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ABSTRACT
The simplified spherical harmonics equations are a useful approximation to the sta-
tionary neutron transport equation. The eigenvalue problem associated with them
is a challenging problem from the computational point of view. In this work, we
take advantage of the block structure of the involved matrices to propose the block
inverse-free preconditioned Arnoldi method as an efficient method to solve this eigen-
value problem. For the spatial discretization, a continuous Galerkin finite element
method implemented with a matrix-free technique is used to keep reasonable mem-
ory demands. A multilevel initialization using linear shape functions in the finite
element method is proposed to improve the method convergence. This initialization
only takes a small percentage of the total computational time. The proposed eigen-
value solver is compared to the standard power iteration method, the Krylov-Schur
method and the generalized Davidson method. The numerical results show that it
reduces the computational time to solve the eigenvalue problem.

KEYWORDS
Generalized eigenvalue problem; Neutron transport, Multilevel method; Block
inverse-free preconditioned Arnoldi method; Generalized Davidson Method.

1. Introduction

The stationary distribution of neutrons inside a nuclear power reactor is described
by the neutron transport equation [21]. This equation depends on the position of
neutrons, their energy and their direction vector. This makes the neutron transport
equation very challenging to solve for general geometries. One of the most common
approximations to solve this equation is the neutron diffusion equation and its higher
order approximations to the neutron transport as the simplified spherical harmonics
equations (SPN).

The stationary neutron transport equation and its approximations can be expressed
as a generalized eigenvalue problem, of the form,

Lφ =
1

λ
Mφ, (1)

where L is the neutron loss operator, M is the neutron production operator, λ is
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the eigenvalue of the problem and φ is its corresponding eigenvector related with the
neutron flux. The dominant eigenvalue and its corresponding eigenfunction describe
the steady state neutron distribution inside the reactor core. Next eigenvalues and their
corresponding eigenfunctions are also important to study time dependent problems
and reactor instabilities.

For the spatial discretization of the problem a continuous Galerkin finite element
method is considered. The finite element method is implemented making use of a
matrix-free strategy for the non-diagonal blocks of the matrices [15]. In this way, these
block matrices are not stored in the memory and matrix-vector products are computed
on the fly by using a cell-based interface. This strategy reduces enormously the memory
used by the matrix elements and can reduce matrix-vector multiplication times in some
computer architectures [25]. The memory cost of storing the matrices is, in general,
very large and it depends on the properties of the problem, in other words, it depends
on the finite element order, the number of cells, the number of energy groups and the
number of moment equations taken into account. However, the advantage of storing
the matrices is that the most efficient preconditioners can be applied. In this way, some
balance between memory usage and algorithm efficiency has to be found.

Different methods such as the power iteration method, the Implicit Restarted Arnoldi
Method (IRAM) or more recently the Krylov-Schur method have been used to solve
this kind of eigenvalue problems [16, 23, 24]. The application of these methods require
to transform the generalized problem into an ordinary eigenvalue problem, applying a
shift and invert technique. In the solution process, it is necessary to solve numerous
linear systems. These systems are very large and thus, these methods require many
computational resources.

In this work, an inverse-free Krylov subspace method introduced in [10] is used with
a block implementation proposed by Quillen and Ye in [18], called block inverse-free
preconditioned Arnoldi method (BIFPAM). Other block methods based on the Arnoldi
method can be considered such as the Augmented Block Householder Arnoldi Method
(AHBEIGS) [2]. The BIFPAM method improves the traditional steepest descent method
by expanding the search direction to a Krylov subspace with the advantage of the
better approximation properties offered by Krylov subspaces. The BIFPAM does not
need to solve any linear system and it can be preconditioned to improve its convergence
properties. Another eigenvalue problem solver with these properties is the generalized
Davidson method (GD) [17] used for the neutron transport equation in [11, 12].

Usually, different types of preconditioners are used to accelerate these iterative
schemes [1, 14, 27]. In our case, a block Gauss-Seidel preconditioner is implemented.

To ensure the convergence of the BIFPAM solver a good initial approximation is
required. To reach the desired accuracy a high order finite element method should be
used with typically polynomial basis functions of degree 2 or 3. The proposed initial
approximation for the desired eigenvalues and their corresponding eigenfunctions is
obtained from the solution of the problem with linear finite elements using a multilevel
technique. Furthermore, this multilevel technique can accelerate other eigenvalue solvers
such as the power iteration method and the generalized Davidson method, as it will be
shown through this work.

