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Abstract 22 

There is a wide variety of peptides released from food proteins which are able to exert a 23 

relevant benefit for human health like angiotensin-converting enzyme (ACE) inhibition, 24 

antioxidant, anti-inflammatory, hypoglucemic or antithrombotic activity, among others. 25 

This manuscript is reviewing the recent advances on enzymatic mechanisms for the 26 

hydrolysis of food proteins, including the types of enzymes and mechanisms of action 27 

involved, the strategies followed for the isolation and identification of bioactive 28 

peptides through advanced proteomic tools, the assessment of bioactivity and its 29 

beneficial effects. Specific applications in fermented and/or ripened foods where a 30 

significant number of bioactive peptides have been reported with relevant in vivo 31 

physiological effects on laboratory rats and humans, as well as the hydrolysis of food 32 

proteins for the production of bioactive peptides are also reviewed.  33 

 34 

Keywords: Proteolysis, Bioactive peptides, Proteomics, Mass spectrometry, Enzyme 35 

hydrolysis, Peptidases 36 

 37 

  38 



3 
 

INTRODUCTION 39 

The content of proteins in foods is very significant and has a great nutritional relevance 40 

because they constitute the source of essential amino acids in the diet. However, 41 

proteins are subject of changes during food processing and cooking. In this sense, it is 42 

outstanding the relevant enzymatic hydrolysis of proteins taking place during food 43 

processing, especially during fermentation and/or ripening like in fermented sausages, 44 

dry-cured meats, cheese, yogurt, wine, etc., that generates polypeptides, peptides and 45 

free amino acids1-3. Such peptides are considered bioactive because, once released from 46 

the protein, they can contribute to a positive effect on consumers´ health. Numerous 47 

bioactive peptides have been reported in cheese4, meat products like fermented sausages 48 

and dry-cured ham5 and fishes6.  49 

The activity of the generated bioactive peptides has been extensively studied in vitro 50 

and its physiological effects confirmed through in vivo assays with laboratory animals 51 

and in recent trials with humans. The most reported bioactivities are ACE inhibitory, 52 

antioxidant, antimicrobial, opioid, inmunomodulating and antithrombotic. Milk-based 53 

products were the first reported to generate peptides with relevant bioactivity 54 

contributing to health7. Further, no changes in blood pressure were reported with daily 55 

consumption of Camembert cheese8 or even decreased diastolic and systolic blood 56 

pressure with Gouda-type cheese9. Similar trend in reduction of blood pressure was 57 

reported with daily consumption of dry-cured ham10 that was also reported to impair 58 

platelet and monocyte activation, and the levels of plasmatic P-selectin and interleukin 6 59 

in healthy humans11. Peptides from salmon and sardine were also reported to have 60 

antihypertensive effects in humans6. 61 
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Bioactive peptides can also be obtained in large amounts through reactor-controlled 62 

hydrolysis of extracted food proteins with commercial proteolytic enzymes or 63 

microorganisms12,13. Food by-products from meat, fish, dairy, olive oil and wine 64 

constitute typical sources of proteins to be hydrolysed and produce bioactive peptides at 65 

industrial scale12,14-17. Other hydrolyzates have been reported from eggs, peanut, and 66 

soybean proteins18-20. 67 

The possibility of diseases prevention through the ingesta of bioactive peptides is of 68 

high interest to health authorities because it would contribute to reduce the budget for 69 

health care treatments. However, bioavailability of bioactive peptides must be taken into 70 

account since some of them may be susceptible to partial or total loss of activity due to 71 

further hydrolysis by salivary, stomachal, intestinal and pancreatic enzymes, and even 72 

intestinal microbiota during gastrointestinal digestion21,22. Furthermore, peptides may be 73 

subject of reactivity (i.e. deamination, decarboxylation, oxidation, etc.) with the food 74 

matrix, being reduced its bioactivity and/or bioavailability23. 75 

This manuscript is reviewing the recent advances on the generation of bioactive 76 

peptides in fermented and ripened foods, the enzymatic mechanisms involved in the 77 

hydrolysis of food proteins, including the types of enzymes and mechanisms of action 78 

involved, the strategies followed for the isolation and identification of such peptides 79 

through advanced proteomic tools, the assessment of bioactivity and physiological 80 

effects, and specific applications. 81 

 82 

ROUTES FOR ENZYMATIC HYDROLYSIS OF FOOD PROTEINS 83 

Food proteins are subjected to hydrolysis during processing. Such proteolysis is more 84 

extensive when the food is fermented and/or ripened. The enzymes involved are either 85 
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intrinsically endogenous in the food (i.e. muscle enzymes in meat or fish), or microbial 86 

peptidases present in the microorganisms responsible for food fermentation (i.e. lactic 87 

acid bacteria peptidases in fermented sausages).  The enzymes responsible for 88 

proteolysis are endopeptidases, also known as proteinases, and exopeptidases. The 89 

mechanism of action consists of proteins break down by endopeptidases into 90 

polypeptides that constitute the substrates for the action of exopeptidases. In this way, 91 

polypeptides are further hydrolysed generating smaller peptides and free amino acids13. 92 

Depending on the length and sequence of residues, some of the released peptides may 93 

be bioactive24. Peptidomics has become a very useful tool for obtaining the peptide 94 

profiles of hydrolyzed foods and helpful for their identification and quantification25. 95 

There are many types of exopeptidases depending on the action on N- or C-terminal, its 96 

specificity and generated product of reaction. So, tripeptidylpeptidases (TPP) release 97 

tripeptides and dipeptidylpeptidases (DPP) release dipeptides from the N-terminal. DPP 98 

II and IV cleave preferently Gly-Pro and Arg-Pro, DPP III prefer dipeptides Ala-Arg 99 

and Arg-Arg while DPP I prefer Ala-Arg and Gly-Arg26. X-prolyl dipeptidyl peptidase 100 

(PepX) releases dipeptides X-proline in the N terminal. The generated tripeptides can be 101 

further hydrolysed by tripeptidases into a dipeptide and a single amino acid. Further, 102 

dipeptides can also be hydrolysed by dipeptidases into the two single constituent amino 103 

acids27. 104 

Free amino acids are also released from the N-terminal by several types of 105 

aminopeptidases (Pep N, Pep A, Pep C, Pep P among others). Amino acids can also be 106 

released from the C-terminal by carboxypeptidases A and B, named so because its 107 

activity is optimal at acid or basic pH, respectively. The consequence for the action of 108 

these enzymes is the generation of peptides with reduced length. A scheme of mode of 109 

action for different types of peptidases on a fragment of myosin heavy chain is shown in 110 
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Figure 1. For such particular case, it can be observed that endopeptidases act on the 111 

internal linkage Phe-Pro. Aminopeptidases would release Thr from the N-terminal that 112 

would be followed by the release of the dipeptide Val-Lys by a dipeptidylpeptidase. On 113 

the C-terminal, carboxypeptidase would release Asp and then Glu, followed by 114 

dipeptides Lys-Ile and Phe-Asp released by peptidyldipeptidase and Lys by 115 

carboxypeptidase28.  116 

The generation of bioactive peptides depends on the proteolysis phenomena but there 117 

are many variables affecting the enzyme action such as the food ingredients used, the 118 

type of enzymes and their activity, the microorganisms used for fermentation, and the 119 

applied processing conditions29. Preliminary information on the profile of expected 120 

small peptides may be obtained by using model systems representing the food. For 121 

instance, proteolysis was studied by using model fermented sausages inoculated with 122 

