Document downloaded from:

http://hdl.handle.net/10251/165756

This paper must be cited as:

Toldrá Vilardell, F.; Gallego-Ibáñez, M.; Reig Riera, MM.; Aristoy Albert, MC.; Mora Soler, L. (2020). Recent Progress in Enzymatic Release of Peptides in Foods of Animal Origin and Assessment of Bioactivity. Journal of Agricultural and Food Chemistry. 68(46):12842-12855. https://doi.org/10.1021/acs.jafc.9b08297

The final publication is available at

https://doi.org/10.1021/acs.jafc.9b08297

Copyright American Chemical Society

Additional Information

"This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Agricultural and Food Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jafc.9b08297"

1	Recent progress in enzymatic release of food-derived peptides
2	and assessment of bioactivity
3	Fidel Toldrá ^{1,*} , Marta Gallego ¹ , Milagro Reig ² , M-Concepción Aristoy ¹ and Leticia
4	Mora ¹
5	¹ Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Paterna (Valencia), Spain
6	and ² Instituto de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de
7	Valencia, Spain
8	
9	*Corresponding author: Fidel Toldrá
10	e-mail: <u>ftoldra@iata.csic.es</u>
11	Tel: +34 963636301
12	Fax: +34 963900022, ext 2112
13	
14	
15	
16	
17	
18	
19	Running title: Enzymatic release of food bioactive peptides
20	

22 Abstract

There is a wide variety of peptides released from food proteins which are able to exert a 23 relevant benefit for human health like angiotensin-converting enzyme (ACE) inhibition, 24 antioxidant, anti-inflammatory, hypoglucemic or antithrombotic activity, among others. 25 This manuscript is reviewing the recent advances on enzymatic mechanisms for the 26 27 hydrolysis of food proteins, including the types of enzymes and mechanisms of action involved, the strategies followed for the isolation and identification of bioactive 28 peptides through advanced proteomic tools, the assessment of bioactivity and its 29 beneficial effects. Specific applications in fermented and/or ripened foods where a 30 significant number of bioactive peptides have been reported with relevant in vivo 31 32 physiological effects on laboratory rats and humans, as well as the hydrolysis of food 33 proteins for the production of bioactive peptides are also reviewed.

34

Keywords: Proteolysis, Bioactive peptides, Proteomics, Mass spectrometry, Enzyme
hydrolysis, Peptidases

37

39 INTRODUCTION

The content of proteins in foods is very significant and has a great nutritional relevance 40 because they constitute the source of essential amino acids in the diet. However, 41 proteins are subject of changes during food processing and cooking. In this sense, it is 42 outstanding the relevant enzymatic hydrolysis of proteins taking place during food 43 processing, especially during fermentation and/or ripening like in fermented sausages, 44 dry-cured meats, cheese, yogurt, wine, etc., that generates polypeptides, peptides and 45 free amino acids¹⁻³. Such peptides are considered bioactive because, once released from 46 the protein, they can contribute to a positive effect on consumers' health. Numerous 47 bioactive peptides have been reported in cheese⁴, meat products like fermented sausages 48 and dry-cured ham⁵ and fishes⁶. 49

50 The activity of the generated bioactive peptides has been extensively studied in vitro and its physiological effects confirmed through *in vivo* assays with laboratory animals 51 52 and in recent trials with humans. The most reported bioactivities are ACE inhibitory, antioxidant, antimicrobial, opioid, inmunomodulating and antithrombotic. Milk-based 53 products were the first reported to generate peptides with relevant bioactivity 54 55 contributing to health⁷. Further, no changes in blood pressure were reported with daily consumption of Camembert cheese⁸ or even decreased diastolic and systolic blood 56 pressure with Gouda-type cheese⁹. Similar trend in reduction of blood pressure was 57 reported with daily consumption of dry-cured ham¹⁰ that was also reported to impair 58 platelet and monocyte activation, and the levels of plasmatic P-selectin and interleukin 6 59 in healthy humans¹¹. Peptides from salmon and sardine were also reported to have 60 61 antihypertensive effects in humans⁶.

Bioactive peptides can also be obtained in large amounts through reactor-controlled
hydrolysis of extracted food proteins with commercial proteolytic enzymes or
microorganisms^{12,13}. Food by-products from meat, fish, dairy, olive oil and wine
constitute typical sources of proteins to be hydrolysed and produce bioactive peptides at
industrial scale^{12,14-17}. Other hydrolyzates have been reported from eggs, peanut, and
soybean proteins¹⁸⁻²⁰.

The possibility of diseases prevention through the ingesta of bioactive peptides is of 68 69 high interest to health authorities because it would contribute to reduce the budget for health care treatments. However, bioavailability of bioactive peptides must be taken into 70 71 account since some of them may be susceptible to partial or total loss of activity due to 72 further hydrolysis by salivary, stomachal, intestinal and pancreatic enzymes, and even intestinal microbiota during gastrointestinal digestion^{21,22}. Furthermore, peptides may be 73 subject of reactivity (i.e. deamination, decarboxylation, oxidation, etc.) with the food 74 matrix, being reduced its bioactivity and/or bioavailability 23 . 75

This manuscript is reviewing the recent advances on the generation of bioactive peptides in fermented and ripened foods, the enzymatic mechanisms involved in the hydrolysis of food proteins, including the types of enzymes and mechanisms of action involved, the strategies followed for the isolation and identification of such peptides through advanced proteomic tools, the assessment of bioactivity and physiological effects, and specific applications.

82

83 ROUTES FOR ENZYMATIC HYDROLYSIS OF FOOD PROTEINS

Food proteins are subjected to hydrolysis during processing. Such proteolysis is more
extensive when the food is fermented and/or ripened. The enzymes involved are either

intrinsically endogenous in the food (i.e. muscle enzymes in meat or fish), or microbial 86 87 peptidases present in the microorganisms responsible for food fermentation (i.e. lactic acid bacteria peptidases in fermented sausages). The enzymes responsible for 88 proteolysis are endopeptidases, also known as proteinases, and exopeptidases. The 89 90 mechanism of action consists of proteins break down by endopeptidases into polypeptides that constitute the substrates for the action of exopeptidases. In this way, 91 92 polypeptides are further hydrolysed generating smaller peptides and free amino acids¹³. Depending on the length and sequence of residues, some of the released peptides may 93 be bioactive²⁴. Peptidomics has become a very useful tool for obtaining the peptide 94 profiles of hydrolyzed foods and helpful for their identification and quantification²⁵. 95 There are many types of exopeptidases depending on the action on N- or C-terminal, its 96 specificity and generated product of reaction. So, tripeptidylpeptidases (TPP) release 97 tripeptides and dipeptidylpeptidases (DPP) release dipeptides from the N-terminal. DPP 98 II and IV cleave preferently Gly-Pro and Arg-Pro, DPP III prefer dipeptides Ala-Arg 99 and Arg-Arg while DPP I prefer Ala-Arg and Gly-Arg²⁶. X-prolyl dipeptidyl peptidase 100 (PepX) releases dipeptides X-proline in the N terminal. The generated tripeptides can be 101 102 further hydrolysed by tripeptidases into a dipeptide and a single amino acid. Further, 103 dipeptides can also be hydrolysed by dipeptidases into the two single constituent amino 104 acids²⁷.

105 Free amino acids are also released from the N-terminal by several types of

aminopeptidases (Pep N, Pep A, Pep C, Pep P among others). Amino acids can also be
released from the C-terminal by carboxypeptidases A and B, named so because its

108 activity is optimal at acid or basic pH, respectively. The consequence for the action of

109 these enzymes is the generation of peptides with reduced length. A scheme of mode of

action for different types of peptidases on a fragment of myosin heavy chain is shown in

Figure 1. For such particular case, it can be observed that endopeptidases act on the internal linkage Phe-Pro. Aminopeptidases would release Thr from the N-terminal that would be followed by the release of the dipeptide Val-Lys by a dipeptidylpeptidase. On the C-terminal, carboxypeptidase would release Asp and then Glu, followed by dipeptides Lys-Ile and Phe-Asp released by peptidyldipeptidase and Lys by carboxypeptidase²⁸.

117 The generation of bioactive peptides depends on the proteolysis phenomena but there 118 are many variables affecting the enzyme action such as the food ingredients used, the 119 type of enzymes and their activity, the microorganisms used for fermentation, and the 120 applied processing conditions²⁹. Preliminary information on the profile of expected 121 small peptides may be obtained by using model systems representing the food. For 122 instance, proteolysis was studied by using model fermented sausages inoculated with 123 *Lactobacillus curvatus* CRL705 and *Staphylococcus vitulinus* GV318³⁰.

124

125 Hydrolysis in foods by endogenous and microbial peptidases and mode of action

The hydrolysis of proteins in foods may be carried out by endogenous or microbial peptidases (see Figure 2). The released peptides may be bioactive but they must be resistant to gastrointestinal digestion and further hydrolysis by brush border peptidases in the intestine membrane in order to exert its physiological effect in humans³¹.

- 130 Endogenous peptidases like muscle peptidases are able to release small peptides during
- the ripening and/or drying of meat products. So, DPP I and II that are active at pH 5.5-
- 132 6.5, near the pH found in most meat products, can release dipeptides Ala-Gln, Arg-Gly,
- 133 Asn-Pro, lle-Leu, Ala-Gly, Ser-Gly, Ser-Gln, Pro-Ala among other from the N-
- terminal³². TPP I, also active at pH 5.5-6.5, releases specific tripeptides like Ile-Ile-Pro,

135	Arg-Gly-Ala, Gly-Asn-Pro, Gly-Ala-Gly, Gly-Pro-Gly from the N-terminal ³³ . Pro, Lys
136	and Ala are also released by aminopeptidases ³⁴ . Several antioxidant peptides were
137	reported in different types of dry-cured ham (see Table 1). Some of them are Asp-Leu-
138	Glu-Glu in Xuanwei ham ³⁶ , Gly-Lys-Phe-Asn-Val, Phe-Leu-Lys-Met-Asn, Gly-Lys-
139	Phe-Asn-Val and Leu-Pro-Gly-Gly-Gly-His-Gly-Asp-Leu in Jinhua ham ³⁵ and Ala-Glu-
140	Glu-Glu-Tyr-Pro-Asp-Leu ³⁸ , Ser-Asn-Ala-Ala-Cys ⁴² in Spanish ham and Met-Trp-Thr-
141	Asp and Phe-Trp-Ile-Ile-Glu in mutton ham ³⁹ . ACE inhibitory peptides Leu-Gly-Leu,
142	Gly-Val-Val-Pro-Leu and Ser-Phe-Val-Thr-Thr were isolated from Parma ham ³⁷ and
143	Ala-Ala-Ala-Thr-Pro ⁴³ and Thr-Lys-Tyr-Arg-Val-Pro from Spanish ham ⁴² were also
144	reported. Peptides Ala-Ala-Ala-Ala-Gly, Ala-Leu-Gly-Gly-Ala and Leu-Val-Ser-Gly-
145	Met showed inhibitory activity against DPP IV and were also isolated from Spanish
146	ham ⁵⁸ .

Most fermented foods today use microbial starters that improve safety and allow for a 147 148 better standard quality. Such microorganisms have complex enzyme system exerting different types of activities able to hydrolyse proteins, carbohydrates and lipids⁵⁹. 149 Peptidases from lactic acid bacteria (LAB), yeasts or molds may be helpful in 150 generating bioactive peptides, especially in short term processed foods⁶⁰. LAB 151 152 constitutes a large group of microorganisms typically used for food fermentation and characterized by having a high proteolytic activity as a consequence of their 153 154 extracellular cell wall serine proteinase and the content of diverse intracellular peptidases with a wide range of specificity. This explains that different peptides patterns 155 156 are obtained for a particular food depending on the LAB strain used for fermentation. Yeasts are also used in food fermentation and are able to hydrolyze proteins⁶¹. 157 Proteinases A and D, and prolyl and arginyl aminopeptidases were reported in 158

Debaryomices hansenii⁶¹ and PepX, leucine aminopeptidase, and DPP IV and V in
 Aspergillus oryzae and DPP V in Aspergillus fumigatus^{62,63}.