The structure of the rest of the paper is as follows. In Section 2, the SPN approxima-
tion to the neutron transport equation is presented. In Section 3, the block inverse-free
preconditioned Arnoldi method and the way how it is preconditioned is exposed. Nu-
merical results for the analysis of the block method are given in Section 4.1. Finally,
the conclusions of the paper are summarized in Section 5.
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2. Simplified PN equations

We consider the eigenvalue problem associated with the multi-group, steady-state,
neutron transport equation in one-dimensional slab geometry [21],

(
µ

d

dx
+ Σg

t (x)

)
ψg(x, µ) =

G∑
g′=1

1∫
−1

Σgg′

s (x, µ0)ψg′
(x, µ′)dµ′

+
1

λ

G∑
g′=1

χg(x)

2
νΣg′

f (x)

1∫
−1

ψg′
(x, µ′)dµ′, (2)

g = 1, . . . , G, x ∈ [0, Lt]

where G is the number of energy groups considered, µ is the cosine director of the
incident neutrons and µ0 is the change of cosine director due to scattering collisions.

Σg
t (x), νΣg

f (x) and Σgg′

s (x, µ0) are the total, production and scattering cross sections

for energy group g, respectively, and χg(x) is the fission spectrum. The dominant
eigenvalue (the largest in magnitude) of the problem (2), keff, is the multiplicative
factor of the system and measures its criticality.

The spherical harmonics approximation to the neutron transport equation in one-
dimensional geometries assumes that the angular dependence of both the neutron
flux distribution and the scattering cross-section can be expanded in terms of N + 1
Legendre polynomials, Pn(µ), in the following form

ψg(x, µ) =

N∑
n=0

2n+ 1

2
φgn (x)Pn (µ) , (3)

Σgg′

s (x, µ0) =

N∑
n=0

2n+ 1

2
Σgg′

sn (x)Pn (µ0) . (4)

Inserting equations (3) and (4) in equation (2), the PN equations can be expressed in
matrix notation [12] as

d Φ1

dx
+ Σ0Φ0 =

1

λ
FΦ0 , (5)

d

dx

(
n

2n+ 1
Φn−1 +

n+ 1

2n+ 1
Φn+1

)
+ ΣnΦn = 0 , for n = 1, . . . , N , (6)
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where,

Σn =


Σ1
t − Σ11

sn −Σ12
sn · · · −Σ1G

sn
...

...
. . .

...

−ΣG1
sn −ΣG2

sn · · · ΣG
t − ΣGG

sn

 ,

F =


χ1νΣ1

f χ1νΣ2
f · · · χ1νΣG

f
...

...
. . .

...

χGνΣ1
f χGνΣ2

f · · · χGνΣG
f

 , Φn =


φ1
n
...

φGn

 .

The PN equations (5) and (6) constitute a set of N + 1 equations with N + 2 unknowns.
This problem is usually solved setting the derivative of the highest order moment to
zero d

dxΦN+1 = 0. It must be noted that in many nuclear applications, as usual static
reactor calculations solved with the SP3 equations the scattering moments above 1 are
not required to attain sufficient accuracy [12]. Thus, Σn is a diagonal matrix for n > 1.
In some applications the scattering cross section is assumed to be isotropic as in the
case of C5G7 benchmark [20]. Moreover, it exists relatively little coupling from fast to
thermal groups that yields to Σ0 matrix to be predominately lower triangular.

As the multidimensional PN approximation is a complicated set of equations, Gelbard
[9] showed that one dimensional PN equations could be extended to multidimensional
geometries substituting the one-dimensional derivatives by a multidimensional gradient
in equations (5) and (6). This ad-hoc approximation, called Simplified PN (SPN),
gives accurate results compared to the computational cost necessary to solve the
problem. Theoretical basis for the SPN equations were provided in [5], showing that
these equations are high-order asymptotic solutions of the transport equation when
diffusion theory is the leading-order approximation in the dominant direction. SPN

equations are much simpler than the multidimensional PN equations [6] and can be
easily implemented using numerical methods suited for diffusion-like equations.

By using a linear change of variables, equations (5) and (6) can be expressed as a
system of G × (N + 1)/2 second order elliptic, diffusive-like, equations for the even
moments [12]. For example, the set of SP3 equations is expressed as

− ~∇
(
D~∇U

)
+ SU =

1

λ
MU , (7)

where the effective diffusion matrix, D, the absorption matrix, S, and the fission matrix,
M , are given by

D =

(
1
3Σ1

−1 0
0 1

7Σ3
−1

)
, Sij =

1∑
n=0

c
(n)
ij Σn , Mij = c

(0)
ij F ,

and the following linear change of variables has been applied,

U =

(
u0

u2

)
=

(
Φ0 + 2Φ2

3Φ0 + 4Φ2

)
. (8)
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Finally, the coefficients matrices, c(0) and c(1) are defined as

c(0) =

(
1 −2

3

−2
3

4
9

)
, c(1) =

(
0 0

0 5
9

)
. (9)

2.1. Finite element method and matrix-free strategy

For the spatial discretization of the problem (7), a high-order continuous Galerkin Finite
Element Method (FEM) is used, implemented with the help of deal.II library [3].
The discretization transforms the problem (1) into an algebraic generalized eigenvalue
problem of the form

Ax = λBx, (10)

where A takes into account the production operator M and B is the discretization of
the neutron loss operator L. More details about the finite element spatial discretization
are explained in [24] and in [25]. In general, these matrices are not symmetric.