Lactobacillus curvatus CRL705 and Staphylococcus vitulinus GV31830.  123 

 124 

Hydrolysis in foods by endogenous and microbial peptidases and mode of action 125 

The hydrolysis of proteins in foods may be carried out by endogenous or microbial 126 

peptidases (see Figure 2). The released peptides may be bioactive but they must be 127 

resistant to gastrointestinal digestion and further hydrolysis by brush border peptidases 128 

in the intestine membrane in order to exert its physiological effect in humans31. 129 

Endogenous peptidases like muscle peptidases are able to release small peptides during 130 

the ripening and/or drying of meat products. So, DPP I and II that are active at pH 5.5-131 

6.5, near the pH found in most meat products, can release dipeptides Ala-Gln, Arg-Gly, 132 

Asn-Pro, lle-Leu, Ala-Gly, Ser-Gly, Ser-Gln, Pro-Ala among other from the N-133 

terminal32. TPP I, also active at pH 5.5-6.5, releases specific tripeptides like Ile-Ile-Pro, 134 
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Arg-Gly-Ala, Gly-Asn-Pro, Gly-Ala-Gly, Gly-Pro-Gly from the N-terminal33. Pro, Lys 135 

and Ala are also released by aminopeptidases34. Several antioxidant peptides were 136 

reported in different types of dry-cured ham (see Table 1). Some of them are Asp-Leu-137 

Glu-Glu in Xuanwei ham36, Gly-Lys-Phe-Asn-Val, Phe-Leu-Lys-Met-Asn, Gly-Lys-138 

Phe-Asn-Val and Leu-Pro-Gly-Gly-Gly-His-Gly-Asp-Leu in Jinhua ham35 and Ala-Glu-139 

Glu-Glu-Tyr-Pro-Asp-Leu38, Ser-Asn-Ala-Ala-Cys42 in Spanish ham and Met-Trp-Thr-140 

Asp and Phe-Trp-Ile-Ile-Glu in mutton ham39. ACE inhibitory peptides Leu-Gly-Leu, 141 

Gly-Val-Val-Pro-Leu and Ser-Phe-Val-Thr-Thr were isolated from Parma ham37 and 142 

Ala-Ala-Ala-Thr-Pro43 and Thr-Lys-Tyr-Arg-Val-Pro from Spanish ham42 were also 143 

reported. Peptides Ala-Ala-Ala-Ala-Gly, Ala-Leu-Gly-Gly-Ala and Leu-Val-Ser-Gly-144 

Met showed inhibitory activity against DPP IV and were also isolated from Spanish 145 

ham58. 146 

Most fermented foods today use microbial starters that improve safety and allow for a 147 

better standard quality. Such microorganisms have complex enzyme system exerting 148 

different types of activities able to hydrolyse proteins, carbohydrates and lipids59. 149 

Peptidases from lactic acid bacteria (LAB), yeasts or molds may be helpful in 150 

generating bioactive peptides, especially in short term processed foods60. LAB 151 

constitutes a large group of microorganisms typically used for food fermentation and 152 

characterized by having a high proteolytic activity as a consequence of their 153 

extracellular cell wall serine proteinase and the content of diverse intracellular 154 

peptidases with a wide range of specificity. This explains that different peptides patterns 155 

are obtained for a particular food depending on the LAB strain used for fermentation. 156 

Yeasts are also used in food fermentation and are able to hydrolyze proteins61.  157 

Proteinases A and D, and prolyl and arginyl aminopeptidases were reported in 158 
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Debaryomices hansenii61 and PepX, leucine aminopeptidase, and DPP IV and V in 159 

Aspergillus oryzae and DPP V in Aspergillus fumigatus62,63. 160 

Aminopeptidase activity is usually present in LAB so that its activity is particularly high 161 

in Leuconostoc mesenteroides and L. curvatus and variable between strains of L. 162 

plantarum, L. pentosus and Weissella cibaria64. Ala, Lys, Pro and Leu have been 163 

reported to be released from the N-terminal by strains of L. plantarum and L. brevis65. 164 

L. casei subsp casei is also able to release Ala, Arg, Lys, Met and Leu66-68. L. sakei 165 

releases Ala and Leu and L. plantarum releases Leu67,68. In general, aminopeptidases are 166 

partially inhibited by salt and therefore, their activity modulated in such fermented and 167 

ripened foods where salt is typically used69. There is a wide variety of intracellular 168 

aminopeptidases present in LAB as reported in the literature. So, aminopeptidase N, 169 

PepN is present in many bacteria like L. Helveticus, L. lactis and L. sakei, to release 170 

preferently Arg and Pro from the N-terminal70. Glutamyl (aspartyl) specific 171 

aminopeptidase PepA, that releases Glu and Asp from the N-terminal, is found in 172 

Streptococcus cremoris, Streptococcus thermophilus, L. lactis sp. and L. delbrueckii 173 

ssp. Lactis71. Aminopeptidase PepC is a thiol peptidase that hydrolyzes Ala, Leu or Lys 174 

from the N-terminal and has been reported in Streptococcus thermophilus and L. lactis 175 

ssp. Cremoris72. Proline aminopeptidase PepP that releases Arg, Met, Lys and Tyr at the 176 

N terminal is found in L. lactis ssp. Lactis73. 177 

The activity of carboxypeptidases to release amino acids from the C terminal has been 178 

reported to be very low or negligible in cell-free extracts of several LAB65,68 and low for 179 

the release of Phe and Arg by L. paracasei subsp paracasei66,67. On the contrary, 180 

carboxypeptidase activity in muscle foods is higher and, in fact, several amino acids like 181 

Phe, Tyr, Trp, Met, Ile, Leu, Val and Pro have been reported to be released from the C-182 

terminal by carboxypeptidases A and B during the processing of dry-cured ham33. 183 
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X-prolyl dipeptidyl peptidase PepX has been reported in Leuconostoc mesenteroides, L. 184 

curvatus and L. sakei64,70,74. Several tripeptides X-Pro-Pro were found in casein 185 

hydrolysates with L. helveticus70. Tripeptidase activity was reported for L. sakei and 186 

also by Pep N in LAB59,75. Generation of dipeptides through DPP action has been 187 

reported for L. paracasei where dipeptides like Ala-Phe, Pro-Leu, Lys-Leu, Leu-Gly 188 

and Lys-Phe were reported in fermented foods66. DPP activity has also been reported in 189 

