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a b s t r a c t 

Background and objective: A heterogenous expression characterizes arrhythmogenic cardiomyopathy (AC). 

The evaluation of regional wall movement included in the current Task Force Criteria is only qualitative 

and restricted to the right ventricle. However, a strain-based approach could precisely quantify myocardial 

deformation in both ventricles. We aim to define and modelize the strain behavior of the left ventricle in 

AC patients with left ventricular (LV) involvement by applying algorithms such as Principal Component 

Analysis (PCA), clustering and naïve Bayes (NB) classifiers. 

Methods: Thirty-six AC patients with LV involvement and twenty-three non-affected family members 

(controls) were enrolled. Feature-tracking analysis was applied to cine cardiac magnetic resonance imag- 

ing to assess strain time series from a 3D approach, to which PCA was applied. A Two-Step clustering 

algorithm separated the patients’ group into clusters according to their level of LV strain impairment. A 

statistical characterization between controls and the new AC subgroups was done. Finally, a NB classifier 

was built and new data from a small evolutive dataset was predicted. 

Results: 60% of AC-LV patients showed mildly affected strain and 40% severely affected strain. Both 

groups and controls exhibited statistically significant differences, especially when comparing controls and 

severely affected AC-LV patients. The classification accuracy of the strain NB classifier reached 82.76%. 

The model performance was as good as to classify the individuals with a 100% sensitivity and speci- 

ficity for severely impaired strain patients, 85.7% and 81.1% for mildly impaired strain patients, and 69.9% 

and 91.4% for normal strain, respectively. Even when the severely affected LV-AC group was excluded, 

LV strain showed a good accuracy to differentiate patients and controls. The prediction of the evolutive 

dataset revealed a progressive alteration of strain in time. 

Conclusions: Our LV strain classification model may help to identify AC patients with LV involvement, at 

least in a setting of a high pretest probability, such as family screening. 

© 2019 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Arrhythmogenic cardiomyopathy (AC) is regarded as a primary

yocardial disease with a low prevalence. Its characteristic pro-
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ressive fibro-fatty myocardial infiltration may promote systolic

entricular dysfunction and ventricular electrical instability [18] .

he variable phenotype (in terms of penetrance and expressivity)

n patients with AC [20] make its diagnosis challenging. The cur-

ent Task Force Criteria (TFC) comprise major and minor criteria

ets in different categories [10,11] but, since they were designed

o detect classical AC forms (with isolated or predominant right
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ventricular involvement), left ventricular (LV) forms of the disease

often remain unrecognized [18,19] . According to the literature,

between 33% and 60% of the patients suffer from LV wall mo-

tion abnormalities, excluding septal hypokinesia [18,19] . The TFC

consider regional right ventricular (RV) akinesia/dyskinesia or

dyssynchronous RV contraction as a criterion for diagnosing AC.

However, no technical indications are given, no threshold for the

RV analysis are provided and no LV wall motion abnormalities

are mentioned. Briefly, the detection of wall motion abnormalities

merely comes down to a kind of subjective evaluation restricted

to the right ventricle. 

Strain quantifies myocardial deformation by considering the

resting position and the maximal displacement [22] . Giving the

fact that deformation can be analyzed in three directions, also

three strain time series (namely, radial, circumferential and lon-

gitudinal) may be studied. To characterize the strain, researchers

usually consider peak strain values [3,15,25] . However, relying on

a punctual value could lead to errors due to spurious fluctuations

of the strain time-series or due to the low time resolution from

frame to frame. In this paper, the entire strain curves from each

LV AHA segment (i.e. 16 segments if we consider all but the apex),

obtained from cardiac magnetic resonance imaging are considered,

to use the whole available information and exploit it in a more

robust manner. 

As cardiac cells contract rather synchronously, it is obvious that

there will be a high redundancy between the strain curves at the

different segments, so a first step for dimensionality reduction will

be required. Principal Component Analysis (PCA) is a statistical

procedure that eliminates redundant data from a dataset and

condense the linearly uncorrelated information into a few vari-

ables called “principal components” [5,14] . The coefficient matrix

represents the influence of the linear combination of the different

principal components to each variable and give information about

the heterogeneity of the variables in terms of amplitude and

shape of the time series. The coefficients associated to the first

component could be used to characterize strain in AC patients

with LV involvement. 

Due to the wide variability in the phenotypic expression of the

AC, we hypothesized that AC patients with LV involvement could

manifest different patterns of LV strain. To investigate this effect,

clustering techniques can be applied [7,16,24] . Clustering refers to

the task of grouping a set of subjects in such a way that subjects

in the same group (called a cluster) are more similar (according

to their features) to each other than to those in other clusters.

