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ABSTRACT 

Disasters are usually managed through a four-phase cycle including mitigation, preparedness, response and recovery. 

The first two phases happen before a disaster and the last two after it. This survey focuses on casualty management 

(CM), which is one of the actions taken in the response phase of a disaster. Right after a severe disaster strikes, we 

may be confronted with a large number of casualties in a very short period of time. These casualties are in need of 

urgent treatment and their survival depends on a rapid response. Therefore, managing resources in the first few hours 

after a disaster is critical and efficient CM can significantly increase the survival rate of casualties. Uncertainty in 

the location of a disaster, disruption to transportation networks, scarcity of resources and possible deaths of rescue 

and medical teams due to the disaster in such situations make it hard to manage casualties. In this survey, we focus 

on CM for disasters where the following five steps are taken respectively: (i) Resource dispatching/search and rescue, 

(ii) on-site triage, (iii) on-site medical assistance, (iv) transportation to hospitals and (v) triage and comprehensive 

treatment. With a special focus on Operations Research (OR) techniques, we categorize the existing research papers 

and case studies in each of these steps. Then, by critically observing and investigating gaps, trends and the practicality 

of the extant research studies, we suggest future directions for academics and practitioners. 
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1. INTRODUCTION AND MOTIVATION 
Observation of historical data shows that the number and severity of disasters and catastrophes over recent decades has 

been increasing across the world. This fact applies to not only natural disasters but also terrorist attacks. According to 

CRED (2018), 1.3 million people lost their lives and 4.4 billion people were injured or became homeless due to natural 

disasters between 1998 and 2017. As reported by the Emergency Events Database (EM-DAT, 2017), 4.2 billion people 

(i.e., more than half of the world’s population) were potentially exposed to natural disasters in 2017. Although fewer 

natural disasters, deaths and total affected people were declared in 2017, the mortality rate in African and American 

continents was higher than the annual average of the last decade due to the occurrence of landslide, earthquake and 

hurricane catastrophes (EM-DAT, 2017). These facts confirm that recent advances in science, technology and 

management have not been able to significantly decrease the number of disasters and their aftershocks. 

All the decisions and operations regarding the management of a disaster are embedded in a four-phase cycle 

including (1) strategic mitigation to reduce/eliminate the impact of disasters, (2) tactical preparedness to lessen/avoid 

the effects of disasters, (3) operational response to preserve lives, properties and the environment and finally, (4) long-

term recovery to return affected sites to pre-disaster conditions. Although each step has its own goals and importance, 

rebating negative consequences is, to a large extent, a function of the quality of decision making and the efficiency of 

operations management during the response phase. Post-disaster circumstances are extremely challenging due to the 

loss of human life, human suffering, damaged infrastructure, limited availability of resources (transportation, relief 

commodities, equipment, manpower and medical capacity) and uncertain and incomplete information. Having an 

effective real-time response in the aftermath of a disaster requires several inter-dependent decisions to be made and 

numerous coordinated operations to be arranged quickly within a volatile, uncertain and stressful environment. 
 

1.1. Casualty management 

In the first few hours after a sudden, or slow-onset mass casualty incident (MCI), thousands of casualties, which 

disrupt the normal functioning of emergency and healthcare services, need primary on-field assistance and treatment 

to survive before being taken to hospitals. Casualty management (CM) is one of the most important functions in the 

response phase, which needs in-place comprehensive planning. According to the definition of the World Health 

Organization (WHO), CM is the process of efficiently utilizing limited resources to manage casualties in affected 

areas and transfer them to hospitals by a group of units and organizations, which work together aiming at minimizing 

the number of deaths and disabilities, maximizing the number of survivors and preventing possible outbreaks of 

diseases (Dean and Nair, 2014). In fact, all of the following human-related decisions made (or activities designed 

and operated) to save as many lives as possible fall under the term CM: searching, rescuing and prioritizing casualties, 

transferring them to safer places (e.g., field hospitals or shelters), allocating timely relief teams, equipment and 

supplies (e.g., food, clothing and medicine) to affected areas, providing treatment services either temporarily on-site 

or comprehensively in hospital and coordinating the related flows of information. The actual experiences show that 

efficient CM practices in the first 72 hours after an incident are crucial because the affected people cannot survive 

on their own for a long time (Balcik et al., 2008).  

CM is basically a complex, multi-disciplinary and multi-agency effort as it may call for many organizations and 

the coordination of executives and practitioners, engineers, scientists, information technology (IT) experts, 

physicians and medical personnel and social scientists from governmental, public, private and nonprofit organizations 

in unpredictable, time-limited and resource-constrained post-disaster circumstances. The importance of Operations 
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Research and Management Science (OR&MS) in solving such complex decision making/optimization problems is 

obvious. The increasing trend of relevant publications in the area within OR&MS journals to solve such problems is 

a substantial piece of evidence to support this fact (Besiou et al., 2018).  
 

1.2. Relevant survey papers 
In this subsection, we present the most relevant review papers that studied the application of OR&MS techniques for 

disaster management and humanitarian operations, as a basis to establish the need for a new, broader and updated 

review. In Table 1, we present a comprehensive list of survey papers related to humanitarian operations and disaster 

management published in top OR&MS journals. The scope of each article is given in the column subject area. The 

OR&MS techniques used in the review papers include both the analytical (simulation, optimization, probability and 

statistics) and soft (decision theory, systems dynamics, multi-criteria decision making and expert systems) techniques. 
 

Table 1. Review papers related to humanitarian operations and disaster management. 