Aminopeptidase activity is usually present in LAB so that its activity is particularly high 161 in Leuconostoc mesenteroides and L. curvatus and variable between strains of L. 162 plantarum, L. pentosus and Weissella cibaria⁶⁴. Ala, Lys, Pro and Leu have been 163 reported to be released from the N-terminal by strains of L. plantarum and L. brevis⁶⁵. 164 L. casei subsp casei is also able to release Ala, Arg, Lys, Met and Leu⁶⁶⁻⁶⁸. L. sakei 165 releases Ala and Leu and L. plantarum releases Leu^{67,68}. In general, aminopeptidases are 166 partially inhibited by salt and therefore, their activity modulated in such fermented and 167 ripened foods where salt is typically used⁶⁹. There is a wide variety of intracellular 168 aminopeptidases present in LAB as reported in the literature. So, aminopeptidase N, 169 PepN is present in many bacteria like L. Helveticus, L. lactis and L. sakei, to release 170 preferently Arg and Pro from the N-terminal⁷⁰. Glutamyl (aspartyl) specific 171 172 aminopeptidase PepA, that releases Glu and Asp from the N-terminal, is found in Streptococcus cremoris, Streptococcus thermophilus, L. lactis sp. and L. delbrueckii 173 ssp. *Lactis*⁷¹. Aminopeptidase PepC is a thiol peptidase that hydrolyzes Ala, Leu or Lys 174 175 from the N-terminal and has been reported in *Streptococcus thermophilus* and *L. lactis* ssp. *Cremoris*⁷². Proline aminopeptidase PepP that releases Arg, Met, Lys and Tyr at the 176 N terminal is found in *L. lactis* ssp. *Lactis*⁷³. 177

- 178 The activity of carboxypeptidases to release amino acids from the C terminal has been
- 179 reported to be very low or negligible in cell-free extracts of several LAB^{65,68} and low for
- 180 the release of Phe and Arg by *L. paracasei* subsp $paracasei^{66,67}$. On the contrary,
- 181 carboxypeptidase activity in muscle foods is higher and, in fact, several amino acids like
- 182 Phe, Tyr, Trp, Met, Ile, Leu, Val and Pro have been reported to be released from the C-
- terminal by carboxypeptidases A and B during the processing of dry-cured ham 33 .

184 X-prolyl dipeptidyl peptidase PepX has been reported in *Leuconostoc mesenteroides*, L. *curvatus* and *L. sakei*^{64,70,74}. Several tripeptides X-Pro-Pro were found in casein 185 hydrolysates with L. helveticus⁷⁰. Tripeptidase activity was reported for L. sakei and 186 also by Pep N in LAB^{59,75}. Generation of dipeptides through DPP action has been 187 reported for L. paracasei where dipeptides like Ala-Phe, Pro-Leu, Lys-Leu, Leu-Gly 188 and Lys-Phe were reported in fermented foods⁶⁶. DPP activity has also been reported in 189 190 Leuconostoc mesenteroides, releasing dipeptides Arg-Pro and Gly-Phe and L. paracasei subsp *casei* also releasing Gly-Pro⁶⁷. It must be taken into account that the released 191 dipeptides might be further hydrolysed into their individual amino acids by microbial 192 193 dipeptidases activity. In fact, dipeptides can cross the membrane thanks to cellular transport systems and be further hydrolyzed by dipeptidases in L. sakei⁷⁵. In such cases, 194 195 the dipeptide is no longer bioactive and therefore no health benefits may be expected. 196 Dipeptidase activity has been reported in microoorganisms like L. plantarum. L. brevis, L. helveticus, L. casei sp casei and L. paracasei. Their dipeptidases are able to 197 198 hydrolyse preferently dipeptides Leu-Leu, Phe-Ala, but also dipeptides Ala-Phe, Tyr-199 Leu and Lys-Leu, at lower rate. However, some dipeptides like Ala-Ala or Leu-Gly are resistant to hydrolysis⁶⁸. Dipeptidase activity is also present in *L. brevis* that hydrolyzes 200 201 dipeptides Leu-Leu, Tyr-Leu, Ala-Ala, Leu-Gly, Ala-Phe, Lys-Leu and Phe-Ala. Lower 202 dipeptidase activity is also present in L. casei sp casei^{63,64,68}. Oligopeptidase PepO is a metallopeptidase in *Streptococcus thermophilus* that is specific for peptides with 203 arginine and methionine^{76,77}. 204

Furthermore, the net amount of bioactive peptides is a balance that does not only
depend on peptides generation through hydrolysis but also on cells consumption. In
LAB, the transportation of oligopeptides through the cell membrane consists of 5
proteins (OppA, B, C, D and F). This system, typical of lactobacilli and lactococci,

209 allows the transport of peptide chains of up to 12 amino acids78. Streptococcus 210 thermophilus has lower activity of peptidases but this is compensated by more efficient transport of peptide chains of up to 23 amino acids integrated in the Ami system⁷⁷. 211 Lactobacillus helveticus has been reported to hydrolyze K-casein and releases short 212 peptides with a variety of bioactivities⁷⁹. However, β -casein and α_{s1} -casein found to be 213 214 more resistant to hydrolysis probably due to the presence of phosphoserine in their respective structures^{80,81} even though several peptides were reported to be generated 215 from such α_{s1} -case in in Brazilian Canastra artisanal cheese⁴⁵ and hard cow milk 216 cheese⁴⁶. Resistance to proteolysis by *L. acidophilus* LA-5 was reported for α_{s2} -casein⁸². 217 Other authors reported that the abundance of Pro, Leu and Val in β -casein, that are 218 219 preferred by aminopeptidases and carboxypeptidases, was the probable reason for better hydrolysis than other types of caseins²⁷. In fact, hexapeptides Ala-Val-Pro-Tyr-Pro-Gln 220 and Glu-Ala-Met-Ala-Pro-Lys with antioxidant activity were released from β-casein 221 222 after simulated gastrointestinal digestion of Stracchino cheese that is produced in Northern Italy²² and longer ACE inhibitory peptides in Brazilian Prato cheese⁴⁷. A 223 significant correlation between the release of ACE inhibitory peptides Val-Leu-Ser-224 Arg-Tyr-Pro and Leu-Arg-Phe-Phe and aminopeptidase and carboxypeptidase activity 225 was reported in milk fermented with the yeast Kluyveromyces marxianus Z17⁵³. 226 227 A recent research with *L. helveticus* LH-2 and *L. acidophilus* La-5 growing in whey 228 protein isolate medium generated peptides with antivirulence effect against Salmonella enterica subsp. enterica serovar Typhimurium after growth. A large number of 229 230 bioactive peptides, especially with ACE inhibitory activity were also reported to be generated for both strains⁸³. The released peptides remained and accumulated in the 231 232 media because they were not transported into the cells and thus were not further

hydrolysed due to their composition and low affinity to the oligopeptide-binding protein
(OppA) of both strains⁸³.

When using staphilococci for meat fermentation, they have been reported to exert 235 proteolytic activity preferently on myofibrillar meat proteins and peptidases action 236 might also be expected⁸⁴. Dry-fermented sausages with *Lactobacillus pentosus* and 237 238 Staphylococcus carnosus containing added sodium caseinate as ingredient were reported to generate large amounts of bioactive peptides²⁷. Both microorganisms, L. 239 240 pentosus and S. carnosus are able to hydrolyze casein extracellularly thanks to the proteinase attached to the cell wall. The generated oligopeptides can be transported into 241 the cell for further hydrolysis by intracellular peptidases into smaller peptides and free 242 amino acids⁸⁵. 243

244 Hydrolysis of food proteins with commercial peptidases.

245 Bioactive peptides are generally produced through the enzymatic hydrolysis of food 246 proteins. Depending on the type of bioactivity searched, the protein source and degree of hydrolysis will be fixed⁸⁶. Food proteins may be isolated and hydrolyzed in reactors 247 248 using commercial peptidases or microorganisms with proteolytic activity in order to produce large amounts of bioactive peptides at industrial scale (see Figure 2). Typical 249 250 commercial enzymes used for proteins hydrolysis are derived from cheap sources like 251 microorganisms. This is the case of Alcalase from Bacillus licheniformis, Protamex from Bacillus sp., Flavorzyme from Aspergillus oryzae, Neutrase from Bacillus subtilis 252 253 or Bacillus amyloliquefaciens, Bioprase from Bacillus sp., Thermolysin from Bacillus stearothermophilus, Prolidase from Lactobacillus casei, and Corolase 7089 from 254 255 Bacillus subtilis, among other. Other enzymes may be obtained from animal and plant 256 but the costs tend to be much higher. This is the case of trypsin from bovine or pig

257	pancreas, and bromelain from pineapple stem ¹³ . These enzymes have, in general, a
258	broad specificity because they usually contain endopeptidases that can be combined
259	with one or more exopeptidases ⁸⁷ . An exception is Prolidase which is a dipeptidase ⁸⁸ .
260	Examples of food protein hydrolyzates, the enzymes and hydrolysis conditions used, the
261	main obtained peptides and major assayed bioactivity are reported in Table 2. As can be
262	observed in the table, most of the sequences of bioactive peptides contain less 10 amino
263	acids residues. Longer peptides like those generated from the hydrolysis of spent hens ⁹⁹ ,
264	duck ¹⁰⁰ , goat milk ¹⁰³ or Spirulina platensis algae ⁹² may be subject of further hydrolysis
265	during gastrointestinal digestion. In general, the most usual recovered bioactivities are
266	ACE inhibitory and antioxidant activity. In some cases, peptides with anti-inflammatory
267	and antidiabetic activities are also obtained. Peptide Asp-Gly-Val-Val-Tyr-Tyr with
268	outstanding ACE inhibitory activity, IC ₅₀ =2 μ M, was obtained through the fermentation
269	of tomato seeds with <i>Bacillus subtilis</i> ¹⁰⁶ .
270	Defatted salmon backbones were hydrolysed with commercial enzymes obtaining
271	protein hydrolysates with bioactivity. Hydrolysis with trypsin gave the highest ACE

272 inhibitory, bromelain and papain gave the best cellular glucose transporter

273 (GLUT/SGLT) inhibitory activity and the highest antioxidant activity was obtained

hydrolyzing with protamex 107 .

275

276 IDENTIFICATION OF BIOACTIVE PEPTIDES

277 Traditionally, proteomics are used for the identification of proteins through the previous

analysis of the peptides generated from their controlled hydrolysis using trypsin

enzyme. This experimental methodology is called "bottom-up" approach and uses

280 peptide mass fingerprint (PMF) for the final identification of the protein of origin.

However, the generation of bioactive peptides frequently occurs during the processing
of foods or during gastrointestinal digestion, where the action of endogenous, microbial,
or gastrointestinal enzymes results on unspecific peptide sequences that cannot be
trypsin-digested due to their small size. Thus, the classic PMF approach, oftenly used in
proteomics, is not useful, and it is thus necessary to adapt strategies used for the
identification of proteins such as tandem mass spectrometry (MS) and modern
bioinformatics tools^{108,109}.

In this sense, peptidomics would permit the identification of the peptides generated during different food processes or controlled hydrolysis although the identification of naturally generated peptides is very difficult because: (i) the analysis of small bioactive peptides is near the limits of standard MS techniques, and (ii) longer peptides face up the difficulty to control hydrolysis. The major challenge is the complexity of the numerous peptides released and furthermore the associated difficulty due to the unspecific cleavage sites in proteins²⁵.

The identification of bioactive peptides from complex food matrices has been 295 296 traditionally done using empirical approaches including (i) the release of bioactive 297 sequences from the parent protein; (ii) a preliminary separation to screen the bioactivity using in vitro assays; (iii) a secondary purification and separation of the fractions 298 299 showing the best bioactivity using high-resolution techniques; (iv) additional in vitro 300 assays to determine the most active fractions; (v) identification of peptides included in 301 those active fractions using MS in tandem; and (vi) the synthesis of the identified sequences in order to confirm their *in vitro* and *in vivo* bioactivity¹⁰⁸. A scheme of the 302 303 traditional empirical procedure followed for bioactive peptides is shown in Figure 3.

The development of this approach is very challenging as there are multiple factors to 304 305 consider that could finally affect the generation of the bioactive peptides and it results very complicated when the objective is the generation of controlled sequences showing 306 307 certain activity of interest. In this case, the use of in silico approaches considering different bioinformatics tools for computer simulation results very useful and permits to 308 choose/discard between different experimental procedures in a reasonable amount of 309 310 time and low economical cost. In silico procedures will permit to select best protein of origin and proteolytic enzymes to obtain certain peptide sequences as well as predict 311 312 their bioactivity, structure, and physical-chemical properties. After the simulation 313 studies, the confirmation of in silico results is done through a traditional empirical approach¹¹⁰. **Figure 4** shows the main steps followed for the identification of bioactive 314 peptides through computational prediction. 315

316

317 MAJOR BIOACTIVITIES OF RELEASED PEPTIDES

318 The health benefits of fermented foods like antioxidant, antiinflammatory,

antihypertensive, antidiabetic, antimicrobial, etc., are most times associated to the

320 generated bioactive peptides as reported in the literature¹¹¹. Tripeptides Val-Pro-Pro and

321 Ile-Pro-Pro generated in fermented milk are well known for their high ACE inhibitory

activity. A meta-analysis of the relevant literature on the effect of both tripeptides on

blood pressure in humans was recently performed⁵⁰ revealing that there was a

324 significant but low hypotensive effect on blood pressure when those tripeptides were

- included in the diet. In fact, the observed effect was much lower than many
- 326 antihypertensive drugs 50 .

