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Abstract

We find existence and uniqueness results about solutions of Robin's problem for the general anisotropic
hyperbolic heat equation in the case of infinitely differentiable coefficients but irregular distributions data
for the internal heat sources and boundary and initial conditions.
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1 Introduction and physical motivation

Hyperbolic heat conduction equation is a tundamental tool in some modern industrial applica-
tions such as microelectronics and the processing of materials by irradiation with a laser beam of
high intensity and very short application times (see [3], [4] and [9] for instance). Usually the math-
ematical formulation of these problems leads to the study of mixed boundary Neuwmann problems
with boundary conditions given by irregular distributions such as Heaviside’s function or Dirac’s
& distribution. From the mathematical point of view it is more interesting to consider the general
Robin’s problem in order to cover simultancously Dirichlet and Neumann problems.

Real industrial materials frequently are non isotropic (see [10] for instance for some concrete
examples). In this case and assuming the density p and the specific heat ¢ to be constant the
hyperbolic heat equation in the open set @ occupied by the body is (see [2])
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where T'(x,t) is the temperature in point x and instant ¢, (k;;(x)) is the symmetric thermal
conductivity tensor of the material, 7 is the relaxation parameter and S(x,t) denotes the internal
heat sources in the body. If k;;(x) = k for every 1 < i, j < 3 we obtain the isotropic hyperbolic heat
equation for an homogencous body. Moreover the preservation of the second low of thermodynamics
implies that

VXEQ YV (m.nenz) A0 Z kij(x) n; m; >
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which means that the differential operator in (1) is strongly elliptic in €.

The study of these problems in its tull generality is very ambitious and it is expected that
a rigorous mathematical treatment will be quite diffieult and complex. Some steps have heen
developed previously. The existence, uniqueness and regularity of solutions of mixed boundary
value problems in the case of regular data has been studied in [6]. 1n [7] the traces of the elements of
certain Banach spaces of "irregular functions™ containing the solutions of the anisotropic hyperbolic
heat equation with irregular data are considered.
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In this paper a further step is developed. Specifically the purpose of this paper is to find
existence and uniqueness theorems about solutions of Robin’s problem for the anisotropic hyperbolic
heat equation in the case of infinitely differentiable coefficients up to the closure Q0 of the spatial
domain in (1) but with non regular data distributions in its right side and in the boundary and
initial conditions of the problem as a necessary step toward future more involved investigations.
Notation is standard in general. Points (21, 22, ..., 2y) in R™ are denoted by x in short. We
deal with cylindrical open sets Qx]0,T[C R™™! where T > 0 determines the temporal interval
of the problem. Concerning spatial domains, unless otherwise is clearly stated, all open domains
Q C R™, n > 1 considered in this paper will be always bounded and having boundary OQ being a
C*° manifold of dimension n—1 such that € is locally on the same side of J€). Traces on any type
of houndary of 2x]0,7 are always understood as suitable standard extensions of the ordinary
restriction map to the boundary of functions f € C*(2x]0,T) (details can be found in [5] and
[7]). All used functions and vector spaces are assumed to be real. Basic facts about interpolation
spaces [X, Y]y necessary to define Sobolev spaces H"(2), H™*(2x]0,T[) and H5(2x]0,T[) with
r, s € [0,00[ and the main properties of all these spaces can be found for instance in [3].
The natural framework to study (1) is to consider a general operator
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is a selfadjoint strongly elliptic operator in § with real coefficients ag, plx) € C>=(Q). To cover the
desired generality we shall consider differential boundary operators of order oy < 1 of type

v
c"')ri

B o(x) — Bv(x)) = f(x) Tr(v(x)) + Zgi(x) T?’( (X)) (2)

with real coefficients f(x). g;(x),1 < j < nin C*°(9Q) and where Tr denotes the trace operator on
the boundary d€2). Usually, to simplity, traces of distributions v(x,t) will be denoted by the same
symbol but making advise of the variability of (x,t). For example, v(x,0) will denote the trace on
the section {(x,0) | x € Q}.