Therefore, AC patients with LV involvement could be divided into

different clusters according to their degree of LV strain impairment.

Recently machine learning techniques are coming into use to

analyze biomedical data: Support Vector Machines (SVM) [26] ,

random forest [4] , K-nearest neighbor (KNN) [23,29] or Bayesian

classifiers [2,6,12] , among others. Some of them have even been

applied to cardiac strain measurements obtained from either

echocardiography [13,21,23] or computed tomography [29] . Par-

ticularly, Bayesian classifiers have been successfully applied to

solve heart related challenges [13] as well as to other biomedical

problems, such as studies related to the brain [12] . Herein we will

focus on Bayesian classifiers for the detection of strain impair-

ment in the affected left ventricle of AC patients upon magnetic

resonance imaging studies. 

The aim of the present study is to further investigate LV strain

impairment in patients diagnosed of AC with LV involvement,

not in terms of quantitative differences when compared against

controls as in our previous work [27] , but in terms of patterns

of dysfunction and clinical group prediction. Furthermore, the

study was extended by applying Bayesian classifiers as an accurate

automatic decision support system to detect strain impairment

in new AC patients, the accuracy to discriminate controls and
atients in the grey zone of strain performance was investigated

nd a novel evolutive strain data in the follow-up of a subset of

hese patients was provided. As far as we know, this is the first

tudy that modelizes strain in arrhythmogenic cardiomyopathy

atients with left ventricular involvement. 

. Materials and methods 

.1. Dataset 

The sample comprised thirty-five patients diagnosed with

C with LV involvement (patients) and twenty-three relatives

on-carriers of the pathogenic mutation of the proband (controls),

ll recruited in a specialized multidisciplinary referral unit focused

n families with inherited cardiac diseases, and all included in

ur previous work [27] . Six of the 35 patients had 2 good quality

MRs in different time periods, between 1 and 5 years apart and

ere included in the evolutive dataset. 

All subjects involved in this study were probands or proband’s

elatives undergoing family screening, they all were mutation

arriers and they all exhibited the typical LV subepicardial and/or

ntramyocardial pattern of late gadolinium enhancement which

haracterizes AC with LV involvement. Remarkably, all probands

eceived an unequivocal AC diagnosis (with a ‘definite’ AC diagno-

is following 2010 TFC criteria or with a histological confirmation

t autopsy or at heart explant examination in patients undergoing

eart transplantation). The ventricular predominance of the AC

nvolvement (either RV, LV or biventricular) was assessed as

reviously reported [9] . Controls were family members in whom

C had been ruled out based on the cardiological work-up and did

ot carry the mutation identified in their affected relatives. 

.2. Magnetic resonance imaging and feature tracking 

Patients and controls were scanned in a 1.5-Tesla scanner

Siemens Avanto, Siemens Symphony and GE Signa HDxt). Sev-

ral cine long and short-axis slices were acquired as previously

eported [27] . 

Strain parameters were calculated with the software Circle

VI 42 version 5.5.1, Calgary, Canada. Semi-automated end-diastolic

ndocardial and epicardial limits of the left ventricle were traced

n the three long axis and in the short axis cardiac chamber views

papillary muscles were excluded from the endocardial contour).

he automated Circle tissue tracking algorithm yielded 3D strain

urves in all the three directions for each of the LV American

eart Association (AHA) segments, excluding the apex (segment

7) as shown in Fig. 1 . 

Myocardial strain curves display the deformation of a myocar-

ial segment in one of the following directions: radial, circumfer-

ntial or longitudinal. It is defined as in equation below. 

 ( t i ) = 

L ( t i ) − L ( t 0 ) 

L ( t 0 ) 
, (1)

here L ( t i ) is the radial, circumferential or longitudinal segment

ength at the i th frame, being the initial frame at the end diastole,

hen the heart is fully expanded. A spline interpolation of the

train values was applied to have 101 time points. 

Radial strain represents the radially directed myocardial de-

ormation towards the center of the LV cavity and indicates the

all thickening during the systole. Circumferential strain derives

rom LV myocardial fiber shortening along the circular perimeter

bserved on a short-axis view. Finally, longitudinal strain rep-

esents the longitudinal shortening from the base to the apex.

ince heart contraction implies some sort of wall thickening and

avity reduction, both circumferential and longitudinal strain are

enerally expressed by negative values, whereas radial strain is a
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Fig. 1. Example of short axis (A) and long axis (B) delineation and results of peak strain in the 16 AHA segments for radial (C) and longitudinal (D) directions. 