Leuconostoc mesenteroides, releasing dipeptides Arg-Pro and Gly-Phe and L. paracasei 190 

subsp casei also releasing Gly-Pro67. It must be taken into account that the released 191 

dipeptides might be further hydrolysed into their individual amino acids by microbial 192 

dipeptidases activity. In fact, dipeptides can cross the membrane thanks to cellular 193 

transport systems and be further hydrolyzed by dipeptidases in L. sakei75. In such cases, 194 

the dipeptide is no longer bioactive and therefore no health benefits may be expected. 195 

Dipeptidase activity has been reported in microoorganisms like L. plantarum. L. brevis, 196 

L. helveticus, L. casei sp casei and L. paracasei. Their dipeptidases are able to 197 

hydrolyse preferently dipeptides Leu-Leu, Phe-Ala, but also dipeptides Ala-Phe, Tyr-198 

Leu and Lys-Leu, at lower rate. However, some dipeptides like Ala-Ala or Leu-Gly are 199 

resistant to hydrolysis68. Dipeptidase activity is also present in L. brevis that hydrolyzes 200 

dipeptides Leu-Leu, Tyr-Leu, Ala-Ala, Leu-Gly, Ala-Phe, Lys-Leu and Phe-Ala. Lower 201 

dipeptidase activity is also present in L. casei sp casei63,64,68. Oligopeptidase PepO is a 202 

metallopeptidase in Streptococcus thermophilus that is specific for peptides with 203 

arginine and methionine76,77. 204 

Furthermore, the net amount of bioactive peptides is a balance that does not only 205 

depend on peptides generation through hydrolysis but also on cells consumption. In 206 

LAB, the transportation of oligopeptides through the cell membrane consists of 5 207 

proteins (OppA, B, C, D and F). This system, typical of lactobacilli and lactococci, 208 



10 
 

allows the transport of peptide chains of up to 12 amino acids78. Streptococcus 209 

thermophilus has lower activity of peptidases but this is compensated by more efficient 210 

transport of peptide chains of up to 23 amino acids integrated in the Ami system77. 211 

Lactobacillus helveticus has been reported to hydrolyze Ƙ-casein and releases short 212 

peptides with a variety of bioactivities79. However, β-casein and αs1-casein found to be 213 

more resistant to hydrolysis probably due to the presence of phosphoserine in their 214 

respective structures80,81 even though several peptides were reported to be generated 215 

from such αs1-casein in Brazilian Canastra artisanal cheese45 and hard cow milk 216 

cheese46. Resistance to proteolysis by L. acidophilus LA-5 was reported for αs2-casein82. 217 

Other authors reported that the abundance of Pro, Leu and Val in β-casein, that are 218 

preferred by aminopeptidases and carboxypeptidases, was the probable reason for better 219 

hydrolysis than other types of caseins27. In fact, hexapeptides Ala-Val-Pro-Tyr-Pro-Gln 220 

and Glu-Ala-Met-Ala-Pro-Lys with antioxidant activity were released from β-casein 221 

after simulated gastrointestinal digestion of Stracchino cheese that is produced in 222 

Northern Italy22 and longer ACE inhibitory peptides in Brazilian Prato cheese47. A 223 

significant correlation between the release of ACE inhibitory peptides Val-Leu-Ser-224 

Arg-Tyr-Pro and Leu-Arg-Phe-Phe and aminopeptidase and carboxypeptidase activity 225 

was reported in milk fermented with the yeast Kluyveromyces marxianus Z1753. 226 

A recent research with L. helveticus LH-2 and L. acidophilus La-5 growing in whey 227 

protein isolate medium generated peptides with antivirulence effect against Salmonella 228 

enterica subsp. enterica serovar Typhimurium after growth. A large number of 229 

bioactive peptides, especially with ACE inhibitory activity were also reported to be 230 

generated for both strains83. The released peptides remained and accumulated in the 231 

media because they were not transported into the cells and thus were not further 232 
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hydrolysed due to their composition and low affinity to the oligopeptide-binding protein 233 

(OppA) of both strains83. 234 

When using staphilococci for meat fermentation, they have been reported to exert 235 

proteolytic activity preferently on myofibrillar meat proteins and peptidases action 236 

might also be expected84. Dry-fermented sausages with Lactobacillus pentosus and 237 

Staphylococcus carnosus containing added sodium caseinate as ingredient were 238 

reported to generate large amounts of bioactive peptides27. Both microorganisms, L. 239 

pentosus and S. carnosus are able to hydrolyze casein extracellularly thanks to the 240 

proteinase attached to the cell wall. The generated oligopeptides can be transported into 241 

the cell for further hydrolysis by intracellular peptidases into smaller peptides and free 242 

amino acids85.  243 

Hydrolysis of food proteins with commercial peptidases.  244 

Bioactive peptides are generally produced through the enzymatic hydrolysis of food 245 

proteins. Depending on the type of bioactivity searched, the protein source and degree 246 

of hydrolysis will be fixed86. Food proteins may be isolated and hydrolyzed in reactors 247 

using commercial peptidases or microorganisms with proteolytic activity in order to 248 

produce large amounts of bioactive peptides at industrial scale (see Figure 2). Typical 249 

commercial enzymes used for proteins hydrolysis are derived from cheap sources like 250 

microorganisms. This is the case of Alcalase from Bacillus licheniformis, Protamex 251 

from Bacillus sp., Flavorzyme from Aspergillus oryzae, Neutrase from Bacillus subtilis 252 

or Bacillus amyloliquefaciens, Bioprase from Bacillus sp., Thermolysin from Bacillus 253 

stearothermophilus, Prolidase from Lactobacillus casei, and Corolase 7089 from 254 

Bacillus subtilis, among other. Other enzymes may be obtained from animal and plant 255 

but the costs tend to be much higher. This is the case of trypsin from bovine or pig 256 
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pancreas, and bromelain from pineapple stem13. These enzymes have, in general, a 257 

broad specificity because they usually contain endopeptidases that can be combined 258 

with one or more exopeptidases87. An exception is Prolidase which is a dipeptidase88. 259 

Examples of food protein hydrolyzates, the enzymes and hydrolysis conditions used, the 260 

main obtained peptides and major assayed bioactivity are reported in Table 2. As can be 261 

observed in the table, most of the sequences of bioactive peptides contain less 10 amino 262 

acids residues. Longer peptides like those generated from the hydrolysis of spent hens99, 263 

duck100, goat milk103 or Spirulina platensis algae92 may be subject of further hydrolysis 264 

during gastrointestinal digestion. In general, the most usual recovered bioactivities are 265 