The formal adjoint operator A* of A is the operator

a o
cx 2L,
A o o

Proposition 1  Green’s formula. There are boundary differential operators R4, U g and U 4
of type (2) of orders ox, 0y and oy such that o + 0y = 1, 0 + 0, = 1, 0y + 07 = 1 and Green’s

Sformula
T
f (/ (v A(u) —u A*(v)) dx) dt =
0 Q

T
= f ( (La(u) BV yg(v) —Ra(v) Blu)). dcr) dt+
0 an

+A (/ﬂ [1.'(:n,t)lt(mft)]ij1 d:n) +?7(jg [u(mt)%(m t) — u(m.t)%(m,t)]iz:) (3)

holds for every v € HS5(2x]0,T),s > 2 and u € C>(2x]0,T[) (the boxes have the usual meaning
for the Barrow’s rule of integration).

Proof. If v € C*(2x]0,T) the result is straightforward from Aronszajn-Milman’s theorem [1]
or [ [5], chapter 2, theorem 2.1 ] Fubini’s theorem. and two consecutive integration by parts with
respect to £ By density of C(Qx]0.T[) in H**(Q2x]0.T[), s > 2 ([[5]. chapter 4, remark 2.2 |)
the result follows easily for v € H*5(Q2x]0.7]).s > 2. A
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We need to consider some new spaces in order to precise the degree of irregularity of the data.
Let p: Q@ — [0, 00[ be the continuous function defined by p(x) := d(x, 9Q) = infycan [|x —y|| for
every x € Q. Given s € NU {0} we define
1
2
) o)
2()

. dlel 2
2 (@) = {re L) | flso 2 1| e
£9(Q2) endowed with the norm ||.||g-(q) turns out to be a Banach space. We extend the latter defini-
tion to the ease s €]0, oo[ by complex interpolation defining »%(2) = [ZEHH(Q). EE[T]H(Q)] 10
for s = E[s] +0,0 < 0 < 1, where E[s] is the integral part of s, endowed with any canonical norm
of the interpolated space. The dual space will be represented by X7%(€2). Clearly

Vs>0 HY(Q) cCXZH0) (4)

with continuity. As above, it can be shown (see [5], chapter 2) that D(€2) is dense in X7 () for
r > 0. In consequence ¥77(2) is a space of distributions on 2, ¥"(2) € L2(Q2) € ¥7"(£2) becomes
a Gelfand triple and D(€2) is dense in X77(Q) too.

In order to distinguish the behavior of temporal and spatial variables we introduce another
space. Given 0 < T we fix a number Ty < % Consider the function o7, 7 € C*(R) with compact
support contained in [0, 7] defined by

2

_ 75
e 13 (=17 it 0<a<T,
1 it Ty<a<T-—T
Lr’)Tu:T(t) = © 2 0= 0
e To-(+—T+T0)? it 7T—Ty<x<T
0 it €] —o0,0]U[T,o0]

For every s € NU {0} we define
255 (0x]0, T]) =

03 f
[T PP (Z||\w:ro 1

which turns out to bf‘ e‘l_Banlach space under the norim 11|55 oo - ‘ .
As above, the definition is extended to non negative real numbers by interpolation

= {re2qo.11x)

1
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L2(0.T[+-9 ()

Vs>0 E95(Qx]0,T]) = {EE[SIHvE[SHl(szx]o,T[).EE[SLEM(Qx]o.T[)}l )

endowed with any standard norm for the interpolated space. The dual space is denoted by
Y5 75(02x]0,27). From (4) we obtain easily

Vs>0  HY(Qx]0.T]) C 255(Qx]0.T]). (5)

By [[5} chapter 4, proposition 9.1] D(2x]0,T7) is also dense in X55(Q2x]0,77) if s > 0 and
hence X% %(Q2x]0,T[) € D'(2x]0, 00[). As above,

N5 (Qx]0.T]) © L2(Q2x]0,7]) € B=575(Qx]0,T])

is another Gelfand triple and D(Qx]0, T) is dense in X7%75(Q2x]0, T[).
Concerning to spaces over the boundary d0x]0, T, if k € NU {0} we define

ko . 2 3
T(90%)0,T]) = {z ( [ Pr——— (ZHVTUT 55 Lz(]o,T[,Hk—%i(am)) < oo}.