Fig. 2. Example of the three strain directions (radial, circumferential and longitudinal) of the 16 AHA segments of a single subject. 
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ositive value. Fig. 2 shows the 16-radial strain time series of a

ingle subject. 

.3. Attributes extraction using Principal Component Analysis 

PCA is a statistical procedure that eliminates redundant data

nd condense the linearly uncorrelated information into a few

ariables called “principal components”. The objective of applying

CA in this work is to reduce the spatial dimensionality while pre-

erving the temporal information. The expression accounts for: 

 

Y ] 16 × 101 = [ M ] 16 × 16 × [ X ] 16 ×101 

here Y is our data matrix for one subject (16 AHA-

egments × 101 time points per segment), M corresponds to

he transfer matrix and X to the source signals or components.

he first few components (rows) of matrix X account for most of

he variability. The transfer matrix represents the influence of the

inear combination of the different principal components to each

ariable, so it gives information about the heterogeneity of the

ariables in terms of amplitude and shape of the time series. By
nalogy, this statement of the problem using PCA can be regarded

s a source separation algorithm exploiting the information from

he second order statistics, which can be computed via either

igenvalue decomposition or singular value decomposition, as

etailed by Zarzoso and Nandi [30] . 

Accordingly, for each subject, PCA was performed on the 16

ime-series of radial, circumferential and longitudinal strain (3 PCA

nalyses per subject) and the 16 coefficients of the transfer matrix

ssociated to the 1st component (first column) were considered.

or each of the three motion directions, the 16 coefficients were

veraged to obtain three values per subject that summarized the

lobal strain values. 

.4. Unsupervised clustering 

To identify the patients with and without strain impairment,

he SPSS Two-Step Cluster Component algorithm [16] in IBM SPSS

 version 23, SPSS Statistics/IBM Corp, Chicago II, USA ) was applied

o the PCA 1st component coefficients of the patients’ group. In

rief, the first step of the algorithm pre-clusters the record into
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many small sub-groups using a sequential clustering approach and

then it clusters the sub-groups from the previous step, using the

agglomerative hierarchical clustering method. It calculates then a

proper number of clusters automatically identified [7] . To obtain

the proper number of clusters, SPSS uses a two-step procedure

that works well with the hierarchical clustering method: it calcu-

lates Bayesian information criterion for each number of clusters

and then refines the initial estimate by finding the greatest change

in distance between the two closest clusters [1] . The validation of

consistency within clusters was done with the silhouette method,

a value that ranges from −1 to + 1, where a high value indicates

that the object is well matched to its own cluster and poorly

matched to neighboring clusters. So, if the silhouette value is high,

the clustering configuration is appropriate [17] . 

2.5. Statistical differences between groups 

A one-way ANOVA with a Bonferroni-corrected post-hoc anal-

ysis ( P = 0.05) was performed to investigate the differences in

normally distributed continuous variables between the different

patients’ groups and controls. Categoric variables were compared

with the chi squared test or Fisher exact test, where applicable.

A binomial logistic regression was constructed including in the

model radial, circumferential and longitudinal strain PCA first

components as independent variables. Accuracy, sensitivity and

specificity of this model were compared with our supervised

classification model. Boxplot and Receiver Operating Curves (ROC)

representations were also performed. The statistical analysis was

carried out with IBM SPSS Statistics for Windows, Version 23.0.

Armonk, NY: IBM Corp. 

2.6. Supervised classification 

Supervised classification techniques require the definition of a

class variable, in which each group has a different value. Each indi-

vidual case was defined as a pattern vector of predictive variables:

PCA 1st component coefficients of radial, circumferential and

longitudinal strain. The aim was to build a model upon the data

obtained in patients and controls in order to be able to classify a

new subject into one of the groups according to their degree of

strain impairment: severely impaired, mildly impaired and normal.

Subsequently, a comparison with a model that classifies indi-

viduals in two categories, controls and patients was done. Naïve

Bayes (NB) machine learning classification model [2] was used in

this study, a simple classifier based on the Bayes Theorem. This

classifier combines the prior probability (or previous experience)

and the likelihood (based on the vicinity) to form a posterior prob-

ability using the Bayes’ rule. The final classification is done taking

the largest posterior probability. As Bayesian classifiers are usually

based on categorical variables, NB was applied using supervised

discretization to convert numeric attributes into nominal ones. To

validate the performance of the model, 10-fold cross-validation

[8] was applied. The construction of the classification model and

its validation were performed with Weka explorer tools from

Weka 3.8.1, University of Waikato, Hamilton, New Zealand [28] . 

