-/h+ recombination. Delocalization on different components of the charge 

carriers increases their lifetime and makes more probable their transfer to the reactants. Overall, it 

appears that the semiconductor crystal phase determines the selectivity, while the MWCNT co-

catalyst boosts the production yield.  

Importantly, the authors claimed that the good electrical properties of MWCNTs favoring 

fast e- transport should also make possible the access of CO2 to multiple e-.46 This is a key point 

since considering the equations shown in Scheme 3, MECPT has to occur to form ethanol. 

In a different example, Lee et al.48 reported the preparation of Rh-doped Degussa P25 TiO2 

NPs sensitized with the natural light harvesting complex II of green plants (LHCII).48  Scheme 6 

illustrates the structure of the LHCII/Rh:P25 TiO2 photocatalyst and the product distribution. 

LHCII is well-known to absorb photons in the range of 400 – 700 nm, transferring this energy to 
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the photosystem II reaction center.49 In the present case, LHCII adsorbed in Rh:TiO2 NPs gave rise 

to acetaldehyde (10 e- + 10 H+) with selectivity of 78.4%, while CO was the main product (= 94.1 

%) when bare Rh:TiO2 NPs were used as photocatalysts.  Methyl formate (8 e- + 8 H+) was also 

detected in both cases, although in lesser extend (= 5.9 %). The authors ascribed the selectivity 

towards CH3CHO to the visible light photosensitization of LHCII to the Rh:TiO2 NPs. Although 

the authors did not addressed whether an energy or charge transfer mechanism was responsible of 

the enhanced selectivity,48 it seems clear that visible light photogenerated charges in LHCII 

contributed not only to enhance the photocatalyst activity, but also to determine the selectivity 

towards C2+ products probably due to the larger charge density available. It is worth noticing that 

the photocatalytic tests were carried out at high photon flux (362 mW/cm2), thus favoring a large 

photo-induced charge density generation. 

 

Scheme 6. Structure and product selectivity of LHCII/Rh:P25 TiO2 photocatalyst. 

Although TiO2 in various forms is the most widely studied photocatalyst, other 

semiconductors can also promote light-induced CO2 reduction forming C2+ products. In this 
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regard, Shown et al.50 reported the preparation of graphene oxide (GO) supported Cu NPs for 

photocatalytic CO2 reduction (Scheme 7). In this example, Cu NPs were strongly grafted to the 

GO surface using a microwave-based preparation method. GO is known to generate e-/h+ pairs 

upon light absorption and Cu NPs were used as electron reservoirs, reducing the recombination 

rate and enhancing the MECPT. The addition of 5 wt% Cu in GO promoted methanol (6 e- + 6 H+) 

and acetaldehyde (10 e- + 10 H+) production in similar proportions as main products, while H2 was 

detected in a minor extend, upon UV-Vis light irradiation (Halogen lamp; 100 mW/cm2). Cu 

content increase (10 wt%) improved the photocatalytic activity, although similar selectivity was 

obtained. However, further increase up to 15 wt% Cu shifted the selectivity, being = 54% and 

45% for CH3CHO and CH3OH, respectively. The authors have explained the selectivity shift as a 

function of the Cu loading as being a consequence of GO CB and VB shift due to the strong Cu-

GO grafting. XPS analysis of the samples showed that the increase in Cu content promoted a 

proportional decrease in the concentration of -COOH and C-O-C functional groups characteristic 

of GO, thus modifying its electronic properties and reducing its work function. UPS measurements 

combined with diffuse reflectance UV-Vis absorption spectroscopy of the samples allowed 

determination of CB and VB for each photocatalysts (Scheme 7).  
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Scheme 7. GO band gap and Cu work function (a), band edge positions of GO and GO/Cu 

composites with different Cu content and the CH3OH and CH3CHO potential (b) and schematic 

illustration of the reaction mechanism (c). Reproduced with permission.50 Copyright (2014) 

American Chemical Society. 

 

The variation of product selectivity in Cu-GO was justified based on thermodynamic 

potentials. The calculated CB energy for samples containing 5 and 10 wt% of Cu clearly shows 

the feasibility of the multi electron reduction of CO2 to methanol and acetaldehyde. However, the 

CB position of the photocatalyst containing 15 wt% of Cu is apparently lower than the 

CO2/CH3OH reduction potential, but still higher than that of CO2/CH3CHO, therefore, leading to 

preferential acetaldehyde production.50  At this point it should be commented that thermodynamic 

potentials never indicate the activation energy barriers of the reactions and that in general 

thermodynamics are more favorable as the number of e- and H+ added to CO2 increases, but a 

large number of MECPT steps is also unfavorable from the kinetic point of view. In other words, 
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there are surely other possible products with more favorable thermodynamics than acetaldehyde, 

but they are not being detected in the photocatalytic reaction. 

In a related example of the photocatalytic CO2 reduction by H2O by Cu2O NPs with 

preferred 200 facet orientation strongly grafted on few-layers defective graphene, formation of H2 

= 80%) and CH3CH2OH (12 e- + 12 H+) with an estimated production rate of 545 μmol g− 1 h− 1 

(= 20%) was also observed.12 Scheme 8 illustrates the photocatalytic system and the products 

formed. Due to the ability of graphene to coat glass surface, the defective graphene-based 

photocatalyst was immobilized inside a capillary reactor, while the system was irradiated at 254 

nm (28.3 mW/cm2) and operated under liquid-phase continuous flow with a Taylor flow regime. 

The Taylor flow regime in capillaries alternate visually observable liquid and bubbles in the flow. 