ACE inhibitory and antioxidant activity. In some cases, peptides with anti-inflammatory 266 

and antidiabetic activities are also obtained. Peptide Asp-Gly-Val-Val-Tyr-Tyr with 267 

outstanding ACE inhibitory activity, IC50=2 µM, was obtained through the fermentation 268 

of tomato seeds with Bacillus subtilis106. 269 

Defatted salmon backbones were hydrolysed with commercial enzymes obtaining 270 

protein hydrolysates with bioactivity. Hydrolysis with trypsin gave the highest ACE 271 

inhibitory, bromelain and papain gave the best cellular glucose transporter 272 

(GLUT/SGLT) inhibitory activity and the highest antioxidant activity was obtained 273 

hydrolyzing with protamex107. 274 

 275 

IDENTIFICATION OF BIOACTIVE PEPTIDES 276 

Traditionally, proteomics are used for the identification of proteins through the previous 277 

analysis of the peptides generated from their controlled hydrolysis using trypsin 278 

enzyme. This experimental methodology is called “bottom-up” approach and uses 279 

peptide mass fingerprint (PMF) for the final identification of the protein of origin. 280 
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However, the generation of bioactive peptides frequently occurs during the processing 281 

of foods or during gastrointestinal digestion, where the action of endogenous, microbial, 282 

or gastrointestinal enzymes results on unspecific peptide sequences that cannot be 283 

trypsin-digested due to their small size. Thus, the classic PMF approach, oftenly used in 284 

proteomics, is not useful, and it is thus necessary to adapt strategies used for the 285 

identification of proteins such as tandem mass spectrometry (MS) and modern 286 

bioinformatics tools108,109. 287 

In this sense, peptidomics would permit the identification of the peptides generated 288 

during different food processes or controlled hydrolysis although the identification of 289 

naturally generated peptides is very difficult because: (i) the analysis of  small bioactive 290 

peptides is near the limits of standard MS techniques, and (ii) longer peptides face up 291 

the difficulty to control hydrolysis. The major challenge is the complexity of the 292 

numerous peptides released and furthermore the associated difficulty due to the 293 

unspecific cleavage sites in proteins25.  294 

The identification of bioactive peptides from complex food matrices has been 295 

traditionally done using empirical approaches including (i) the release of bioactive 296 

sequences from the parent protein; (ii) a preliminary separation to screen the bioactivity 297 

using in vitro assays; (iii) a secondary purification and separation of the fractions 298 

showing the best bioactivity using high-resolution techniques; (iv) additional in vitro 299 

assays to determine the most active fractions; (v) identification of peptides included in 300 

those active fractions using MS in tandem; and (vi) the synthesis of the identified 301 

sequences in order to confirm their in vitro and in vivo bioactivity108. A scheme of the 302 

traditional empirical procedure followed for  bioactive peptides is shown in Figure 3. 303 
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 The development of this approach is very challenging as there are multiple factors to 304 

consider that could finally affect the generation of the bioactive peptides and it results 305 

very complicated when the objective is the generation of controlled sequences showing 306 

certain activity of interest.  In this case, the use of in silico approaches considering 307 

different bioinformatics tools for computer simulation results very useful and permits to 308 

choose/discard between different experimental procedures in a reasonable amount of 309 

time and low economical cost. In silico procedures will permit to select best protein of 310 

origin and proteolytic enzymes to obtain certain peptide sequences as well as predict 311 

their bioactivity, structure, and physical-chemical properties. After the simulation 312 

studies, the confirmation of in silico results is done through a traditional empirical 313 

approach110. Figure 4 shows the main steps followed for the identification of bioactive 314 

peptides through computational prediction. 315 

 316 

MAJOR BIOACTIVITIES OF RELEASED PEPTIDES 317 

The health benefits of fermented foods like antioxidant, antiinflammatory, 318 

antihypertensive, antidiabetic, antimicrobial, etc., are most times associated to the 319 

generated bioactive peptides as reported in the literature111. Tripeptides Val-Pro-Pro and 320 

Ile-Pro-Pro generated in fermented milk are well known for their high ACE inhibitory 321 

activity. A meta-analysis of the relevant literature on the effect of both tripeptides on 322 

blood pressure in humans was recently performed50 revealing that there was a 323 

significant but low hypotensive effect on blood pressure when those tripeptides were 324 

included in the diet. In fact, the observed effect was much lower than many 325 

antihypertensive drugs50. 326 
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The bioactivity of released peptides is always tested in vitro using different assays 327 

depending on the expected activity. However, in order to prove and confirm the 328 

bioactivity of the peptides, subsequent in vivo tests are done using cellular models, rat 329 

models, or even clinical trials with humans. In this regard, in vitro results do not 330 

guarantee a real physiological effect. Quite oftenly, peptides with a high bioactivity in 331 

vitro are inactive after oral administration112.  The reason is that, once ingested, peptides 332 

can be hydrolyzed by salivary, gastric and intestinal enzymes so that those peptides with 333 

longer sequences may be further hydrolyzed into smaller size peptides and therefore, 334 

loose their bioactivity. Small bioactive peptides can be hydrolyzed in the intestine by 335 

peptidases of the microbial flora or by brush border peptidases in the epithelium of the 336 

intestinal membrane. Finally, the released peptides have to cross the intestinal 337 

membrane and reach the bloodstream in order to exert its physiological benefit (see 338 

Figure 2).   339 

The bioactivity of the generated peptides also depends on the amino acid composition of 340 

the sequence and its size, but peptide structure and hydrophobicity also play an 341 

important role influencing the accessibility of the peptides to the active sites of the 342 

enzymes113. 343 

4.1 ACE-inhibitory peptides 344 

The ACE-inhibitory activity is the most extensively studied bioactivity in relation to 345 

food-derived peptides. Main interest is due to the ability of ACE-inhibitory peptides to 346 

prevent hypertension by decreasing the blood pressure. Its mechanism of action is based 347 

on the inhibition of ACE enzyme that converts the inactive decapeptide angiotensin-I 348 

into the potent vasoconstricting octapeptide angiotensin-II, whereas also inactivates the 349 

vasodilator bradykinin, resulting in an increase in blood pressure. Thus, by inhibiting 350 
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the catalytic action of ACE, the hypertension can be regulated by reducing the blood 351 

pressure in the body.  352 

Currently, thousands of potential ACE-inhibitory peptides have been isolated and 353 

identified from food products after fermentation or curing processes such as dry-cured 354 

ham, cheese, yogurt, and other fermented products, as well as from the controlled 355 

digestion using commercial enzymes such as trypsin, Corolase, Thermolysin, Alcalase, 356 

as well as controlled microbial fermentation, in food products such as fish, algae or 357 

meat. In this respect, Tables 1 and 2 show examples of bioactive peptides that have 358 

been described in the literature with respective calculated IC50 values.  However, the 359 

identification of ACE -inhibitory peptides is of high interest and other interesting 360 

sequences have been described in mushroom114, and cereals such as wheat, quinoa and 361 

corn115-117. 362 

4.2 Antioxidant peptides 363 

Antioxidant peptides are the second most studied group of food-derived peptides with 364 

biological activity. These peptides can act as antioxidants in foods, naturally protecting 365 

against oxidation, avoiding sensory and nutritional defects that are frequently associated 366 