The bioactivity of released peptides is always tested *in vitro* using different assays 327 328 depending on the expected activity. However, in order to prove and confirm the 329 bioactivity of the peptides, subsequent in vivo tests are done using cellular models, rat models, or even clinical trials with humans. In this regard, in vitro results do not 330 guarantee a real physiological effect. Quite oftenly, peptides with a high bioactivity in 331 vitro are inactive after oral administration¹¹². The reason is that, once ingested, peptides 332 333 can be hydrolyzed by salivary, gastric and intestinal enzymes so that those peptides with longer sequences may be further hydrolyzed into smaller size peptides and therefore, 334 loose their bioactivity. Small bioactive peptides can be hydrolyzed in the intestine by 335 336 peptidases of the microbial flora or by brush border peptidases in the epithelium of the 337 intestinal membrane. Finally, the released peptides have to cross the intestinal membrane and reach the bloodstream in order to exert its physiological benefit (see 338 339 Figure 2).

The bioactivity of the generated peptides also depends on the amino acid composition of the sequence and its size, but peptide structure and hydrophobicity also play an important role influencing the accessibility of the peptides to the active sites of the enzymes¹¹³.

344 4.1 ACE-inhibitory peptides

The ACE-inhibitory activity is the most extensively studied bioactivity in relation to food-derived peptides. Main interest is due to the ability of ACE-inhibitory peptides to prevent hypertension by decreasing the blood pressure. Its mechanism of action is based on the inhibition of ACE enzyme that converts the inactive decapeptide angiotensin-I into the potent vasoconstricting octapeptide angiotensin-II, whereas also inactivates the vasodilator bradykinin, resulting in an increase in blood pressure. Thus, by inhibiting

the catalytic action of ACE, the hypertension can be regulated by reducing the bloodpressure in the body.

Currently, thousands of potential ACE-inhibitory peptides have been isolated and 353 identified from food products after fermentation or curing processes such as dry-cured 354 355 ham, cheese, yogurt, and other fermented products, as well as from the controlled digestion using commercial enzymes such as trypsin, Corolase, Thermolysin, Alcalase, 356 as well as controlled microbial fermentation, in food products such as fish, algae or 357 358 meat. In this respect, **Tables 1 and 2** show examples of bioactive peptides that have been described in the literature with respective calculated IC₅₀ values. However, the 359 360 identification of ACE -inhibitory peptides is of high interest and other interesting sequences have been described in mushroom¹¹⁴, and cereals such as wheat, quinoa and 361 corn¹¹⁵⁻¹¹⁷. 362

363 **4.2 Antioxidant peptides**

Antioxidant peptides are the second most studied group of food-derived peptides with biological activity. These peptides can act as antioxidants in foods, naturally protecting against oxidation, avoiding sensory and nutritional defects that are frequently associated with oxidative patterns. On the other hand, antioxidant peptides can also exert their function after ingestion in the human body, decreasing the negative effects of reactive oxygen species (ROS) and the risk for development of some degenerative diseases such as cardiovascular diseases or certain types of cancer¹¹⁸.

The mechanism of action for antioxidant peptides can be very variable, depending on the transference mechanism. Certain mechanisms like ORAC and TRAP are based on hydrogen atom transfer mechanism while other such as DPPH and ABTS are based on electron transfer¹¹⁹. The antioxidant activity strongly depends on their composition in

amino acids. So, peptides containing His, Tyr, Met, Lys and Trp are more able to exert 375 376 antioxidant activity.

Carnosine and anserine are the two most abundant natural antioxidant peptides in foods, 377 as they are very common in fish and meat products. However, many different peptides 378 379 showing antioxidant activity have been described to be generated during the processing of some products such as dry-cured ham^{38,42,120}, mutton ham⁴⁹, cheese⁴⁶, yogurt⁴⁸, or 380 fermented fish⁵⁶. Also the use of commercial enzymes alone or in combination has 381 382 resulted in extensive hydrolysis generating antioxidant peptides in algae, fish, legumes

or meat as shown in Tables 1 and 2. 383

396

4.3 Anti-obesity and antidiabetic peptides 384

Obesity is the most important risk factor for type-2 diabetes, involves the accumulation 385 of fat in the body, and it is associated to numerous health problems also related to 386 387 cardiovascular diseases. Synthetic drugs are frequently used as anti-obesity substances with the disadvantage of showing multiple negative side effects. For this reason, the 388 389 search for natural peptides derived from food sources is of high interest. Apolipoprotein A-I, melanocortin-4 receptor-specific agonist, GLP-1 dual and triple agonists, 390 neuropeptides and prolactin-releasing peptide mimetics are the most studied for anti-391 obesity properties¹²¹. 392

393 On the other hand, diabetes mellitus is characterised by insufficient insulin production 394 or insulin resistance, and the potential peptides that participate in the control of glucose level in carbohydrates pathway are α -amylase and α -glucosidase inhibitors, and 395 dipeptidyl peptidase-IV inhibitors¹²².

The most studied food-related peptides showing anti-obesity properties have been 397

soybean peptides due to their body fat-decreasing characteristics^{123,124}. On the other 398

hand, milk has been described to suppress appetite due to its content in satiating

400 peptides, preventing weight gain and obesity. In this sense, camel milk peptides

401 displayed novel antidiabetic and anti-obesity activity ^{125,126}. Also peptides derived from

402 the controlled digestion of algae have been described as antidiabetic (α -amylase

403 inhibitory) and anti-obesity 91,92,127 .

404 **4.4 Anti-inflammatory activity**

The inflammation is the response of the body to local injury or infection, where it is necessary to fight infection and repair the tissue. However, excessive and uncontrolled inflammation is often associated with chronic diseases ^{99,128,129}.

408 Anti-inflammatory peptides might participate in multiple physiological systems by

409 modulating or regulating the inflammatory response. However, as food-derived

410 bioactive peptides are ingested, the regulation of gastrointestinal system has been the

411 most studied¹³⁰. The oxidative stress is often associated with inflammatory processes.

412 However, there are other complex mechanisms related to the renin-angiotensin-

aldosterone system (RAAS), proinflammatory cytokines, proinflammatory signalling

414 kinases, and integrin-dependent signalling⁵¹. Anti-inflammatory peptides from milk,

415 egg, fish and soy have been reported 129,131,132 .

416 **4.5 Antimicrobial activity**

417 Certain peptides are effective against certain bacteria like *Staphylococcus aureus* and
418 *Escherichia coli* and yeasts. They can exert such antimicrobial activity by defending the
419 organism against pathogens as well as in food by preventing its contamination. They

420 can interact with the bacterial cells by nonreceptor-mediated or receptor-mediated

421 mechanisms and invader cells by disturbing the membrane integrity 133,134 .

422	Antimicrobial peptides are generated during the processing of foods such as
423	fermentation, and during controlled hydrolysis using commercial enzymes. They have
424	been isolated from fish and marine products ^{135,136} , milk and milk products ^{137,138} , meat
425	products ⁴⁰ , legumes ¹³⁹ and eggs ¹⁴⁰ .
426	In summary, bioactive peptides can be generated either endogenously in food or through
427	enzymatic hydrolysis of extracted food proteins. Depending on the particular food
428	protein, a pool of peptides may be obtained. Those peptides with smaller size may be
429	more bioaccessible and exhibit bioactivity that, depending on the sequence, can be
430	either ACE inhibitory, antioxidant, antithrombotic, hypoglycemic, hypocholesterolemic,
431	or antimicrobial among others. In any case, bioactive peptides must be bioavailable to
432	exert its physiological action in the way that they must be resistant to gastrointestinal
433	digestion and be able to be absorbed through the intestinal barrier and reach the
434	bloodstream.

436 ABBREVIATIONS USED

437 ABTS: 2, 2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging

438 assay; ACE: Angiotensin converting enzyme; β -CBA: β -carotene bleaching activity;

439 Ch: Fe²⁺-chelating activity; DPP: dipeptidylpeptidases; DPPH: 2, 2-diphenyl-1-picryl-

440 hydrazyl radical scavenging activity; LAB: Lactic acid bacteria; MS: mass

spectrometry; ORAC: oxygen radical absorbance capacity; PMF: peptide mass

442 fingerprint; RAAS: renin-angiotensin-aldosterone system; ROS: Radical oxygen

species; RP: reducing power; TRAP: total radical trapping antioxidant parameter;

444 DPPH: radical scavenging activity; TPP: tripeptidylpeptidases.

446	Aspargine; Asp: Aspartic Acid; Cys: Cysteine; Gln: Glutamine; Glu: Glutamic acid;
447	Gly: Glycine; His: Histidine; Ile: Isoleucine; Leu: Leucine; Lys: Lysine; Met:
448	Methionine; Phe: Phenyl alanine; Pro: Proline; Ser: Serine; Thr: Threonine; Trp:
449	Tryptophan; Tyr: Tyrosine; Val: Valine.
450	
451	ACKNOWLEDGEMENTS
452	Author Toldrá is grateful for the 2019 Award for Advancement of Application of
453	Agricultural and Food Chemistry received from the Agricultural and Food Chemistry
454	Division (AGFD) at the San Diego 258th ACS Conference meeting.
455	
456	AUTHOR INFORMATION
457	Corresponding author:
458	*Fidel Toldrá. Tel: +34963900022 ext.2112. Fax: +34963636301. E-mail:
459	ftoldra@iata.csic.es
460	ORCID:
461	Fidel Toldrá: 0000-0002-9843-0193
462	Conflicts of interest:
463	All authors of this manuscript declare that they do not have any conflict of interest. All
464	authors declare no competing financial interest.
465	
	2

Three letter abbreviations for amino acids are used. Ala: Alanine; Arg: Arginine; Asn:

445

466	Notes:
467	Authors MG and MR contributed to the literature search, extraction of relevant data and
468	tables compilation and figures. Authors LM and FT contributed to writing the
469	manuscript and discuss the results available in the literature. In addition, author FT
470	acted as corresponding author preparing the final version and files for submission to the
471	journal.
472	
473	FUNDING SOURCES:
474	The research leading to these results received funding from Grant GL2017-89381-R
475	from the Spanish Ministry of Economy, Industry and Competitivity and FEDER funds.
476	Ramón y Cajal postdoctoral contract to LM is also acknowledged.
477	
478	
479	REFERENCES
480	
481	1. Corrêa, A. P. F.; Daroit, D. J.; Fontoura, R.; Meira, S. M. M.; Segalin, J.;
482	Brandelli, A. Hydrolysates of sheep cheese whey as a source of bioactive peptides
483	with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides,
484	2014 , <i>6</i> , 48-55.
485	2. Mohanty, D.P.; Mohapatra, S.; Misra, S.; Sahu, P. S. Milk derived bioactive
486	peptides and their impact on human health – A review. Saudi J. Biol. Sci. 2016, 23,
487	577-583.

488	3. Mora, L.; Escudero, E.; Arihara, K.; Toldrá, F. Antihypertensive effect of
489	peptides naturally generated during Iberian dry-cured ham processing. Food Res.
490	Int. 2015, 78, 71-78.
491	4. Santiago-López, L.; Aguilar-Toalá, J.E.; Hernández-Mendoza, I.A.; Vallejo-
492	Cordoba, B.; Liceaga, A.M.; González-Córdova, A.F. Show more bioactive
493	compounds produced during cheese ripening and health effects associated with aged
494	cheese consumption. J Dairy Sci. 2018, 101, 3742-3757.
495	5. Gallego, M.; Mora, L.; Escudero, E.; Toldrá, F. Bioactive peptides and free amino
496	acids profiles in different types of European dry-fermented sausages. Int. J. Food
497	Microbiol. 2018 , 276, 71-78.
498	6. Jensen, I-J.; Mahre, H.K. Preclinical and Clinical Studies on Antioxidative,
499	Antihypertensive and Cardioprotective Effect of Marine Proteins and Peptides-A
500	Review. Mar. Drugs, 2016, 14, 211.
501	7. Nongonierma, A.B.; FitzGerald, R.J. Strategies for the discovery, identification
502	and validation of milk protein-derived bioactive peptides. Trends Food Sci.
503	Technol., 2016 , <i>50</i> , 26-43.
504	8. Schlienger, JL.; Paillard, F.; Lecerf, J.M.; Romon, M.; Bonhomme, C.; Schmit,
505	B.; Donazzolo, Y.; Defoort, C.; Mallmann, C.; Ruyet, P.L.; Bresson. J.L. Effect on
506	blood lipids of two daily servings of Camembert cheese. An intervention trial in
507	mildly hypercholesterolemic subjects. Int. J. Food Sci. Nutr. 2014, 65, 1013-1018.
508	9. Nilsen, R.; Pripp, A.H.; Høstmark, A.T.; Haug, A.; Skeie, S. Effect of a cheese
509	rich in angiotensin-converting enzyme-inhibiting peptides (Gamalost) and a Gouda-
510	type cheese on blood pressure: results of a randomized trial. Food Nutr. Res. 2016,
511	60, 32017.