Generation of H2 in about four-fold higher rates than CO2 reduction was also observed. No reasons 

for the apparent exclusive formation of ethanol in this photocatalytic process were given and it 

would be important to revisit this photocatalytic system, particularly considering that it is one case 

of continuous flow reaction.  
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Scheme 8. Structure of the photocatalytic system comprising oriented Cu2O NPs grafted 

on defective graphene and the observed product distribution. Reproduced with permission.12 

Copyright (2016) Elsevier. 

 

In a different approach, porous single crystal (PSC) TaON microspheres have demonstrated 

photocatalytic activity towards ethanol (12 e- + 12 H+) and ethanal (10 e- + 10 H+) production as 

only products under visible light irradiation (1002 W/m2,  > 420 nm)  (Scheme 9).51 Materials 

with PSC structure have shown higher photocatalytic activity due to the lack of surface boundaries 

within the single crystal, thus reducing recombination events, and the presence of porosity that 

increases the adsorption sites of substrates.16 The selectivity towards CH3CH2OH and CH3CHO 

was of 83.3% and 16.7%, respectively. Interestingly, the addition of Pt NPs (0.5 wt%) to the TaON 
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PSC microspheres improved the ethanol selectivity (= 89.5 %), while the total solar to 

hydrocarbon efficiency remained unchanged. The authors propose that the Pt NPs act as e- sinker, 

boosting the photoinduced charge separation efficiency. The enhanced number of charges 

concentrated at these Pt NPs would contribute to further reduce the generated ethanal to ethanol, 

resulting in an improved reaction selectivity, instead of an increase of the overall photocatalytic 

activity.51 

 

Scheme 9. Structure of PSC TaON doped with Pt and products observed on the photocatalytic 

CO2 reduction. Reproduced with permission.51 Copyright (2016) Royal Society of Chemistry 

 

Overall, selection of a suitable photocatalyst/co-catalyst combination has been found 

frequently crucial for the increase of the selectivity towards C2+ products. The semiconductor 

crystal phase was determined to play a key role on product selectivity. Changes in the crystal phase 

should lead to small differences in the band energy positions due to differences in the atomic 
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coordination and geometries of the different atomic planes that should result in differences in the 

electronic states as well as differences in their intrinsic e-/h+ recombination kinetics.  

On the other hand, convenient co-catalyst selection has been found crucial not only to 

enhance the production yield, but also to gain control on the selectivity. Moreover, it has been 

shown that the interaction semiconductor-co-catalysts can drive the selectivity through fine tuning 

of the semiconductor optoelectronic properties, as well as to increase the charge density and charge 

transfer rate. Thus, the co-catalyst properties can be varied by increasing the photogenerated 

charge density, shifting the semiconductor CB to fine tune its reduction potential or acting as 

charge carrier reservoir enhancing photocatalyst charge transfer efficiency and reducing the 

recombination rate. It is the interplay of all these factors, charge separation enhancements and 

charge recombination dismiss, what can lead to changes in the product selectivity. It is worth 

commenting that in most of the previous examples UV light has been used as driving force. 

Therefore, photon energy could play a key role in the photocatalytic C2+ products production, 

besides high photon flux.  

 

5. Co-catalysts engineering. 

Co-catalysts can play various roles in a photocatalytic reaction.52 One of the better understood 

roles is to enhance charge separation on the semiconductor by acting as sinkers of photogenerated 

e- or h+. The fraction of e- or h+ that reach the co-catalyst exhibits a much longer lifetime, typically 

in the microsecond time regime or longer. A simple way to provide evidence for this role is to 

compare by time-resolved absorption spectroscopy the temporal profile of the transient signal 
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corresponding to the charge separated state of the semiconductor in the absence and presence of 

the co-catalyst. 

Since photogenerated e- and h+ accumulate on the NPs of the co-catalysts, it is on these co-

catalyst NPs where interaction with the substrates leading to products occurs. Thus, a second role 

of co-catalysts includes the efficient transfer of the charge carriers to the substrates, particularly 

CO2 in this case. Formation of reaction intermediates and primary products should take place 

preferentially on these co-catalyst NPs, although they can latter migrate to the semiconductor or 

to the reaction medium. Therefore, not surprisingly, the co-catalysts do also frequently exhibit 

catalytic activity in reduction and oxidation reactions, besides the positive effect in photocatalysis.  

As commented at the end of the previous section, the co-catalyst interaction with the 

semiconductor can significantly alter the final selectivity of the photocatalytic system. In this 

regard, the co-catalyst architecture can be the main factor determining a major role in the 

photocatalytic production of C2+ hydrocarbons. 

Among the different approaches to modulate the co-catalyst properties, the use of bimetallic 

alloys or, alternatively, the incorporation of more than one co-catalyst are two of the most widely 

used. The rationale behind this approach is to implement the photocatalytic system with co-

catalysts of different activity, combining their properties synergistically. For instance, in 

photocatalytic water splitting, metal NPs (Pt, Au, etc.) and metal oxides (RuO2, IrO2, etc.) NPs can 

be simultaneously present on the semiconducting material in order to favor the H+ reduction and 

H2O oxidation semi-reactions, respectively (Scheme 10).53 Thus, the two co-catalysts play 

complementary catalytic roles. One of them promotes reduction, they being typically a reduced 
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transition metal, and second one facilitates oxidation, these being generally an oxidized transition 

metal, the combination of the two resulting in the overall reaction stoichiometry. 

 

Scheme 10. Illustration of the role of two different co-catalysts deposited on a semiconductor 

to promote independently the reduction and oxidation semireactions. Reproduced with 

permission.53 Copyright (2016) Royal Society of Chemistry. 