with oxidative patterns. On the other hand, antioxidant peptides can also exert their 367 

function after ingestion in the human body, decreasing the negative effects of reactive 368 

oxygen species (ROS) and the risk for development of some degenerative diseases such 369 

as cardiovascular diseases or certain types of cancer118.  370 

The mechanism of action for antioxidant peptides can be very variable, depending on 371 

the transference mechanism. Certain mechanisms like ORAC and TRAP are based on 372 

hydrogen atom transfer mechanism while other such as DPPH and ABTS are based on 373 

electron transfer119. The antioxidant activity strongly depends on their composition in 374 
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amino acids. So, peptides containing His, Tyr, Met, Lys and Trp are more able to exert 375 

antioxidant activity.  376 

Carnosine and anserine are the two most abundant natural antioxidant peptides in foods, 377 

as they are very common in fish and meat products. However, many different peptides 378 

showing antioxidant activity have been described to be generated during the processing 379 

of some products such as dry-cured ham38,42,120, mutton ham49, cheese46, yogurt48, or 380 

fermented fish56. Also the use of commercial enzymes alone or in combination has 381 

resulted in extensive hydrolysis generating antioxidant peptides in algae, fish, legumes 382 

or meat as shown in Tables 1 and 2.   383 

4.3 Anti-obesity and antidiabetic peptides 384 

Obesity is the most important risk factor for type-2 diabetes, involves the accumulation 385 

of fat in the body, and it is associated to numerous health problems also related to 386 

cardiovascular diseases. Synthetic drugs are frequently used as anti-obesity substances 387 

with the disadvantage of showing multiple negative side effects. For this reason, the 388 

search for natural peptides derived from food sources is of high interest. Apolipoprotein 389 

A-I, melanocortin-4 receptor-specific agonist, GLP-1 dual and triple agonists, 390 

neuropeptides and prolactin-releasing peptide mimetics are the most studied for anti-391 

obesity properties121.  392 

On the other hand, diabetes mellitus is characterised by insufficient insulin production 393 

or insulin resistance, and the potential peptides that participate in the control of glucose 394 

level in carbohydrates pathway are α-amylase and α-glucosidase inhibitors, and 395 

dipeptidyl peptidase-IV inhibitors122.  396 

The most studied food-related peptides showing anti-obesity properties have been 397 

soybean peptides due to their body fat-decreasing characteristics123,124. On the other 398 
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hand, milk has been described to suppress appetite due to its content in satiating 399 

peptides, preventing weight gain and obesity. In this sense, camel milk peptides 400 

displayed novel antidiabetic and anti-obesity activity 125,126. Also peptides derived from 401 

the controlled digestion of algae have been described as antidiabetic (α-amylase 402 

inhibitory) and anti-obesity91,92,127. 403 

 4.4 Anti-inflammatory activity 404 

The inflammation is the response of the body to local injury or infection, where it is 405 

necessary to fight infection and repair the tissue. However, excessive and uncontrolled 406 

inflammation is often associated with chronic diseases 99,128,129.  407 

Anti-inflammatory peptides might participate in multiple physiological systems by 408 

modulating or regulating the inflammatory response. However, as food-derived 409 

bioactive peptides are ingested, the regulation of gastrointestinal system has been the 410 

most studied130. The oxidative stress is often associated with inflammatory processes. 411 

However, there are other complex mechanisms related to the renin-angiotensin-412 

aldosterone system (RAAS), proinflammatory cytokines, proinflammatory signalling 413 

kinases, and integrin-dependent signalling51. Anti-inflammatory peptides from milk, 414 

egg, fish and soy have been reported129,131,132. 415 

4.5 Antimicrobial activity 416 

Certain peptides are effective against certain bacteria like Staphylococcus aureus and 417 

Escherichia coli and yeasts. They can exert such antimicrobial activity by defending the 418 

organism against pathogens as well as in food by preventing its contamination. They 419 

can interact with the bacterial cells by nonreceptor-mediated or receptor-mediated 420 

mechanisms and invader cells by disturbing the membrane integrity133,134.  421 
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Antimicrobial peptides are generated during the processing of foods such as 422 

fermentation, and during controlled hydrolysis using commercial enzymes. They have 423 

been isolated from fish and marine products135,136, milk and milk products137,138, meat 424 

products40, legumes139 and eggs140. 425 

In summary, bioactive peptides can be generated either endogenously in food or through 426 

enzymatic hydrolysis of extracted food proteins. Depending on the particular food 427 

protein, a pool of peptides may be obtained. Those peptides with smaller size may be 428 

more bioaccessible and exhibit bioactivity that, depending on the sequence, can be 429 

either ACE inhibitory, antioxidant, antithrombotic, hypoglycemic, hypocholesterolemic, 430 

or antimicrobial among others. In any case, bioactive peptides must be bioavailable to 431 

exert its physiological action in the way that they must be resistant to gastrointestinal 432 

digestion and be able to be absorbed through the intestinal barrier and reach the 433 

bloodstream.  434 

 435 

ABBREVIATIONS USED 436 

ABTS: 2, 2′‐Azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) radical scavenging 437 

assay; ACE: Angiotensin converting enzyme; β-CBA: β-carotene bleaching activity; 438 

Ch: Fe2+-chelating activity; DPP: dipeptidylpeptidases; DPPH: 2, 2‐diphenyl‐1‐picryl‐439 

hydrazyl  radical scavenging activity; LAB: Lactic acid bacteria; MS: mass 440 

spectrometry; ORAC: oxygen radical absorbance capacity; PMF: peptide mass 441 

fingerprint; RAAS: renin-angiotensin-aldosterone system; ROS: Radical oxygen 442 

species; RP: reducing power; TRAP: total radical trapping antioxidant parameter; 443 

DPPH: radical scavenging activity; TPP: tripeptidylpeptidases.  444 
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Three letter abbreviations for amino acids are used. Ala: Alanine; Arg: Arginine; Asn: 445 

Aspargine; Asp: Aspartic Acid; Cys: Cysteine; Gln: Glutamine; Glu: Glutamic acid; 446 

Gly: Glycine; His: Histidine; Ile: Isoleucine; Leu: Leucine; Lys: Lysine; Met: 447 

Methionine; Phe: Phenyl alanine; Pro: Proline; Ser: Serine; Thr: Threonine; Trp: 448 

Tryptophan; Tyr: Tyrosine; Val: Valine. 449 
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 923 

LEGENDS FOR THE FIGURES 924 

 925 

Figure 1.- Scheme of food protein hydrolysis and enzymes involved. The amino acids 926 

sequence is a fragment belonging to myosin heavy chain. Aminopeptidase (A), 927 

Dipeptidylpeptidase (D), Endopptidase (E), Carboxypeptidase (C) and 928 

Peptidylpeptidase (P). Adapted from (29). 929 

 930 

 931 

Figure 2.- Scheme of the generation of bioactive peptides from protein hydrolysis in 932 

foods and/or the hydrolysis of isolated food proteins.  933 

 934 
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 935 

Figure 3.- Scheme of the traditional empirical procedure for the identification and 936 

confirmation of bioactive peptides from food matrices. SEC: size-exclusion 937 

chromatography; CE: capillary electrophoresis; LC: liquid chromatography; IEF: 938 

isolectric focusing; HPLC: high performance liquid chromatography; MS/MS: mass 939 

spectrometry in tandem. Adapted from (84). 940 

 941 

 942 

Figure 4.- Main steps of in silico approaches and open access databases for the selection 943 

of the protein, hydrolysis simulation and bioactivity prediction. Adapted from (84). 944 
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Table 1.- Examples of bioactive peptides recently identified in fermented and dry-cured 

products. 
 