JE(99%]0. T[) becomes a Banach space when endowed with the norm Il BRxI0TD " This definition
is extended by interpolation to the case of s £]0, oo[\N putting

J* = [HPER (0010, T]), L2(00x]0, D)1 s -
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Clearly

Ys>0 H 25530010, T]) C JH2(00x]0,T]). (6)

By [[5]. chapter 5, section 10.3] we see that D(9Q2x]0,T|) is dense in J5(9Q2x]0,T[) for ev-
ery s > 0. It J72(90x]0,T]) := (J*(82x]0,T[) we obtain the Gelfand triple J"(9Qx]0,T[) C
L2(00x]0,T]) € J7(00x]0,T]).

To finish, given s > 1 consider also the space of distributions
D3V (Qx]0, 17 = {-u e H-(=D=5(Qx]0,7T) | Alu) € E_(”l)’_(”l)(&'lx]ﬂ.T[)}
endowed with the norm
““‘HDQ(S*”(Qx]o.T[) = }|u|IH—fS—1)‘—S(Qx]D.T[) + HA(”')||z—<s+13=—(s+1)(Qx]n.T[)' (7)

Then D;(s_l) (2x]0, T]) turns out to be a Banach space. The closure of C*°(2x]0, T]) in D;(s_l) (©2x]0,T7)
will be denoted by D3~ (2x]0. 7).

2 Existence and uniqueness theorems for solutions in the
case of irregular data

We begin recalling an important result in [6] which we shall need to use in the sequel. Put
H-19(Qx]0,T]) = L3(Qx]0,T]). Given r € NU {0}, let Wr=L7(Qx]0,T[) be the subspace of
the functions g € H™=5"(Qx]0,T]) such that %(x, 0) =0in Q for every 0 < £ < r —1
it r > 0 (hence if » = 0 there is no condition on g). Given an operator £ of the same type
as B we define HEL%’“LI(QX}U.T[) as the set of functions g € H"™1L7+1(Qx]0,T) such that
Alg) € W=t (Qx]0,T) in Q2x]0, T,

7] ,
g(x.0) = a—'?(x,()) =0 in Q@ and $H(g)(x,f) =0 in I2x]0.T].
Next theorem has been proved in [[6] theorem 6] :

Theorem 2 If r > 1 the operator A restricted to HZ;LTH(!'ZX]U.TD is an isomorphism onto
Wr=Lr(Qx]0,T).

Corollary 3 Assume Fy € D(Qx]0,T|), Fy € DOQ2x]0.T|), Fy € D(Q) and F3 € D(Q). Then

there exists an unique function U(x,t) € C>°(Qx]0,T[) such that

AU)=Fy, in Qx]0.T[, BU)(x.t)=F in 0Qx]0.T]), (8)
U(x,0) = F, ‘Zf(x,o):FB in €. (9)

Proof. Let r € N. By theorem 2 there is U, € H™H"+1((2x]0,77) verifving (8) and (9). As
HH27+2(0x]0,T[) € H™ L7+ (x]0, T]) by the same theorem 2 we will have U, = U, ;1 and hy
the arbitrariness of 7 in N the function U = U, is independent of r and U € (02, H™ 171 (Qx]0, T7)
and the conclusion follows. W

For our purposes we need to consider the following space, whose importance will be clear after
next theorem 5.

Definition 4 Let r > 0 be such that r — 1 ¢ N U{0}. We define X"(Q2x]0,T]) as the set of
functions v € H™HLr+1(Qx]0, T[) such that

Va(v)(x,1) =0 in INx]0,T7,

z:(x.sz%(x,T)zo in Q and A*(v) € Hog""(2x]0.TY).

provided with the norm induced by H™ 1" F1(Qx]0,T7).
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Theorem 5 Letr > 1 be such that r — 5 ¢ N. Then A* is an isomorphism from Hy " (€20, T7)

onto X7 (Q2x]0,T7).