Reference 
(sorted chronologically) Subject area Review level 

Phase 

Survey period 

M
iti

ga
tio

n 
Pr

ep
ar

ed
ne

ss
 

R
es

po
ns

e 
R

ec
ov

er
y 

Altay and Green (2006) Disaster management Macro ✓ ✓ ✓ ✓ 1980–2004 
Abdelgawad and Abdulhai (2009) Emergency evacuation planning Macro ✓ ✓ ✓ ✓ 1982–2009 
Natarajarathinam et al. (2009)* SC crisis management  Macro ✓ ✓ ✓ ✓ 1975–2008 
Simpson and Hancock (2009) Emergency response Macro ✓ ✓ ✓ ✓ 1965–2007 
Overstreet et al. (2011) Humanitarian logistics Macro ✓ ✓ ✓ ✓ 1995–2009 
Caunhye et al. (2012) Emergency logistics Micro ✓ ✓ ✓ ✓ 1970–2012 
De la Torre et al. (2012) Disaster relief routing Micro ✓ ✓ ✓ ✓ 1987–2011 
Galindo and Batta (2013) Disaster management Macro ✓ ✓ ✓ ✓ 2005–2010 
Liberatore et al. (2013) Humanitarian logistics Macro ✓ ✓ ✓ ✓ 2005-2012 
Ortuño et al. (2013) Humanitarian logistics Macro ✓ ✓ ✓ ✓ 2005-2012 
Abidi et al. (2014)* Humanitarian SCM Micro ✓ ✓ ✓ ✓ 1970-2012 
Anaya-Arenas et al. (2014) Relief distribution networks Micro - ✓ ✓ - 1990–2013 
Leiras et al. (2014)* Humanitarian logistics Macro ✓ ✓ ✓ ✓ 1980–2012 
Ozdamar and Ertem (2015) Humanitarian logistics Micro - - ✓ ✓ 1998–2014 
Hoyos et al. (2015)*** Disaster operations management Micro ✓ ✓ ✓ ✓ 2006–2012 
Zheng et al. (2015) Disaster relief operations Macro ✓ ✓ ✓ ✓ 2004–2014 
Balcik et al. (2016) Inventory management in humanitarian SC Micro - ✓ ✓ - 2008–2015 
Gupta et al. (2016)* Disaster operations management Macro ✓ ✓ ✓ ✓ 1957–2014 
Gutjahr and Nolz (2016)** Humanitarian aid Macro ✓ ✓ ✓ ✓ 2007-2015 
Habib et al. (2016) Humanitarian SCM Micro - - - ✓ 2005–2015 
Boonmee et al. (2017) Emergency humanitarian logistics Micro - ✓ ✓ - 1950-2016 
Zhou et al. (2018) Natural disaster management Macro ✓ ✓ ✓ ✓ 2000-2016 
Ameideo et al. (2019) Disaster management Micro - - ✓ - 1980-2016 
Behl and Dutta (2019)* Humanitarian SCM Macro ✓ ✓ ✓ ✓ 2011-2017 
Esposito Amideo et al. (2019) Shelter location and evacuation routing Micro - - ✓ - 2012-2017 
Kovacs and Moshtari (2019) Humanitarian operations Micro ✓ ✓ ✓ ✓ 2006-2018 
Sabbaghtorkan et al. (2019) Humanitarian Logistics Micro - ✓ - - 2000-2018 
Our research Casualty management Micro - - ✓ - 1977–2019 
* Both quantitative (i.e., optimization/OR models) and qualitative (empirical) methods   ** MCDM methods  *** Stochastic OR models 

 

Altay and Green (2006) reviewed disaster operations management (DOM) models and classified research papers 

in each phase of DOM based on the disaster type, solution methodology, operational stage, research contribution and 

problem scenario. Abdelgawad and Abdulhai (2009) studied network design approaches and emergency evacuation 

planning models and analyzed corresponding limitations, gaps and challenges. They also surveyed the role of simulation 

tools and proposed a framework for emergency evacuation planning. Natarajarathinam et al. (2009) proposed a 

framework for classifying supply chain management (SCM) problems during a crisis based on the source, scale, 

respondent and research method. Simpson and Hancok (2009) categorized 361 papers related to operations research 
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(OR) in the emergency response into four groups: urban services, disaster services, specific hazards and general 

emergency. They indicated that ‘hard’ OR focusing on quantitative modelling is the dominant approach while ‘soft’ 

OR with its emphasis on modelling for problem insight and learning is a less common approach. The gaps and 

opportunities were also presented. By reviewing and analyzing 51 papers in humanitarian logistics, Overstreet et al. 

(2011) developed a new framework and proposed some directions for future research. 

Considering book sections, journal papers and conference proceedings, Caunhye et al. (2012) divided optimization 

models in emergency logistics into the categories of facility location, casualty transportation and relief distribution and 

others and proposed future research directions in each category. De la Torre et al. (2012) reviewed OR models in relief 

item transportation and distribution focusing on a vehicle routing problem (VRP) between distribution points and 

affected areas. In addition, they interviewed small and large non-governmental organizations (NGOs), local, state, as 

well as federal relief organizations and their commercial partners to gather knowledge about current practices and 

challenges. According to the classification scheme presented by Altay and Green (2006), Galindo and Batta (2013) 

reviewed 155 papers in DOM from 2005 to 2010 and classified the most common assumptions into reasonable, limited 

and unrealistic categories. Liberatore et al. (2013) surveyed the sources and methodologies used to deal with the 

uncertainty in humanitarian logistics. They considered the problem type, DOM phase, objective function and the 

uncertainty type and methodology for each paper. Ortuño et al. (2013) reviewed papers that formulated mathematical 

models with deterministic solution techniques and classified them based on the problem type, DOM phase and solution 

approach. Abidi et al. (2014) reviewed 52 papers in humanitarian supply chain (SC) performance management and 

categorized them based on the research scope, methodology and characteristics. The papers were grouped into three 

categories: i) the definition and measurement of success, ii) the performance management and iii) existing challenges. 

Then, the main outcomes were highlighted and future research directions were provided. Anaya-Arenas et al. (2014) 

reviewed 83 papers in relief distribution networks regarding location-allocation and network design, transportation and 

combined location and transportation. Leiras et al. (2014) reviewed 228 papers based on ten criteria including general 

information, disaster type and phase, research method, geographical perspective, optimization methodology, decision 

level, stakeholder views and coordination perspective. By surveying the papers between 2006 and 2012, Hoyos et al. 

(2015) analyzed stochastic OR techniques and optimization methods for different phases of DOM in terms of the 

technique (mathematical programming, simulation, probabilistic and statistical modeling, artificial intelligence and 

expert systems, decision systems, multi-attribute utility theory and queuing theory). Ozdamar and Ertem (2015) 

provided a review on the vehicle representation, relief delivery and casualty transportation and mass evacuation models 

in the response phase and on the infrastructure restoration and debris management in the recovery phase. Zheng et al. 

(2015) examined the use of genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO) 

and other more exotic metaheuristic methods for DOM functions including facility location, transportation planning, 

routing, roadway repair and integrated problems. Balcik et al. (2016) reviewed 45 papers focusing on the pre- and post-

disaster inventory management. The decision maker, stakeholder, disaster type, commodity, facility type and 

performance measure were considered as problem aspects. They also included methodological aspects such as the policy 

type, model and solution approach. 

Gupta et al. (2016) provided a macro level study on 278 disaster management research papers published between 

1957 and 2014 according to five attributes: (1) disaster management functions, (2) disaster time, (3) disaster type, (4) 

data type and (5) data analysis technique. They proposed recommendations for future research. Gutjahr and Nolz (2016) 

reviewed the application of multi-criteria optimization to the management of natural disasters, epidemics or other 
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humanitarian crises. They discussed different optimization criteria and multi-criteria decision making (MCDM) 

techniques and classified the available literature according to several attributes. Habib et al. (2016), considered three 

major subjects including facility location, network design and relief distribution and mass evacuation and reviewed 94 

papers in the Humanitarian SC field in terms of objectives, constraints, decisions and problem types. 

Boonmee et al. (2017) conducted a survey on the facility (i.e., distribution centers, warehouses, shelters, debris 

removal sites and medical centers) location problems for emergency humanitarian logistics based on both data modeling 

types and problem types. They examined all the deterministic, dynamic, stochastic and robust facility location problems. 

Zhou et al. (2018) elaborated on the concept and characteristics of emergency decision making in natural disasters and 

provided a methodological perspective for the review of related theory and methods. They illustrated the construction 

of emergency decision support system in detail. Ameideo et al. (2019) surveyed optimization models in the shelter 

location and evacuation routing problems to provide a roadmap for future research. They highlighted numerous gaps 

and research opportunities. Behl and Dutta (2019) presented an extensive review of 362 papers around key themes 

including humanitarian logistics, theory focused research, case studies, mathematical models, humanitarian SC 

properties and resources needed for efficient and effective management of humanitarian operations, and drew a roadmap 

to performance evaluation of related studies. Esposito Amideo et al. (2019) studied the current challenges and provided 

a roadmap for future research related to optimization models in the shelter location and evacuation routing operations. 