512	10. Montoro-García, S.; Zafrilla- Rentero, M.P.; Celdrán-de Haro, F.M.; Piñero-de
513	Armas, J.J.; Toldrá, F.; Tejada-Portero, L.; Abellán-Alemán, J. Effects of Dry-Cured
514	Ham Peptides on Cardiovascular Risk Factors: a randomized controlled trial. J.
515	Funct. Foods, 2017, 38, 160-167.
516	11. Martínez-Sánchez, S.M.; Minguela, A.; Prieto-Merino, D.; Zafrilla-Rentero,
517	M.P.; Abellán-Alemán, J.; Montoro-García, S. The Effect of Regular Intake of Dry-
518	Cured Ham Rich in Bioactive Peptides on Inflammation, Platelet and Monocyte
519	Activation Markers in Humans. Nutrients. 2017, 23, e321.
520	12. Ryder, K.; Bekhit, A. E. D.; McConnell, M.; Carne, A. Towards generation of
521	bioactive peptides from meat industry waste proteins: Generation of peptides using
522	commercial microbial proteases, Food Chem. 2016, 208, 42-50.
523	13. Toldrá, F.; Reig, M.; Aristoy, M.C.; Mora, L. Generation of bioactive peptides
524	during food processing. Food Chem. 2018, 267, 395-404.
525	14. Oseguera-Toledo, M.E.; González de Mejía, E.; Reynoso-Camacho, R.;
526	Cardador-Martínez, A.; Amaya-Llano, S.L. Proteins and bioactive peptides:
527	Mechanisms of action on diabetes management. Nutrafoods, 2014, 13, 147-157.
528	15. Lassoued, I.; Mora, L.; Nasri, R.; Jridi, M.; Toldrá, F.; Aristoy, M.C.; Barkia,
529	A.; Nasri, M. Characterization and comparative assessment of antioxidant and ACE
530	inhibitory activities of thornback ray gelatin hydrolysates. J. Funct. Foods 2015, 13,
531	225–238.
532	16. Abdelhedi, O.;, Jridi, M.; Jemil, I.; Mora, L.; Toldrá, F.; Aristoy, M.C.; Boualga,
533	A.; Nasri, M.; Nasri, M. Combined biocatalytic conversion of smooth hound viscera:

534	Protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and
535	antibacterial activities. Food Res. Int. 2016, 86, 9-23.
536	17. Toldrá, F.; Mora, L.; Reig, M. New insights into meat by-products utilization.
537	Meat Sci. 2016, 120, 54-59.
538	18. Ji, N.; Sun, C. X.; Zhao, Y. X.; Xiong, L.; Sun, Q. J. Purification and
539	identification of antioxidant peptides from peanut protein isolate hydrolysates using
540	UHR-Q-TOF mass spectrometer. Food Chem., 2014, 161, 148–154.
541	19. Tanzadehpanah, H.; Asoodeh, A.; Chamani, J. An antioxidant peptide derived
542	from Ostrich (Struthio camelus) egg white protein hydrolysates. Food Res. Int.
543	2012 , <i>49</i> , 105–111.
544	20. De Oliveira, C.F., Corrêa, A.P.; Coletto, D.; Daroit, D.J.; Cladera-Olivera, F.;
545	Brandelli, A. Soy protein hydrolysis with microbial protease to improve antioxidant
546	and functional properties. J Food Sci. Technol. 2015, 52, 2668-78.
547	21. Capriotti, A. L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Ventura, S.; Chiozzi, R.
548	Z.; Laganà, A. Identification of potential bioactive peptides generated by simulated
549	gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Comp.
550	Anal. 2015, 44, 205-213.
551	22. Pepe, G.; Sommella, E.; Ventre, G.; Scala, M. C.; Adesso, S.; Ostacolo, C.;
552	Marzocco, S.; Novellino, E.; Campiglia, P. Antioxidant peptides released from
553	gastrointestinal digestion of "Stracchino" soft cheese: Characterization, in vitro
554	intestinal protection and bioavailability. J. Funct. Foods 2016, 26, 494-505.
555	23. Kamdem, J.P.; Tsopmo, A. Reactivity of peptides within the food matrix. J.
556	Food Biochem. 2019, 43, e12489.

557	24. Gallego, M.; Mora, L.; Toldrá, F. Health relevance of antihypertensive peptides
558	in foods. Curr. Opin. Food Sci. 2018, 19, 8-14.
559	25. Mora, L.; Gallego, M.; Reig, M.; Toldrá, F. Challenges in the quantitation of
560	naturally generated bioactive peptides in processed meats. Trends Food Sci.
561	Technol. 2017, 69, 306-314.
562	26. Sentandreu, M.A.; Toldrá, F. Oligopeptides hydrolysed by muscle
563	dipeptidylpeptidases can generate angiotensin I converting enzyme inhibitory
564	dipeptides. Eur. Food Res. Technol. 2007, 224, 785-790.
565	27. Mora, L.; Gallego, M.; Aristoy, M-C.; Toldrá, F. A peptidomic approach to
566	study the contribution of added casein proteins to the peptides profile in Spanish
567	dry-fermented sausages. Int. J. Food Microbiol. 2015, 212, 41-48.
568	28. Mora, L.; Gallego, M.; Toldrá, F. Degradation of myosin heavy chain and its
569	potential as a source of natural bioactive peptides in dry-cured ham. Food Biosci.
570	2019 , <i>30</i> , 100416.
571	29. Mora, L.; Fraser, P.D.; Toldrá, F. Proteolysis follow-up in dry-cured meat
572	products through proteomics approaches. Food Res. Int. 2013, 54, 1292-1297.
573	30. López, C.M.; Bru, E.; Vignolo, G.; Fadda, S.G. Identification of small peptides
574	arising from hydrolysis of meat proteins in dry fermented sausages. Meat Sci. 2015,
575	104, 20-29.
576	31. Gallego, M.; Grootaert, C.; Mora, L.; Aristoy, MC.; Van Camp, J.; Toldrá, F.
577	Transepithelial transport of dry-cured ham peptides with ACE inhibitory activity
578	through a Caco-2 cell monolayer. J. Func. Foods, 2016, 21, 388-395.

579	32. Mora, L.; Sentandreu, M.A.; Toldrá, F. Intense degradation of myosin light
580	chain isoforms after dry-cured ham processing. J. Agric. Food Chem. 2011, 59,
581	3884-3892.
582	33. Mora, L.; Gallego, M.; Escudero, E.; Reig, M.; Aristoy, M-C.; Toldrá, F. Small
583	peptides hydrolysis in dry-cured meats. Int. J. Food Microbiol. 2015, 212, 9-15.
584	34. Toldrá, F.; Aristoy, M-C.; Flores, M. Contribution of muscle aminopeptidases to
585	flavor development in dry-cured ham. Food Res. Int. 2000, 33, 181-185.
586	35. Zhu, C. Z.; Zhang, W. G.; Zhou, G. H.; Xu, X. L. Identification of antioxidant
587	peptides of Jinhua ham generated in the products and through the simulated
588	gastrointestinal digestion system. J. Sci. Food Agric. 2016, 96, 99-108.
589	36. Xing, L. J.; Hu, Y. Y.; Hu, H. Y.; Ge, Q. F.; Zhou, G. H.; Zhang, W. G.
590	Purification and identification of antioxidative peptides from dry-cured Xuanwei
591	ham. Food Chem. 2016, 194, 951-958.
592	37. Dellafiora, L.; Paolella, S.; Dall'Asta, C.; Dossena, A.; Cozzini, P.; Galaverna,
593	G. Hybrid in silico/in vitro approach for the identification of angiotensin I
594	converting enzyme inhibitory peptides from Parma dry-cured ham. J. Agric. Food
595	<i>Chem.</i> 2015 , <i>63</i> , 6366-6375.
596	38. Gallego, M.; Mora, L.; Toldrá, F. Characterisation of the antioxidant peptide
597	AEEEYPDL and its quantification in Spanish dry-cured ham. Food Chem. 2018,
598	258, 8-15.
599	39. Gallego, M.; Mora, L.; Fraser, P.D.; Aristoy, M.C.; Toldrá, F. Degradation of
600	LIM domain-binding protein three during Spanish dry-cured ham processing. Food
601	Chem., 2014 , 149, 121-128.

602	40. Castellano, P.; Mora, L.; Escudero, E.; Vignolo, G.; Aznar, R.; Toldrá, F.
603	Antilisterial peptides from Spanish dry-cured hams: Purification and identification.
604	<i>Food Microbiol.</i> 2016 , <i>59</i> , 133-141.
605	41. Gallego, M.; Mora, L.; Toldrá, F. Potential cardioprotective peptides generated
606	in Spanish dry-cured ham. J. Food Bioactiv. 2019, 6, 110-117.
607	42. Gallego, M.; Mora, L.; Reig, M.; Toldrá, F. Stability of the potent antioxidant
608	peptide SNAAC identified from Spanish dry-cured ham. Food Res. Int. 2018, 105,
609	873-879.
610	43. Escudero, E.; Mora, L.; Fraser, P.D.; Aristoy, M-C.; Arihara, K.; Toldrá, F.
611	Purification and Identification of antihypertensive peptides in Spanish Dry-Cured
612	ham. J. Proteom. 2013, 78, 499-507.
613	44. Wang, J.; Lu, S.; Li, R., Wang, Y.; Huang, L. Identification and characterization
614	of antioxidant peptides from Chinese dry-cured mutton ham. J. Sci. Food Agric.
615	2019 . DOI 10.1002/jsfa.10136.
616	45. Fialho, T. L.; Carrijo, L. C.; Júnior, M. J. M.; Baracat-Pereira, M. C.; Piccoli, R.
617	H.; de Abreu, L. R. Extraction and identification of antimicrobial peptides from the
618	Canastra artisanal minas cheese. Food Res. Int. 2018, 107, 406-413.
619	46. Timón, M. L.; Andrés, A. I.; Otte, J.; Petrón, M. J. Antioxidant peptides (< 3
620	kDa) identified on hard cow milk cheese with rennet from different origin. Food
621	Res.Int. 2019, 120, 643-649.
622	47. Baptista, D. P.; Galli, B. D.; Cavalheiro, F. G.; Negrão, F.; Eberlin, M. N.;
623	Gigante, M. L. Lactobacillus helveticus LH-B02 favours the release of bioactive
624	peptide during Prato cheese ripening. Int. Dairy J. 2018, 87, 75-83.

625	48. Jin, Y.; Yu, Y.; Qi, Y.; Wang, F.; Yan, J.; Zou, H. Peptide profiling and the
626	bioactivity character of yogurt in the simulated gastrointestinal digestion. J.
627	Proteom. 2016, 141, 24-46.
628	49. Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Antibacterial and
629	antiproliferative peptides in synbiotic yogurt— Release and stability during
630	refrigerated storage. J. Dairy Sci. 2016, 99, 4233-4242.
631	50. Fekete, Á.A.; Givens, D.I.; Lovegrove, J.A. Casein-derived lactotripeptides
632	reduce systolic and diastolic blood pressure in a meta-analysis of randomised
633	clinical trials. Nutrients, 2015, 7,659–81.
634	51. Chakrabarti, S.; Wu, J. Milk-derived tripeptides IPP (Ile-Pro-Pro) and VPP (Val-
635	Pro-Pro) promote adipocyte differentiation and inhibit inflammation in 3T3-F442A
636	cells. <i>PloS One</i> 2015 , <i>10</i> , e0117492.
637	52. Chakrabarti, S.; Jahandideh, F.; Davidge, S. T.; Wu, J. Milk-derived tripeptides
638	IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) enhance insulin sensitivity and prevent
639	insulin resistance in 3T3-F442A preadipocytes. J. Agric. Food Chem. 2018, 66(39),
640	10179-10187.
641	53. Li, Y.; Sadiq, F. A.; Liu, T.; Chen, J.; He, G. Purification and identification of
642	novel peptides with inhibitory effect against angiotensin I-converting enzyme and
643	optimization of process conditions in milk fermented with the yeast Kluyveromyces
644	marxianus. J. Funct. Foods 2015, 16, 278-288.
645	54. Elkhtab, E.; El-Alfy, M.; Shenana, M.; Mohamed, A.; Yousef, A. E. New
646	potentially antihypertensive peptides liberated in milk during fermentation with
647	selected lactic acid bacteria and kombucha cultures. J. Dairy Sci. 2017, 100, 9508-

648 9520.