To study the strain development in the evolutive dataset, the

strain values (as the PCA 1st component coefficient) as a function

of the time were first represented. Afterwards, the groups to

which the new strain data belonged were predicted with the

classification model previously built. 

3. Results 

3.1. Clinical and demographic features 

The clinical and genetic characterization of the whole sample

according to their level of LV strain impairment is presented in
able 1 , whereas the clinical profile of the subset of patients with

volutive CMR images in the follow-up is provided in Table 2 . 

.2. PCA results 

The percentage of the total variance explained by the 1 st 

rincipal component for each direction was (mean ± std): radial

train (controls: 95.20% ± 1.64%; patients: 90.55% ± 6.90), cir-

umferential strain (controls: 96.19% ± 2.40%; patients: 93.59% ±
.75%) and longitudinal strain (controls: 94.84% ± 2.43%; patients:

2.73% ± 4.94%). 

.3. Unsupervised clustering 

The SPSS TwoStep Cluster Component algorithm detected two

lusters in the patients’ group. The quality of the cluster division

as assessed with the silhouette measure, which was higher than

.7 (1.0 states for the highest clustering performance). 40% of the

atients (14 patients) were classified as Cluster 1, and showed

 severe strain impairment (severely affected AC-LV patients)

hereas 60% (21 patients) were classified as Cluster 2, and were

atients with higher or close to normal strain values (mildly

ffected strain AC-LV patients). 

.4. Statistical differences between groups 

There were statistically significant differences between groups

or the PCA 1st component coefficients in all the motion di-

ections as determined by one-way ANOVA tests: radial strain

 F (2,55) = 41.1, P < .001); circumferential strain ( F (2,55) = 68.3,

 < .001) and longitudinal strain ( F (2,55) = 48.7, P < .001). The

onferroni post hoc tests revealed that all the comparisons were

ignificant in all the motion directions ( Fig. 3 ). 

.5. Supervised classification 

.5.1. NB classification model 

Table 3 shows the NB classification rules. The strain rules with

he best discrimination power among the strain groups were

elected. The severely impaired strain group always showed a

ood concentration of individuals in the most unfavorable range

f strain in the three directions. Conversely, the other two groups

howed a significant crossover. Despite this overlap, the mildly

mpaired strain group mostly concentrated in a medium range of

trains whereas the normal strain group was more heterogeneous,

nd its individuals allocated in the medium and the more favorable

train ranges in equal measures for each of the three directions. 

The prediction obtained with the NB classification correctly

dentified as normal strain individuals 70% of the controls, as

ildly impaired strain individuals 86% of mildly affected AC-LV

atients and as severely impaired strain individuals as much as

00% of the severely affected AC-LV patients ( Table 4 ), yielding

n overall accuracy of 82.76% (100% for individuals with severely

mpaired strain). 

The performance of the classifier, evaluated with a 10-fold cross

alidation technique, obtained an accuracy of 82.76%. Sensitivity,

pecificity, precision and F-measure for each group are shown in

able 5 . Severely impaired strain group reached a 100% in all the

etrics (all subjects were correctly classified), while normal strain

roup obtained the lowest values. The precision of the mildly

mpaired strain group was the lowest. 

We aimed to match our PCA results against the more widely

sed methodology based on peak values. While the unsupervised

lustering gave nearly the same results (only one patient changed

ts classification, from mildly affected with PCA to severely affected

ith peak values), the NB classifier obtained an accuracy of 68.96%
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Table 1 

Clinical, demographic and CMRI variables. 

Healthy controls (N = 23) Mildly impaired patients (N = 21) Severely impaired patients (N = 14) p-value 

Age 49.6 ± 16.4 39.4 ± 19.9 39.4 ± 15.3 0.105 

Sex (M/F) 10/13 10/11 7/7 0.921 

Arterial hypertension 5 3 2 0.791 

Diabetes mellitus 5 0 1 0.055 

Ischemic heart disease 1 0 0 0.461 

Dyslipemia 7 4 5 0.516 

Mutated gene: 

-Desmoplakin 0 19 (90%) 10 (71%) –

-Filamin C 0 1 (%) 0 –

-Desmin 0 0 1 –

-Plakophillin-2 0 1 0 –

-Transmembrane protein 43 0 0 2 (5.8%) –

-Phospholamban 0 0 1 –

LGE distribution (%): 0.020 a , ∗

Subepicardial 0 14 (67%) 7 (50%) 