A critical analysis highlighted numerous gaps and opportunities, such as the need for involving stakeholders, including 

evacuee as well as system behavior and being application-oriented rather than theoretical or model-driven. Kovacs and 

Moshtari (2019) focused on the methodologies applied for humanitarian operations studies and highlighted critical items 

including problem structuring, understanding the contextual factors, incorporating the uncertainty, enabling 

technologies in model development and implementation and selecting appropriate data and research methods. They 

suggested a meta-process for high-quality research on humanitarian operations. Sabbaghtorkan et al. (2019) reviewed 

the main OR&MS journal papers on the prepositioning of assets and supplies for natural disasters. They categorized the 

papers into Allocation, Location and Location-Allocation papers and identified the research gaps.  
 

1.3. Contribution 
The last row in Table 1 depicts the differences and the contribution of the present paper against the existing reviews from 

the literature. By proposing a new classification for the tasks involved in casualty management in the response phase of a 

disaster, in this paper, we aim to cover the following aspects: (1) a micro-level study on the features and outcomes of the 

studied problems, and developed models and solution techniques and (2) a critical discussion by presenting trends, gaps 

and innovative directions for future research. The main contribution of this paper is that we review CM on a micro level 

and analyze in detail all related papers. In fact, the objective function, main decision variables and constraints, involved 

uncertainties and dynamics, assumptions, solution technique/s, proposed heuristics and rule of thumb, reported insights, 

future research directions, and the studied cases are discussed for each paper. The details of our micro analysis on the 

features of developed models as well as the details on how some papers addressed the involved uncertainty and dynamics 

and proposed practical heuristics and insights are provided. This is the first survey paper that critically analyzes CM 

research papers in this level of detail, depth and time span. 

We use the following abbreviations in different columns of tables in sections 3 to 7: 

• Column “Problem category”- A: Allocation; L: Location; P: Prioritization; R: Routing; S: Scheduling. 

• Columns “Key decision variables”, “Main assumptions”, “Largest problem solved”- AF: Affected site; CCP: 
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Casualty collection point; CL: Candidate location; DC: Distribution center; DHC: Deteriorating health condition. 

• Column “Main constraints”- CF: Capacity of facilities; CR: Capacity of resources; NR: Number of resources. 

• Column “Objective functions”- MC: Minimizing cost; MF: Minimizing fatalities; MS: Maximizing survivors; 

MT: Minimizing time; O: Other objectives. 

• Column “Solution approach”- ACO: Ant Colony Optimization; B&C: Branch & Cut; BBA: Biography-Based 

Algorithm; BD: Benders Decomposition; CG: Column Generation; GA: Genetic Algorithm; GR: Greedy Algorithm; 

H: Heuristic; ICA: Imperialist Competitive Algorithm; LP: Linear programming; MA: Memetic Algorithm; MDP: 

Markov Decision Process; MOO: Multi-objective optimization; OP: Optimization; QT: Queuing theory; S: 

Simulation; SA: Simulated Annealing; SAA: Sample average approximation; SDP: Stochastic dynamic programming; 

SP: Stochastic programming; SSA: Scatter Search Algorithm; TS: Tabu Search; VNS: Variable Neighborhood Search. 

The paper is organized as follows. Section 2 describes the research methodology and scope. In sections 3 to 7, 

we critically review the literature to explore research directions on a micro level. Section 8 concludes and presents 

future research directions on a macro level. 
 

2. RESEARCH METHODOLOGY AND SCOPE 

In this section, first, we describe our research methodology. Then, we clarify some basic concepts in the field and 

the research scope.  
 

2.1. Research methodology 

The research approach is a systematic literature review to guarantee that relevant and high-quality studies are 

surveyed. We follow a conservative search and screening methodology in six steps, drawn in Figure 1, to ensure the 

inclusion of all relevant papers. There are several academic search engines such as Google Scholar, Web of Science 

and SCOPUS that could be used in our search interchangeably. We use SCOPUS with a larger number of covered 

journals than Web of Science which provides greater flexibility in searching for specific keywords or phrases. Key 

terms and aspects, mentioned in the first two steps in Figure 1, are searched for hierarchically in the title, abstract 

and keywords of journal papers published in the English language until 2019. We only focus on journal papers and 

exclude conference proceedings, book chapters, books, working papers, master theses, Ph.D. theses and technical 

reports. While this screening might seem overly strict, one has to consider the sheer amount of results (as shown in 

Figure 1) as well as the fact that most high-quality research is routinely published in journals after completion of 

master theses, Ph.D. theses and technical reports, as well as special issues in journals following conference 

proceedings. In step 3, we exclude journals that do not meet a quality criterion according to the lists published by (i) 

Academic Journal Guide 2018- Chartered Association of Business Schools, (ii) Australian Business Deans Council 

2018 and (iii) Scientific Journal Rankings (JCR 2018). Then, by screening titles, abstracts and full-texts, respectively, 

in the next three steps, we omit those not related to the abovementioned research scope. The “scope check” in the 

last three steps of Figure 1 shows that we screen the corresponding content (mentioned as the title of the step) keeping 

our scope in mind to see whether the paper is relevant or not. If we were in doubt at a given step that the paper is 

relevant or not, we conservatively left it for a closer examination in the next step where we will naturally have 

additional content to decide. Additionally, the references of all papers are screened in the last step to include any 

relevant papers which may fall within the search scope. In the end, a total of 88 papers are comprehensively 

considered in this survey. 



7 

 

Figure 1. Proposed search and screening methodology.  
 

The frequency of papers per year is depicted in Figure 2. The first paper in the field was published in 1977, but 

surprisingly, for three decades (until 2006) only 4 papers appear that meet our methodology criteria. A plausible 

hypothesis is that some of the 21st century’s deadliest man-made and natural disasters, such as the September 11 

attacks, 2004 Indian Ocean earthquake in Indonesia, 2005 Kashmir earthquake and 2005 Hurricane Katrina urged 

researchers to carry out research in the area. The number of papers peaks in 2014, 2018, and 2019. 

 

Figure 2. Total number of published CM papers by year. 
 

When it comes to journals that have published in the area, Figure 3 lists them in decreasing order of the total 

number of published papers. For equal frequencies, journals are alphabetically sorted. As illustrated, European 

Journal of Operational Research (EJOR) has published the most papers in the field. 
 

2.2. Basic concepts and background 

The same incident could be an accident (emergency), disaster or catastrophe depending upon the scale of impact (i.e., the 

amount of damage and number of deaths). The difference between disaster/catastrophe and emergency situations is mainly 

related to the number of casualties to be managed. In major accidents, the number of casualties usually amounts to tens, while 

in mass and catastrophic incidents, this amounts to hundreds or thousands. A comprehensive planning for CM guarantees the 

timely transportation of casualties to hospitals considering the type and the level of injuries and hospital capacity. 

When a disaster occurs, first, a strategic meeting is held by organizations such as relief and rescue, police, fire 

stations, hospitals, ambulances, aviation and the military. The initial estimates of preliminary information including 

the identification of the disaster (severity and spread), the precise location of affected sites, potential risks and the 

number of injuries and fatalities are made by assessment teams right after the disaster. 
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Figure 3. The number of published CM papers per journal. 