 

Analogously to the photocatalytic overall water splitting, two co-catalysts to promote each 

semireaction have been similarly deposited simultaneously on the semiconductor surface to 

promote the photocatalytic CO2 reduction. In the particular case of CO2 reduction, other desirable 

properties of co-catalysts are CO2 adsorption and proton conduction.  
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  For instance, Varghese et al.54 reported in 2009 a photocatalytic system for CO2 reduction 

comprising nitrogen-doped TiO2 nanotube arrays decorated with equivalent amounts of Pt and Cu 

NPs deposited by sputtering. N-doping introduces visible light photoresponse on the TiO2 

nanotube array that, otherwise will be active only under UV irradiation. In this work, the author’s 

hypothesis was that Pt NPs are very efficient to promote water reduction to H2, while Cu NPs, 

which are known to have high CO2 adsorption capacity, would be more active in reducing CO2 to 

CO. Subsequently, the CO adsorbed on the Cu NPs would react with the atomic hydrogen 

generated in the Pt NPs to form hydrocarbons (Scheme 11).54 Accordingly, the photocatalytic CO2 

reduction using Pt-Cu NPs supported on N-doped TiO2 nanotubes produced methane as the main 

product, together with a mix of olefins, branched paraffins and other alkanes, although in much 

lower proportions. 
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Scheme 11. Illustration of the photocatalysts composed by N-doped TiO2 nanotubes array 

containing Pt and Cu NPs in equivalent amounts. Reproduced with permission.54 Copyright (2009) 

American Chemical Society. 

 

Importantly, using independent metal NPs, a change in the main product from H2 to CO 

was observed for Pt vs. Cu NPs, respectively. There are several examples in the literature reporting 

also the different selectivity of Cu NPs compared to Pt and Au NPs as co-catalysts, changing the 

selectivity from H2 to CO2 reduction products.17-19 In the present case or N-doped TiO2 nanotube 

arrays, the combined action of Pt and Cu NPs was found to favor the formation of C2+ products, 

reaching a production rate of 160 L×g-1×h-1. Optimization of the area of the N-doped TiO2 

nanotube array film covered by Pt and Cu NPs or even formation of alloy of the two metals could 

have increased further the C2+ production rate.54  

Similarly to the previous study, Zang et al have increased the selectivity towards C2+ 

products in the photocatalytic CO2 reduction by appropriate co-catalyst selection and structuration. 

These authors55 reported in 2012 the use of Pt-Cu alloys supported on TiO2 nanotubes as 

photocatalysts for CO2 reduction. In their study, coaxial Pt-Cu alloy shells were grown on a 

periodically modulated double-walled TiO2 nanotube array core (Scheme 12). Methane (8 e- + 8 

H+) (= 71.4 %), ethane (14 e- + 14 H+) (= 14.3 %) and ethylene (12 e- + 12 H+) (= 7.1 %), were 

obtained when the Cu:Pt atomic ratio was adjusted to 1:2 upon 100 mW/cm2 irradiation. On the 

contrary, other Cu:Pt proportions as well as photocatalysts containing only Pt or Cu led to 

relatively low C2+ hydrocarbon production, being CH4 the main product. Therefore, it is worth 

noticing that the use of this bimetallic alloy, in the appropriate proportions, was able to shift the 
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selectivity towards C2+ hydrocarbon. In a simplistic idea, it seems that Pt increases the reduction 

rates of the photocatalytic process, while Cu gives the selectivity to C2+ products due to the 

stronger CO adsorption and reactivity on this metal.  

 

Scheme 12. Structure of Pt:Cu NPs supported on TiO2 nanotubes and products observed 

on the photocatalytic CO2 reduction. Reproduced with permission.55 Copyright (2012) John Wiley 

and Sons. 

 

Most of the previous studies refer to the so-called artificial photosynthesis in which 

electrons and protons to reduce CO2 come from H2O, similarly to the natural photosynthesis 

process. However, as mentioned earlier, the current state of the art of artificial photosynthesis is 

far from any practical application due to the low efficiency and productivity. A less ambitious 

approach, but deemed more feasible, is the photocatalytic CO2 reduction by H2. Depending on the 

conditions, this photocatalytic CO2 reduction by H2 can reach under sunlight irradiation a 

productivity tens of millimols of converted CO2 per gram of catalyst per hour.  This makes the 

photocatalytic CO2 reduction much closer to a viable industrial process, provided that H2 is 

obtained from renewable energy sources. As a matter of fact, the catalytic reaction of CO2 and H2 
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can be also promoted thermally in the absence of light,20, 21 but the use of solar light as primary 

energy is also appealing.22 

 

Following this research line, T. Zhang and coworkers56  reported recently the photothermal 

CO2 hydrogenation over alumina-supported CoFe alloys. The term photothermal alludes to a 

reaction mechanism based on the conversion of the photon energy on local (nanometric) heat on 

the NP. Thus, irradiation can cause an abrupt increase of the temperature on the NP surface. This 

local would not correspond to the macroscopic temperature measured in the bulk system that is an 

average in where the contribution of the temperature of the NPs can be very minor due to its small 

proportion. This high local temperature on the NPs can trigger thermal catalytic reaction, 

particularly considering that NPs are frequently also excellent conventional catalysts. The term 

photothermal for this type of photocatalytic process indicates the very special and unique way to 

provide localized heating on the NP by using light and an absorber. 

