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MEAN ERGODIC COMPOSITION OPERATORS IN SPACES OF
HOMOGENEOUS POLYNOMIALS

DAVID JORNET, DANIEL SANTACREU, AND PABLO SEVILLA-PERIS

Abstract. We study some dynamical properties of composition operators defined on
the space P(mX) of m-homogeneous polynomials on a Banach space X when P(mX) is
endowed with two different topologies: the one of uniform convergence on compact sets
and the one defined by the usual norm. The situation is quite different for both topolo-
gies: while in the case of uniform convergence on compact sets every power bounded
composition operator is uniformly mean ergodic, for the topology of the norm there is
no relation between the latter properties. Several examples are given.

1. Introduction

If X is a complex Banach space and ϕ : X → X is holomorphic (all needed definitions
are given below), then Cϕ : H(X) → H(X), the composition operator of symbol ϕ, is
defined as Cϕ(f) = f ◦ ϕ. In this note we deal with the restriction of such an operator
to the space P(mX) of m-homogeneous polynomials, and we ask different questions. In
first place, for which ϕ’s does this restriction take values again in P(mX) (in other words,
we have Cϕ : P(mX) → P(mX) is well defined). Once we have settled this question
(see Proposition 2.2), we study certain properties related with the linear dynamics of
the composition operator (that is, with the behaviour of the iterated composition of the
operator with itself): power boundedness and mean ergodicity.

We begin by fixing some notation and basic notions. Given complex Banach spaces X and
Y , a mapping p : X → Y is an m-homogenous polynomial if there exists a continuous
m-linear operator L : X × · · · × X → Y so that p(x) = L(x, . . . , x) for every x ∈ X.
The vector space of all m-homogenous polynomials is denoted by P(mX, Y ), and P(mX)
whenever Y = C. Note that P(1X) is nothing else than the topological dual of X, which
we denote by X ′. A function f : X → Y is holomorphic if there exists a (unique) sequence
(pm)m, where each pm : X → Y is an m-homogeneous polynomial which satisfies

(1) f(x) =
∞∑
m=0

pm(x)

uniformly on the compact sets of X. The space of all holomorphic functions f : X → Y
is denoted by H(X, Y ). Again, we write H(X) for H(X,C).
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1



2 MEAN ERGODIC COMPOSITION OPERATORS IN SPACES OF HOMOGENEOUS POLYNOMIALS

The space P(mX) can be endowed with different topologies. Here, we consider two of
them. On the one hand, we consider on P(mX) the compact-open topology, i.e. the
topology of uniform convergence on the compact subsets of X. In this case, we denote
the space by P(mX)τ0 . On the other hand, given p ∈ P(mX), we define the norm

(2) ‖p‖ = sup
‖x‖X≤1

|p(x)| <∞ ,

which turns P(mX) into a Banach space, that we denote by P(mX)‖·‖.

If E is a locally convex Hausdorff space (lcHs), the space of all continuous linear operators
T : E → E is denoted by L(E). Given T ∈ L(E), the iterates of T are denoted by
T n := T ◦ · · · ◦ T , for n ∈ N. The operator T is said to be power bounded if the sequence
(T n)n∈N ⊆ L(E) is equicontinuous. The Cesàro means of T are given by

T[n] :=
1

n

n−1∑
k=0

T k,

for n ∈ N. Then T is said to be mean ergodic if (T[n]x)n converges in E for every x ∈ E.
Moreover, an operator T is uniformly mean ergodic if (T[n])n∈N converges to some operator
S ∈ L(E) in the topology of uniform convergence on the bounded subsets of E, and Cesàro
bounded if the sequence (T[n])n is equicontinuous. A simple computation shows that every
power bounded operator is Cesàro bounded.