 

The number of affected people and, in particular, the number of casualties and their types of injuries at a specific 

location provide necessary input for CM. After a rapid on-field initial assessment by the related organizations, the CM 

function starts, involving several tasks as illustrated in Figure 4. Following Figure 4, we explain the tasks of CM briefly. 

Later, in sections 3 to 7, they will be extensively and critically discussed. 

 
Figure 4. Scope of this review paper in terms of the CM processes. 

 

a) Resource dispatching/search and rescue (RD&SR): Natural disasters result in a large number of incidents such 
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as collapsed structures, fires and car accidents dispersed across different locations which require immediate operations 

by Search and Rescue (SAR) teams at the affected sites. SAR teams are trained to locate, extricate and assist trapped or 

wounded people (FEMA, 2008). They may be involved in digging, breaking, lifting and removing activities using light 

tools and heavy equipment. For example, finding trapped people under the debris of collapsed structures by using 

specially trained dogs and electronic search equipment is a prevalent activity performed by SAR teams. 

b) On-site triage (OST): Field triage is to categorize casualties according to their medical condition and the 

characteristics of their injuries. This is carried out by trained triage teams who take medical measures to rapidly 

evaluate and prioritize casualties to stabilize them before being transferred to hospitals. 

c) On-site medical assistance (OSM): After on-site triage, casualties are usually transported to nearby safe 

locations referred to as casualty treatment stations (CTS) to receive the emergency care assistance and stabilization 

needed for the subsequent safe transportation to hospitals (Frykberg, 2005). Medical teams usually consist of emergency 

technicians, nurses and doctors. On-site medical treatment is limited to pre-planned quick remedies that effectively help 

the patients’ survival prior to transportation to hospitals. 

d) Transportation to hospital (TTH): Medically stabilized casualties are dispatched to nearby hospitals to receive 

comprehensive treatment. To do this, various transportation modes such as land, air or water may be utilized. 

Consequently, vehicles such as ambulances, cars, trains, helicopters, aircraft, boats and ferries may be used. The 

availability of vehicles, their fleet size and capacities and possible damage to infrastructures are key determinants in 

choosing a specific transportation mode or a mixture of them. 

e) Hospital triage and comprehensive treatment (HTT): Trained teams including doctors, nurses and other medical 

personnel in emergency departments prioritize patients to increase their chance of survival by medical interventions. While 

hospital triage has similarities to on-site triage, in section 7, we will see that they also have significant differences in terms 

of objectives and processes. During a disaster, hospitals usually work under extreme pressure and have to endure acute 

resource limitations. Patients who need advanced surgeries, long-term hospitalization and intensive care units (e.g., in 

cardiac care units) are serviced in hospitals that are not categorized under the term CM. 

Table 2 categorizes published papers in the CM field based upon the basic groups described here. As given, 

some papers contributed to more than one category. Figure 5 provides a comparison by the percentage of the number 

of published papers in five problem categories. 
 

 
Figure 5. The percentage of papers in each category. 

 

2.3. Scope of this survey 

The aim of this paper is to assess the literature related to CM operations in the response phase at the disaster scene. The 

focus of our paper is MCIs which cover both disasters and catastrophes. The paper provides a basis to determine and to 

analyze research gaps in the field that require further investigation. The ORish papers related to RD&SR, OST, OSM, 
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TTH and HTT are reviewed. We do not limit OR to any narrow definitions but consider a wider optimization view to 

include not only modeling techniques, stochastic programming, and multi-criteria decision making (MCDM), but also 

solution techniques such as dynamic programming and robust optimization. We even consider decision theory, systems 

dynamics, expert systems and simulation. However, in terms of applications, the scope of the selected papers must 

totally or partially be related to CM in the response phase of disasters. Therefore, all activities needed to save people's 

lives, like the distribution of relief items and equipment, the location of temporary facilities and the allocation of vehicles 

to facilities, can be relevant as far as they serve CM. 
 

Table 2. CM-related papers reviewed in this paper. 
REFERENCES 

(sorted chronologically) 
RD & 

SR OST OSM TTH HTT  REFERENCES 
(sorted chronologically) 

RD & 
SR OST OSM TTH HTT 

Cook (1977)   ✓* ✓   Paul and MacDonald (2016b)   ✓   
Christie and Levary (1998)    ✓   Repoussis et al. (2016)    ✓* ✓ 
Fiedrich et al. (2000) ✓      Su et al. (2016) ✓     
Drezner (2004)   ✓    Sung and Lee (2016)    ✓  
Gong and Batta (2007)    ✓   Wanying et al. (2016)     ✓ 
Yi and Kumar (2007) ✓   ✓*   Wilson et al. (2016) ✓  ✓* ✓  
Yi and Ozdmar (2007) ✓   ✓*   Al Theeb and Murray (2017)  ✓     
Jotshi et al. (2009)    ✓   Haghi et al. (2017) ✓     
Lee et al. (2009)   ✓    Kamali et al. (2017)   ✓ ✓*  
Li and Glazebrook (2010)  ✓     Karatas et al. (2017) ✓     
Salmeron and Apte (2010)   ✓    Zhang et al. (2017) ✓     
Cotta (2011)  ✓     Cao et al. (2018) ✓     
Nolz et al. (2011) ✓      Caunhye and Nie (2018)    ✓  
Ozdamar (2011) ✓   ✓*   Gu et al. (2018) ✓     
Paul and Batta (2011)    ✓   Kim et al. (2018) ✓     
Berkoune et al. (2012) ✓      Mahootchi and Golmohammadi (2018) ✓     
Chen and Miller-Hooks (2012) ✓      Mills et al. (2018)    ✓  
Jacobson et al. (2012)  ✓     Mollah et al. (2018) ✓     
Paul and Hariharan (2012) ✓  ✓*    Niessner et al. (2018) ✓ ✓ ✓* ✓  
Rachaniotis et al. (2012)  ✓     Rezapour et al. (2018) ✓  ✓*   
Wang et al. (2012)    ✓   Rodríguez-Espíndola et al. (2018) ✓     
Chan et al. (2013)     ✓  Safaei et al. (2018) ✓     
Edrissi et al. (2013) ✓      Shiripour and Mahdavi-Amiri (2018) ✓     
Kilic et al. (2013)  ✓     Sun et al. (2018)  ✓    
Mills et al. (2013)  ✓*  ✓   Alinaghian et al. (2019) ✓     
Najafi et al. (2013) ✓   ✓*   Alizadeh et al. (2019)  ✓ ✓* ✓  
Wilson et al. (2013) ✓  ✓* ✓   Baharmand et al. (2019) ✓     
Apte et al. (2014) ✓  ✓ ✓*   Bravo et al. (2019) ✓     
Cohen et al. (2014)     ✓  Çankaya et al. (2019) ✓     
Dean and Nair (2014)    ✓   Davoodi and Goli (2019) ✓     
Jin et al. (2014)   ✓ ✓ ✓*  Doan and Shaw (2019) ✓     
Najafi et al. (2014) ✓   ✓*   Ghasemi et al. (2019) ✓*   ✓  
Salman and Gül (2014)    ✓   Li and Chung (2019) ✓     
Wex et al. (2014) ✓      Li et al. (2019) ✓     
Wilson et al. (2014)    ✓   Liu et al. (2019) ✓     
Xiang and Zhuang (2014)  ✓     Liu et al. (2019) ✓     
Zheng et al. (2014)  ✓     Lodree et al. (2019)   ✓   
Caunhye et al. (2015)  ✓ ✓*    Ozbay et al. (2019) ✓     
Edrissi et al. (2015) ✓      Paul and Zhang (2019) ✓     
Na and Banerjee (2015) ✓   ✓*   Rauchecker and Schryen (2019) ✓      
Talarico et al. (2015)    ✓   Sabouhi et al. (2019) ✓   ✓*  
Debacker et al. (2016)  ✓ ✓* ✓   Setiawan et al. (2019) ✓     
Mills (2016)  ✓     Yu et al. (2019) ✓     
Paul and MacDonald (2016a)   ✓    Zhu et al. (2019) ✓     