Intramiocardial 0 3 (14%) 4 (29%) 

Both 0 4 (19%) 3 (21%) 

LVEDVi (ml/m 

2 ) 65.4 ± 14.9 68.8 ± 14.9 93.9 ± 19.4 < 0.001 ∗

LVEDVi > 98ml/m 

2 (%) 1 (4.3%) 1 (4.8%) 7 (50%) < 0.001 ∗

LVESVi (ml/m 

2 ) 26.3 ± 9.0 31.8 ± 9.0 59.3 ± 16.0 < 0.001 ∗

LVEF (%) 60.5 ± 6.7 54.3 ± 4.5 37.5 ± 7.5 < 0.001 ∗

LVEF ≤55% (%) 5 (21.7%) 12 (57.1%) 13 (92.8%) < 0.001 ∗

LV wall motion abnormalities † (%): 

-Presence 0 5 (23.8%) 6 (42.8%) 0.003 ∗

-Location: 

Inferolateral – 3 5 

Involving the anterior wall – 2 1 

Peak strain (%): 

-Radial 42.8 ± 2.4 34.8 ± 1.2 18.6 ± 0.7 < 0.001 ∗

-Circumferential −18.1 ± 0.6 −15.9 ± 0.3 −10.5 ± 0.3 < 0.001 ∗

-Longitudinal −16.1 ± 0.4 −14.4 ± 0.3 −10.1 ± 0.5 < 0.001 ∗

a Comparison between mildly and severely impaired strain patients since all the other p-values correspond to the comparison of the three clinical groups including controls. 
∗ Denotes statistical significance with a p-value < 0.050. 

Table 2 

Clinical characterization of the evolutive dataset. 

Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 

Sex Male Male Male Male Female Male 

Age (B/F) 31/34 10/15 18/21 52/53 16/19 18/19 

AC-mutated gene 

(additional VUS) 

1 DSP 1 DSP 1 DSP (MYBPC3) 1 DSP (MYBPC3) 1 DSP 1 DSP 

LGE (B/F) Moderate, lateral and 

septum/Moderate, 

inferior, lateral and 

septum 

No/mild, inferior Severe, inferior, lateral 

and septum/Severe, 

inferior, lateral and 

septum 

Severe, inferior, lateral 

and septum/Severe, 

inferior, lateral and 

septum 

Moderate inferior and 

septum/Moderate 

inferior, lateral and 

septum 

Moderate inferior and 

septum/Moderate 

inferior, lateral and 

septum 

LVEF (B/F) 63/63 68/71 49/46 50/48 58/51 52/52 

Enlarged LV (B/F) No/No No/No Yes (LVEDVi 124 

ml/m 

2 )/Yes (LVEDVi 

122 ml/m 

2 ) 

Yes (LVEDVi 123 

ml/m 

2 )/Yes (LVEDVi 

135 ml/m 

2 ) 

No/No No/No 

LV Wall motion 

abnormalities 

(B/F) 

No/No No/No Yes (inferior and 

lateral)/Yes (inferior 

and lateral) 

Yes (inferior and 

lateral)/Yes (inferior 

and lateral) 

Yes (inferior and 

lateral)/Yes (inferior 

and lateral) 

No/No 

Characterization of the six patients included in the evolutive dataset at baseline (B) and follow-up (F). VUS: variant of unknown significance. 

Fig. 3. Boxplots showing differences between groups with p-values obtained with the Bonferroni-corrected post-hoc analysis of the PCA 1st component coefficients of the 

radial, circumferential and longitudinal strain. 
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Table 3 

NB classifier rules and % of patients in each range. 

Attribute 

Rules 

Strain class 

PCA 1st component coefficient of Normal ( N = 23) Mildly impaired ( N = 21) Severely impaired ( N = 14) 

Radial 

strain 

(%) 

[ −inf,7.169] 0 0 100 

[7.169, 14.924] 60.9 100 0 

[14.924,inf] 39.1 0 0 

Circumferential 

Strain 

(%) 

[ −inf,-6.882] 34.8 0 0 

[ −6.882,4.458] 65.2 100 0 

[ −4.458,inf] 0 0 100 

Longitudinal 

Strain 

(%) 

[ −inf, −5.459] 65.2 4.8 0 

[ −5.459, −4.075] 30.4 95.2 7.1 

[ −4.075,inf] 4.4 0 92.9 

Results of the naïve Bayes classification rules applied to the whole sample (35 AC patients and 23 controls). In bold the higher percentage of 

subjects that belong to a certain range of strain values for each of the three strain groups. 