This note is motivated by several previous works existing in the literature. We mention [7]
where the authors characterise those composition operators Cϕ : H(U)→ H(U) which are
power bounded when defined on the space of holomorphic functions H(U) on a connected
domain of holomorphy U of Cd. Moreover, it is proved in [7] that Cϕ is power bounded
if and only if it is (uniformly) mean ergodic if and only if the symbol ϕ has stable orbits.
If the domain is the unit disc, the authors in [3] characterise when Cϕ is mean ergodic
or uniformly mean ergodic on the disc algebra or on the space of bounded holomorphic
functions in terms of the asymptotic behaviour of the symbol. In [4] it is investigated
the power boundedness and (uniform) mean ergodicity of weighted composition operators
on the space of holomorphic functions on the unit disc in terms of the symbol and the
multiplier. Finally, in [10] the author studies power boundedness and mean ergodicity for
(weighted) composition operators on function spaces defined by local properties in a very
general framework which extends previous works. In particular, permits to characterize
(uniform) mean ergodicity for composition operators on a large class of function spaces
which are Fréchet-Montel spaces when equipped with the compact-open topology. The
space P(mX) is neither Fréchet with the compact-open topology, nor Montel in the Banach
case. Hence, the results of [10] do not apply in our setting.

The paper is organised as follows. In Section 2 we see, in Proposition 2.2, that the
composition operator Cϕ : P(mX)→ P(mX) is well defined only when its corresponding
symbol ϕ is linear. In Section 3 we study the dynamics of Cϕ on P(mX)τ0 . We characterise
when Cϕ is power bounded (Proposition 3.4) in the spirit of [7, Proposition 1]. Moreover,
since the space P(mX)τ0 is semi-Montel, we can show in Corollary 3.2 that every power
bounded composition operator Cϕ is uniformly mean ergodic. We finish this section by
giving an example of a composition operator which is uniformly mean ergodic but not
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power bounded (Example 3.5). Finally, in Section 4, we study the dynamics of Cϕ on
P(mX)‖·‖. In contrast with what happens with the compact-open topology, in this case the
properties of power boundedness and mean ergodicity are not related. We give examples
of composition operators that are power bounded and not mean ergodic (Example 4.5)
and of operators that are mean ergodic and not power bounded (Example 4.6). We also
study the relation with Cesàro boundedness and prove that every mean ergodic operator
on a Banach space is Cesàro bounded, but that there are Cesàro bounded composition
operators that are neither power bounded, nor mean ergodic (Example 4.4). We use the
theory of homogeneous polynomials and holomorphic functions as presented in [9] and
[16]. For standard theory and notation of functional analysis we refer to [14].

2. First results

If we want to iterate the composition of a composition operator with itself we obviously
need it to take values in P(mX). This is the first thing that we have to settle, and we
start with a simple observation.

Remark 2.1. Suppose X is a Banach space. If x, y ∈ X satisfy that there are γ0 ∈ X ′
and r > 0 such that γ(x) = γ(y) for every γ ∈ X ′ with ‖γ− γ0‖ < r, then x = y. Indeed,
take any φ ∈ X ′, fix c > ‖φ‖ and consider γ := r

c
φ+ γ0. Then ‖γ − γ0‖ < r and

r

c
φ(x) + γ0(x) = γ(x) = γ(y) =

r

c
φ(y) + γ0(y) .

The fact that γ0(x) = γ0(y) immediately gives φ(x) = φ(y) and, since φ was arbitrary,
x = y.

Proposition 2.2. Let ϕ : X → X be a holomorphic mapping. The composition operator
Cϕ : P(mX)→ P(mX) is well defined if and only if ϕ is linear.

Proof. First, we assume that ϕ : X → X is linear (being holomorphic, it is continuous).
If p ∈ P(mX), we have

Cϕ(p)(λx) = p(ϕ(λx)) = p(λϕ(x)) = λmp(ϕ(x)) = λmCϕ(p)(x),

for all x ∈ X and λ ∈ C. Since Cϕ(p) is holomorphic, [8, Corollary 15.34] gives that it is
an m-homogeneous polynomial and, therefore Cϕ : P(mX)→ P(mX) is well defined.
Suppose now that Cϕ : P(mX)→ P(mX) is well defined. This means that

p(ϕ(λx)) = p(λϕ(x)) = λmp(ϕ(x)),

for all p ∈ P(mX), λ ∈ C and x ∈ X. Given γ ∈ X ′ we have that γm, defined by
γm(x) = (γ(x))m, belongs to P(mX). So,

(3) γ(ϕ(λx))m = λmγ(ϕ(x))m,

for all λ ∈ C and x ∈ X. Then, for each γ, λ, x there is some µ = µ(γ, λ, x) ∈ C with
µm = 1 such that

(4) γ(ϕ(λx)) = µλγ(ϕ(x)).