* The focus of the paper is supposed to be on this category; therefore, the micro analysis will be presented in this section. 
 

3. RESOURCE DISPATCHING / SEARCH AND RESCUE (RD&SR) 

Depending on the severity, spread and location of a disaster, there may be some casualties trapped in stricken areas. In 

particular, when a sudden-onset disaster strikes a densely populated residential area, it is very likely that many casualties 
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are trapped (e.g., under a fallen debris). In these circumstances, the first CM-related operations are relief resource 

dispatching and search and rescue. In this regard, some researchers investigated the use of new technologies for the 

search and rescue of trapped people. Hamp et al. (2014) presented and compared new wireless search and auxiliary 

assistive technologies for the detection and localization of trapped or buried unconscious casualties. Hallak et al. (2019) 

used GIS (Geographic Information Systems) for a multi-objective shelter location model. Hu et al. (2019) developed a 

crowdsourcing model to improve the quality of identifying post-earthquake trapped casualties. Sánchez-García et al. 

(2019) proposed a PSO (Particle Swarm Optimization) algorithm to explore a disaster area where particles were 

unmanned aerial vehicles (UAV). Alotaibi et al. (2019) developed an algorithm, named LSAR, to employ multiple 

UAVs to accomplish a SAR mission in the minimum possible time to save the highest number of survivors. 

After an initial damage assessment, available local and national emergency resources, as well as emergency 

units must be immediately dispatched to affected sites. Efficient RD&SR operations consisting of several decisions 

are crucial in increasing the survival rate of an affected population. The deployment of emergency facilities such as 

CTSs near stricken areas is governed by locational decisions. Allocation decisions determine the assignment scheme 

of affected sites to located facilities to minimize total response time and costs. Mobile resources such as SAR and 

medical units are moved to affected sites and CTSs respectively. The corresponding sequence and timing of such 

movements are handled by routing and scheduling decisions respectively. Tables 3 and 4 demonstrate the details of 

our micro-analysis on RD&SR papers. 
 

3.1. Problem category description 

In this subsection, we explain the most relevant papers published in each problem category: 

Allocation: Fiedrich et al. (2000) studied the network-based resource allocation problem for three important 

operations including SAR, secondary disaster prevention and transportation lifeline rehabilitation in six interrelated 

areas immediately after earthquakes. They found the best policy to minimize the total number of fatalities due to 

secondary disasters, duration of rescue operations, lack of rescue attempts, delayed transport, duration of transport and 

lack of transport. Su et al. (2016) proposed an optimization model based on a “disaster response coalition” concept for 

the problem of allocating, in parallel, multiple emergency resources to heterogeneous simultaneous disasters, taking 

into account the response time and emergency resource cost altogether. They showed that the parallel allocation of 

emergency resources for concurrent incidents is significantly more economical and efficient than traditional serial 

allocation. Cao et al. (2018) formulated a multi-objective MINLP model for dynamic relief distribution in large-scale 

natural disasters to maximize sustainability (i.e., access, equity and needs fulfillment). The response phase was refined 

into golden rescue, buffer rescue and emergency recovery stages. Real-time post-disaster information is usually 

unknown. Therefore, in the centralized relief distribution network during the response phase, the proposed sustainable 

relief distribution may be useful. Rodríguez-Espíndola et al. (2018) developed a multi-modal, multi-commodity model 

to support resource allocation and relief distribution during a disaster response that incorporates human and material 

resources from multiple organizations. The objective functions were to maximize the casualty service level and to 

minimize total costs. The results showed the importance of coordination among relief organizations and the inefficiency 

stemming from the independent decision-making at a disaster scene. 

Doan and Shaw (2019) developed stochastic optimization techniques to make resource allocation decisions in 

the preparedness phase and resource request decisions in the response phase of three concurrent incidents across eight 

cities. Three models were proposed: (1) a penalty-based model to minimize the risk related to the achievement of 
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response targets given existing resources, (2) a resource-based model to determine the resource requirements to meet 

response targets and (3) a hybrid budget-based model to analyze the different financial budgets. They introduced 

local importance parameters in the models to partially balance out the political dimensions of implementation. Li et 

al. (2019) developed an optimization model based on a matching concept for the assignment of rescuers with different 

professional skills and subjective preferences. Matching degrees between rescuers and rescue tasks at disaster sites 

were obtained by aggregating related task fitness degrees and time fitness degrees. Task fitness degrees were 

calculated by the corresponding satisfaction degrees and competence degrees of rescuers. Time fitness degrees were 

determined based on actual travel times and rescue time requirements at affected sites. Liu et al. (2019) presented a 

rolling horizon-based framework, based on the robust model predictive control for distributing both relief 

commodities and injured people to minimize the total weighted unmet demand. Yu et al. (2019) proposed a nonlinear 

integer model and an equivalent dynamic programming model to allocating limited resources among different 

affected sites considering three metrics; i.e., deprivation cost, service quality, and fairness. 

Scheduling: Wex et al. (2014) addressed the rescue unit scheduling and assignment problem as a generalization 

of the parallel-machine scheduling with unrelated machines and non-batch sequence-dependent setup times. Several 

heuristics including a Monte Carlo-based heuristic, a combination of 8 construction heuristics, 5 improvement 

heuristics and GRASP metaheuristic were developed. Kim et al. (2018) proposed a model and two greedy algorithms 

to find the allocation and scheduling plan for responders in an early stage response problem to prevent further hazards. 

The model reflects dynamic changes in the hazard intensity and working time to eliminate dangerous targets. They 

considered a large public area as a graph. The initial location of responders and affected locations were represented 

as source and sink nodes, respectively. The objective function was to maximize the prevention of potential risks (fire 

spread, gas leaks, explosions, etc.). Notably, when the field information is updated in real-time, the solution can be 

updated within a short time frame even if the emergency situation changes dramatically. Rauchecker and Schryen 

(2019) proposed a model and an efficient branch-and-price algorithm for the scheduling of rescue units, being able 

to non-preemptively process multiple incidents depending on their capabilities. The proposed approach was shown 

to be competitive to the optimal solution especially when the decision time is limited to a very few minutes. 