In their study, the CoFe alloys on alumina were prepared by thermal reduction of CoFeAl 

layered double hydroxide (LDH) nanosheets in H2 atmosphere at different temperatures (Scheme 

13). A marked influence of the reduction temperature of the trimetallic LDH on the product 

selectivity for the photothermal hydrogenation was observed. The selection of the LDH 

composition was based on the known activity of Fe as an active catalyst for CO2 conversion to 

CO, while Co-based catalysts are well-known for C-C coupling in the Fischer-Tropsch process. In 

this way, it was assumed that Fe should form CO. Subsequently Co should convert this generated 

CO into C2+ products.  Therefore, a synergy between the two metals was expected for light-

assisted C2+ hydrocarbons production. The authors reported that LDH thermal reduction at 
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temperatures below 550 oC promotes the discrete FeOx and CoOx NPs formation on amorphous 

Al2O3, while higher temperatures resulted in the formation alumina supported CoFe alloys. 

Interestingly, the product selectivity was progressively shifted from CO, when the catalyst was 

obtained at reduction temperatures between 300 and 400 oC, to CH4 when the LDH precursor was 

treated in the 450 – 550 oC temperature range, and finally to C2+ products for photocatalysts 

prepared at temperatures higher than 600 oC upon 300 W Xe lamp irradiation. Thus, a 35 % 

selectivity of C2+ products was obtained when alumina supported CoFe alloys, prepared at 650 

oC, were used. Therefore, the product selectivity was easily manipulated through temperature 

tuning in the preparation of CoFe alloys starting from CoFeAl LDH.56 (Scheme 13) 

 

 

Scheme 13. Illustration of the influence of reduction temperature of the CoFeAl LDH on the 

product selectivity depending on the formation of different active sites. MMO refers to mixed 

metal oxide.56 Copyright (2018) John Wiley and Sons. 

 



 31 

Theoretical calculations were carried out in order to unravel the mechanism governing the 

photocatalytic activity of alumina supported CoFe alloys compared to FeOx and CoOx NPs. It was 

demonstrated that FeOx species, formed in the LDH treatment at lower temperatures, favor 

thermodynamically the production of CO. However, CoOx species, only appearing at medium 

temperatures, are more prone to favor CO hydrogenation to CH4, explaining the selectivity shift 

when the CoFeAl LDH is treated at reduction temperatures between 450 and 550 oC. Finally, the 

calculations provided strong evidence that CoFe alloys, formed at the higher temperatures, 

promote very efficiently C-C coupling reactions, computed as adsorbed CH species reacting with 

adsorbed CH2 on the Co11Fe5 (110) surface,56 thus providing an understanding of the observed 

selectivity towards C2+ products for the CoFe alloy. This type of calculations on models are very 

useful in providing understanding on the reaction mechanism and can serve to develop suitable 

photocatalysts to obtain C2+ based on theory principles. 

It is worth noticing that the strategy to use two or more different co-catalysts is not limited 

to metal NPs. In this regard, Kim et al.57 reported in 2012 the deposition of a thin Nafion 

(perfluorinated polymer with sulfonate groups) overlayer on TiO2 supported Pd NPs as a very 

convenient method to reduce photocatalytically CO2 to methane (8 e- + 8 H+) , ethane (14 e- + 14 

H+) (Scheme 14). In the absence of the Nafion coating, Pd-TiO2 photocatalysts showed 95.5 % 

and 4.5 % selectivity towards CH4 and C2H6, respectively. However, the Nafion overlayer on the 

Pd-TiO2 enhanced the C2H6 selectivity up to 6.4 % under 300 W Xe lamp irradiation ( > 300nm). 
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Scheme 14. Structure and photocatalytic activity in CO2 reduction on Nafion/Pd-TiO2. 

Reproduced with permission.57 Copyright (2012) Royal Society of Chemistry. 

 

The authors pointed out that Nafion main role was the improvement of the proton 

conduction, facilitating the MECPT steps near the TiO2 surface. Moreover, CO2 intermediates 

could be stabilized in the Nafion layer, which would help to MECPT steps from intermediates to 

the final product. On the other hand, the Pd NP role was to act as e- buffer from the TiO2 CB and 

subsequently reduce protons. Compared to Pt, Pd has been reported to slow hydrogen atom 

recombination, diminishing the unwanted H2 evolution and favoring the CO2 hydrogenation.57 

Methane was the main product measured using Pd-TiO2 as photocatalysts. In comparison, ethane 

production in similar proportion as that of methane, accompanied by small propane amounts, were 

measured when the Nafion overlayer was deposited on the photocatalyst. Therefore, the use of the 

Nafion shell to enhance the proton transfer and intermediate stabilization clearly improved the 

photocatalytic activity towards C2+ products in this photocatalytic system. As a general comment, 

the extent in which H+ availability limits the reaction rate of the photocatalytic CO2 reduction has 

been insufficiently addressed. It can be expected that also other H+-conducting membranes or 
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materials would act similarly on the photocatalytic CO2 reduction enhancing the proportion of C2+ 

products and it would be worth to test this hypothesis. 