649	55. Fideler, J.; Johanningsmeier, S. D.; Ekelöf, M.; Muddiman, D. C. Discovery and
650	quantification of bioactive peptides in fermented cucumber by direct analysis IR-
651	MALDESI mass spectrometry and LC-QQQ-MS. Food Chem. 2019, 271, 715-723.
652	56. Najafian, L.; Babji, A. S. Fractionation and identification of novel antioxidant
653	peptides from fermented fish (pekasam). J. Food Meas. Charact. 2018, 12, 2174-
654	2183.
655	57. Kleekayai, T.; Saetae, D.; Wattanachaiyingyong, O.; Tachibana, S.; Yasuda, M.;
656	Suntornsuk, W. Characterization and in vitro biological activities of Thai traditional
657	fermented shrimp pastes. J Food Sci Technol. 2015, 52, 1839-1848.
658	58. Gallego, M.; Aristoy, M.C.; Toldrá, F. Dipeptidyl peptidase IV inhibitory
659	peptides generated in Spanish dry-cured ham. Meat Sci. 2014, 96, 757–761.
660	59. Flores, M.; Toldrá, F. Microbial enzymatic activity for improved fermented meats.
661	Trends Food Sci. Technol. 2011, 22, 81-90.
662	60. Martínez-Villaluenga, C.; Peñas, E.; J. Frías, J. Bioactive Peptides in fermented
663	foods: Production and evidence for health effects. In: Fermented foods in health and
664	disease prevention. Frías, J.; Martínez-Villaluenga, C.; Peñas, E., Eds., Academic
665	Press, Boston, MA, 2017 , 23–47.
666	61. Santos, N.N.; Santos-Mendonça, C.; Sanz, Y.; Bolumar, T.; Aristoy, M.C.;
667	Toldrá, F. Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces
668	hansenii. Int. J. Food Microbiol. 2001, 68, 199-206.
669	62. Matsushita-Morita, M.; Tada, S.; Suzuki, S.; Hattori, R.; Marui, J.; Furukawa, I.;
670	Yamagata, Y.; Amano, H.; Ishida, H.; Takeuchi, M.; Kashiwagi, Y.; Kusumoto, K.I.

671	Overexpression and Characterization of an Extracellular Leucine Aminopeptidase
672	from Aspergillus oryzae. Curr. Microbiol. 2011, 62, 557-564.
673	63. Stressler, T.; Ewert, J.; Merz, M.; Funk, J.; Claaen, W.; Lutz-Wahl, S.; Schmidt,
674	H.; Kuhn, A.; Fischer, L. A novel glutamyl (Aspartyl)-specific aminopeptidase A
675	from Lactobacillus delbrueckii with promising properties for application. PLoS One,
676	2016 , <i>11</i> , e0152139.
677	64. Zotta, T.; Ricciardi, A.; Parente, E. Enzymatic activities of lactic acid bacteria
678	isolated from Cornetto di Matera sourdoughs. Int. J. Food Microbiol. 2007, 115,
679	165-172.
680	65. Herreros, M.A.; Fresno, J.M.; GonzálezPrieto, M.J.; Tornadijo, M.E.
681	Technological characterization of lactic acid bacteria isolated from Armada cheese
682	(a Spanish goats' milk cheese). Int. Dairy J. 2003, 13, 469-479.
683	66. Bintsis, T.; Vafopoulou-Mastrojiannaki, A.; Litopoulou-Tzanetaki, E.;
684	Robinson, R.K. Protease, peptidase and esterase activities by lactobacilli and yeast
685	isolates from Feta cheese brine. J. Appl. Microbiol., 2003, 95, 68–77.
686	67. Macedo, A.C.; Vieira, M.; Poças, R.; Malcata, F.X. Peptide hydrolase system of
687	lactic acid bacteria isolated from Serra da Estrela cheese. Int. Dairy J. 2010, 10,
688	769-774.
689	68. González, L.; Sacristán, N.; Arenas, R.; Fresno, J.M.; Tornadijo, E. Enzymatic
690	activity of lactic acid bacteria (with antimicrobial properties) isolated from a
691	traditional Spanish cheese. Food Microbiol. 2010, 27, 592-597.
692	69. Toldrá, F.; Cerveró, M-C.; Part, C. Porcine aminopeptidase activity as affected
693	by curing agents. J. Food Sci. 1993, 58, 724-726, 747

694	70. Stressler, T.; Eisele, T.; Schlayer, M.; Lutz-Wahl, S.; Fischer, L.
695	Characterization of the Recombinant Exopeptidases PepX and PepN from
696	Lactobacillus helveticus ATCC 12046 Important for Food Protein Hydrolysis. PLoS
697	<i>ONE</i> , 2013 , <i>8</i> , 70055.
698	71. Rul, F.; Gripon, J. C.; Monnet, V. St-PepA, a Streptococcus thermophilus
699	aminopeptidase with high specificity for acidic residues. Microbiol. 1995, 141,
700	2281–2287.
701	72. Chapot-Chartier, M. P.; Rul, F.; Nardi, M.; Gripon, J.C. Gene cloning and
702	characterization of PepC, a cysteine aminopeptidase from Streptococcus
703	thermophilus, with sequence similarity to the eucaryotic bleomycin hydrolase. Eur.
704	J. Biochem. 1994 , 224, 497–506.
705	73. Stressler, T.; Eisele, T.; Schlayer, M.; Fischer, L. Production, active staining and
706	gas chromatography assay analysis of recombinant aminopeptidase P from
707	Lactococcus lactis ssp. lactis DSM 20481. AMB Express, 2012, 2, 39.
708	74. Stressler, T.; Eisele, T.; Kranz, B.; Fischer, L. PepX from Lactobacillus
709	helveticus: Automated multi-step purification and determination of kinetic
710	parameters with original tripeptide substrates. J. Mol. Catals. B: Enzym. 2014, 108,
711	103 -110.
712	75. Sinz, Q.; Schwab, W. Metabolism of amino acids, dipeptides and tetrapeptides
713	by Lactobacillus sakei. Food Microbiol. 2012, 29, 215-223.
714	76. Chavagnat, F.; J. Meyer, J.; Casey, M. G. Purification, characterisation, cloning
715	and sequencing of the gene encoding oligopeptidase PepO from Streptococcus
716	thermophilus A. FEMS Microbiol. Lett. 2000, 191, 79-85.

717	77. Rodríguez-Serrano, G.M.; García-Garibay, M.; Cruz-Guerrero, A.E.; Gómez-
718	Ruiz, L.; Ayala-Niño, A.; Castañeda-Ovando, A.; González-Olivares, L.G.
719	Proteolytic System of Streptococcus thermophiles. J. Microbiol. Biotechnol. 2018,
720	28, 1581–1588.
721	78. Juille, O.; Le Bars, D.; Juillard, V. The specificity of oligopeptide transport by
722	Streptococcus thermophilus resembles that of Lactococcus lactis and not that of
723	pathogenic streptococci. Microbiol. 2005, 151, 1987-1994.
724	79. Skrzypczak, K.; Gustaw, W.; Szwajgier, D.; Fornal, E.; Was'ko, A. K-Casein as
725	a source of short-chain bioactive peptides generated by Lactobacillus helveticus. J.
726	Food Sci. Technol. 2017, 54, 3679–3688.
727	80. Chang, O.K.; Roux, E.; Awussi, A.A.; Miclo, L.; Jardin, J.; Jameh, N.; Dary, A.;
728	Humbert, G.; Perrin, C. Use of a free form of the Streptococcus thermophilus cell
729	envelope protease PrtS as a tool to produce bioactive peptides. Int. Dairy J. 2014,
730	38, 104–115.
731	81. Ha, G.E.; Chang, O.K.; Jo, S.M.; Han, G.S.; Park, B.Y.; Ham, J.S.; Jeong, S.G.
732	Identification of antihypertensive peptides derived from low molecular weight
733	casein hydrolysates generated during fermentation by Bifidobacterium longum
734	KACC 91563. Korean J.Food Sci. Anim. 2015, 35, 738–747.
735	82. Pescuma, M.; Espeche Turbay, M.B.; Mozzi, F.; De Valdez, G.F,; De Giori,
736	G.S.; Hebert, E.M. Diversity in proteinase specificity of thermophilic lactobacilli as
737	revealed by hydrolysis of dairy and vegetable proteins. Appl. Microbiol. Biotechnol.,
738	2013 , <i>97</i> , 7831–7844.

739	83. Ali, E.; Nielsen, S.D.; Abd-El Aal, S.; El-Leboudy, A.; Saleh, E.; LaPointe, G.
740	Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium
741	Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5.
742	Front. Nutr. 2019, 6, 152.
743	84. Mauriello, G.; Casaburi, A.; Blaiotta, G.; Villani, F. Isolation and technological
744	properties of coagulase negative staphylococci from fermented sausages of Southern
745	Italy. Meat Sci. 2004, 67, 149-158.
746	85. Chaves-López, C.; Serio, A.; Paparella, A.; Martuscelli, M.; Corsetti, A.; Tofalo,
747	R.; Suzzi, G. Impact of microbial cultures on proteolysis and release of bioactive
748	peptides in fermented milk. Food Microbiol. 2014, 42, 117-121.
749	86. Aguilar, J.G.S.; Sato, H.H. Microbial proteases: Production and application in
750	obtaining protein hydrolysates. Food Res. Int. 2018, 103, 253-262.
751	87. Merz, M.; Eisele, T.; Berends, P.; Appel, D.; Rabe, S.; Blank, I.; Stressler, T.;
752	Fischer, L. Flavourzyme, an enzyme preparation with industrial relevance:
753	automated nine-step purification and partial characterization of eight enzymes. J.
754	Agric. Food Chem., 2015 , 63, 5682 -5693.
755	88. Kitchener, R.L.; Grunden, A.M. Prolidase function in proline metabolism and its
756	medical and biotechnological applications. J. Appl. Microbiol. 2012, 113, 233–247.
757	89. Deng, Z.; Liu, Y.; Wang, J.; Wu, S.; Geng, L.; Sui, Z.; Zhang, Q.
758	Antihypertensive effects of two novel angiotensin I-converting enzyme (ACE)
759	inhibitory peptides from Gracilariopsis lemaneiformis (Rhodophyta) in
760	spontaneously hypertensive rats (SHRs). Mar. Drugs 2018, 16(9), 299.

761	90. Harnedy, P. A.; O'Keeffe, M. B.; FitzGerald, R. J. Fractionation and
762	identification of antioxidant peptides from an enzymatically hydrolysed Palmaria
763	palmata protein isolate. Food Res. Int. 2017, 100, 416-422.
764	91. Admassu, H.; Gasmalla, M. A.; Yang, R.; Zhao, W. Identification of bioactive
765	peptides with α -amylase inhibitory potential from enzymatic protein hydrolysates of
766	red seaweed (Porphyra spp). J. Agric. Food Chem. 2018, 66(19), 4872-4882.
767	92. Fan, X.; Cui, Y.; Zhang, R.; Zhang, X. Purification and identification of anti-
768	obesity peptides derived from Spirulina platensis. J. Funct. Foods 2018, 47, 350-
769	360.
770	93. Neves, A. C.; Harnedy, P. A.; O'Keeffe, M. B.; FitzGerald, R. J. Bioactive
771	peptides from Atlantic salmon (Salmo salar) with angiotensin converting enzyme
772	and dipeptidyl peptidase IV inhibitory, and antioxidant activities. Food Chem.
773	2017 , <i>218</i> , 396-405.
774	94. Balti, R.; Bougatef; A., Sila, A.; Guillochon, D.; Dhulster, P.; Nedjar-Arroume,
775	N. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from
776	cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect
777	of the potent active peptide in spontaneously hypertensive rats. Food Chem.
778	2015 , <i>170</i> , 519-525.
779	95. Salampessy, J.; Reddy, N.; Phillips, M.; Kailasapathy, K. Isolation and
780	characterization of nutraceutically potential ACE-Inhibitory peptides from
781	leatherjacket (Meuchenia sp.) protein hydrolysates. LWT. 2017, 80, 430-436.
782	96. Jemil, I.; Mora, L.; Nasri, R.; Abdelhedi, O.; Aristoy, M. C.; Hajji, M.; Nasri,
783	M.; Toldrá, F. A peptidomic approach for the identification of antioxidant and ACE-
784	inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis
785	A26 and Bacillus amyloliquefaciens An6. Food Res. Int. 2016, 89, 347-358.