Note that if γ(ϕ(x)) = 0, then by (3) γ(λϕ(x)) = 0, and we can take µ(γ, λ, x) = 1 for
every λ (in fact, in this case the equality holds for any value of µ we choose). Our aim si
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to show that we can also take µ(γ, λ, x) = 1 for every γ, λ, x. To begin with we show that
µ does not depend on γ (i.e. µ = µ(λ, x)). Fix x0 ∈ X and γ0 ∈ X ′ so that γ0(ϕ(x0)) 6= 0.
Since T : X ′ → C defined as

T (γ) := γ(ϕ(x0))

is a well-defined continuous linear operator, given any ε > 0 we find r > 0 so that

|T (γ)| = |γ(ϕ(x0))| > ε,

for every γ ∈ B(γ0, r) (the open unit ball centred at γ0 with radius r). We now fix
λ0 ∈ C \ {0} and consider the function f : B(γ0, r)→ C by

f(γ) =
γ(ϕ(λ0x0))

λ0γ(ϕ(x0))
.

This is continuous and f(γ) = µ = µ(γ, λ0, x0) for every γ ∈ B(γ0, r). But µ is an m-th
root of 1, so f takes values in a finite set an therefore has to be constant. In other words,
there is some µ0 = µ0(λ0, x0) so that f(γ) = µ0 for all γ ∈ B(γ0, r), that is

γ(ϕ(λ0x0)) = γ(λ0µ0ϕ(x0)),

for every γ with ‖γ − γ0‖ < r. Remark 2.1 yields

ϕ(λ0x0) = µ0λ0ϕ(x0) .

This shows that for each λ and x there is some µ = µ(λ, x) such that (4) holds for every
γ.

Our next step is to see that µ can also be taken independently from λ. To do so, first we
observe that the mapping λ ∈ C  λγ0(ϕ(x0)) ∈ C is continuous (recall that γ0 and x0
are chosen so that γ0(ϕ(x0)) 6= 0). Then the function g : C \ {0} → C given by

g(λ) =
γ0(ϕ(λx0))

λγ0(ϕ(x0))

is continuous and g(λ) = µ = µ(λ, x0). As before, g takes values on a finite set, hence
is constant and we can find µ0(x0) so that µ0(λ, x0) = µ0(x0) for every λ ∈ C (note that
taking λ = 0 in (3), the equality in (4) holds for any µ). Then, for each fixed x there is
µ = µ(x) so that (4) holds for every γ, λ. In other words, given λ and x we have that
γ(ϕ(λx)) = γ(µ(x)λϕ(x)) for every γ ∈ X ′ and, then

ϕ(λx) = µ(x)λϕ(x),

for every λ ∈ C. Taking λ = 1 shows that in (4) we may take µ(x) = 1 for every x. This
shows our claim and

γ(ϕ(λx)) = λγ(ϕ(x)),

for every γ, λ, x. Therefore, λϕ(x) = ϕ(λx) for every λ, x, as we have that γ(ϕ(λx)) =
γ(λϕ(x)) for all γ.