In a different approach, Park and coworkers58  reported the preparation of sodium trititanate 

nanotubes (TNTs; NaxH2-xTi3O7) decorated with Cu NPs and overcoated with CdS quantum dots 

(QDs) (CdS/Cu-TNTs) (Scheme 15). This photocatalyst was active under visible light from a 450 

W Xe lamp ( > 420 nm) irradiation to promote the photocatalytic reduction of CO2 by H2O, 

obtaining CH4 (8 e- + 8 H+) (= 49.1 %), C2H6 (14 e- + 14 H+) (= 31.3 %), C3H8 (20 e- + 20 H+) 

(= 17.9 %), together with C2H4 (12 e- + 12 H+) and C3H6 (18 e- + 18 H+) in lesser amounts (0.5 

% and 1.3 %, respectively). Interestingly, CO and H2 were no detected as reaction products. In this 

multicomponent photocatalytic system, all the elements work synergistically towards hydrocarbon 

formation. TNT role is to act as basic support, in order to improve the CO2 adsorption, as well as 

semiconductor receiving electrons in its CB from CdS and subsequently transferring these 

electrons to Cu NPs. CdS QDs are not only working as visible light harvesters and TNT 

photosensitizer, but also it was claimed that stabilizes the initially reduced species (CO2
·-). The 

concentration of Na+ intercalated in the TNTs plays also a fundamental role in the formation of 

surface-bound formates from the CdS-stabilized CO2
·-. Finally, Cu NPs are the key component for 

the selectivity shift towards C2+ hydrocarbons, since control experiments in the absence of Cu 

NPs demonstrated negligible formation of C2+ products. According to this mechanistic proposal, 

formate intermediates formed near the Cu NPs surface would undergo subsequent reduction 

yielding C, CH, CH2 and CH3 species, which should remain trapped on the Cu NP surface, 

evolving eventually to C2+ products. Scheme 15 shows the reaction mechanism.58 
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Scheme 15. Proposed mechanism for photocatalytic CO2 reduction using CdS/Cu-TNTs. 

Reproduced with permission.58 Copyright (2015) American Chemical Society.  

 

Catalysts containing alkali metal dopants have been widely reported to enhance CO2 

reduction at high temperatures as consequence of structural and electronic effects induced in the 

catalysts core structure.59, 60 The effect of alkali metal dopands is often attributed to a diminution 

of the work function of the catalysts.61 The role of Na+ for the production of C2+ products in photo-

assisted CO2 reduction was also investigated recently by Corma and Garcia in detail.62 In this study 

Na+-promoted Co NPs coated by thin carbon layers (Na-Co@C) were used as photocatalysts in 

the light-assisted CO2 hydrogenation upon UV-Vis light excitation with a 1000 W Xe lamp 

(24KW/m2) (Scheme 16). The major reaction product was CH4 (= 50.2 %), but accompanied by 

C2+ hydrocarbons in a remarkable 39.5 % selectivity (C2= 13 %, C3= 12.7 %, C4= 5.2 %, C5= 

3.3 %, C6 = 2 % and others 3.3%) and 6.5 % selectivity for ethanol (12 e- + 12 H+). On the contrary, 

in the absence of Na+, CH4 was formed with almost complete selectivity (> 96 %), thus proving 

experimentally the promotional effect of Na+ in this photocatalytic CO2 reduction.  
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Scheme 16. Structure and photocatalytic activity of Na-Co@C photocatalyst. Reproduced 

with permission.62 Copyright (2018) Elsevier.  

 

In order to gain information about the role of Na+, the surface of the catalyst was monitored 

by near ambient-pressure XPS. Analysis of the differences in the deconvolution of the C1s peaks 

provided evidence in support of different reaction intermediates, depending on the presence or 

absence of Na+ in the photocatalyst. Specifically, the presence of HxCOH was detected only in the 

absence of Na+. HxCOH is unstable on the Co surface, leading CHx formation, which eventually 

can be hydrogenated to CH4, explaining the higher selectivity towards CH4 in the absence of Na+. 

Interestingly, light irradiation also influenced the product selectivity in Na-Co@C, and 

thus, in the absence of light, under equivalent thermal reaction conditions at 235 oC, CH4 was the 

main product detected. Near ambient-pressure XPS analysis showed that light irradiation affects 

the formation and stabilization of CO, formate and HxCOO* intermediates either on Co surface or 

on the carbon layer.62 However, under thermal conditions CO could not be detected on those 

surfaces, but instead only in the gas phase. Thus, light irradiation played an important role in the 

CO2 activation to CO2
·- through formation of e-/h+ pairs, enhancing the CO2 dissociation to CO 

and its stabilization on the photocatalyst surface.  It was proposed that CO stabilization contributes 

to a higher selectivity towards ethanol and C2+ hydrocarbons by a CO insertion mechanism.62  
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Since the factors that promote C-C coupling in the photocatalytic CO2 reduction are unclear, it 

appears necessary to shed light in the process by combining experimental detection of the species 

involved in the process and theoretical calculations, there being at the moment a paucity of studies 

combining these tools to understand the outcome of the photocatalytic CO2 reduction.  

 

6. Role of surface defects on CO2 adsorption and C2+ formation 

The generation of surface defects in the way of oxygen vacancies (VO), interstitial defects or 

mid-gap states have been widely reported to enhance the photo-catalytic activity in different 

application.63-65 Among them, photocatalytic CO2 reduction is known to be hampered by 

kinetically challenging MPCET reactions. The introduction of Vo, interstitial defects or mid-gap 

states that could act as buffers of abundant localized electrons has been proposed to play a positive 

role in the photocatalytic CO2 reduction by providing sites concentrating e- that should assist to 

overcome MPCET bottlenecks.66 

Following this assumption, Durrant and In reported methane (8 e- + 8 H+) and ethane (14 e- + 