Proof. Assume first » € N. Clearly HSSEI’T(S'ZX]D.TD C Wr=br(Qx]0,T[) and the variable
change t = T — ¢’ transform the operator A* defined in €2x]0, T in the operator A defined in
Ox]0,T[. Then A : Hgygl‘r(ﬂx}(]._T[) — X7(Qx]0,T[) is a bijective map as a consequence of
theorem 2 applied to the operator A with respect to the temporal variable . On the other hand
it is clear that A4* is continuous from X7(Qx]0,T[) into Hg}al"‘_l(!lx]U.T[). Let {vn}%_, C
XT(Qx]0,T]) be a sequence such that lim,, v, = v in A7 LTHQx]0,T]) and
limy s 0 A* (V) = T in H™=7(Qx]0, T[). Then lim, 0 A*(v,,) =T in Hy """ (Q2x]0,T).
Since limyp—oe A*(vy) = A%(v) In H b7 =1(Qx]0,T[) we obtain A*(v) = 7 €
H TOi é’r(Qx]O. T[). Then A* has closed graph and by the closed graph theorem it is continuous and
by the open map theorem A* becomes an isomorphism indeed.

The result for arbitrary » > 1 follows easily by complex interpolation. W

Following theorem is the main result of this section.

Theorem 6 FEristence and uniqueness of the solutions in the case of irregular data.
Let v > 1 verifying the conditions

r+%—(f;1) (:ii)gz i=0,1 (10)
anid
VO<k<r -r+g—(:ﬁ)(k+%)¢z. (11)
Assume that
Fy € 0= (r=(ri (O ]0, ). Fy € J-rF270%)(90x]0, T]). (12)
F,ex(=2)(Q) and Fye X rt2)(Q). (13)

There exist a unigue distribution U(x,t) € D;t(r*l)(ﬂx](],T[) such that

AU)=Fy in QxI0.TL.  BU)=F in 92x]0.T]) (14)
and 5 U
U(x.0) = F, and (C,,)—t(x,l)):Fg, in (15)

where  the ftraces are compuled in = (r+—om)~(r+g—om) g (002x]0,T7), H-r+D+i5s (€2)
and H=(+0+355 ($2) respectively.

Proof. By definition of X"(2x]0,7[) and the theorem of traces [ [5], chapter 4, theorem 2.1]
in "L (Qx]0,T[) the maps

we XT(Qx]0,T[) — u(x.0) € H™3(q),

we XT(Qx]0,T[) — %(x.o) cH™ Q)

and
uwe X"(02x]0,T]) — mﬂ(“”mxlo T[(X._t) IS HTti—omr+3—ox (262x]0,T7)

arc well defined and continuous. Then by (5), (6), the continuity of trace mappings and the
definition of the topology in X7 (Q2x]0,T[) the lincar form L defined for v € X7(Q2x]0,T[) by

L(v) = (Fo.v) + (F1,R4(v(x.1))) + <F;gg (/\ u(x,0) — ?]%(X,O))> + T]<F3,-t'(x,0)>

is continuous. Since A* is  an isomorphism from X7(2x]0,7]) onto HSJBI’T(QX}U, TT) (theorem
5) there is  an unique U := ((A*)")~Y(L) € H="=1:="(Qx]0, T[) such that

YoueXT(Qx]0,T]) (U A"(v))=(L.v) (16)
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holds. As D(2x]0,T]) C X" (2x]0,T7), by definition of L we obtain
Vo eDQx]0,T]) (Fo.v)=(L.v)= (U A*(v))=(AU),v). (17)
Since D(£2x]0,T) is dense in Hggl "(£2x]0, T[) and in XL (Qx]0,T]) we obtain
A(U) = F (18)

and U becomes a solution of the given equation.

Let us see that U € Df(Tfl)(QX]O T[). By density of D(Qx]0.T7), D(02x]0,T[) and D(£2) in
the corresponding next spaces, we find sequences { fr}72, € D(Q2x]0,T]), {gr}7=, C D(IQ2x]0,T7),
{Uar}p2, € D(Q) and {Usi}32, € D() such that

Jim fi=Fo in pr D=+ (00, TY) (19)
— 00
lim g =Fi in J=(r+5=03) (901% 10, T]) (20)
T —r 00
Jim Uy =F, in v=r=3)(Q) and Jim Uy = Fy i y-r+2)(0). (21)
—r 00
Remark that under these conditions. since r + % — 0n < (r + % — Osg) %f it follows from (6) and
(20) that
lim g =F in H(rra—os ) —(rr3—om) 53 (90 %0, 7). (22)
— 00
Analogously, since r — 1 <r 41— %:E andr+ 2 <r+1-— %:1; by (4) and (21) one has
lim Upy = Fy in H-U+D+352(Q) and Jim Usy = Fy i H™ (r+D)+353 (0 23
ki?;o Jor. = F5 In (©2) and 1111 s — I3 in (2). (23)

We consider for & € N the linear form Lj sending every v € X" (Q2x]0,77]) to

v

L) = (i o) + (g, Ra(vlx,0)) + <U2k,/\ 0(x,0) = 7 (x, o)> + 1 (Usk. v(x,0)).