Location-Allocation: Edrissi et al. (2013) developed a multi-agent optimization model and a heuristic solution for 

the three post-earthquake sub-problems under budget limitations: (1) renovating deteriorated and low-quality buildings 

and developments to maximize the number of saved casualties; (2) locating/allocating emergency aid levels to maximize 

the total rescued population under supply and demand constraints; and (3) strengthening the existing transportation 

infrastructures to maximize reliability. The results showed a considerable improvement in the death toll of the multi-

agent model. Edrissi et al. (2015) proposed a network improvement problem and a heuristic algorithm to minimize the 

death toll. In finding critical links, link importance values were derived using the concept of network reliability. They 

indicated that initial incremental investments in network improvement can reduce the number of fatalities more than 

later higher budget increments. Moreover, higher relief inventories greatly reduce the deaths under the network 

reliability. Haghi et al. (2017) proposed a two-phase multi-objective robust optimization for locating distribution centers 

and CTSs and distributing relief goods and casualties to health centers, with pre/post-disaster budget constraints on the 

logistics system. The model was to establish a reasonable trade-off between humanitarian factors and total costs and to 

spend the budgets more efficiently. 
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Table 3. The details of RD&SR papers. 
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- TS, SA MF NR ✓ - ✓ ✓ - ✓ Various casualty groups, Homogenous resources No. of allocated resources A Fiedrich et al. (2000) 
12 CLs, 217 intersections MOO, MA MT, O CR ✓ - ✓ - ✓ ✓ Damages to infrastructure and related risks Locate DCs and Routing between AFs and DCs L-R Nolz et al. (2011) 
100 DCs, 100 AFs OP, H, GA MT CF,CR - - ✓ - ✓ ✓ Fixed DCs, Multi-item, Multi-vehicle type Allocate items to AFs and Routing vehicles A-R Berkoune et al. (2012) 
15 teams, 88 AFs SP, CG MS NR - ✓ ✓ - ✓ ✓ Homogenous resources, Non-preemptive service Allocate USAR teams to AFs R Chen and Miller-Hooks (2012) 
4,500 casualties H O CF - - ✓ ✓ ✓ ✓ DHC, Deteriorating zones - Locate/allocate relief supplies 

- No. of rescued people 
L-A Edrissi et al. (2013) 

40 teams, 40 AFs H MT NR ✓ - ✓ - - ✓ Known number of teams and casualties Order of visiting AFs by SAR teams S Wex et al. (2014) 
4,500 casualties H MF CF - - ✓ ✓ ✓ ✓ DHC Like Edrissi et al. (2013) L-A Edrissi et al. (2015) 
5 incidents, 5 products OP, H MT, MC CR ✓ - ✓ - ✓ - Multi-incident, Multi-resource Allocate resources to incidents A Su et al. (2016) 
46 nodes, 40 vehicles ILP, H  O NR, CR, 

CF 
- - ✓ - ✓ ✓ Multi-commodity/ vehicle/ depot, Split delivery - Allocate items/workers/casualties to nodes 

- Routing of vehicles among nodes 
A-R Al Theeb and Murray (2017) 

10 AFs, 4 CLs, 3 items, 4 scenarios MOO, GA MC, O CF, CR ✓ - - - ✓ ✓ Known candidate DCs/ CTSs, Multi-item/ 
casualty type 

- Locate DCs and CTSs 
- Allocate relief items and casualties 

L-A Haghi et al. (2017) 

716 AFs, 9 CTSs, 4 types of helicopter ILP, S MT NR, CR, 
CF 

- - ✓ - ✓ ✓ Multi type helicopters - Allocate helicopters to stations 
- Allocate stations to CLs  

L-A Karatas et al. (2017) 

375,000 casualty, 5 depot, 8 AFs MOO, GA MT, O CF - - ✓ - ✓ ✓ Known route conditions, Limited budget Locate depots and Allocate teams to AFs L-A Zhang et al. (2017) 
237 AFs OP, GA O CF, CR - - ✓ - ✓ ✓ Known CLs, Split delivery, Multi-product Allocate relief items to AFs A Cao et al. (2018) 
30 CLs, 500 casualties OP, GR MS CR, CF - - - - ✓ ✓ Known candidate shelters, Known severity and  

distribution of casualties 
- Location and capacity of shelters 
- Allocate supplies/ casualties to shelters 

L-A Gu et al. (2018) 

44 nodes OP, GR O CF ✓ ✓ ✓ - - ✓ Discrete time - Allocate responders to AFs 
- Scheduling of responders at nodes 

A-S Kim et al. (2018) 

22 regions, 108,000 casualties OP MC CR, CF ✓ - - - ✓ ✓ Multi-product, Bi-directional relation among 
warehouses 

- Locate warehouse and relief items 
- Allocate warehouses to AFs 

L-A Mahootchi and Golmohammadi (2018) 

27 shelters, 17,000 casualties OP, GA MC CF, CR ✓ - ✓ - ✓ ✓ Known shelters and their availability, 
Heterogeneous vehicles 

- Locate shelters 
- Number of trips among temporary locations 

L-A Mollah et al. (2018) 

44,000 casualties OP MC, O CF, CR, 
NR 

✓ - - - ✓ ✓ Centralized operations, Multi-agent/ item, 
Multiple transportation modes 

- Allocate relief teams/ items to facilities 
- Allocate facilities to shelters 

A Rodríguez-Espíndola et al. (2018) 

3 AFs, 3 scenario, 2 item, 4 CLs OP MC, O CF, CR, 
NR 

- - - - ✓ ✓ Multi-period, Multi-product, Known CLs - Locate dispatching depots 
- Allocate relief items among nodes 

L-A Safaei et al. (2018) 

14 AFs, 20 CLs, 215,000 casualties OP, ICA MT CF, CR, 
NR 

✓ - ✓ - ✓ ✓ Triple transportation modes, Various 
infrastructure states  

- Locate CTSs and Allocate casualties to CTSs 
- Routing of vehicles between AFs and CTSs 

L-A-R Shiripour and Mahdavi-Amiri (2018) 

80 nodes, 10 helicopters OP, SSA, 
GA 

MT CR, NR - - ✓ - ✓ ✓ Single item, Homogeneous fleet - Locate CTSs and Allocate AFs to CTSs 
- Routing of helicopters among CTSs 

L-A-R Alinaghian et al. (2019) 

8 DCs, 7 AFs MOO MC, 
MT 

CF, CR, 
NR 

✓ - ✓ - ✓ ✓ Covering all demands, Ground and air 
transportation, AFs independency 

- Locate DCs 
- Allocate AFs to DCs 

L-A Baharmand et al. (2019) 

100,000 casualties MDP MS NR ✓ ✓ ✓ - ✓ ✓ Known number of casualties Order of site visits R Bravo et al. (2019) 
8 AFs, 3 CTSs, 2 commodities, 3 transport modes OP O CR, NR ✓ - ✓ - ✓ ✓ Multiple commodities - Distribute commodities/casualties among nodes 

- Allocation of helicopters to nodes 
A Çankaya et al. (2019) 

120 vehicle, 210 AFs OP, BD, 
VNS 

MT CR, NR - - ✓ - ✓ ✓ Single item, Homogeneous vehicles - Locate CTSs and Allocate items to CTSs 
- Routing of vehicles between AFs and CTSs 