Nevertheless, as we are solving an energy multigroup problem for the SPN equations
we can take advantage of the block structure of the matrices A and B, where each
block is symmetric. Most of the blocks in the lower part of matrix A and far from the
diagonal in B are zero. For example, the matrices of the C5G7 benchmark in SP1 case
studied in Section 4.1 have the following structure,

A11 · · · A17

A21 · · · A27

A31 · · · A37

A41 · · · A47

0 · · · 0
0 · · · 0
0 · · · 0





x1

x2

x3

x4

x5

x6

x7


= λ



B11 0 0 0 0 0 0
B21 B22 0 0 0 0 0
B31 B32 B33 0 0 0 0
B41 B42 B43 B44 B45 0 0
0 0 0 B54 B55 B56 0
0 0 0 0 B65 B66 B67

0 0 0 0 0 B76 B77





x1

x2

x3

x4

x5

x6

x7


.

(11)
It must be noted that this structure is not the same for all reactors and it depends on
the material composition of the nuclear core. The matrices A and B have G× (N+1)/2
blocks each row and column. The dimension of each block depends on the number of
cells of the spatial discretization, the polynomial degree of the finite element method
and the type of boundary conditions applied. For instance, for the C5G7 benchmark
solved with a mesh of 28900 cells, polynomials of degree 2 and vacuum boundary
conditions; the block size is 116009.

A matrix-free strategy for the blocks of the matrix A and for the non-diagonal blocks
of B is developed. The diagonal block matrices of B are stored in sparse format to
permit the computation of an incomplete LU factorization of these blocks. In this
way, matrix-vector products are computed on the fly in a cell-based interface. For
instance, we can consider that a finite element Galerkin approximation that leads to
the block matrix Ab,b takes a vector u as input and computes the integrals of the
operator multiplied by trial functions, and the output vector is v. The operation can
be expressed as a sum of K cell-based operations,

v = Ab,bu =

K∑
k=1

P T
k A

k
b,bPku, (12)
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where Pk denotes the matrix that defines the location of cell-related degrees of freedom
in the global vector and Ak

b,b denotes the submatrix of Ab,b on cell k. This sum is
optimized through sum-factorization. Details about the implementation are explained
in [15]. This strategy minimizes the memory used by the matrix elements and it can
improve matrix-vector multiplication computational times [25].

3. Block inverse-free preconditioned Arnoldi method

The block inverse-free preconditioned Arnoldi method (BIFPAM) was originally pre-
sented and analyzed for A and B symmetric matrices and B definite positive [10, 18].
The elements of the matrices related to these problems depend on the reactor com-
position and it is not possible to prove theoretically the character of the matrices or
apply some characterization properties in a general case described in [4]. Although the
matrices A and B are not symmetric, we assume that the associated eigenvalues and
their corresponding eigenvectors are real and positive. This statement has only been
proved under restrictive conditions (e.g. monoenergetic transport). However, if not the-
oretically, this assumption is supported by numerical evidence on benchmark problems
and it is studied for more realistic problems in [7]. We will show that this method also
works efficiently for the λ-modes problem associated with the SPN equations for the
C5G7 problem.

We start with problem (10) for one eigenvalue

Ax = λBx,

the goal is maximizing the Rayleigh quotient

λ(x) :=
xTAx

xTBx
, (13)

where x is on a certain subspace and it is assumed that xTBx never vanishes.
By following the steepest descent method and starting from an initial approximation

(λ0, x0), the approximate eigenvector xk+1 in the k-th iteration can be computed as

xk+1 = xk + αrk,

where rk is the residual error rk = (A − λkB)xk, α is computed for maximizing the
Rayleigh-Ritz quotient (13) and λk is the approximation of the eigenvalue λ in the
k-th iteration, computed as

λk =
xTkAxk

xTkBxk
.

This can also be considered as the Rayleigh-Ritz projection method. For that, we
obtain a basis Z of the Krylov subspace

K1(A− λkB, xk) := span{xk, (A− λkB)xk},
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and construct the projected eigenvalue problem

ZTAZU = ZTBZUΛ, (14)

which is a 2× 2 generalized eigenvalue problem. Then, the largest eigenvalue Λ1,1 and
its corresponding eigenvector u1 are computed to obtain the value of λk+1 = Λ1,1 and
its eigenvector xk+1 = Zu1. This approach can be extended by computing a basis Z of
the m-order Krylov subspace

Km(A− λkB, xk) := span{xk, (A− λkB)xk, (A− λkB)2xk, . . . , (A− λkB)mxk}.