14 H+) production using Pt-sensitized graphene-wrapped defect-induced TiO2 photocatalysts upon 

sun-simulated light irradiation.67 In this example, Degussa P25 TiO2 NPs were reduced in the 

presence of sodium borohydride at 350 oC in Ar atmosphere, obtaining defect-induced TiO2. The 

authors proposed that defects consisting in mid-gap states (Ti 3+) were generated in the P25 NPs 

as consequence of the chemical reduction. Then, defect-induced TiO2 and GO were mixed and 

annealed in a vacuum oven at 230 oC. Finally, Pt NPs were photodeposited from H2PtCl6 aqueous 

solution in the presence of MeOH as sacrificial agent. The authors suggested that the synergistic 

effect between the surface-Ti3+ sites and the wrapped graphene is responsible for the ethane 
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formation. More specifically, ultraviolet photoelectron spectroscopy (UPS) and transient 

absorption spectroscopy (TAS) studies provided experimental evidence for the occurrence of an 

efficient charge transfer at the titania/graphene interphase. According to the author interpretation 

of the TAS data, photogenerated e- accumulated in the Ti3+ sites, reacting with adsorbed CO2, 

while holes migrate to graphene promoting proton generation. Theoretical calculations have shown 

that Ti3+ and VO sites enhance CO2 adsorption on TiO2 surface68, 69 and e- accumulation can 

promote CO2 activation.70 On the other hand, it is also well-stablished that ·CH3 radicals, generated 

by MPCET in photocatalytic CO2 reduction37, 71, can be stabilized by graphene.72 Therefore, 

graphene is proposed to act as hole scavenger for a sustained proton supply, but also stabilizing 

·CH3 radicals, leading to ethane formation by ·CH3 - ·CH3 coupling.67 Scheme 17 illustrates this 

process. A previous report presenting TiO2-graphene 2D sandwich-like nanosheets reached 

identical conclusions,73 proposing again that the combination of surface mid-gap states (Ti3+) and 

graphene layers produces a synergistic effect favoring the formation of C2H6.
73  
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Scheme 17. Proposed mechanism for photocatalytic CO2 reduction to CH4 and C2H6 using Pt-

sensitized graphene-wrapped defect-induced TiO2 photocatalysts. Reproduced with permission.67 

Copyright (2018) Royal Society of Chemistry. 

 

In similar approach, Ni-nanoclusters deposited on black TiO2 demonstrated high selectivity 

towards CH3CHO (10 e- + 10 H+) in the photocatalytic CO2 reduction.74 As the previously 

commented reduction by NaBH4, TiO2 hydrogenation promotes TiO2 bandgap narrowing due to 

the generation of VO and Ti3+ defetcts.75 In the present case, Ni/black TiO2 presents dual active 

sites for CO2 adsorption and dissociation. Tauc plots obtained from diffuse reflectance UV-Vis 

spectroscopy measurements provided band gap values of 3.2 and 2.7 eV for TiO2 and Ni/black 

TiO2, respectively. Moreover, Ni/black TiO2 presented mid-gap states at 0.9 eV. Theoretical 

calculations revealed that CO2 simultaneously adsorbed on VO and Ni sites should correspond to 

the energetically most favorable adsorption sites. According to the calculations, the double-bonded 

oxygen in CO2 adsorbs to the Ti atoms near a VO while the carbon atom is attached to the 

neighboring Ni atom.74 It was also investigated, that in the absence of TiO2 VO sites the adsorption 

CO2 mode should be different, being the CO2 oxygen and carbon atoms adsorbed on the Ni 

nanocluster. In this case, experimental data shows that the product selectivity decreased, obtaining 

CH3CHO and CH3OH mixtures. Therefore, the observed selectivity towards CH3CHO is proposed 

to be a consequence of the dual CO2 adsorption giving rise to CO and O fragments on Ni and 

Ti(VO) sites, respectively, during the multistep reaction process.74 Again, this study illustrate the 

potential of performing theoretical calculations on valid models to rationalize selectivity changes. 
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In a different approach, quantum size WO3·0.33H2O nanotubes with large surface VO sites 

have been reported to produce photocatalytic CO2 reduction to CH3COOH (8e- + 8H+) under solar 

light with 85 % selectivity.76 The WO3·0.33H2O nanotubes were synthetized by oleate-assisted 

hydrothermal synthesis.76 The oleate ions appear to be responsible for the formation of a high VO 

concentration, since samples prepared in the absence of oleate presented much lower VO 

concentration. The high Vo concentration promoted photocatalytic CO2 reduction in aqueous 

WO3·0.33H2O nanotube dispersions to CH3COOH, although HCOOH, CO and H2 in trace 

amounts were also detected. DRIFTS studies revealed that VO promoted CO2 adsorption and 

activation, giving rise to surface bicarbonate HCO3
- species, which in the presence of hydroxyl 

groups produced ·COOH intermediates leading eventually CH3COOH formation.76 

 

7. Selectivity shift through surface plasmon resonance (SPR) effect. 

Considering the wide range of pathways available during the catalytic and photocatalytic CO2 

reduction, many of them having similar energy barriers and operating simultaneously in a 

competitive and consecutive way, a careful control of kinetic bottlenecks appears necessary for 

C2+ hydrocarbons production. One interesting approach carried out to promote the formation of 

C2+ products proposes the use of the light-induced SPR effects.77, 78  

Hot electrons ejected as consequence of SPR excitation have been described to catalyze 

different organic and photoredox reactions79 by vibrational activation of adsorbates. In one of the 

examples based on SPR effect to promote C2+ products in photocatalytic CO2 reduction, Cronin 

et al. reported the preparation of Au NPs supported on TiO2 exhibiting plasmonic enhancement of 

the photocatalytic CO2 reduction.80 In this study, when the Au/TiO2 photocatalyst was irradiated 
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with a 532 nm laser, just at the Au plasmon band region, formation of CH4 (8 e- + 8 H+) as the 

only product was observed. In accordance with the selective excitation of the Au plasmon, bare 