L-A-R Davoodi and Goli (2019) 

8 AFs, 72 unit, 20 USAR unit SP O CR, NR ✓ - ✓ - ✓ ✓ Three simultaneous disasters, Multi-scenario Allocate resources to AFs A Doan and Shaw (2019) 
10 AFs, 11 hospital, 10 DCs, 4 CTSs SP MC, O CF, NR ✓ - - - ✓ ✓ Five-echelon network, Multi-scenario, Known 

CLs 
- Locate CTSs/ DCs and Allocate AFs to CTSs 
- Flow of casualties/ items among facilities 

L-A Ghasemi et al. (2019) 

101 nodes H MT NR, CR - - ✓ - ✓ ✓ Homogeneous vehicles - Routing of vehicles among AFs R Li and Chung (2019) 
50 rescuers, 6 tasks, 6 criteria OP O NR ✓ - ✓ - - ✓ Multi-task, Various capability criteria Assign rescuers to AFs A Li et al. (2019) 
1,120 casualties, 150 CTSs, 11 ambulances, 6 
helicopters 

MOO MS, 
MC 

CF, CR, 
NR 

- - ✓ ✓ ✓ ✓ Two-mode homogeneous transportation, DHC - Locate facilities and Allocate casualties 
- Allocate doctors/ resources to casualties 

L-A Liu et al. (2019) 

100 AFs, 16 vehicles,  H MT, 
MC 

NR ✓ - ✓ - ✓ ✓ Allowed shortage, Known/constant demand - Allocate AFs to depots 
- Routing of vehicles among AFs 

A-R Liu et al. (2019) 

25 shelter, 500 scenarios SP, H O CF ✓ - - - ✓ ✓ Multiple successive disasters, Known CLs Locate shelters and Allocate AFs to shelters L-A Ozbay et al. (2019) 
50 DCs, 30 AFs, 30,000 casualties SP MC CF, CR ✓ - ✓ ✓ ✓ ✓ Various injury levels, Multi-scenario, DHC Locate DCs and Allocate resources to AFs L-A Paul and Zhang (2019) 
40 incidents, 10 unit, 8 capability LP MT NR ✓ ✓ ✓ - ✓ ✓ Known number of rescue units Order of incidents S Rauchecker and Schryen (2019) 
47 AFs, 139 vehicles OP, H O CF, NR, 

CR 
✓ - ✓ - ✓ ✓ The further ahead the time is, the longer the 

period between two adjacent new periods,  
- Locate CTSs and DCs 
- Allocate CTSs, DCs, and vehicles to AFs 

L-A Setiawan et al. (2019) 

10 AFs DP, H MC CF - - - - ✓ ✓ Inventory is not allowed - Allocate resources to AFs A Yu et al. (2019) 
20 AFs ACO, GA MC CR, NR ✓ - ✓ - ✓ ✓ Fixed capacity identical vehicles - Routing of vehicles among CTSs and AFs R Zhu et al. (2019) 
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Table 4. Micro analysis of RD&SR papers: uncertainty, dynamics, heuristics, and insights. 
Reference Uncertain parameter 

Fiedrich et al. (2000) Survival rates (E),  Occurrence of secondary disasters (W), Survival rate of casualties without treatment (S-shaped) 
Chen and Miller-Hooks (2012) Casualty flows (G), Service times (G), Travel times (G) 

Haghi et al. (2017) Operational costs (S), Commodity demands (S), Casualty flows (S), Failure of health centers (S) 
Karatas et al. (2017) Inter-incident times (E), Weather condition (S), Helicopter failure (S) 

Mahootchi and Golmohammadi (2018) Link capacities (S), Commodity demands (S), Operational costs (S) 
Safaei et al. (2018) Commodity demands (S) 

Doan and Shaw (2019) Potential simultaneous disaster happenings (S) 
Ghasemi et al. (2019) Establishment and operational costs (S), Commodity demands (S), Casualty flows (S), Capacities (S) 
Li and Chung (2019) Travel times (S), Demands (S) 

Liu et al. (2019) Commodity demands/supplies (I), Casualty flows (I), Capacities (I) 
Ozbay et al. (2019) Casualty flows (S) 

Paul and Zhang (2019) Casualty flows (S), Undamaged supplies (S), Transport cost and time (S), Travel times (E), Truck’s travel times (GM) 
Zhu et al. (2019) Deprivation cost (Author-defined) 

E: Exponential, W: Weibull,  G: General,    S: Scenario-based,    I: Interval,     GM: Gamma 
Reference Dynamic parameter/Information update mechanism* 

Fiedrich et al. (2000) Finished/started affected sites, Set of depots, New affected sites due to secondary disasters, Destroyed affected sites/links 

Chen and Miller-Hooks (2012) Affected disaster sites, Casualty flows, Service times 
* A renewal process for decision epochs including several periods 

Wex et al. (2014) * Frequently update data and refresh decisions via a DSS in less than a second 
Rodríguez-Espíndola et al. (2018) Availability of rescue organizations 

Alinaghian et al. (2019) Casualty flows, Aftershocks, Damaged road networks 
* Updating procedure for location and demand of disaster sites, Dynamic routing 

Doan and Shaw (2019) Disaster resource requirements 

Liu et al. (2019) Commodity demands/supplies, Casualty flows, Capacities 
* Real-time adjustment framework based on robust model predictive control 

Yu et al. (2019) State of affected sites: number of periods that each AF can withstand the demand using the on-hand resources 
Zhu et al. (2019) Deprivation costs, Travelling velocities among nodes 

  

Reference Heuristic/Rule of thumb/Insight* 

Li and Chung (2019) Split Delivery Vehicle Routing 
* Minimize the sum of arrival times, sum of demand-weighted arrival times, and latest arrival time for fast and fair deliveries 

Setiawan et al. (2019) Resource sharing measures 
* Coordinate between evacuation and distribution for further improvements 

 

Karatas et al. (2017) developed a hybrid approach combining optimization and simulation to determine the location, 

number and type of helicopter stations to be established for evacuation, rescue and firefighting operations by the Turkish 

coast guard. They argued that the proposed hybrid approach leads to more effective resource utilization than the 

optimization model alone because the simulation model adds the weather conditions and failure concepts to the 

optimization. Zhang et al. (2017) developed a multi-objective model for the multistage dynamic assignment of rescue 

teams to a disaster chain and proposed three priority scheduling strategies defined under the burden-benefit accord 

principle. The overall performance of the proposed model was satisfactory, regardless of whether secondary disasters 

occurred sooner or later. The appropriateness of the three priority strategies for a specific disaster situation depends on 

the maximum allowable rescue time. Gu et al. (2018) proposed an optimization model to determine the locations of 

temporary medical shelters and the allocation of medical supplies under a limited relief budget. The severities and 

geographical locations of casualties were considered. Mahootchi and Golmohammadi (2018) developed a multi-product 

two-stage stochastic optimization model to determine the location of warehouse and pre-positioned relief items and the 

allocation of warehouses to affected sites. They considered bi-directional relations between warehouses, which can 

increase the flexibility of the constructed network to handle the needs of casualties in a shorter time interval. Moreover, 

it leads to a reduction in total costs and the number of warehouses. Mollah et al. (2018) developed a cost optimization 

block-shelter allocation model and a genetic algorithm for the evacuation of casualties, their reallocation to safe places 

and the quick distribution of relief materials to combat the spread of disease and suffering of casualties in slow-onset 

disasters like floods. The performance of GA in terms of both survivors and costs is reported to be higher than the MIP 

solution as the number of blocks and shelters increases and the evacuation time decreases. Safaei et al. (2018) developed 

a robust optimization model for a supply-distribution relief network that optimized relief operating costs and unsatisfied 

casualty’ demands in the upper level, and the supply risk and unsatisfied demands in the lower level. Suppliers with 

lower risks were determined by a TOPSIS method and introduced to the optimization model. As distribution decisions 
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are inherently more important than supply decisions, the proposed bi-level model was shown to work better than the 

multi-objective optimization. 