Arnoldi method is used to construct the basis of Km.
Furthermore, a block version of this method can be constructed that allows to

compute several eigenvalues simultaneously. Thus, if we are interested on computing q
eigenvalues of problem (10), we can accelerate the convergence by using the subspace
Km with

Km :=

q⋃
i=1

Ki
m(A− λk,iB, xk,i), (15)

where λk,i denotes the i-th eigenvalue computed in the k-th iteration, xk,i its associated
eigenvector and Ki

m is the Krylov subspace associated with eigenvector xk,i.
One may construct a basis for this subspace by first constructing q bases, say Zi for

1 ≤ i ≤ q of the q Krylov subspaces Ki
m(A− λk,iB, xk,i), 1 ≤ i ≤ q. Then, following

with a similar strategy as the one followed to compute only one eigenvalue, the original
generalized eigenvalue problem (10) is projected onto the union of the q bases and
the corresponding projected problem is solved for the first q dominant eigenvalues to
obtain the new eigenvalues and their corresponding eigenvectors.

The rate of convergence of this method improves when the dimension of subspace, m,
is increased. However the computational cost is also increased considerably. In this way,
alternatively the basic block inverse-free method will be accelerated with an equivalent
transformation of the original problem by means of a preconditioner.

3.1. Preconditioning

Golub in [10] proved that the rate of convergence of the block inverse-free Arnoldi
method depends on the spectral distribution of C = A − λB, with λ the desired
eigenvalue. Then, the idea of preconditioning is to construct an equivalent problem so
that when we apply the block inverse-free Arnoldi method to the new problem, the
new matrix associated to the equivalent problem, Ĉ, has a better spectral distribution.

With an approximate eigenpair (λi,k, xi,k), we consider for some matrices Li,k, Ui,k

the transformed eigenvalue problem

(L−1
i,kAU

−1
i,k )x̂ = λ(L−1

i,kBU
−1
i,k )x̂ ⇔ Âi,kx̂ = λB̂i,kx̂, (16)

which has the same eigenvalues as the original problem. Note that the relation between
the eigenvector of eigenvalue problem (10), xk, and the corresponding approximate
eigenvector for the transformed problem (16), x̂i,k, is x̂i,k = Ui,kxi,k. This transformation
is called preconditioning. Thus, when the block inverse-free Arnoldi method to the
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problem (16) is applied, the rate of convergence will be determined by the eigenvalues

of Ĉi,k := Âi,k − λi,kB̂i,k. Different preconditioning transformations can be constructed
by using different factorizations of the matrix Ci,k. The main goal must be to choose
suitably Li,k and Ui,k to obtain a favourable distribution of the eigenvalues of matrix

Ĉi,k.
This preconditioned iteration of the block inverse-free preconditioned Arnoldi method

(BIFPAM) can be implemented without explicitly forming the transformed problem

Ĉi,k. So, to obtain a basis of Ki
m, we need to construct a basis Ẑi,k for the subspace

K̂i
m := span{x̂i,k, Ĉi,kx̂i,k, Ĉ

2
i,kx̂i,k, . . . , Ĉ

m
i,kx̂i,k},

and then compute U−1
i,k Ẑi,k; or equivalently, we can directly obtain a basis of Ki

m which

is obtained premultiplying the vectors of K̂i
m by U−1

i,k as,

U−1
i,k K̂

i
m := span{xi,k, (Li,kUi,k)−1Ci,kxi,k, . . . ,

(
(Li,kUi,k)−1Ci,k

)m
xi,k}. (17)

The BIFPAM is summarized in Algorithm 1.

Algorithm 1 Block inverse-free preconditioned Arnoldi method (BIFPAM).

Input: Matrices A and B, initial approximation X0 = [x0,1, . . . , x0,p].
Output: Diagonal matrix of eigenvalues Λ and matrix V with the eigenvectors as its
columns.

1: Compute λ0,i = (xT0,iAx0,i)/(x
T
0,iBx0,i), 1 ≤ i ≤ p

2: for k = 1 to maxits do
3: Obtain the basis Zi of Ki

m(A− λk−1,iB, xk−1,i), 1 ≤ i ≤ q using the Eq. (17)
4: Construct Z := [Z1, . . . , Zq]
5: Form projection Am = ZTAZ, Bm = ZTBZ
6: Compute q dominant eigenpairs (λk,i, ui) of AmU = BmUΛ
7: Compute xk,i = Zui, 1 ≤ i ≤ q
8: end for

It is observed that only (Li,kUi,k)−1 is needed to premultiply the vectors when
the matrix Ci,k = A − λi,kB is applied. In order words, we only need a method to
multiply a preconditioner of the matrix Ci,k by a vector and we can use different
preconditioners that do not necessarily come from the factorization of a matrix [8].
Although in the papers [8, 10], preconditioners of the matrix Ck are used, in this work
we have numerically observed for our kind of algebraic problems (that come from the
discretization of some approximation of the neutron transport equation) that using
only preconditioner of matrix B works efficiently and it is not necessary to construct
a preconditioner for the whole matrix Ck. This permits using a block preconditioner
(by using the block structure of matrix B), without assembling any additional matrix,
with the advantage that the blocks of this matrix are symmetric and positive definite.
This causes an improvement in the implementation of the Algorithm. In particular, we
choose the block Gauss-Seidel preconditioner [19] as shown in Algorithm 2.
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Algorithm 2 Block Gauss-Seidel preconditioner.