TiO2 under identical excitation conditions produced negligible CH4 amounts. It is worth noticing 

that the authors claimed that this activity of Au NPs is consequence of the strong electric fields 

generated near the Au NPs due to SPR excitation, which favor generation of e-/h+ pairs on the TiO2 

upon light absorption at a higher rate than it should be under normal incident light.80 The possibility 

that ejected hot electrons from Au NPs become injected into TiO2 CB was not considered, but it 

could be also possible considering that monochromatic 532 nm should not promote e-/h+ separation 

in pristine TiO2.  Comparison of the TiO2 CB with the CO2 reduction potentials to various possible 

products points out CH4 as the only possible product in the present case, since other reduction 

potentials lie above the TiO2 CB.80 (Scheme 18a) 

 

 

Scheme 18. Energy band alignment of TiO2 and Au metal NPs upon 532 (a) and 254 (b) nm light 

excitation, and some CO2 redox potential. Reproduced with permission.80 Copyright (2011) 

American Chemical Society. 
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On the contrary, when the Au/TiO2 photocatalyst was irradiated with a Hg lamp at 254 nm, 

C2H6 (14 e- + 14 H+), CH2O (4 e- + 4 H+) and CH3OH (6 e- + 6 H+) were detected, besides CH4, in 

comparable amounts. In contrast, bare TiO2 irradiation at 254 nm produced CH4 as the only 

detectable product. At this high photon energy, it is likely that the products derive from the direct 

absorption of UV light by TiO2 and e- migration from the highly energetic electrons in d band of 

Au NPs to TiO2
80 (Scheme 18b). Interestingly, the authors also reported similar product 

selectivity, although lower production rates, when Au NPs supported on glass were irradiated with 

high photon energy (254 nm), indicating that this reaction is probably taking place on the Au 

surface. The difference on the photocatalytic mechanism and role of Au NPs as light harvester or 

co-catalyst as a function of the irradiation wavelength, UV vs. visible, has also claimed in overall 

water splitting81 and deserves a more detailed study as a way to control product distribution.  

Moreover, the authors demonstrated that the observed behavior is not limited to Au, but 

the same principle can be applied to other metal NPs exhibiting SPR in the UV-Vis region. Thus, 

similar response under 254 nm illumination was observed for Pt and Cu metals, obtaining 

production rates of CH4, C2H6, CH2O and CH3OH comparable to those obtained for Au. Therefore, 

it was claimed that metal NPs exhibiting SPR band can increase the selectivity towards C2+ 

products upon convenient excitation at appropriate wavelengths corresponding to high energy 

photons.80 

The plasmonic effect on CO2 reduction and its influence on the photocatalytic activity and 

selectivity was also investigated by Jain et al.38. They proposed colloidal Au NPs as convenient 

candidates for photocatalytic CO2 reduction due to the strong cathodic polarization of excited Au 

NPs.38 Thus, poly(N-vinyl-2-pyrrolidone) (PVP)-coated Au NPs of approximately 12 nm diameter 

were synthetized, exhibiting a SPR band centered at 520 nm. It was observed that these Au NPs 
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dispersed on CO2-saturated water exhibit photocatalytic activity using isopropanol as sacrificial 

electron donor under monochromatic visible light irradiation (=488 nm, 750 mW/cm2), yielding 

CH4 (8 e- + 8H+) and C2H6 (14 e- + 14 H+) products. The C2H6 formation was investigated, 

providing evidence in support that it is formed from C-C coupling of C1 intermediates at the Au 

NP surface. Interestingly, the photocatalytic activity and selectivity was modulated not only with 

photon wavelength, as in the previous case, but also with the photon flux. Thus, C2H6 production 

was only observed upon irradiation with high energy photons (UV light), while CH4 was produced 

at all the studied wavelengths (460-532 nm), as in the previously commented Cronin study. 

Interestingly, a similar trend was observed respect the photon flux. CH4 was formed in all the 

investigated light intensity range (150-750 mW/cm2), while C2H6 production did not take place 

below 300 mW/cm2, obtaining a maximum selectivity of 40 % at 750 mW/cm2 upon 488 nm light 

excitation.38 Further experimental data suggest that high energy photons are the most suited to 

overcome the CO2 activation energy to CO2
·- species (1.9 eV). On the other hand, dimerization via 

C-C coupling needed a high photon flux, since MECPT processes are in kinetic competition with 

the ultrafast e-/h+ recombination rate reported for Au NPs (subpicosecond time scale).38 

Several of the previous approaches to increase the photocatalytic activity and selectivity to 

C2+ hydrocarbons have been recently combined by Kuang et al.82 using a photocatalyst based on 

Au-Pd alloy NPs photodeposited on TiO2 crystals with preferential (101) facets. These facets are 

supposed those in which photogenerated electrons are predominantly located.83  Upon UV-Vis 

light illumination formation of CH4 (8 e- + 8 H+), C2H6 (14 e- + 14 H+) and C2H4 (12 e- + 12 H+) 

was observed, without detecting the generation of H2. The Au-Pd alloys provided abundant active 

sites for CO2 adsorption and activation. The observed photocatalytic activity and selectivity is 

proposed to derive from the synergistic effect of Au SPR effect to activate CO2, together with the 
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well-known strong CO binding and hydrogenating activity of Pd, in combination with the 

preferential location of photogenerated electrons on the TiO2 (101) facets.82 In fact, the resultant 

photocatalyst showed higher activity than Au-Pd alloy NPs deposited randomly on other facets. In 

addition, fine tuning of the stoichiometric Au and Pd atomic ratio shows that Au6Pd1 exhibits the 

highest selectivity towards C2+ hydrocarbon, while in contrast Au1Pd1 forms CH4 and CO as the 

only products. Further investigation of the product selectivity revealed that C2+ products are 

produced for Au-rich photocatalysts, indicating the ability of Au to promote the C-C coupling. 