786	97. Wang, R.; Zhao, H.; Pan, X.; Orfila, C.; Lu, W.; Ma, Y. Preparation of bioactive
787	peptides with antidiabetic, antihypertensive, and antioxidant activities and
788	identification of α -glucosidase inhibitory peptides from soy protein. Food Sci. Nutr.
789	2019 , <i>7</i> , 1848-1856.
790	98. Intiquilla, A.; Jiménez-Aliaga, K.; Guzmán, F.; Alvarez, C. A.; Zavaleta, A. I.;
791	Izaguirre, V.; Hernández-Ledesma, B. Novel antioxidant peptides obtained by
792	alcalase hydrolysis of Erythrina edulis (pajuro) protein. J. Sci. Food Agric. 2019, 99,
793	2420-2427.
794	99. Yu, W.; Field, C. J.; Wu, J. Purification and identification of anti-inflammatory
795	peptides from spent hen muscle proteins hydrolysate. Food Chem. 2018, 253, 101-
796	107.
797	100. Wang, L. S.; Huang, J. C.; Chen, Y. L.; Huang, M.; Zhou, G. H. Identification
798	and characterization of antioxidant peptides from enzymatic hydrolysates of duck
799	meat. J. Agric. Food Chem. 2015, 63, 3437-3444.
800	101. Mirdhayati, I.; Hermanianto, J.; Wijaya, C. H.; Sajuthi, D.; Arihara, K.
801	Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of
802	protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus). J. Sci. Food
803	Agric. 2016, 96, 3536-3542.
804	102. Choe, J.; Seol, K. H.; Son, D. I.; Lee, H. J.; Lee, M.; Jo, C. Identification of
805	angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of
806	pork loin. Int. J. Food Prop. 2019, 22, 1112-1121.
807	103. Zhang, Y.; Chen, R.; Ma, H.; Chen, S. Isolation and identification of dipeptidyl
808	peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein
809	hydrolysates by 2D-TLC and LC–MS/MS. J. Agric. Food Chem. 2015, 63, 8819-
810	8828.

811	104. Bezerra, T. K. A.; de Lacerda, J. T. J. G.; Salu, B. R.; Oliva, M. L. V.; Juliano,
812	M. A.; Pacheco, M. T. B.; Madruga, M. S. Identification of angiotensin I-converting
813	enzyme-inhibitory and anticoagulant peptides from enzymatic hydrolysates of
814	chicken combs and wattles. J. Med. Food. 2019.
815	105. Zheng, Y.; Li, Y.; Zhang, Y.; Ruan, X.; Zhang, R. Purification,
816	characterization, synthesis, in vitro ACE inhibition and in vivo antihypertensive
817	activity of bioactive peptides derived from oil palm kernel glutelin-2
818	hydrolysates. J. Funct. Foods 2017, 28, 48-58.
819	106. Moayedi, A.; Mora, L.; Aristoy, M. C.; Safari, M.; Hashemi, M.; Toldrá, F.
820	Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from
821	tomato waste proteins fermented using Bacillus subtilis. Food Chem. 2018, 250,
822	180-187.
823	107. Slizyte, R.; Rommi, K.; Mozuraityte, R.; Eck, P.; Five, K.; Rustad, T.
824	Bioactivities of fish protein hydrolysates from defatted salmon backbones.
825	Biotechnol. Reports, 2016, 11, 99–109.
826	108. Mora, L.; Gallego, M.; Toldrá, F. ACE-inhibitory peptides naturally generated
827	in meat and meat products and their health relevance. Nutrients, 2018, 10, 1259.
828	109. Mora, L.; Gallego, M.; Toldrá, F. New approaches based on comparative
829	proteomics for the assessment of food quality, Curr. Opin. Food Sci., 2018, 22, 22-
830	27.
831	110. Iwaniak, A.; Darewicz, M.; Mogut, D.; Minkiewicz, P. Elucidation of the role
832	of in silico methodologies in approaches to studying bioactive peptides derived from
833	foods. J. Funct. Foods, 2019, 61, 103486.

834111. Sanlier, N.; Gokcen, B.B.; Sezgin, A.C. Health benefits of fermented foods.

835	Crit. Rev	Food Sci.	Nutr. 1	2019 , 5	9, 506-	527.
-----	-----------	-----------	---------	-----------------	---------	------

- 836 112. Vermeirssen, V.; Augustijns, P.; Morel, N.; Van Camp, J.; Opsomer, A.;
- 837 Verstraete, W. In vitro intestinal transport and antihypertensive activity of ACE
- inhibitory pea and whey digests. *Int. J. Food Sci. Nutr.* **2005**, *56*, 415–430.
- 839 113. Tu, M.; Cheng, S.; Lu, W.; Du, M. Advancement and prospects of
- bioinformatics analysis for studying bioactive peptides from food-derived protein:
- Sequence, structure, and functions, TrAC. *Trends Anal. Chem.*, **2018**, *105*, 7-17.
- 842 114. Zhang, P.; Roytrakul, S.; Sutheerawattananonda, M. Production and
- purification of glucosamine and angiotensin-I converting enzyme (ACE) inhibitory
- peptides from mushroom hydrolysates, *J. Funct. Foods*, **2017**, *36*, 72-83.
- 845 115. Guo, Y.; Wang, K.; Wu, B.; Wu, P.; Duan, Y.; Ma, H. Production of ACE
- inhibitory peptides from corn germ meal by an enzymatic membrane reactor with a
- 847 novel gradient diafiltration feeding working-mode and in vivo evaluation of
- antihypertensive effect. J. Funct. Foods, **2019**, 103584.
- 849 116. Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. α-Glucosidase and
- ACE dual inhibitory protein hydrolysates and peptide fractions of sprouted quinoa
- yoghurt beverages inoculated with *Lactobacillus casei*. Food Chem. 2019, 299,

852 124985.

- 853 117. Gallego, M.; Mora, L.; Hayes, M.; Reig, M.; Toldrá, F. Peptides with potential
- cardioprotective actions derived from dry-cured ham by-products. J. Agric. Food
- 855 *Chem.* **2019**, *67*, 1115-1126.

856	118. Samarana	yaka, A. (G. P.; Li-Chan,	E. C. Y	. Food-derived	peptidic	antioxidants:
-----	---------------	------------	-----------------	---------	----------------	----------	---------------

857 A review of their production, assessment, and potential applications. *J. Funct.*

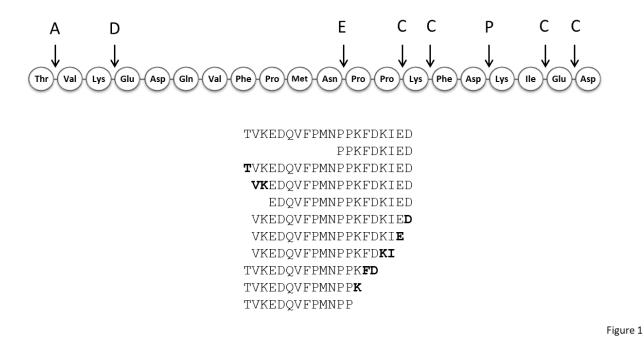
858 *Foods*, **2011**, *3*, 229–254.

- 859 119. Prior, R.L.; Wu, X.; Schaich K. Standardized methods for the determination of
- antioxidant capacity and phenolics in foods and dietary supplements. *J Agric Food*
- 861 *Chem.* **2005**, *53*, 4290-302.
- 120. Escudero, E.; Mora, L.; Fraser, P.D.; Aristoy, M.C.; Toldrá, F. Identification of
- 863 Novel Antioxidant Peptides Generated in Spanish Dry-Cured ham. *Food Chem.*
- **2013**, *138*, 1282-1288.
- 121. Kumar, M. S. Peptides and Peptidomimetics as Potential Antiobesity Agents:
- 866 Overview of Current Status. *Front Nutr.* **2019**, *6*, 11.
- 867 122. Yan, J.; Zhao, J.; Yang, R.; Zhao, W. Bioactive peptides with antidiabetic

868 properties: a review. Int. J. Food Sci. Technol. 2019, 54, 1909-1919.

- 123. De Carvalho Marchesin, J.; Sbaglia Celiberto, L.; Botinhon Orlando, A.; Ivo de
- 870 Medeiros, A.; Aparecida Pinto, R.; Sampaio Zuanon, J.A.; Spolidorio, L.C.; dos
- 871 Santos, A.; Taranto, M.P.; Cardoso Umbelino Cavallini, D.C.U. A soy-based
- probiotic drink modulates the microbiota and reduces body weight gain in diet-
- induced obese mice, *J. Funct. Foods*, **2018**, *48*, 302-313.
- 874 124. Cao, S.Y.; Zhao, C.N.; Xu, X.Y.; Tang, G.Y.; Corke, H.; Gan, R.Y.; Li, H.B.
- 875 Dietary plants, gut microbiota, and obesity: Effects and mechanisms. *Trends Food*
- 876 Sci. Tech., **2019**, 92, 194-204.
- 125. Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and
- identification of novel antidiabetic and anti-obesity peptides from camel milk
- 879 protein hydrolysates, *Food Chem.* **2018**, *259*, 46-54.

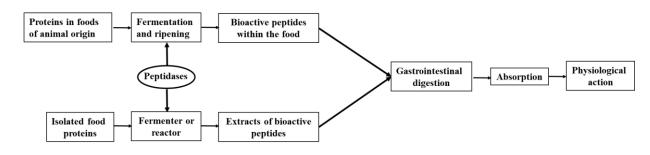
880	126. Ayoub, M.A.; Palakkott, AR.; Ashraf, A.; Iratni, R. The molecular basis of the
881	anti-diabetic properties of camel milk, Diabetes Res. Clin. Pr. 2018, 146, 305-312.
882	127. Maeda, H. Anti-obesity and anti-diabetic activities of algae. In Food Science,
883	Technology and Nutrition, Functional Ingredients from Algae for Foods and
884	Nutraceuticals. Domínguez, H. Ed., Woodhead Publishing, UK, 2013, 453-472.
885	128. Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease:
886	Challenges and opportunities. Science, 2013, 339, 166-172.
887	129. Chakrabarti, S.; Jahandideh, F.; Wu, J. Food-derived bioactive peptides on
888	inflammation and oxidative stress. BioMed Res. Int. 2014, 608979.
889	130. Fernández-Tomé, S.; Hernández-Ledesma, B.; Chaparro, M.; Indiano-
890	Romacho, P.; Bernardo, D.; Gisbert, J.P. Role of food proteins and bioactive
891	peptides in inflammatory bowel disease. Trends Food Sci. Technol. 2019, 88, 194-
892	206.
893	131. Chen, Y.; Zhang, H.; Liu, R.; Mats, L.; Zhu, H.; Pauls, K.P.; Deng, Z.; Tsao, R.
894	Antioxidant and anti-inflammatory polyphenols and peptides of common bean
895	(Phaseolus vulga L.) milk and yogurt in Caco-2 and HT-29 cell models. J. Funct.
896	Foods, 2019 , <i>53</i> , 125-135
897	132. Mudgil, P.; Baby, B.; Ngoh, Y.Y.; Kamal, H.; Vijayan, R.; Gan, C.Y.;
898	Maqsood,S. Molecular binding mechanism and identification of novel anti-
899	hypertensive and anti-inflammatory bioactive peptides from camel milk protein
900	hydrolysates. LWT, 2019, 112, 108193.