Since ϕ is holomorphic we can find a unique sequence (pm)m, where each pm : X → X is
an m-homogeneous polynomial, satisfying (1). Then

λ

∞∑
m=0

pm(x) = λϕ(x) = ϕ(λx) =
∞∑
m=0

pm(λx) =
∞∑
m=0

λmpm(x),
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for every λ ∈ C and x ∈ X. The uniqueness of the sequence of polynomials yields
(λm−λ)pm(x) = 0 for every m ∈ N0, λ ∈ C and x ∈ X. Taking any λm−1 6= 1 shows that
pm ≡ 0 for every m 6= 1 and therefore ϕ = p1 is linear. �

We study dynamical properties of a composition operator Cϕ : P(mX) → P(mX). By
Proposition 2.2, ϕ is a continuous linear mapping. We also have

Proposition 2.3. Let ϕ : X → X be a continuous linear operator. If τ = τ0 or ‖ · ‖, the
composition operator Cϕ : P(mX)τ → P(mX)τ is continuous.

Proof. If τ = τ0, given any arbitrary compact subset K ⊂ X, the set L := ϕ(K) is also
compact and

sup
x∈K
|Cϕ(p)(x)| = sup

x∈K
|p(ϕ(x))| = sup

x∈L
|p(x)|,

for all p ∈ P(mX). If τ = ‖ · ‖, we observe

‖Cϕ(p)‖P(mX) = sup
‖x‖X≤1

|p(ϕ(x))| ≤ ‖p‖P(mX) sup
‖x‖X≤1

‖ϕ(x)‖mX ≤ ‖ϕ‖mL(X) ‖p‖P(mX),

for all p ∈ P(mX). �

3. Dynamics with the compact-open topology

Our first result is mentioned in [6, p. 917]. We include a proof for completeness. It relies
on the fact [6, Proposition 3.3] that every power bounded operator on a semi-reflexive
lcHs is mean ergodic (this extended an analogous result for reflexive Fréchet spaces [1,
Corollary 2.7]).

Proposition 3.1. Let E be a semi-Montel locally convex Hausdorff space. Then every
power bounded operator on E is uniformly mean ergodic.

Proof. Let T ∈ L(E) be power bounded. Since E is semi-Montel, it is semi-reflexive and,
by [6, Proposition 3.3], T is mean ergodic. This means that the sequence (T[n])n converges
pointwise. Since T is power bounded, (T[n])n is equicontinuous. Hence, S(x) := limn T[n]x,
for x ∈ E, defines an operator S ∈ L(E). Now, by [12, (2), p. 139], the topology of
pointwise convergence and of uniform convergence on precompact sets coincide on (T[n])n,
which concludes the proof since every bounded set in E is also precompact. �

Now, by [15, Theorem 2.5], the space P(mX)τ0 is (DFC). Hence, it is semi-Montel [17,
Definition 8.3.49] and so, we have

Corollary 3.2. Let ϕ : X → X be a continuous linear mapping. If Cϕ : P(mX)τ0 →
P(mX)τ0 is power bounded, then it is uniformly mean ergodic.

The converse implication does not hold in general. To show this fact, we characterise the
power boundedness of the composition operator in terms of properties of the symbol ϕ.
We begin with the following
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Lemma 3.3. Let K ⊆ X be a compact set and m ≥ 1. Then the set

K̂P(mX) := {x ∈ X : |p(x)| ≤ sup
y∈K
|p(y)|, for all p ∈ P(mX)}

is compact.

Proof. First, we observe that K̂P(mX) is closed, being an intersection of closed sets. Now,

for every γ ∈ X ′ and x ∈ K̂P(mX), we have |γm(x)| ≤ supy∈K |γm(y)| (because γm ∈
P(mX)) and, consequently,(

sup
x∈K̂P(mX)

|γ(x)|
)m

= sup
x∈K̂P(mX)

|γm(x)| ≤ sup
x∈K
|γm(x)| =

(
sup
x∈K
|γ(x)|

)m
.

This implies K◦ ⊆ (K̂P(mX))
◦. An application of Krein’s theorem [11, (4), pg. 325] gives

that the closure of the absolutely convex hull Γ(K) of K is compact. Since, by the Bipolar
theorem [14, 22.13],

K̂P(mX) ⊆ (K̂P(mX))
◦◦ ⊆ K◦◦ ⊆

(
Γ(K)

)◦◦
= Γ(K),

we obtain the result. �

Now, we characterise when a composition operator is power bounded. We say that a
continuous linear mapping ϕ : X → X has stable orbits (see [7]) if for every compact set
K ⊆ X there is some compact set L ⊆ X so that ϕn(K) ⊆ L for every n ∈ N.