 

          
  

  

Food Type / Fermentation Peptide sequence Parent protein Potential activity Activity values* Reference 

Dry-cured ham Chinese Jinhua FLKMN — Antioxidant DPPH: 70% at 1 mg/mL 35 

GKFNV — Antioxidant DPPH: 92.7% at 1 mg/mL 35 

LPGGGHGDL — Antioxidant OH-: 85% at 1 mg/mL 35 

Chinese Xuanwei DLEE — Antioxidant DPPH: 74.4%  at 0.5 mg/mL 36 

Italian Parma GVVPL — Antihypertensive ACE inhibition: IC50 = 956 µM 37 

LGL — Antihypertensive ACE inhibition: IC50 = 145 µM 37 

SFVTT — Antihypertensive ACE inhibition: IC50 = 395 µM 37 

Spanish AEEEYPDL Creatine kinase Antioxidant ABTS: 1474.08 nmol TEAC/mg, ORAC: 960.04 nmol TE/mg 38 

FNMPLTIRITPGSKA LIM domain-binding 
3 

Anti-
inflammatory 

PAF-AH: 26.06 % at 1mM 39 

Antihypertensive 68.34% at 1mM 39 

HCNKKYRSEM  Dynein heavy chain Antimicrobial MIC (L. monocytogenes)= 50 mM 40 

Anti-

inflammatory 

LOX: 23.33% at 1mM 41 
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Antioxidant ORAC: 1767.56 nmol TE/mg 41 

Antihypertensive ACE inhibition: 99.34% at 1 mM 41 

MDPKYR Titin Antimicrobial MIC (L. monocytogenes)= 50 mM 40 

Anti-

inflammatory 

PAF-AH: 13.48% at 1mM, ATX: 14.51% at 1mM 41 

Antioxidant ABTS: 5444.3 nmol TEAC/mg, ORAC: 3087.5 nmol TE/mg  41 

Antihypertensive ACE inhibition: 60.64% at 1mM 41 

SNAAC Myosin heavy chain Antioxidant ABTS: 3097.04 nmol TEAC/mg, ORAC: 2737.4 nmol TE/mg 42 

TKYRVP Titin Anti-

inflammatory 

PAF-AH: 11.04% at 1mM, ATX: 22.47% at 1mM 41 

Antioxidant ABTS: 6987.8 nmol TEAC/mg, ORAC: 2886.8 nmol TE/mg 41 

Antihypertensive ACE inhibition: 80.85% at 1mM 41 

AAATP Allantoicase 
 
Antihypertensive 

 
ACE inhibition: IC50 = 100,00 µM 

 
43 

TSNRYHSYPWG Ser/Thr-protein kinase Anti-

inflammatory 

PAF-AH: 16.30 % at 1mM, ATX:18.93% at 1mM 41 

Antioxidant ABTS: 3036.03 nmol TEAC/mg 41 

Antihypertensive ACE inhibition: 71.62% at 1mM 41  

Mutton ham   MWTD — Antioxidant ABTS: IC50 = 0.4 mg/mL 44 

  APYMM — Antioxidant ABTS: IC50 = 0.12 mg/mL 44 

  FWIIE — Antioxidant ABTS: IC50 = 0.23 mg/mL 44 
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Cheese Italian Stracchino  AVPYPQ β-Casein Antioxidant ABTS: 19.5 µmol TE/mg 22 

EAMAPK  β-Casein Antioxidant ABTS: 22.9 µmol TE/mg 22 

Brazilian Canastra artisanal Minas RPKHPIKHQ αS1-Casein Antimicrobial MIC (E. coli)= 15 µg/mL 45 

RPKHPIKHQG αS1-Casein Antimicrobial MIC (E. coli)= = 17 µg/mL 45 

Hard cow milk cheese  EIVPN αS1-Casein Antioxidant DPPH inhibition, Metal chelating activity 46 

DKIHPF β-Casein Antioxidant DPPH inhibition, Metal chelating activity 46 

VAPFPQ αS1-Casein Antioxidant Metal chelating activity 46 

Brazilian Prato / Lactobacillus 
helveticus (10%, 40°C, 18h) 

QEPVLGPVRGPFPIIV β-Casein Antihypertensive ACE inhibition 47 

YQEPVLGPVRGPFP β-Casein Antihypertensive ACE inhibition 47 

Yoghurt Chinese Feng Wei Suan Ru / 

Streptococcus thermophellolus + 
Lactobacilus bulgaricus 

FVAPFPEVF αs1-Casein Antidiabetic DPP-IV inhibition: IC50 = 2.52 µM 48 

  Antihypertensive ACE inhibition: IC50 = 35.76 µM 48 

  PPFLQPEVM β-Casein Antidiabetic DPP-IV inhibition: IC50 = 0.44 µM 48 

  Antihypertensive ACE inhibition: IC50 = 34.63 µM 48 

  QEPVLGPVRGPFPIIV β-Casein Antihypertensive ACE inhibition: IC50 = 160.76 µM 48 

  Probiotic yoghurt with pineapple 
peel / S. thermophilus + L. 

SLPQNIPPLTQTPVVVPPF β-Casein Antioxidant ABTS: IC50 = 1.44 mg/mL, OH-: 34.97% at 1 mg/mL 49 
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  bulgaricus + L. acidophilus + L. 

casei + L. paracasei (1%, 42°C, pH 

4.5) 

Anticancer Antiproliferation colon cancer cells: 38.55% at 3 mg/mL 49 

  YQEPVLGPVRGPFPIIV β-Casein Antioxidant ABTS: IC50 = 29.88 µg/mL 49 

  Anticancer Antiproliferation colon cancer cells: 41.49% at 3 mg/mL 49 

Fermented milk Lactobacillus, Saccharomyces  IPP, VPP β-Casein Antihypertensive  SBP: -2.95 mmHg 50 

    Anti-
inflammatory 

Suppression of cytokine mediated inflammatory responses 51 

      Adipogenic Insulin-mimetic adipogenic effects  51 

      Antidiabetic Insulin sensitizing actions in adipocytes 52 

  Kluyveromyces marxianus (6%, 

32°C, pH 6.5, 48h) 