Table 4 

Confusion matrix of the strain NB classifier. 

Clinical group 

Controls ( N = 23) 

Mildly affected AC-LV patients 

( N = 21) 

Severely affected AC-LV 

patients ( N = 14) 

NB predicted strain 

classification 

Normal strain 16 3 0 

Mildly impaired strain 7 18 0 

Severely impaired strain 0 0 14 

Table 5 

Classification performance of the NB strain classifier (3 groups). 

Class Sensitivity Specificity Precision F-measure 

Normal 0.696 0.914 0.842 0.762 

Mildly impaired 0.857 0.811 0.720 0.783 

Severely impaired 1.000 1.000 1.000 1.000 

Weighted average 0.828 0.898 0.836 0.827 

10-fold cross validation analysis of the NB classifier (Accuracy = 82.76%). 
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when applied to the clustering on peak strain values, well below

the accuracy obtained with PCA of 82.76%. 

The results of a NB classifier applied only to two groups, normal

and altered strain, obtained a weaker accuracy of 75.86%. Notably,

the performance of a standard procedure such as logistic regres-

sion modeling to predict the status of altered strain was slightly

lower than that obtained with the NB classifier. The classification

performances of both classifiers are summarized in Table 6 . 

Since LV-AC patients with severely affected strain were easily

detectable with routine echocardiographic and CMR parameters,
Fig. 4. ROC curves of radial, circumferential and longitudinal strain to discriminate betw
uch as ventricular volumes and LVEF ( Table 1 ), we now aimed to

nalyze the accuracy of the three strains to discriminate patients

nd controls in the grey zone, where the strain measurements

re normal or only mildly impaired. Thus, ROC curves were con-

tructed obtaining good Areas Under the Curve (AUC) ranging

rom 0.712 to 0.776 for the three strains, all of them statistically

ignificant ( Fig. 4 ). In keeping with the rationale of the Task Force

riteria, cut-off values at 100% specificity were selected even

hough their individual sensibility was rather low ( Fig. 4 ). 

.5.2. Prediction of the evolutive dataset – a preliminary study 

From the evolutive dataset obtained in six AC patients, the PCA

st component coefficients corresponding to all three directions

or each CMR acquisition were computed. For each subject, the

volution of these parameters as a function of time (in years)

as represented, taking as a reference the year of the first CMR

cquisition ( Fig. 5 ). Regarding radial strain, all subjects exhibited a

ecrease. Specifically, the radial strain from two of these patients

ith fairly preserved values at the initial heart imaging decreased
een patients with moderate strain and controls, p -values, AUC and cutoff values. 
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Table 6 

Classification performance from the NB/logistic regression strain classifier (2 groups). 

Class Sensitivity Specificity Precision F-measure 

Normal 0.696/0.609 0.800/0.806 0.696/0.667 0.696/0.636 

Altered strain 0.800/0.806 0.696/0.609 0.800/0.763 0.800/0.784 

Weighted average 0.759/0.729 0.737/0.685 0.759/0.726 0.759/0.726 

10-fold cross validation analysis of the NB classifier (Accuracy = 75.86%) and logistic 

regression (Accuracy = 72.88%). 

Fig. 5. PCA 1st component coefficient of the radial, circumferential and longitudinal strain of the evolutive dataset (six AC-LV patients) in time. 

Dashed lines represent the thresholds of the NB model showed in Table 3 . 

Table 7 

Strain predictions of the NB classifier model using the evolutive dataset. 

Diagnosis at baseline Diagnosis at follow-up Years between CMR Posterior probability 

Subject 1 Mildly impaired strain Mildly impaired strain 3 0.79 

Subject 2 Normal strain Mildly impaired strain 5 0.84 

Subject 3 Severely impaired strain Severely impaired strain 3 0.99 

Subject 4 Normal strain Severely impaired strain 2 0.84 

Subject 5 Mildly impaired strain Severely impaired strain 3 0.59 

Subject 6 Mildly impaired strain Normal strain 1 0.42 

Predictions of the evolutive dataset, years between the CMRs and posterior probability associated to the predicted values. 

The diagnoses of the CMRs performed by the clustering algorithm and included in the model are showed in italics and 

the predictions performed by the NB model on the new data are showed in bold. 
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own to values that fell within the range corresponding to the

everely impaired strain group output at the clustering stage. 