Proposition 3.4. Let ϕ : X → X be a continuous linear map. Then Cϕ : P(mX)τ0 →
P(mX)τ0 is power bounded if and only if ϕ has stable orbits.

Proof. Let us suppose first that ϕ has stable orbits and fix K ⊆ X compact. Then we
can find a compact set L ⊆ X so that ϕn(x) ∈ L for every x ∈ K and n ∈ N. This gives
supx∈K |Cn

ϕ(p)(x)| ≤ supx∈L |p(x)| for every p ∈ P(mX) and n ∈ N. Hence Cϕ is power
bounded.

Assume now that Cϕ is power bounded. If ϕ does not have stable orbits there is a compact
set K ⊂ X such that ∪∞n=0ϕ

n(K) is not relatively compact. Since (Cn
ϕ)n = (Cϕn)n is

equicontinuous in L(P(mX)), for the compact set K, we can find another compact set
W ⊆ X and c > 0 so that, for all p ∈ P(mX) and n ∈ N,

(5) sup
x∈K
|p(ϕn(x))| ≤ c sup

x∈W
|p(x)| = sup

x∈W
|p(c1/mx)| = sup

x∈c1/mW
|p(x)| .

The set V := c1/mW is compact and, by Lemma 3.3, so also is L := V̂P(mX). If there
are n0 ∈ N and x0 ∈ K so that ϕn0(x0) /∈ L, then we can find p ∈ P(mX) such that
|p(ϕn0(x0))| > supy∈V |p(y)|. But this is not possible by (5), which shows that ϕn(K) ⊆ L
for all n ∈ N, contradicting the fact that ∪∞n=0ϕ

n(K) is not relatively compact. This
completes the proof. �

We give an example of a composition operator showing that the converse implication in
Corollary 3.2 does not hold in general. This example and others that will be given later
for P(mX)‖·‖ are based on the weighted backward shift, defined as follows. Fix 1 ≤ p <∞
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and take 0 < α < 1/p. The unilateral weighted backward shift is the operator ϕα : `p → `p
defined by

(6) ϕα(e1) = 0 and ϕα(ek) =
( k

k − 1

)α
ek−1 for k ≥ 2 ,

that is, ϕα(x1, x2, . . .) = (w1x2, w2x3, . . .), for every x = (xi)i ∈ `p, where wk =
(
k+1
k

)α
,

for k ∈ N.

Example 3.5. For each 1 < p < ∞ and 0 < α < 1/p the composition operator Cϕα :
P(1`p)τ0 → P(1`p)τ0 is uniformly mean ergodic, but not power bounded.

We recall that ϕα is mixing [5, Corollary 2.3] and, since `p is separable, hypercyclic (see
e.g. [2, Theorem 1.2]). This means that there exists x0 ∈ `p such that {ϕnα(x0)}n is dense
in `p. Since norm and weakly bounded sets coincide (see e.g. [13, Theorem 2.5.5] or [14,
Proposition 8.11]) this implies that {ϕnα(x0)}n is not weakly bounded, and we can find
u ∈ `′p = P(1`p) such that {|u(ϕnα(x0))|}n∈N is unbounded. Since u(ϕnα(x0)) = Cn

ϕα(u)(x0),
the operator Cϕα is not power bounded.

To see that Cϕα is mean ergodic, first we observe that, by [5, Theorem 2.2], there is c > 0
so that ∥∥∥ 1

n

n−1∑
k=0

ϕkα(x)
∥∥∥
`p
≤ c‖x‖`p ,

for all n ∈ N and x ∈ `p. Therefore, for u ∈ `′p and x ∈ `p we have

∣∣∣ 1
n

n−1∑
k=0

Ck
ϕα(u)(x)

∣∣∣ =
∣∣∣ 1
n

n−1∑
k=0

u(ϕkαx)
∣∣∣ ≤ ‖u‖`′p∥∥∥ 1

n

n−1∑
k=0

ϕkα(x)
∥∥∥
p
≤ c ‖u‖`′p‖x‖`p .