Input: Matrix B and vector x = [x1; . . . ;xBl].
Output: Vector y = [y1; . . . ; yBl], result of applying the preconditioner of B to x.

1: for b = 1 to Bl do
2: if It was not obtained before then
3: Obtain the ILU factorization of submatrix Bbb, L,U .
4: end if
5: sum = xb
6: for c = 1 to b do
7: Compute sum = sum−Bb,cyc
8: end for
9: Compute yb = (LU)−1sum

10: end for

3.2. Power Iteration Method

The eigenvalue problem (10) is traditionally solved using the power iteration method
(PI) with a combination of inner and outer iterations [16, 26]. The inner iterations
solve the following set of of linear systems

Bbb x
(i)
b = Q

(i−1)
b , b = 1, . . . , Bl = G× (N + 1)/2, (18)

where Q
(i−1)
b is generated by using the updated solution for the up-diagonal terms and

the previous solution for down-diagonal terms. In order words, a Gauss Seidel iteration

is embedded in the construction of Q
(i−1)
b .

Q
(i−1)
b =

b−1∑
c=1

Bbcx
(i)
c +

Bl∑
c=b+1

Bbcx
(i−1)
c +

1

λ(i−1)

Bl∑
c=1

Abcx
(i−1)
c . (19)

The outer iteration reads as

λ(i) = λ(i−1) x(i)TBx(i)

x(i)TB x(i−1)
. (20)

Power iteration will converge to the eigenvalue of largest magnitude, λ1 = keff.
If more than one eigenvalue is requested a deflation technique should be used. In
other words, it can be computed one eigenvector at a time while decontaminating the
subspace of the computed eigenvector. However, the deflation technique has a very slow
convergence. The convergence rate for the fundamental eigenvalue is determined by the
dominance ratio δ = |λ2|/|λ1|, where λ2 is the next largest eigenvalue in magnitude
[26]. Convergence of the power iteration method slows as δ → 1.0.

Another method used to compare the performance of the BIPFAM is the Krylov-
Schur method which was studied in [22]. The generalized Davidson method (GD) [17]
is also used to this end. Both methods are implemented using the library SLEPc [13].
To make a fair comparative both methods were preconditioned with the same block
Gauss-Seidel preconditioner developed in Algorithm 2.
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4. Numerical Results

4.1. 2D C5G7

We start analyzing the performance of the proposed BIFPAM method, by studying
the two dimensional version of the C5G7 fuel assembly benchmark introduced by the
Nuclear Energy Agency (NEA) [20]. The benchmark has been analyzed with several
deterministic codes and a very precise solution was obtained as reference using the
Monte Carlo method.

The configuration of the benchmark consists of a nuclear reactor core with MOX
and UO2 square fuel assemblies surrounded by a moderator region, as it is shown
in Figure 1. Each fuel assembly consists of 17 × 17 square fuel pin cells of size 1.26
cm. Each pin cell is made of a circular fuel region of radius 0.54 cm surrounded by
moderator. This geometry is also shown in Figure 1. A very detailed explanation of
the benchmark with all the remaining specifications of the benchmark is given in [20].

Vacuum B.C.

Va
cu

um
 B

.C
.

Reflective B.C.

Re
fle

ct
iv

e 
B.

C
.

Moderator

21.42 cm 21.42 cm 21.42 cm

UO2

UO2 MOX

MOX Moderator

1.26 cm

Nuclear
Fuel

Pin cell structure

Figure 1.: The core configuration for the 2D C5G7 benchmark problem.