- 901 133. Feijó Corrêa, J.A.; Gonçalves Evangelista, A.; de Melo Nazareth, T.;
- Bittencourt Luciano, F. Fundamentals on the molecular mechanism of action of
 antimicrobial peptides, *Materialia*, **2019**, *8*, 100494.
- 904 134. Agyei, D.; Danquah, M.K. Rethinking food-derived bioactive peptides for
- antimicrobial and immunomodulatory activities. *Trends Food Sci. Technol.* 2012,
 23, 62-69.
- 907 135. Kang, H. K.; Seo, C. H.; Park, Y. Marine peptides and their anti-infective
 908 activities. *Mar. Drugs* 2015, *13*, 618–654.
- 909 136. Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine peptides: bioactivities and
- 910 applications. *Mar. Drugs*, **2015**, *13*, 4006-4043.
- 911 137. Rossitto Zanutto-Elgui, M.; Cavalcante Souza Vieira, J.; Zanoni do Prado, D.;
- 912 Afonso Rabelo Buzalaf, M.; de Magalhães Padilha, P., Elgui de Oliveira, D.;
- 913 Francisco Fleuri, L. Production of milk peptides with antimicrobial and antioxidant
- properties through fungal proteases, *Food Chem.* **2019**, 278, 823-831.
- 915 138. Muhialdin, B.J.; Algboory, H.L. Identification of low molecular weight
- antimicrobial peptides from Iraqi camel milk fermented with *Lactobacillus*
- 917 *plantarum. PharmaNutr.* **2018,** *6*, 69-73.
- 918 139. Pina-Pérez, M.C.; Ferrús Pérez, M.A. Antimicrobial potential of legume
- 919 extracts against foodborne pathogens: A review. *Trends Food Sci. Technol.* 2018,
- 920 72, 114-124.
- 921 140. Lee, J.H.; Paik, H.-D. Anticancer and immunomodulatory activity of egg
- proteins and peptides: a review. Poultry Sci. **2019**, *98*, 6505-6516.

923

924 LEGENDS FOR THE FIGURES

925


- 926 Figure 1.- Scheme of food protein hydrolysis and enzymes involved. The amino acids
- 927 sequence is a fragment belonging to myosin heavy chain. Aminopeptidase (A),
- 928 Dipeptidylpeptidase (D), Endopptidase (E), Carboxypeptidase (C) and
- 929 Peptidylpeptidase (P). Adapted from (29).

930

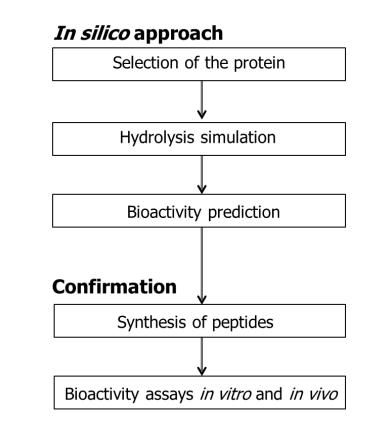
931

- 932 Figure 2.- Scheme of the generation of bioactive peptides from protein hydrolysis in
- 933 foods and/or the hydrolysis of isolated food proteins.

936 Figure 3.- Scheme of the traditional empirical procedure for the identification and

937 confirmation of bioactive peptides from food matrices. SEC: size-exclusion

- 938 chromatography; CE: capillary electrophoresis; LC: liquid chromatography; IEF:
- 939 isolectric focusing; HPLC: high performance liquid chromatography; MS/MS: mass
- 940 spectrometry in tandem. Adapted from (84).


Hydrolyzate First fractionation Isolation of bioactive fractions *in vitro* test Second fractionation Purification of peptides of interest in vitro test Identification by MS/MS in vitro test Synthesis of peptides Bioactivity: in vitro and in vivo test Confirmation

941

942

943 Figure 4.- Main steps of in silico approaches and open access databases for the selection

of the protein, hydrolysis simulation and bioactivity prediction. Adapted from (84).

Table 1.- Examples of bioactive peptides recently identified in fermented and dry-cured products.

Food	Type / Fermentation	Peptide sequence	Parent protein	Potential activity	Activity values*	Reference
Dry-cured ham	Chinese Jinhua	FLKMN	_	Antioxidant	DPPH: 70% at 1 mg/mL	35
		GKFNV	_	Antioxidant	DPPH: 92.7% at 1 mg/mL	35
		LPGGGHGDL	_	Antioxidant	OH: 85% at 1 mg/mL	35
	Chinese Xuanwei	DLEE	_	Antioxidant	DPPH: 74.4% at 0.5 mg/mL	36
	Italian Parma	GVVPL	_	Antihypertensive	ACE inhibition: $IC_{50} = 956 \ \mu M$	37
		LGL	_	Antihypertensive	ACE inhibition: $IC_{50} = 145 \ \mu M$	37
		SFVTT	_	Antihypertensive	ACE inhibition: $IC_{50} = 395 \ \mu M$	37
	Spanish	AEEEYPDL	Creatine kinase	Antioxidant	ABTS: 1474.08 nmol TEAC/mg, ORAC: 960.04 nmol TE/mg	38
		FNMPLTIRITPGSKA	LIM domain-binding 3	Anti- inflammatory	PAF-AH: 26.06 % at 1mM	39
				Antihypertensive	68.34% at 1mM	39
		HCNKKYRSEM	Dynein heavy chain	Antimicrobial	MIC (<i>L. monocytogenes</i>)= 50 mM	40
				Anti- inflammatory	LOX: 23.33% at 1mM	41

			Antioxidant	ORAC: 1767.56 nmol TE/mg	41
			Antihypertensive	ACE inhibition: 99.34% at 1 mM	41
	MDPKYR	Titin	Antimicrobial	MIC (L. monocytogenes)= 50 mM	40
			Anti- inflammatory	PAF-AH: 13.48% at 1mM, ATX: 14.51% at 1mM	41
			Antioxidant	ABTS: 5444.3 nmol TEAC/mg, ORAC: 3087.5 nmol TE/mg	41
			Antihypertensive	ACE inhibition: 60.64% at 1mM	41
	SNAAC	Myosin heavy chain	Antioxidant	ABTS: 3097.04 nmol TEAC/mg, ORAC: 2737.4 nmol TE/mg	42
	TKYRVP	Titin	Anti- inflammatory	PAF-AH: 11.04% at 1mM, ATX: 22.47% at 1mM	41
			Antioxidant	ABTS: 6987.8 nmol TEAC/mg, ORAC: 2886.8 nmol TE/mg	41
			Antihypertensive	ACE inhibition: 80.85% at 1mM	41
	AAATP	Allantoicase	Antihypertensive	ACE inhibition: $IC_{50} = 100,00 \ \mu M$	43
	TSNRYHSYPWG	Ser/Thr-protein kinase	Anti- inflammatory	PAF-AH: 16.30 % at 1mM, ATX:18.93% at 1mM	41
			Antioxidant	ABTS: 3036.03 nmol TEAC/mg	41
			Antihypertensive	ACE inhibition: 71.62% at 1mM	41
Mutton ham	MWTD	_	Antioxidant	ABTS: $IC_{50} = 0.4 \text{ mg/mL}$	44
	АРҮММ	_	Antioxidant	ABTS: IC ₅₀ = 0.12 mg/mL	44
	FWIIE	_	Antioxidant	ABTS: $IC_{50} = 0.23 \text{ mg/mL}$	44

Cheese	Italian Stracchino	AVPYPQ	β-Casein	Antioxidant	ABTS: 19.5 µmol TE/mg	22
		ЕАМАРК	β-Casein	Antioxidant	ABTS: 22.9 µmol TE/mg	22
	Brazilian Canastra artisanal Minas	RPKHPIKHQ	α_{S1} -Casein	Antimicrobial	MIC (<i>E. coli</i>)= 15μ g/mL	45
		RPKHPIKHQG	α_{S1} -Casein	Antimicrobial	MIC (<i>E. coli</i>)= = $17 \mu g/mL$	45
	Hard cow milk cheese	EIVPN	α _{s1} -Casein	Antioxidant	DPPH inhibition, Metal chelating activity	46
		DKIHPF	β-Casein	Antioxidant	DPPH inhibition, Metal chelating activity	46
		VAPFPQ	α_{S1} -Casein	Antioxidant	Metal chelating activity	46
	Brazilian Prato / <i>Lactobacillus</i> <i>helveticus</i> (10%, 40°C, 18h)	QEPVLGPVRGPFPIIV	β-Casein	Antihypertensive	ACE inhibition	47
		YQEPVLGPVRGPFP	β-Casein	Antihypertensive	ACE inhibition	47
X 1 4				A 1' 1		40
Yoghurt	Chinese Feng Wei Suan Ru / Streptococcus thermophellolus +	FVAPFPEVF	α_{s1} -Casein	Antidiabetic	DPP-IV inhibition: $IC_{50} = 2.52 \ \mu M$	48
	Lactobacilus bulgaricus			Antihypertensive	ACE inhibition: $IC_{50} = 35.76 \ \mu M$	48
		PPFLQPEVM	β-Casein	Antidiabetic	DPP-IV inhibition: $IC_{50} = 0.44 \ \mu M$	48
				Antihypertensive	ACE inhibition: $IC_{50} = 34.63 \ \mu M$	48
		QEPVLGPVRGPFPIIV	β-Casein	Antihypertensive	ACE inhibition: IC_{50} = 160.76 μM	48
	Probiotic yoghurt with pineapple	SLPQNIPPLTQTPVVVPPF	β-Casein	Antioxidant	ABTS: IC ₅₀ = 1.44 mg/mL, OH ⁻ : 34.97% at 1 mg/mL	49
	peel / S. thermophilus + L .		p cuson	1 IntoAdduit		12

	bulgaricus + L. acidophilus + L. casei + L. paracasei (1%, 42°C, pH			Anticancer	Antiproliferation colon cancer cells: 38.55% at 3 mg/mL	49
	4.5)	YQEPVLGPVRGPFPIIV	β-Casein	Antioxidant	ABTS: $IC_{50} = 29.88 \ \mu g/mL$	49
				Anticancer	Antiproliferation colon cancer cells: 41.49% at 3 mg/mL	49
Fermented milk	Lactobacillus, Saccharomyces	IPP, VPP	β-Casein	Antihypertensive	SBP: -2.95 mmHg	50
				Anti- inflammatory	Suppression of cytokine mediated inflammatory responses	51
				Adipogenic	Insulin-mimetic adipogenic effects	51
				Antidiabetic	Insulin sensitizing actions in adipocytes	52
	<i>Kluyveromyces marxianus</i> (6%, 32°C, pH 6.5, 48h)	LRFF	κ-Casein	Antihypertensive	ACE inhibition: $IC_{50} = 116.9 \ \mu M$	53
		VLSRYP	α_{S1} -Casein	Antihypertensive	ACE inhibition: $IC_{50} = 36.7 \ \mu M$	53
	Kombucha culture (1%, 37°C, 72h)	FVAPEPFVFGKEK	α_{S1} -Casein	Antihypertensive	ACE inhibition: $IC_{50} = 0.75 \ \mu M$	54
		LVYPFPGPLH	β-Casein	Antihypertensive	ACE inhibition: $IC_{50} = 0.03 \ \mu M$	54
		VAPFPEVFGK	α_{S2} -Casein	Antihypertensive	ACE inhibition: $IC_{50} = 0.03 \ \mu M$	54
	<i>L.actobacillus casei</i> (1%, 37°C, 72h)	LVESPPELNTVQ	κ-Casein	Antihypertensive	ACE inhibition: $IC_{50} = 0.11 \ \mu M$	54
		VLESPPELN	κ-Casein	Antihypertensive	ACE inhibition: $IC_{50} = 0.23 \ \mu M$	54
		WGYLAYGLD	_	Antihypertensive	ACE inhibition: $IC_{50} = 0.10 \ \mu M$	54

Fermented cucumber pickles	Lactobacillus pentosus (28°C, 43d)	IPP	_	Antihypertensive	ACE inhibition: $IC_{50} = 5 \ \mu M$	55
		KP	_	Antihypertensive	ACE inhibition: $IC_{50} = 22 \ \mu M$	55
		LPP	_	Antihypertensive	ACE inhibition: $IC_{50} = 9.6 \ \mu M$	55
		VPP	_	Antihypertensive	ACE inhibition: $IC_{50} = 9 \ \mu M$	55
Fermented fish	Malaysian pekasam / Lactobacillus plantarum (27°C, 15d)	AIPPHPYP	_	Antioxidant	IC ₅₀ (mg/mL): DPPH = 1.38, ABTS = 0.87, RP = 0.45	56
		IAEVFLITDPK	_	Antioxidant	IC ₅₀ (mg/mL): DPPH = 0.89, ABTS = 0.594, RP = 0.69	56
Fermented shrimp pastes	Thai Kapi Ta Dam	IF	_	Antihypertensive	ACE inhibition: $IC_{50} = 70.03 \ \mu M$	57
	Thai Kapi Ta Dam, Kapi Ta Deang	SV	_	Antihypertensive	ACE inhibition: $IC_{50} = 60.68 \ \mu M$	57
		WP	_	Antioxidant	ABTS: $EC_{50} = 17.52 \ \mu M$	57

* Activity values: IC₅₀ value is the peptide concentration that inhibits 50% of activity. SBP is the maximum decrease in systolic blood pressure after administration of the peptides to human subjects. Antioxidant activity: ABTS

radical-scavenging activity (ABTS), DPPH radical scavenging assay (DPPH), hydroxyl radical scavenging activity (OH-), and oxygen radical absorbance capacity assay (ORAC). MIC is the minimum concentration of peptide that inhibits the visible growth of bacteria. Anti-inflammatory activity: platelet-activating factor-acetylhydrolase inhibition (PAF-AH), lipoxygenase inhibition (LOX), and autotaxin inhibition (ATX).