Table 7 presents the diagnosis of the evolutive dataset at

aseline and during follow-up, the years between both CMRs and

he posterior probability associated to the predictions. Only the

iagnoses marked in bold were predicted with the model, those in

talics were obtained by clustering and used to build the NB model

ollowing the procedure described above. Both diagnoses (baseline

nd follow-up) were included in the table to better visualize the

volution of the patients. 

According to Table 7 , two patients did not change their strain

lassification (subjects 1 and 3), three patients got worse (subjects

, 4 and 5) and one subject got better (subject 6). Regarding sub-

ect 6, the posterior probability associated to this prediction was

uite small and therefore, not very reliable. As already appreciated

n Table 5 , the classifier performed worse for the individuals

lassified as normal strain and mildly impaired strain than for

everely impaired strain. 

. Discussion 

This work thoroughly characterizes the LV strain performance

n the CMR of AC patients with LV involvement. Peak strain values

epend on the sampling time of the acquisition, they are more

usceptible to noise and fluctuation of the signal and they can

lso vary according to the interpolation method used. Moreover,
hen only the peak values are considered, relevant information

elated to the shape of the time series is unfortunately lost. To

vercome these limitations the PCA methodology was applied

o extract information from strain time series, thus reducing the

imensionality of the data to a few coefficients that consider both

he amplitude and the shape of the series. In sum, it was found

hat found that: (1) 40% of the patients were severely affected,

btained by a clustering algorithm; (2) there were significant

ifferences between controls, mildly and severely affected AC-LV

roups and (3) a NB classifier could classify the degree of strain

mpairment to predict the clinical status in new cases, with an

ccuracy of 82.76% increasing up to 100% accuracy if the strain is

everely impaired. (4) In our results, the NB classifier using the

CA approach outperformed the NB classifier with peak strain

alues (82.76% vs 69.96%), hence reinforcing our hypothesis that

CA should be preferred over peak values in this clinical scenario. 

.1. Sample characterization 

As stated in the introduction, the diagnosis of AC relies on the

ulfillment of certain TFC but obviously, not all the patients satisfy

ll the criteria included in the scoring system. Among AC patients,

ur clustering algorithm successfully classified 40% as patients

ith severely impaired strain and 60% as patients with better

train performance (without impairment or with mildly impaired

train). The ANOVA test detected significant differences between
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all the groups, even between controls and mildly impaired strain

patients. Thus, generally speaking, patients have lower radial

and higher circumferential and longitudinal strain than controls,

even those patients with more preserved strain values ( Fig. 3 ).

Remarkably, besides clear statistical differences in the comparisons

no overlapping was observed between severely affected patients

and the other two groups ( Fig. 3 ). 

4.2. Modelization and prediction of new cases 

According to the NB model rules in Table 3 , the individuals in

the groups of severely and mildly impaired strain (95.2% to 100%

and 92.9% to 100%, respectively) were mostly included within a

single range of values. However, the normal strain group was more

heterogeneous, ranging from mildly impaired to preserved strain

values. Thus, as many as 60.9% (radial) and 65.2% (circumferential)

of them overlapped with the mildly impaired strain group and

only 39.1% (radial) and 34.8% (circumferential) were allocated in

the most preserved range of values. The longitudinal rules were

those which yielded a better discrimination power among clinical

groups. The dispersion of the PCA 1st component coefficient of

the radial strain values was very high compared to those of the

circumferential and longitudinal strain. This effect was reflected

in the thresholds associated to the rules in Table 3 , graphically

represented in Fig. 5 (dashed lines). 

The classification performance after a 10-fold cross validation

achieved a good classification accuracy (82.76%). However, al-

though the model classifies extremely well the severely impaired

strain individuals (100% classification accuracy), the normal and

the mildly impaired strain groups were less iteratively reclassified

in their respective categories (with sensitivities of 69.6% and

85.7%, respectively) ( Table 5 ). The two-class classifier (normal vs

altered strain) performed worse (accuracy of around 76% for NB

classifier and around 73% for logistic regression) than the proposed

three-class classifier due to the heterogeneity of the individuals in

the most preserved strain categories ( Table 6 ). In accordance with

our previous report [27] , the provided ROC curves with the three

strains ( Fig. 4 ) showed a good accuracy to discriminate patients

and controls in a difficult clinical scenario when the routine LV

volumes and function parameters fail to do it ( Table 1 ). Indeed,

all three strains showed a similar sensibility for a cutoff at 100%

sensibility ranging from 34,8% and 39,1%. If replicated in other

series with larger sample sizes and included in a future version of

the Task Force Criteria, the implementation of LV strain analyses

in CRM studies of patients with suspected AC could improve the

performance of the current Task Force Criteria. 