Figure 2 shows the proposed meshes used to discretize the circular region depending
on the radial refinement parameter rr. All meshes maintain the area of the fuel region
(in grey color) to provide a more accurate model of the problem. Tables 1 and 2 show
the results for the fundamental eigenvalue and its corresponding eigenvector associated
with diffusion theory (SP1) and the SP3 equations for different meshes depending on
the finite element polynomial degree p and the mesh refinement parameter, rr. Errors
for the eigenvalue are given in pcm by ∆λ1 = 105|λ1 − λref| where λref = 1.186550 is
the reference eigenvalue given by the benchmark authors. To assess the eigenvector,
the following collective per cent error measures were selected: average pin power per
cent error (AVG) and mean relative pin power per cent error (MRE) of the pin power
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(a) rr = 0 (b) rr = 1 (c) rr = 2

Figure 2.: Meshes considered for the pin structure.

per cent error distribution [20],

AVG =
1

Nc

Nc∑
i=1

|ei|, (21)

MRE =

∑Nc

i=1 |ei| pi∑Nc

i=1 pi
, (22)

where Nc is the number of fuel pin cells and ei is the calculated per cent error for the i-th
pin neutron power, pi. It can be seen that the results are spatially converged for rr = 1
and p = 2. Furthermore, it is observed that the SP3 equations improve the accuracy
of the results with respect to the SP1 mainly for the eigenvector. Performance results
for the different proposed eigensolvers will be studied for these optimal discretization
parameters.

Table 3 displays the residual error and the performance of the BIFPAM solver using
rr = 1 and p = 2 for different initialization strategies. The first initialization choice,
that we denote as Random, is to generate the initial vector using random numbers on
the interval [−1, 1] . The second one is to get the initial guess from the Krylov subspace
generated by the matrix L−1M acting on a vector of ones. The Arnoldi method has
been used to obtain this subspace. We called to this strategy Krylov initialization. After
using both strategies, the resulting system of vectors are orthonormalized by using the
modified Gram-Schmidt process. Then, the Rayleigh-Ritz algorithm for the generalized
eigenvalue problem is applied [8]. Third, we propose a multilevel initialization by
previously solving the problem with linear finite elements p = 1 and then this solution
is interpolated to the problem with the required polynomial degree p. Moreover, for
the SP3 case we can also solve the initialization problem, the problem with p = 1, by
using the SP1 approximation. In this last case, the initial guess for u0 of equation (8)
comes from the interpolation of the SP1 solution and u2 is set to a zero vector. The
SP1 and SP3 with p = 1 initialization problems are solved with the GD method until a
tolerance of 1× 10−4.

The results conclude that the proposed multilevel initialization (SP1, p = 1) mini-
mizes the initialization error taking only 6 seconds. It must be noted that the multilevel
SP3 initialization does not improve the initialization error of the multilevel SP1 initial-
ization to solve the SP3 problem. Then, it does not worth the computational overhead.
Furthermore, the Krylov initialization takes more CPU time than the SP1, p = 1
initialization and it gets one order less accuracy. Random initialization does not spend
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any CPU time to obtain the initial guess but this initialization has a large error.
Tables 4 and 5 show the performance of the different eigenvalue solvers for SP1 and

SP3 problems with rr = 1 and p = 2. The initial guess is obtained from the multilevel
SP1 initialization. It must be noted that the SP1 problem uses about 1200 Mb of RAM
memory and the SP3 case uses about 2500 Mb. The numerical results show that the
proposed BIFPAM method with initialization is more efficient than the other methods
studied for one eigenvalue calculations, even though this problem is advantageous to
the power iteration method as δ = 0.763.

These tables also show that the proposed multilevel initialization is also convenient
for the power iteration method and the generalized Davidson method. The 6 seconds
of initialization are included in the CPU times in Tables 4 and 5.

Figure 3 shows the residual norm, r̂k, at the k-th iteration of the eigenvalue solver,

r̂k =
‖Axk − λ1Bxk‖

|λ1|
(23)

for the first eigenvalue in the SP1 problem with p = 2 and rr = 1. Figure 4 also shows
the convergence history of r̂k for the SP3 problem with p = 2 and rr = 1. In these
Figures it can be noted that the proposed initialization reduces the starting residual
norm but it does not change the convergence ratio of the methods.

Table 1.: Accuracy results for SP1.

r p
Number Number Eigenvalue AVG MRE
of Cells of DoFs λ1 ∆λ1 (%) (%)

0 1 11 849 83 664 1.185 11 144 2.26 1.88
0 2 11 849 333 207 1.185 12 143 2.65 2.02
0 3 11 849 748 636 1.185 11 144 2.26 1.88

1 1 28 900 203 735 1.183 81 274 1.52 1.25
1 2 28 900 812 063 1.183 35 320 1.43 1.21
1 3 28 900 1 824 991 1.183 30 325 1.42 1.21

2 1 78 608 553 119 1.183 73 282 1.46 1.24
2 2 78 608 2 206 743 1.183 26 329 1.42 1.21
2 3 78 608 4 960 879 1.183 25 330 1.42 1.21

Table 2.: Accuracy results for SP3.

r p
Number Number Eigenvalue AVG MRE
of Cells of DoFs λ1 ∆λ1 (%) (%)

0 1 11 849 167 328 1.185 40 115 1.69 1.46
0 2 11 849 666 414 1.183 75 280 0.85 0.74

1 1 28 900 407 470 1.183 57 298 0.86 0.72
1 2 28 900 1 624 126 1.182 61 394 0.72 0.65
2 1 78 608 1 106 238 1.183 47 308 0.81 0.72
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Table 3.: Performance results of different initialization procedures to compute 1 eigen-
value with BIFPAM solver by using rr = 1 and p = 2.