This shows that
(
(Cϕα)[n](u)

)
n

is equicontinuous for every fixed u ∈ `′p.
Since `p is reflexive, [5, Theorem 2.2 and Corollary 2.7] give that ϕα is mean ergodic.
Then we can find ϕ ∈ L(`p) such that limn(ϕα)[n](x) = ϕ(x) ∈ `p for every x ∈ `p. If
u ∈ `′p is fixed, continuity gives

lim
N→∞

(Cϕα)[N ](u)(x) = lim
N→∞

u(ϕα[N ](x)) = u
(

lim
N→∞

ϕα[N ](x)
)

= u(ϕ(x)),

for every x ∈ `p. In other words,
(
(Cϕα)[n](u)

)
n

converges pointwise to Cϕ(u) for every
u ∈ `′p. Now, by [12, (2), p. 139] the topology of pointwise convergence and of convergence

on compact sets coincide on equicontinuous sets. Since Cϕ ∈ L
(
(`′p)τ0

)
,
(
(Cϕα)[n](u)

)
n

is
τ0-convergent to Cϕ(u) for every u ∈ `′p and, hence, Cϕα is mean ergodic.

In fact, Cϕα is uniformly mean ergodic. To check this first we observe that
(
(ϕα)[n]−ϕ

)
n

is

pointwise convergent to 0 and so, equicontinuous on `p. Therefore
(
(ϕα)[n]−ϕ

)
n

converges
to 0 uniformly on the compact subsets of `p. Now, we take an arbitrary τ0-bounded set
V ⊂ `′p, which is also norm-bounded in `′p (see, for instance, [14, p. 267]). Therefore, for
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any compact set K ⊂ `p and n ∈ N we have, for some constant c > 0,

sup
u∈V

sup
x∈K

∣∣((Cϕα)[n] − Cϕ
)
(u)(x)

∣∣ = sup
u∈V

sup
x∈K

∣∣u(((ϕα)[n] − ϕ)(x)
)∣∣

≤ sup
u∈V

sup
x∈K
‖u‖p′

∥∥((ϕα)[n] − ϕ
)
(x)
∥∥
p
≤ c sup

x∈K

∥∥((ϕα)[n] − ϕ
)
(x)
∥∥
p
,

which gives the conclusion.

4. Dynamics with the norm topology

We consider now the Banach space P(mX) endowed with the norm given in (2). We study
the interplay between power boundedness, Cesàro boundedness and mean ergodicity.

As a first step we characterise, as we did in Proposition 3.4, the power boundedness of a
composition operator by means of the symbol.

Proposition 4.1. Let ϕ : X → X be a continuous linear map. Then Cϕ : P(mX)‖·‖ →
P(mX)‖·‖ is power bounded if and only if ϕ is power bounded.

Proof. Suppose in first place that ϕ : X → X is power bounded, then there is a constant
c > 0 such that

‖ϕn(x)‖X ≤ c‖x‖X ,
for all n ∈ N and for all x ∈ X. Using this we have, for p ∈ P(mX) and n ∈ N,

‖Cϕn(p)‖P(mX) ≤ ‖p‖P(mX) sup
‖x‖≤1

‖ϕn(x)‖mX ≤ cm‖p‖P(mX).

Hence Cϕ : P(mX)‖·‖ → P(mX)‖·‖ is power bounded.