Table 2.- Examples of bioactive peptides recently identified in hydrolyzates of different types of foods.

ood	Туре	Treatment hydrolysis	Peptide sequence	Parent protein	Potential activity	Activity values*	Reference
lgae	Gracilariopsis lemaneiformis	Trypsin (2%, 2h)	FQIN[M(O)]CILR	_	Antihypertensive	ACE inhibition: $IC_{50} = 9.64 \mu M$, SBP: -34 mmHg (2h)	89
	(Rhodophyta)		TGAPCR	_	Antihypertensive	ACE inhibition: IC_{50} = 23.94 $\mu M,$ SBP: - 28 mmHg (2h)	89
	Palmaria palmata	Corolase PP (2%, 50°C, pH 7, 4h)	SDITRPGGQM	Allophycocyanin β-chain	Antioxidant	ORAC: 152.43 nmol TE/µmol, RP: 21.23 nmol TE/µmol	90
	Red seeweed (Porphyra spp)	Pepsin (1%, 37°C, pH 2, 3h)	GGSK		Antidiabetic	α -Amylase inhibition: IC ₅₀ = 2.58 mM	91
			ELS	_	Antidiabetic	α -Amylase inhibition: IC ₅₀ = 2.62 mM	91
	Spirulina platensis	Pepsin (6%, 37°C, pH 2, 10h)	CANPHELPNK	_	Anti-obesity	Antiproliferation adypocites: 60.08% at 2 mg/mL	92
						Triglyceride accumulation: -19.5% at 600 μ g/mL	92
			LNNPSVCDCDCMMKAAR	_	Anti-obesity	Antiproliferation adypocites: 32.29% at 2 mg/mL	92
			NALKCCHSCPA	_	Anti-obesity	Antiproliferation adypocites: 37.86% at 2 mg/mL	92
			NPVWKRK	Hydrolase protein	Anti-obesity	Antiproliferation adypocites: 46.89% at 2 mg/mL	92
						Triglyceride accumulation: -23.7% at at 600 µg/mL	92
sh	Atlantic salmon (Salmo salar)	Corolase PP (1%, 50°C, pH 7, 1h)	GPAV		Antihypertensive	ACE inhibition: $IC_{50} = 415.91 \ \mu M$	93
					Antidiabetic	DPP-IV inhibition: $IC_{50} = 245.58 \ \mu M$	93
					Antioxidant	ORAC: 9.51 µmol TE/µmol	93

		FF	_	Antihypertensive	ACE inhibition: $IC_{50} = 59.151 \ \mu M$	93
				Antidiabetic	DPP-IV inhibition: $IC_{50} = 546.84 \ \mu M$	93
				Antioxidant	ORAC: 8.47 µmol TE/µmol	93
Cuttlefish (Sepia officinalis)	Bacillus mojavensis (3U/mg, 50°C, pH 10)	AFVGYVLP		Antihypertensive	ACE inhibition: $IC_{50} = 18.02 \ \mu M$	94
	Cuttlefish hepatopancreas enzymes (3U/mg, 50°C, pH	EKSYELP	—	Antihypertensive	ACE inhibition: $IC_{50} = 14.41 \ \mu M$	94
	8)	VELYP	_	Antihypertensive	ACE inhibition: $IC_{50} = 5.22 \ \mu\text{M}$, SBP: -20 mmHg (6h)	94
Leatherjacket (Meuchenia sp.)	Insoluble bromelain (0.5%, 50°C, 2h)	AER	_	Antihypertensive	ACE inhibition: $IC_{50} = 0.11 \text{ g/L}$	95
		EQIDNLQ	_	Antihypertensive	ACE inhibition: $IC_{50} = 0.24 \text{ g/L}$	95
	Insoluble papain (0.5%, 50°C, 6h)	DPHI	_	Antihypertensive	ACE inhibition: $IC_{50} = 0.02 \text{ g/L}$	95
		EPLYV	_	Antihypertensive	ACE inhibition: $IC_{50} = 0.05 \text{ g/L}$	95
	Insoluble flavourzyme (1.25%, 50°C, 2h)	WDDME	_	Antihypertensive	ACE inhibition: $IC_{50} = 0.01 \text{ g/L}$	95
Sardinelle (Sardinella aurita)	Bacillus amyloliquefaciens(4%, 37°C, 24h)	ITALAPSTM	Actin	Antihypertensive	ACE inhibition: $IC_{50} = 0.23 \text{ mM}$	96
				Antioxidant	β-CBA: $IC_{50} = 0.64 \text{ mM}$	96
		SLEAQAEKY	Tropomyosin	Antihypertensive	ACE inhibition: $IC_{50} = 0.41 \text{ mM}$	96
				Antioxidant	RP, ORAC	96
		GTEDELDKY	Tropomyosin	Antioxidant	DPPH: $IC_{50} = 1.32 \text{ mM}$, RP, ORAC	96
	Bacillus subtilis (4%, 37°C, 24h)	NVPVYEGY	Actin	Antihypertensive	ACE inhibition: $IC_{50} = 0.21 \text{ mM}$	96

					Antioxidant	D(111.1050 - 1.41) mivi, KI, OKAC	90
	Pacific herring (<i>Clupea</i> pallasii)	Trypsin (1.39U/Kg, 32.06°C, pH 6.78, 7h)	KEEKFE		Antioxidant	IC ₅₀ (mg/mL): OH ⁻ = 3.78, DPPH = 4.37, Cell = 1.04	97
			LHDELT		Antioxidant	IC ₅₀ (mg/mL): OH ⁻ = 4.57, DPPH = 5.14, Cell = 1.19	97
gumes	Soy	Alkaline proteinase (6U/Kg, 50°C, pH 9)	LLPLPVLK		Antidiabetic	α -Glusosidase inhibition: IC ₅₀ = 237.43 μM	97
			SWLRL	—	Antidiabetic	α -Glusosidase inhibition: IC ₅₀ = 182.05 μ M	97
			WLRL	_	Antidiabetic	α -Glusosidase inhibition: IC ₅₀ = 162.29 μ M	97
	<i>Erythrina edulis</i> (pajuro)	Alcalase (0.5%, 50°C, pH 8.3, 2h)	CCGDYY	_	Antioxidant	ABTS: 1.18 μmol TE/μmol, ORAC: 3.61 μmol TE/μmol	98
			DGLGYY	_	Antioxidant	ABTS: 0.63 μmol TE/μmol, ORAC: 3.83 μmol TE/μmol	98
			GESWCR	—	Antioxidant	ABTS: 1.12 µmol TE/µmol, ORAC: 2.43 µmol TE/µmol	98
			SQLPGW	—	Antioxidant	ABTS: 0.53 μmol TE/μmol, ORAC: 2.95 μmol TE/μmol	98
			WAL	—	Antioxidant	ABTS: 0.58 µmol TE/µmol, ORAC: 3.38 µmol TE/µmol	98
			YDLHGY	_	Antioxidant	ABTS: 0.64 μmol TE/μmol, ORAC: 3.59 μmol TE/μmol	98
lea	Spent hens	Protex 50FP (4%, 50°C, pH 3, 3h)	AFMNVKHWPW	Myosin	Anti-inflammatory	IL-6 inhibition: 59% at 100 µg/mL	99
			FLWGKSY	Myomesin	Anti-inflammatory	IL-6 inhibition: 79% at 100 $\mu g/mL$	99
			SFMNVKHWPW	Myosin	Anti-inflammatory	IL-6 inhibition: 68% at 100 $\mu g/mL$	99
			WPW	Myosin	Anti-inflammatory	IL-6 inhibition: 63% at 100 $\mu g/mL$	99
	Duck (Anas platyrhynchos)	Protamex (0.75%, 50°C, pH 6, 4h)	AGRDLTDYLMKIL		Antioxidant	DPPH: 85.45%, OH = 30.75%, Fe- Ch=74.74% at 1mg/mL	100

Antioxidant

DPPH: $IC_{50} = 1.41 \text{ mM}$, RP, ORAC

			GYDLGEAEFARIM	—	Antioxidant	DPPH: 91.81%, OH = 31.30%, Fe- Ch=58.94% at 1mg/mL	100
			IEDPFDQDDWGAWKK	_	Antioxidant	DPPH: 90.39%, OH ⁻ = 46.51% at 1mg/mL	100
			LQAEVEELRAALE	_	Antioxidant	DPPH: 93.36%, OH ⁻ = 20.52%,Fe- Ch=87.13% at 1mg/mL	100
			NWDDMEK	_	Antioxidant	DPPH: 16.36%, OH= 43.34%, Fe- Ch=37.20% at 1mg/mL	100
	Kacang goat (Capra aegagrus hircus)	Protamex + Flavourzyme (0.5%, 50°C, pH 7, 4h)	FQPS	Actin	Antihypertensive	ACE inhibition: $IC_{50} = 27.0 \ \mu\text{M}$, SBP: - 10.6 mmHg (8h)	101
	Pork loin	Thermolysin (0.008%, 5°C, 24h)	LVGRPRHGQ	_	Antihypertensive	ACE inhibition: $IC_{50} = 15.69 \ \mu M$	102
			VFPS	—	Antihypertensive	ACE inhibition: $IC_{50} = 3.60 \ \mu M$	102
Milk	Goat (<i>Capra hircus</i>) milk	Trypsin (3%, 37°C, pH 8, 3h)	INNQFLPYPY	κ-Casein	Antidiabetic	DPP-IV inhibition: $IC_{50} = 40.08 \ \mu M$	103
			MHQPPQPL	β-Casein	Antidiabetic	DPP-IV inhibition: $IC_{50} = 350.41 \ \mu M$	103
			SPTVMFPPQSVL	β-Casein	Antidiabetic	DPP-IV inhibition: $IC_{50}=376.31\ \mu M$	103
By- products	Chicken combs and wattles	Alcalase (5%, 4h)	APGLPGPR	Collagen and elastin	Antihypertensive	ACE inhibition: $IC_{50} = 53 \ \mu M$	104
			FPGPPGP	Collagen and elastin	Antihypertensive	ACE inhibition: $IC_{50} = 38 \ \mu M$	104
			Piro-GPPGPT	Collagen and elastin	Antihypertensive	ACE inhibition: $IC_{50} = 88 \ \mu M$	104
	Oil palm (<i>Elaeis</i> guineensis Jacq) kernel expeller	Alcalase (0.5%, 45°C, pH 8.5, 2h) + flavourzyme (0.5%, 50°C, pH 7, 2h) + pepsin (0.3%, 37°C, pH 2,	ADVFNPR	Glutelin-2	Antihypertensive	ACE inhibition: $IC_{50} = 485.7 \ \mu M$	105
		1h)+ trypsin (0.3%, 37°C, pH 7, 1h).	LPILR	Glutelin-2	Antihypertensive	ACE inhibition: $IC_{50} = 779.8 \ \mu M$	105

		VIEPR	Glutelin-2	Antihypertensive	ACE inhibition: $IC_{50} = 632.0 \ \mu M$	105
		VVLYK	Glutelin-2	Antihypertensive	ACE inhibition: IC ₅₀ =533.9 μ M	105
Tomato seeds	Bacillus subtilis (2%, 37°C, 24h)	DGVVYY		Antihypertensive	ACE inhibition: $IC_{50} = 2 \mu M$	106
		GQVPP	_	Antioxidant	DPPH: 97% at 0.4mM, RP: 0.95 UA at 0.5 mM	106

* Activity values: IC₅₀ value is the peptide concentration that inhibits 50% of activity. SBP is the maximum decrease in systolic blood pressure after administration of the peptide to spontaneously hypertensive rats. Antioxidant activity: ABTS radical-scavenging activity (ABTS),

Radical scavenging assay (DPPH), hydroxyl radical scavenging activity (OH-), β -carotene bleaching activity (β -CBA), reducing power (RP), oxygen radical absorbance capacity assay (ORAC), cytotoxic effects on HepG2 cells (Cell), and Fe²⁺-chelating activity (Ch).