LRFF κ-Casein Antihypertensive ACE inhibition: IC50 = 116.9 µM 53 

  VLSRYP αS1-Casein Antihypertensive ACE inhibition: IC50 = 36.7 µM 53 

  Kombucha culture (1%, 37°C, 72h) FVAPEPFVFGKEK αS1-Casein Antihypertensive ACE inhibition: IC50 = 0.75 µM 54 

  LVYPFPGPLH β-Casein Antihypertensive ACE inhibition: IC50 = 0.03 µM 54 

  VAPFPEVFGK αS2-Casein Antihypertensive ACE inhibition: IC50 = 0.03 µM 54 

  L.actobacillus casei (1%, 37°C, 

72h) 

LVESPPELNTVQ κ-Casein Antihypertensive ACE inhibition: IC50 = 0.11 µM 54 

  VLESPPELN κ-Casein Antihypertensive ACE inhibition: IC50 = 0.23 µM 54 

  WGYLAYGLD — Antihypertensive ACE inhibition: IC50 = 0.10 µM 54 
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Fermented cucumber pickles Lactobacillus pentosus (28°C, 43d) IPP — Antihypertensive ACE inhibition: IC50 = 5 µM 55 

  KP — Antihypertensive ACE inhibition: IC50 = 22 µM 55 

  LPP — Antihypertensive ACE inhibition: IC50 = 9.6 µM 55 

  VPP — Antihypertensive ACE inhibition: IC50 = 9 µM 55 

Fermented fish Malaysian pekasam / Lactobacillus 
plantarum (27°C, 15d) 

AIPPHPYP  — Antioxidant IC50 (mg/mL): DPPH = 1.38, ABTS = 0.87, RP = 0.45 56 

IAEVFLITDPK — Antioxidant IC50 (mg/mL): DPPH = 0.89, ABTS = 0.594, RP = 0.69 56 

Fermented shrimp pastes Thai Kapi Ta Dam IF — Antihypertensive ACE inhibition: IC50 = 70.03 µM 57 

Thai Kapi Ta Dam, Kapi Ta Deang SV — Antihypertensive ACE inhibition: IC50 = 60.68 µM 57 

WP — Antioxidant ABTS: EC50 = 17.52 µM 57 

* Activity values: IC50 value is the peptide concentration that inhibits 50% of activity. SBP is the maximum decrease in systolic blood pressure after administration of the peptides to human subjects. Antioxidant activity: ABTS  

radical-scavenging activity (ABTS), DPPH radical scavenging assay (DPPH), hydroxyl radical scavenging activity (OH-), and oxygen radical absorbance capacity assay (ORAC). MIC is the minimum concentration of peptide that inhibits 

 the visible growth of bacteria. Anti-inflammatory activity: platelet-activating factor-acetylhydrolase inhibition (PAF-AH), lipoxygenase inhibition (LOX), and autotaxin inhibition (ATX). 
  

 947 

 948 

 949 

 950 
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Table 2.- Examples of bioactive peptides recently identified in hydrolyzates of different types of foods. 951 

            
  

  

Food Type Treatment hydrolysis Peptide sequence Parent protein Potential activity Activity values* Reference 

Algae Gracilariopsis 

lemaneiformis 

(Rhodophyta) 

Trypsin (2%, 2h) FQIN[M(O)]CILR — Antihypertensive ACE inhibition: IC50 = 9.64 μM, SBP: -34 

mmHg (2h) 

89 

TGAPCR — Antihypertensive ACE inhibition: IC50 = 23.94 μM, SBP: -

28 mmHg (2h) 

89 

Palmaria palmata Corolase PP (2%, 50°C, pH 7, 4h) SDITRPGGQM Allophycocyanin 
β-chain 

Antioxidant ORAC: 152.43 nmol TE/μmol, RP: 21.23 
nmol TE/μmol 

90 

Red seeweed (Porphyra 

spp) 

Pepsin (1%, 37°C, pH 2, 3h) GGSK — Antidiabetic α-Amylase inhibition: IC50 = 2.58 mM 91 

ELS — Antidiabetic α-Amylase inhibition: IC50 = 2.62 mM 91 

Spirulina platensis Pepsin (6%, 37°C, pH 2, 10h) CANPHELPNK — Anti-obesity Antiproliferation adypocites: 60.08% at 2 

mg/mL 

92 

Triglyceride accumulation: -19.5% at 600 
μg/mL 

92 

LNNPSVCDCDCMMKAAR — Anti-obesity Antiproliferation adypocites: 32.29% at 2 

mg/mL 

92 

NALKCCHSCPA — Anti-obesity Antiproliferation adypocites: 37.86% at 2 

mg/mL 

92 

NPVWKRK  Hydrolase protein Anti-obesity Antiproliferation adypocites: 46.89% at 2 
mg/mL 

92 

Triglyceride accumulation: -23.7% at at 

600 μg/mL 

92 

Fish Atlantic salmon (Salmo 

salar) 

Corolase PP (1%, 50°C, pH 7, 1h) GPAV — Antihypertensive ACE inhibition: IC50 = 415.91 μM 93 

Antidiabetic DPP-IV inhibition: IC50 = 245.58 μM 93 

Antioxidant ORAC: 9.51 μmol TE/μmol 93 
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FF — Antihypertensive ACE inhibition: IC50 = 59.151 μM 93 

Antidiabetic DPP-IV inhibition: IC50 = 546.84 μM 93 

Antioxidant ORAC: 8.47 μmol TE/μmol 93 

Cuttlefish (Sepia 

officinalis) 

Bacillus mojavensis (3U/mg, 

50°C, pH 10) 

AFVGYVLP — Antihypertensive ACE inhibition: IC50 = 18.02 μM 94 

Cuttlefish hepatopancreas 
enzymes           (3U/mg, 50°C, pH 

8) 

EKSYELP — Antihypertensive ACE inhibition: IC50 = 14.41 μM 94 

VELYP — Antihypertensive ACE inhibition: IC50 = 5.22 μM, SBP: -20 
mmHg (6h) 

94 

Leatherjacket 

(Meuchenia sp.) 