As above, by (5), (12), (13), (20) and (21) Ly € (X"(2x]0,T]))" and there is an unique
Uy = ((A*)) V(L) € H-0— 1)f*"(szx]o T) such that

Yoe X"(Qx[0,T]) Lg(v) <L > (24)
On the other hand, by corollary 3, the mixed boundary value problem, k € N

AT =fi in Ox]0.T[, B0 =g in 092x]0.T], (25)

ﬂ()t:.[)) = Uzg(x) in Q (26)

Uk(x, U) = )Tzk(X). o1

has an unique solution Uy, € C>®(2x]0,T7).
By the continuity of the involved trace mappings and by (19), (20) and (21) we see that
limg o0 Ly = L in (X7(9 X]O.T[))’, and ((A*)")~! being an isomorphism, we obtain

Jim Uy =U in H~=D:77(0x]0, 7). (27)
and by Green'’s formula (3) and (25), (26) and the definition of X7 (2x]0, T'[) we obtain
Voe X"(Qx]0,T]) (U A*(v)) = (A(Uy).v) = Li(v).
which, by the uniqueness in (24) implies

VEeN U,=0Us (28)
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and hence, from (25) we obtain A(UL) = A(U) = fi for every k € N. By (18) and (19) we
have A(U) = limy_, oo A(Uy) in Z (r+1,=(r+1 (1 x]0, T[) that. with (27) gives limj_, .. Uy = U in
D" V(0x]0,T)), ie. U € D" (@x]0,T]). Tt follows from (27) and (28) U = limy_ o, Uy =
limy,_, oo Uy in D;(Pl)(ﬂx]ﬂ,T[) and by the theorem of continuity of the trace mappings [[7}
theorem 4 | and (22) we obtain

B(U) = Jlim B(Uy) = hm gp = Fy in H-(rrz=es)=(rra—on )51 (90 x]0, TY).
— 00
Analogously, by [[7], theorem 2 | and (23) we obtain U(x,0) = limj_o Usk(x) = Fa(x) in
H~ ('-'”+1>+2r+z (Q) and 2U(x,0) = limy,_, o Ugj,(x) = F3(x) in H-UHD+355(0). W

( +e—2)

Corollary 7 Let (xg.1y) € Qx]0.T'[. There is G € () (2x]0.17) such that

£‘>0
A(G) = 8(x —x0) @ 8(t —to) in Qx]0.T].

c’)(}
G(x,0)

in €2

and
B(G)(x, 1) =0 in 0Qx]0.T].

Moreover, for every = > 0 there exists a sequence {@}32, C C®(Qx]0,T[) such that for ecvery
ke N one has {A(pr)} 72, € D(Q2x]0,T7),

)
on(x,0) = ‘;k (x,0) =0 in (29)
Bop)(x. 1) =0 in Qx]0,T] (30)
GETLd moreover,
~(3+e-2)

k]ll)lc}o =G in Dy (£2x]0,T7)

and
Jim A(pi) = 8(x —x0) @ 8(t —to) in v (#+2)=(2+2) (Qx]0, T]).
— 00
Proof. By [ [8], proposition ‘3] for every £ > 0,c € Q one has
5(x — x0) ® 8(t — tp) € B (5T =(3+2) (x)0, 7)) c ©=(2+2)=(5+2) (x0, T])

and r + 1 := § + = verifies (10) and (11). The corollary follows directly from theorem 6 and the
observation that, in the actual case, the sequences {gi}32,. {Uzr }52, and {Usi}32, used in the
proof of theorem 6 can be taken equal to 0 for all ¥ € N and hence every function U, verifies the
initial and boundary conditions (29) and (30). W
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