However, monometallic Au sample showed a low selectivity that increases significantly upon 

addition of small amounts of Pd, proving the benefits of the hydrogenating function of this metal 

on C2+ formation. Moreover, CO intermediates can easily desorb from Au surfaces, but Pd atoms 

bind strongly CO resulting in the formation of C2+ products. Overall, the product selectivity in 

this photocatalytic systems arises from the synergistic combination of the SPR effect in Au and 

the strong CO adsorption and hydrogenating properties of Pd. 

 

8. Conclusions and Outlook. 

Due to the current state of the art, most of the efforts so far in photocatalytic CO2 reduction 

have been aimed at increasing the efficiency of the process, in terms of higher CO2 conversion 

rate. The purpose of the present review has been to stress that besides efficiency another aspect 

that has to be considered simultaneous in this reaction is product selectivity. Due to their higher 

added value, formation of C2+ products can be of larger interest than methane, carbon monoxide 

and formate that are the typical major products in most of the reports.  When formed, the amounts 

of C2+ is typically low, the record being about 40 % of combined percentages, there being of 
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interest in increasing their proportion and selectivity. The current knowledge is empirical and 

based on the experimental results with a poor rationalization of the factors that control formation 

of C2+ products. From the present data, it seems that every factor that increases accumulation of 

charge carriers and protons favor the formation of C2+ products. The present review has grouped 

the existing reports describing C2+ products according to the various factor that influence the 

formation of C2+, like photocatalyst structuring, adequate co-catalysts, operation of SPR effects 

and defects, among other possible parameters. A summary of the most relevant catalysts, products 

and reaction conditions is presented a Table 2. Moreover, the suppression of the H2 evolution 

reaction, which consumes e- and H+ could strongly influence not only the reaction yield, but also 

their selectivity towards multi-carbon products. Further strategies to inhibit this lateral reaction 

must be considered in order to improve both reaction yield and C2+ selectivity. In a similar way, 

the use of continuous flow systems would benefit not only the implementation of this technology 

to the industrial scale, but also it can influence the product selectivity by means of the release of 

weakly bind intermediates and products from the catalysts surface, avoiding their re-oxidation in 

the photocatalysts surface. 

It can be expected that this area will receive intensive research effort in the near years with the 

aim of gaining selectivity in the photocatalytic CO2 conversion to valuable products like alcohols, 

alkenes and aromatic hydrocarbons, rather than focus exclusively on methane or CO that are of 

much less commercial value. 

Table 2. Summary of the most relevant photocatalysts reported in this review indicating their 

product selectivity and reaction conditions. 

Photocatalysts C2+ selectivity  Reaction conditions Ref. 
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MWCNTs/TiO2(anatase) 69.7 % CH3CH2OH 
H2O:CO2, 5:1 (mol:mol), 15 W 

UV lamp@365 nm, 5 h 

46 

LHCII/Rh:P25 TiO2 
78.4 % CH3CHO+ 

5.9 % CH3OCHO 

Aqueous dispersion CO2 

saturated , Xe lamp @362 

mW/cm2, 6h. 

48 

15 wt% Cu/GO 100 % CH3CHO 
Moisted CO2, halogen lamp 

@100 mW/cm2, 2h. 

50 

200 oriented Cu2O/G  100% CH3CH2OH 

Operated under liquid-phase 

continuous flow, 28.3 mW/cm2 

lamp @ 254 nm. 

12 

Pt/TaON 
89.5 % CH3CH2OH + 

10.5 % CH3CHO 

NaHCO3 aqueous solution CO2 

saturated, 1002 W/m2 ( > 420 

nm) 

51 

PtCu/TiO2 NTs 
14.3 % C2H6 + 7.1 % 

C2H4 

CO2 (0.998% in N2) flow through 

H2O, 100 mW/cm2 

55 

CoFeAl-LDH 35 % C2+ 
CO2/ H2 /Ar=15/60/25; 0.18 MPa;, 

300 W Xe lamp irradiation 2h. 

56 

Nafion/Pd-TiO2 6.4 % C2H6 

NaHCO3 aqueous dispersion CO2 

saturated, 300 W Xe lamp ( > 

300 nm), 5h 

57 

CdS/Cu-TNTs 

31.1% C2H6 + 17.9 % 

C3H8 +1.3 % C3H6 + 

0.5 % C2H4 

Aqueous dispersion CO2 

saturated, 450 W Xe lamp ( > 

420 nm), 5h 

58 

Na/Co@C 
39.5 % CxHy (C2-C6) 

+ 6. 5% CH3CH2OH 

CO2/N2/H2 = 20/20/100 (2.8 bar), 

1000 W Xe lamp 24 kW/cm2 

62 

Pt-G/defect-induced 

TiO2 
30 % C2H6 

Moisted CO2, 100 W solar 

simulator 100 mW/cm2. 

67 

Ni/TiO2[Vo] 100% CH3CHO 
Moisted CO2, 300 W halogen 

lamp 

74 

WO3·0.33H2O  85% CH3COOH 

Aqueous dispersion CO2 

saturated, 100 mW/cm2 sun-

siulated light, 10h 

76 

Au/TiO2 27 % C2H6 
Moisted CO2, Hg lamp @ 254 

nm, 20mW/cm2 

79 

Au NPs 100 % C2H6 

Moisted CO2 using isopropanol as 

sacrificial, ( > 488 nm, 750 

mW/cm2) 

38 

AuPd/(101) TiO2 4 % C2H6 + 4 % C2H4 
NaHCO3 aqueous dispersion CO2 

saturated, 300 W Xe lamp 

82 
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