Insoluble bromelain (0.5%, 50°C, 

2h) 

AER — Antihypertensive ACE inhibition: IC50 = 0.11 g/L 95 

EQIDNLQ — Antihypertensive ACE inhibition: IC50 = 0.24 g/L 95 

Insoluble papain (0.5%, 50°C, 6h) DPHI — Antihypertensive ACE inhibition: IC50 = 0.02 g/L 95 

EPLYV — Antihypertensive ACE inhibition: IC50 = 0.05 g/L 95 

Insoluble flavourzyme (1.25%, 
50°C, 2h) 

WDDME — Antihypertensive ACE inhibition: IC50 = 0.01 g/L 95 

Sardinelle (Sardinella 
aurita) 

Bacillus amyloliquefaciens(4%, 
37°C, 24h) 

ITALAPSTM Actin Antihypertensive ACE inhibition: IC50 = 0.23 mM 96 

Antioxidant β-CBA: IC50 = 0.64 mM 96 

SLEAQAEKY Tropomyosin  Antihypertensive ACE inhibition: IC50 = 0.41 mM 96 

Antioxidant RP, ORAC 96 

GTEDELDKY Tropomyosin  Antioxidant DPPH: IC50 = 1.32 mM, RP, ORAC 96 

Bacillus subtilis (4%, 37°C, 24h) NVPVYEGY Actin Antihypertensive ACE inhibition: IC50 = 0.21 mM 96 
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Antioxidant DPPH: IC50 = 1.41 mM, RP, ORAC 96 

Pacific herring (Clupea 
pallasii) 

Trypsin (1.39U/Kg, 32.06°C, pH 
6.78, 7h) 

KEEKFE — Antioxidant IC50 (mg/mL): OH-= 3.78, DPPH = 4.37, 
Cell = 1.04 

97 

LHDELT — Antioxidant IC50 (mg/mL): OH-= 4.57, DPPH = 5.14, 

Cell = 1.19 

97 

Legumes Soy Alkaline proteinase (6U/Kg, 50°C, 
pH 9) 

LLPLPVLK — Antidiabetic α-Glusosidase inhibition: IC50 = 237.43 
μM 

97 

SWLRL — Antidiabetic α-Glusosidase inhibition: IC50 = 182.05 

μM 

97 

WLRL — Antidiabetic α-Glusosidase inhibition: IC50 = 162.29 

μM 

97 

Erythrina edulis 

(pajuro) 

Alcalase (0.5%, 50°C, pH 8.3, 2h) CCGDYY — Antioxidant ABTS: 1.18 μmol TE/μmol, ORAC: 3.61 

μmol TE/μmol 

98 

DGLGYY — Antioxidant ABTS: 0.63 μmol TE/μmol, ORAC: 3.83 

μmol TE/μmol 

98 

GESWCR — Antioxidant ABTS: 1.12 μmol TE/μmol, ORAC: 2.43 
μmol TE/μmol 

98 

SQLPGW — Antioxidant ABTS: 0.53 μmol TE/μmol, ORAC: 2.95 

μmol TE/μmol 

98 

WAL — Antioxidant ABTS: 0.58 μmol TE/μmol, ORAC: 3.38 

μmol TE/μmol 

98 

YDLHGY — Antioxidant ABTS: 0.64 μmol TE/μmol, ORAC: 3.59 
μmol TE/μmol 

98 

Mea Spent hens Protex 50FP (4%, 50°C, pH 3, 3h) AFMNVKHWPW Myosin Anti-inflammatory IL-6 inhibition: 59% at 100 μg/mL 99 

FLWGKSY Myomesin Anti-inflammatory IL-6 inhibition: 79% at 100 μg/mL 99 

SFMNVKHWPW Myosin Anti-inflammatory IL-6 inhibition: 68% at 100 μg/mL 99 

WPW Myosin Anti-inflammatory IL-6 inhibition: 63% at 100 μg/mL 99 

Duck (Anas 

platyrhynchos) 

Protamex (0.75%, 50°C, pH 6, 4h) AGRDLTDYLMKIL — Antioxidant DPPH: 85.45%, OH-= 30.75%, Fe-

Ch=74.74% at 1mg/mL 

100 
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GYDLGEAEFARIM — Antioxidant DPPH: 91.81%, OH-= 31.30%, Fe-

Ch=58.94% at 1mg/mL 

100 

IEDPFDQDDWGAWKK — Antioxidant DPPH: 90.39%, OH-= 46.51% at 1mg/mL 100 

LQAEVEELRAALE — Antioxidant DPPH: 93.36%, OH-= 20.52%,Fe-

Ch=87.13% at 1mg/mL 

100 

NWDDMEK — Antioxidant DPPH: 16.36%, OH-= 43.34%,Fe-

Ch=37.20% at 1mg/mL 

100 

Kacang goat (Capra 

aegagrus hircus) 

Protamex + Flavourzyme (0.5%, 

50°C,  pH 7, 4h) 

FQPS Actin Antihypertensive ACE inhibition: IC50 = 27.0 μM, SBP: -

10.6 mmHg (8h) 

101 

Pork loin Thermolysin (0.008%, 5°C, 24h) LVGRPRHGQ — Antihypertensive ACE inhibition: IC50 = 15.69 μM 102 

VFPS — Antihypertensive ACE inhibition: IC50 = 3.60 μM 102 

Milk Goat (Capra hircus) 
milk 

Trypsin (3%, 37°C, pH 8, 3h) INNQFLPYPY κ-Casein Antidiabetic DPP-IV inhibition: IC50 = 40.08 μM 103 

MHQPPQPL β-Casein Antidiabetic DPP-IV inhibition: IC50 = 350.41 μM 103 

SPTVMFPPQSVL β-Casein Antidiabetic DPP-IV inhibition: IC50 = 376.31 μM 103 

By-

products 

Chicken combs and 

wattles 

Alcalase (5%, 4h) APGLPGPR Collagen and 

elastin 

Antihypertensive ACE inhibition: IC50 = 53 μM 104 

FPGPPGP Collagen and 

elastin 

Antihypertensive ACE inhibition: IC50 = 38 μM 104 

Piro-GPPGPT Collagen and 

elastin 

Antihypertensive ACE inhibition: IC50 = 88 μM 104 

Oil palm  (Elaeis 

guineensis Jacq) kernel 

expeller 

Alcalase (0.5%, 45°C, pH 8.5, 2h) 

+ flavourzyme (0.5%, 50°C, pH 7, 

2h) + pepsin (0.3%, 37°C, pH 2, 
1h)+ trypsin (0.3%, 37°C, pH 7, 

1h). 

ADVFNPR Glutelin-2 Antihypertensive ACE inhibition: IC50 = 485.7 μM 105 

LPILR Glutelin-2 Antihypertensive ACE inhibition: IC50 = 779.8 μM 105 
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VIEPR Glutelin-2 Antihypertensive ACE inhibition: IC50 = 632.0 μM 105 

VVLYK Glutelin-2 Antihypertensive ACE inhibition: IC50 =533.9 μM 105 

Tomato seeds Bacillus subtilis (2%, 37°C, 24h) DGVVYY  — Antihypertensive ACE inhibition: IC50 = 2 μM 106 

GQVPP — Antioxidant DPPH: 97% at 0.4mM, RP: 0.95 UA at 

0.5 mM 

106 

* Activity values: IC50 value is the peptide concentration that inhibits 50% of activity. SBP is the maximum decrease in systolic blood pressure after administration of the peptide to spontaneously hypertensive rats. 

Antioxidant activity: ABTS radical-scavenging activity (ABTS), 

Radical scavenging assay (DPPH), hydroxyl radical scavenging activity (OH-), β-carotene bleaching activity (β-CBA), reducing power (RP), oxygen radical absorbance capacity assay (ORAC), cytotoxic effects on HepG2 
cells (Cell), and Fe2+-chelating activity (Ch).  
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