Eq. Init. Init. Error Init. Time (s) Total Time (s)

SP1
Random 5.04 0 55
Krylov 2.0× 10−2 7 51
SP1, p = 1 2.1× 10−3 6 25

SP3

Random 5.06 0 102
Krylov 2.3× 10−2 24 104
SP1, p = 1 2.5× 10−3 6 65
SP3, p = 1 2.6× 10−3 11 71

Table 4.: Performance results for different eigenvalue solvers for SP1 problem with
rr = 1 and p = 2.

Solver Method Init n eigs. CPU Time (s) n its

Power Iteration No 1 157 44
Power Iteration Yes 1 81 20

BIFPAM No 1 55 5
BIFPAM Yes 1 25 2

Generalized Davidson No 1 68 14
Generalized Davidson Yes 1 46 8

Krylov-Schur No 1 1646 16

BIFPAM Yes 4 180 4
Generalized Davidson Yes 4 220 42

Krylov-Schur No 4 1955 19
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Table 5.: Performance results for different eigenvalue solvers for SP3 problem with
rr = 1 and p = 2.

Solver Method Init n eigs. CPU Time (s) n its

Power Iteration No 1 274 52
Power Iteration Yes 1 160 26

BIFPAM No 1 102 5
BIFPAM Yes 1 65 3

Generalized Davidson No 1 150 17
Generalized Davidson Yes 1 101 12

Krylov-Schur No 1 2729 16

BIFPAM Yes 4 329 4
Generalized Davidson Yes 4 403 49

Krylov-Schur No 4 4749 28
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Figure 3.: Convergence histories for the first eigenvalue for SP1 problem with rr = 1
and p = 2.
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Figure 4.: Convergence histories for the first eigenvalue for SP3 problem with rr = 1
and p = 2.

4.2. Modified 2D C5G7

To solve a more interesting problem from the computational point of view, the 2D
C5G7 problem has been modified to increase the dominance ratio from δ ' 0.76 to
δ ' 0.95. The modification has been achieved by increasing the pin size from 1.26 cm
to 2.0 cm while maintaining the fuel radius.

Tables 6 and 7 show the performance of the different eigenvalue solvers for SP1 and
SP3 problems with rr = 1 and p = 2 for this benchmark. Again, numerical results
show that the proposed BIFPAM method with initialization is more efficient than
the other methods studied for one eigenvalue calculations. Compared to the previous
benchmark, some more iterations are needed to solve problem for all eigenvalue solvers.
This tendency is stronger in the power iteration method where the computational times
and the number of iterations are approximately duplicated due to the dominance factor
closer to 1.0. Figures 5 and 6 show the residual norm, for the first eigenvalue in the
SP1 and SP3 problems with p = 2 and rr = 1.
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Table 6.: Performance results for different eigenvalue solvers for SP1 problem with
rr = 1 and p = 2 for the modified 2D-C5G7.

Solver Method Init n eigs. CPU Time (s) n its

Power Iteration No 1 229 119
Power Iteration Yes 1 151 72

BIFPAM No 1 46 8
BIFPAM Yes 1 32 5

Generalized Davidson No 1 55 22
Generalized Davidson Yes 1 40 14

Krylov-Schur No 1 1174 24

BIFPAM Yes 4 147 6
Generalized Davidson Yes 4 156 59

Krylov-Schur No 4 1805 37

Table 7.: Performance results for different eigenvalue solvers for SP3 problem with
rr = 1 and p = 2 for the modified 2D-C5G7.

Solver Method Init n eigs. CPU Time (s) n its

Power Iteration No 1 417 115
Power Iteration Yes 1 231 59

BIFPAM No 1 111 9
BIFPAM Yes 1 78 6

Generalized Davidson No 1 123 25
Generalized Davidson Yes 1 94 18

Krylov-Schur No 4 2153 24

BIFPAM Yes 4 323 7
Generalized Davidson Yes 4 348 66

Krylov-Schur No 4 3331 37
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Figure 5.: Convergence histories for the first eigenvalue for SP1 problem with rr = 1
and p = 2 for the modified 2D-C5G7.
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Figure 6.: Convergence histories for the first eigenvalue for SP3 problem with rr = 1
and p = 2 for the modified 2D-C5G7.
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4.3. Three dimensional C5G7

Furthermore, the 3D-C5G7 problem [20] has been solved to test the performance of
the proposed solver in a challenging three dimensional problem. The dominance ratio
for this benchmark in diffusion theory is δ ≈ 0.767.

