CONTENTS

1 **INTRODUCTION**
1.1 Motivation 3
1.2 Research objectives 4
1.3 Dissertation outline 5

2 **STATE OF THE ART**
2.1 The active bending principle 7
2.2 Required material properties 9
2.3 Determination of the configuration 10
2.3.1 Models based on discrete mechanics 12
2.3.2 Models based on finite-difference discretisations 13
2.3.3 Models based on finite element discretisations 15
2.4 Previous works on the structural performance of bending-active structures 17

3 **A FORM-FINDING METHOD BASED ON THE GEM FOR BENDING-ACTIVE STRUCTURES**
3.1 Introduction 19
3.1.1 Outline of the chapter 20
3.2 The geometrically exact rod model 20
3.2.1 Basic kinematics 20
3.2.2 Variation of the generalised strain measures 22
3.2.3 Equations of static equilibrium 22
3.2.4 Equations of dynamic equilibrium 23
3.2.5 Constitutive equations 23
3.3 The dynamic relaxation method 24
3.4 Fundamentals of the method 24
3.4.1 Application of D’Alembert’s principle 24
3.4.2 Determination of element end forces 25
3.4.3 Strains associated to rotations 26
3.4.4 Strains associated to translations 27
3.5 Numerical implementation 28
3.5.1 Criterion for convergence 29
3.5.2 Boundary conditions 29
3.6 Numerical tests 30
3.6.1 The elastica and the circular beam 30
3.6.2 Bathe and Bolourchi cantilever beam 32
3.6.3 Combined bending and torsion 32
3.6.4 Shear deformability test 36
3.7 Summary 37

4 **THE BENDING-ACTIVE TIED ARCH**
4.1 Introduction 39
4.1.1 Outline of the chapter 41
4.2 A brief review of the inflexional elastica 41
4.2.1 Configuration of the elastica 42
4.2.2 Section forces 43