Finally, our brand-new study on the evolutive dataset in Fig.

5 revealed that disease progression affects more profoundly the

radial strain than the strain in the other two directions. In the

case of the circumferential and longitudinal strain, the progression

was either milder or with a surprising slight improvement in the

follow-up (one patient for each of those strain directions). This

result suggests that radial strain measurements could be more

robust and meaningful. Interestingly, in all the patients except

for one (subject 4), the radial strain evolved with a similar and

relatively smooth slope over time. Strikingly, subject 4 underwent

a sharp decrease in all three directions. As seen in Table 2 , this

patient was the oldest of this subgroup with evolutive CMR data

and in addition to his desmoplakin truncation he harbored a

variant of uncertain significance in a sarcomeric gene that could

have acted as a negative modifier (second genetic hit). Despite his

bad strain evolution when the CMRs were performed (at the age

of 52 and 53 years old), he did stay clinically stable in a NYHA

class II until he reached 56, when he was recently admitted to

hospital due to congestive heart failure with severe LV systolic

dysfunction and listed for heart transplantation. Consistently, in
he prediction phase, this subject was first diagnosed as a normal

train individual and moved to severely impaired strain individual

n the second CMR acquisition with a quite high posterior proba-

ility (0.84). Subject 3, on the contrary, did not change much over

ime, however he was the patient with the most altered strain

alues and thus, he was diagnosed as a severely impaired strain

ndividual in both CMRs. The remaining patients exhibited a slow

volution. Overall, strain measurements showed a consistent wors-

ning with time even when no relevant changes were observed in

he majority of the patients attending to the routine CMR report

 Table 2 ). Focusing on this behavior, we put forward that these

easurements could become clinically meaningful when the strain

alues drop down or go up to levels that undoubtedly refer to the

everely impaired strain group. 

The section related to global or regional dysfunction and

tructural alterations by CMR in the 2010 TFC [10] uses qualitative

oncepts, such as RV regional akinesia, dyskinesia and dyssyn-

hronous contraction. Of note, the LV wall motion abnormalities

re not considered and neither a precise threshold nor a mea-

urement procedure for the RV assessment are provided. This

ork aims to underscore the potential of strain measurement to

scertain LV involvement in AC patients. If reproduced by other

roups, it might be considered as an additional criterion for the

iagnosis of AC with LV involvement at least in a clinical scenario

s ours, where a pathogenic mutation and family involvement has

een clearly identified. To that end, strain ranges for the different

linical groups as well as a classification model both to assign a

train and a clinical status with their sensibilities, specificities and

espective accuracies was provided. 

.3. Extrapolation to RV analysis 

As AC-RV cases are more frequently reported than AC-LV, the

nalysis of the RV dysfunction would also be highly valuable

iming to fine tune the current global and regional RV dysfunction

riteria. However, the extrapolation of the methods described in

his paper to the evaluation of the RV is still challenging. Firstly, it

ould require a widely accepted regional RV segmentation (analo-

ously to the 17-region AHA segmentation of the LV). Furthermore,

ue to the reduced thickness of the RV, strain measurements on

mages obtained with the conventional CMR techniques would

rove highly inaccurate. Therefore, new techniques and further

esearch regarding the analysis of the RV strain in AC as well as in

ther cardiomyopathies is warranted. 

.4. Limitations of the study 

We acknowledge that some limitations hamper the strain

odelization in AC with LV in our study. The first one was the

educed sample size. Unfortunately, the enrollment of patients was

imited by the low prevalence of the AC with LV involvement and

he requirement of a positive genetic test to ensure the coherence

f the diagnosis. The evolutive dataset was also very limited and

xplained by the fact that severe structural LV involvement usually

ead to a cardioverter-defibrillator implantation which provoked

istortion of cardiac imaging in subsequent CMR studies. The

nclusion of more subjects and more acquisition time points will

llow us to further characterize the fast and slow evolution pat-

erns of AC patients with LV involvement. Finally, this assessment

as faced from a family-based study where at least one member

ad a definite AC diagnosis and a mutation had been identified

ut, since AC can be suspected without such a robust familial and

enetic background, comparative studies between LV strain pa-

ameters in AC patients and patients with other cardiomyopathies

ould be desirable. 
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