Since this problem has the same radial configuration as the two dimensional version,
the same discretization is used in this direction rr = 1 and p = 2. Table 8 shows the
accuracy results for the fundamental eigenvalue and its corresponding eigenvector for
SP1 and the SP3 equations for different axial refinement parameters, ra. It can be seen
that it is need ra = 2 to obtain spatially converged results. In this way, the error in
the pin power is less than 1% and about 400 pcm in the keff for the SP3 equations. It
must be noted that the computational time has been increased from a few minutes for
the two dimensional version to several hours for the three dimensional case.

Tables 9 and 10 show the performance of the different eigenvalue solvers for SP1

and SP3 problems with ra = 1, rr = 1 and p = 2 for this benchmark. Again, numerical
results show that the proposed BIFPAM method with initialization is more efficient
than the other methods studied for one eigenvalue calculations. Figures 7 and 8 show
the historic residual norm, for the first eigenvalue in the SP1 and SP3 problems.

Table 8.: Accuracy results for 3D-C5G7 benchmark.

Eq. ra rr p
Number Number Eigenvalue AVG MRE
of Cells of DoFs λ1 ∆λ1 (%) (%)

SP1

0 1 2 132 496 8 964 375 1.140 10 298 4.26 3.35
1 1 2 264 992 16 407 055 1.138 76 432 1.98 1.60
2 1 2 529 984 31 292 415 1.138 19 489 1.42 1.19
3 1 2 1 059 968 61 063 135 1.138 13 495 1.41 1.17

SP3

0 1 2 132 496 17 928 750 1.140 67 241 4.40 3.51
1 1 2 264 992 32 814 110 1.139 36 372 1.93 1.54
2 1 2 529 984 62 584 830 1.138 80 428 0.98 0.84
3 1 2 1 059 968 122 126 270 1.138 70 438 0.87 0.77
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Table 9.: Performance results for different eigenvalue solvers for SP1 problem with
ra = 1, rr = 1 and p = 2 for the 3D-C5G7.

Solver Method Init n eigs. CPU Time (hr) n its

Power Iteration No 1 14.9 52
Power Iteration Yes 1 8.8 27

BIFPAM No 1 5.2 5
BIFPAM Yes 1 3.5 3

Generalized Davidson No 1 6.3 21
Generalized Davidson Yes 1 4.7 12

BIFPAM Yes 4 21.0 4
Generalized Davidson Yes 4 23.8 52

Table 10.: Performance results for different eigenvalue solvers for SP3 problem with
ra = 1, rr = 1 and p = 2 for the 3D-C5G7.

Solver Method Init n eigs. CPU Time (hr) n its

Power Iteration No 1 28.3 60
Power Iteration Yes 1 16.3 34

BIFPAM No 1 10.9 6
BIFPAM Yes 1 7.4 4

Generalized Davidson No 1 21.2 24
Generalized Davidson Yes 1 10.3 13

BIFPAM Yes 4 40.6 4
Generalized Davidson Yes 4 45.3 55
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Figure 7.: Convergence histories for the first eigenvalue for SP1 problem with ra = 1,
rr = 1 and p = 2 for the 3D-C5G7.
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Figure 8.: Convergence histories for the first eigenvalue for SP3 problem with ra = 1,
rr = 1 and p = 2 for the 3D-C5G7.
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5. Conclusions

In this work, the block inverse-free preconditioned Arnoldi method is proposed to solve
the eigenvalue problem associated with the SPN equations. The SPN equations have
been proven to be a useful approximation to the neutron transport equation especially
for full core nuclear reactor calculations. To discretize the problem a high-order finite
element method with a matrix-free technique is used. We take advantage of the block
structure of the problem to propose the BIFPAM method to solve the eigenvalue
problem. An initialization, that only takes a small percentage of the total CPU time
to solve the problem, by using linear shape functions in the FEM is proposed in
order to improve the convergence of the methods. The proposed BIFPAM method has
been compared with the standard power iteration method, the Krylov-Schur method
and the generalized Davidson method. The numerical results show that it reduces
the computational time to solve the eigenvalue problem. A great advantage can be
obtained when more than one eigenvalue is requested. The proposed initialization is
also convenient for the power iteration method and the generalized Davidson method.
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type preconditioners for the neutron diffusion equation, J. Comput. Appl. Math. 309 (2017),
pp. 563–574.

[26] J.S. Warsa, T.A. Wareing, J.E. Morel, J.M. McGhee, and R.B. Lehoucq, Krylov subspace
iterations for deterministic k-eigenvalue calculations, Nucl. Sci. Technol. 147 (2004), pp.
26–42.

[27] K. Wu, Y. Saad, and A. Stathopoulos, Inexact newton preconditioning techniques for large
symmetric eigenvalue problems, Electron. Trans. Numer. Anal. 7 (1998), pp. 202–214.

22