Conversely, assume that Cϕ : P(mX)‖·‖ → P(mX)‖·‖ is power bounded. We can find c > 0
such that ‖p ◦ ϕn‖ ≤ c‖p‖, for every p ∈ P(mX). In particular, we have

sup
‖x‖X<1

|γ(ϕnx)|m ≤ c sup
‖z‖X<1

|γ(z)|m,

for every n ∈ N and every γ ∈ X ′. Hence, we obtain |γ(ϕnx)| ≤ c1/m‖γ‖ for every γ ∈ X ′,
and every x with ‖x‖X < 1 and all n ∈ N. An application of the Hahn-Banach theorem
completes the proof. �

Proposition 4.2. Let ϕ : X → X be a continuous linear map such that Cϕ : P(mX)τ0 →
P(mX)τ0 is power bounded. Then Cϕ : P(mX)‖·‖ → P(mX)‖·‖ is power bounded.

Proof. By Proposition 3.4, ϕ has stable orbits and for each x ∈ X we can find a compact
set Kx ⊆ X such that (ϕn(x))n∈N ⊂ Kx. This gives that supn∈N ‖ϕn(x)‖ < ∞ for every
x ∈ X and, by the uniform boundedness principle, supn∈N ‖ϕn‖ <∞. This shows that ϕ
is power bounded and, by Proposition 4.1, so also is Cϕ : P(mX)‖·‖ → P(mX)‖·‖. �

The converse implication is not true in general.
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Example 4.3. Consider the composition operator Cϕ : P(mc0)→ P(mc0) defined by the
usual forward shift ϕ : c0 → c0 given by ϕ(x) = (0, x1, x2, . . . ). Let us see that Cϕ is
power bounded in P(mX)‖·‖ but it is not in P(mX)τ0 . On the one hand, we observe that
‖ϕn(x)‖ = ‖x‖ for every x ∈ c0 and all n ∈ N, but (ϕn(e1))n∈N = (en)n∈N is not relatively
compact in c0. This shows that ϕ is power bounded but does not have stable orbits. As
a consequence of Propositions 4.1 and 3.4, Cϕ is power bounded on P(mc0)‖·‖ but not on
P(mc0)τ0 .

Example 4.4. Fix m ≥ 2 and 0 < α < 1/m. The operator ϕα : `m → `m defined in (6)
satisfies that Cϕα : P(m`m)‖·‖ → P(m`m)‖·‖ is Cesàro bounded but neither power bounded
nor mean ergodic.

From the proof of [5, Theorem 2.1] we obtain

n∑
k=1

‖ϕkα(x)‖m`m ≤ 4n,

for every x ∈ `m, ‖x‖ ≤ 1, and n ∈ N. Hence given p ∈ P(m`m) we have, for ‖x‖ ≤ 1,

∥∥∥ n∑
k=1

p(ϕkαx)
∥∥∥
`m
≤

n∑
k=1

‖p(ϕkαx)‖`m ≤
n∑
k=1

‖p‖P(m`m)‖ϕkα(x)‖`m ≤ ‖p‖P(m`m)4n .

Now, we take the supremum over ‖x‖ ≤ 1 to obtain

∥∥∥ 1

n

n∑
k=1

Ck
ϕα(p)

∥∥∥
P(m`m)

≤ 4‖p‖P(m`m),

which shows that Cϕα is Cesàro bounded. We know that ϕα is hypercyclic [5] (see also
Example 3.5 in the present notes). Hence it cannot be power bounded and so, by Proposi-
tion 4.1, neither is Cϕα . To show that it is not mean ergodic we take the m-homogeneous
polynomial given by

(7) p(x) =
∑
i∈N

xmi ,

and prove that
(
(Cϕα)[n](p)

)
n∈N does not converge in P(mX). First, we observe that, for

a fixed n ∈ N, we have

ϕkα(en+1) =

{(
n+1

n+1−k

)α
en+1−k, if n ≥ k,

0, if n < k.



10MEAN ERGODIC COMPOSITION OPERATORS IN SPACES OF HOMOGENEOUS POLYNOMIALS

Then

|(Cϕα)[n](p)(en+1)− (Cϕα)[3n](p)(en+1)|

=

∣∣∣∣∣ 1n
n∑
k=1

p(ϕkα(en+1))−
1

3n

3n∑
k=1

p(ϕkα(en+1))

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
k=1

p(ϕkα(en+1))−
1

3n

n∑
k=1

p(ϕkα(en+1))

∣∣∣∣∣
=

2

3n

∣∣∣∣∣
n∑
k=1

p(ϕkα(en+1))

∣∣∣∣∣ =
2

3n

∣∣∣∣∣
n∑
k=1

p

((
n+ 1

n+ 1− k

)α
en+1−k

)∣∣∣∣∣
=

2

3n

∣∣∣∣∣
n∑
k=1

(
n+ 1

n+ 1− k

)mα∣∣∣∣∣ =
2

3n

∣∣∣∣∣
n∑
k=1

(
1 +

k

n+ 1− k

)mα∣∣∣∣∣
≥ 2

3n

∣∣∣∣∣
n∑
k=1

1

∣∣∣∣∣ =
2

3
.

This implies

‖(Cϕα)[n](p)− (Cϕα)[3n](p)‖ >
2

3
,

and so,
(
(Cϕα)[n]

)
n

is not Cauchy. Hence Cϕα is not mean ergodic.

This settles the relationship between absolute Cesàro boundedness and power bound-
edness and mean ergodicity. We look now at the latter two. Unlike what we saw in
Corollary 3.2 for the compact-open topology, when we consider the norm topology we
may find composition operators that are power bounded but not mean ergodic.

Example 4.5. For m ≥ 1 we consider the usual backward shift σ : `m → `m defined as

σ(x1, x2, x3, . . .) = (x2, x3, . . .) .

Then the composition operator Cσ : P(m`m)‖·‖ → P(m`m)‖·‖ is power bounded but not
mean ergodic.

Let us observe that ‖σn(x)‖`m ≤ ‖x‖`m for every x ∈ `m. So σ is power bounded. Applying
Proposition 4.1 we obtain that Cσ is power bounded.

To see that it is not mean ergodic we take the polynomial p defined in (7) and observe
that

σk(en+1) =

{
en+1−k, if n ≥ k,

0, if n < k.
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Then

|(Cσ)[n](p)(en+1)− (Cσ)[3n](p)(en+1)|

=

∣∣∣∣∣ 1n
n∑
k=1

p(σk(en+1))−
1

3n

3n∑
k=1

p(σk(en+1))

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
k=1

p(σk(en+1))−
1

3n

n∑
k=1

p(σk(en+1))

∣∣∣∣∣
=

2

3n

∣∣∣∣∣
n∑
k=1

p(σk(en+1))

∣∣∣∣∣ =
2

3n

∣∣∣∣∣
n∑
k=1

p (en+1−k)

∣∣∣∣∣ =
2

3n

∣∣∣∣∣
n∑
k=1

1

∣∣∣∣∣ =
2

3
.

This, as in Example 4.4, shows that
(
(Cσ)[n]

)
n

is not Cauchy and that Cσ is not mean
ergodic.

Example 4.6. For fixed 1 < p <∞ we take 0 < α < 1
p′

:= 1− 1
p

and define the weighted

forward shift ψα : `p → `p by

ψα(ek) =
( k

k − 1

)α
ek+1 for k ≥ 1 ,

that is, ψα(x1, x2, . . .) = (0, w1x1, w2x2, . . .), where, as before, wk =
(
k+1
k

)α
for k ≥ 1. We

consider the composition operator Cψα : P(1`p)‖·‖ → P(1`p)‖·‖. Since P(1`p)‖·‖ = `′p = `p′ ,
for each u ∈ `p′ and x ∈ `p we have

Cψα(u)(x) = u
(
ψα(x)

)
= u(0, w1x1, w2x2, . . .) =

∞∑
k=1

xkwkuk+1 = ϕα(u)(x) .

This shows that Cψα = ϕα : `p′ → `p′ . By [5, Corollary 2.7] (`p is reflexive), Cψα is mean
ergodic. On the other hand, it is hypercyclic [5, Corollary 2.3] (see also Example 3.5 in
the present notes) and therefore not power bounded.
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