To establish a balance between the complexity and uncertainty, Baharmand et al. (2019) proposed a location-

allocation model that divided the topography of affected sites into multiple layers and allowed decision-makers to 

explore trade-offs between response time and logistics costs. Ghasemi et al. (2019) proposed a scenario-based 

probabilistic location-allocation model in a five-echelon humanitarian logistics network to minimize the facility-

related costs and the shortage of relief supplies. The model was solved using a modified multiple-objective PSO 

(MMOPSO), NSGA-II and ε-constraint. The results revealed the superiority of MMOPSO. A sensitivity analysis 

indicates that increasing the failure probability of temporary care and accommodation centers would increase relief 

costs. Liu et al. (2019) developed a bi-objective model to determine the location of CTSs and the allocation of medical 

resources to transfer casualties to CTSs and to provide on-field treatment in CTSs to maximize the number of 

expected survivals and minimize total operational costs. They showed that locating CTSs with large capacities near 

the disaster sites may result in more efficient response operations. Ozbay et al. (2019) developed a three-stage 

stochastic programming model to locate shelter sites and allocate the affected population to the established set of 

shelters in cases of secondary aftershocks following the main earthquake. Shelter location decisions for primary and 

secondary disasters were made in the first and second stages, respectively, while casualties are transferred to the 

nearest shelters, respectively, in the second and third stages. To manage the risk inherent to the demand and capacity 

of shelter sites when allocating casualties, the conditional value-at-risk was utilized. They argued that it is important 

to consider secondary disasters while locating shelter sites. Paul and Zhang (2019) developed a two-stage stochastic 

programming model for hurricanes to optimize the location of distribution points, medical supply levels and 

transportation capacity in the first stage and the flow of resources in the second stage. The total social cost, comprised 

of deprivation and commercial logistics costs, was minimized. Three deprivation cost functions due to the delayed 

treatment for three casualty severity levels were proposed. Setiawan et al. (2019) developed three location-allocation 

models for the problem of positioning medical and relief distribution facilities after a sudden-onset disaster. In the 

first model, relief distribution and victim evacuation are performed separately, and relief is distributed by distribution 

centers within administrative boundaries. The second model allows relief to be distributed across boundaries by any 

distribution center. In the third model, the evacuation and relief distribution operations share vehicles. 

Routing: Nolz et al. (2011) formulated an optimization model to make robust tours to assure an adequate 

distribution of relief aid in a post-natural-disaster situation considering damages to the infrastructure. Objective 

functions were the tour-dependent risk, the provided coverage to casualties and the total travel time. To measure the 

risk of delivery tours, five alternative approaches were analyzed. The “unreachability” risk approach as the sum of 

risk values of all the alternative connections between a pair of affected sites was shown to establish the best 

compromise among objectives. Berkoune et al. (2012) developed a model for the transportation of humanitarian 

items and equipment located at fixed distribution points to casualties at numerous delivery points. The proposed 

solutions were robust against small changes in the demand for affected sites and travel times. Chen and Miller-Hooks 

(2012) proposed a two-stage stochastic program to determine the best set of tours for homogeneous USAR units 

providing assistance to casualties. They studied the value of the information update, the required accuracy levels of 

information and the role of misinformation. Al Theeb and Murray (2017) formulated a MILP model for the 

coordination of numerous heterogeneous vehicles in a post-disaster logistics network to optimize the commodity 

delivery and workforce transfer to affected sites and casualty evacuation to CTSs. They demonstrated that the 
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integration of the workforce transfers with the commodity distribution and the casualty evacuation will improve 

distribution efforts. Shiripour and Mahdavi-Amiri (2018) developed an integer nonlinear program, a GA and an 

imperialist competitive algorithm for the distribution of casualties in a three-mode transportation network with 

separate connection links. They proposed a circle-based approach to estimate the impacts of a disaster and some 

relations for computing the percentage of casualties, destruction percentage and the damage-dependent travel times. 

The casualty and destruction percentages are determined based on the disaster center and severity, distances and the 

type of infrastructure. 

Alinaghian et al. (2019) developed a model for the location of CTSs and the dynamic routing of helicopters 

distributing basic supplies to minimize the arrival time at the last CTS. Inaccurate information regarding casualties, 

aftershocks, damaged road networks and the location and level of demands were considered to be dynamic. The 

proposed dynamic routing significantly reduces the total distribution time compared to traditional static routing. 

Bravo et al. (2019) proposed a partially observable Markov decision process for the routing of UAVs to search for 

casualties at affected sites. The vehicles’ path planning was formulated to assign higher priorities to sites that are 

more likely to have casualties. They evaluated the performance of their approach against a greedy heuristic algorithm 

on three sudden, and slow-onset disasters. Moreover, ethical, legal and social acceptance issues that can influence 

the application of the methodology, were discussed. The proposed solution achieved a full coverage of affected sites 

while optimizing the time to find casualties. The coverage is vital as casualties are distributed across all affected areas 

and need help equally. The number of states is crucial for determining the traveled distance and operation duration; 

hence, they recommended applying specialists who know the area well to set the state’s priorities. Çankaya et al. 

(2019) studied an application of the inventory Routing Problem with the goal of equitable distribution of relief 

supplies to the affected areas. They proposed a three-phase (clustering, routing and improvement) solution approach. 

Both variants of the proposed solution outperformed the algorithms in the literature. Davoodi and Goli (2019) 

proposed a model for the location of CTSs in affected sites and the allocation and routing of first-aid commodities to 

minimize the late arrival of relief vehicles. A covering tour approach considerably increased the operational speed of 

dispatching vehicles that carry essential commodities. They recommended the best coverage radius in terms of the 

objective function and analyzed the results when the demand is increased. Li and Chung (2019) developed a robust 

optimization approach for the Capacitated Vehicle Routing and the Split Delivery Vehicle Routing problems for the 

casualties trapped in the affected sites. Zhu et al. (2019) developed two models for the identical and diverse casualty 

severities where the relative deprivation cost was proposed to emphasize equity, and the in-transit tolerable suffering 

duration was employed to highlight the rescue priority. Various measures were investigated to extend the in-transit 

tolerable suffering duration for achieving a better emergency relief. 

3.2. Critical discussion  

We discuss possible gaps and trends to make suggestions for future research directions on RD&SR:  

Deteriorating health conditions: As given in Table 3, most papers assumed stable health conditions for affected people 

during RD&SR operations while this is usually not the case. In fact, the health condition of casualties is a function of the 

timing and quality of relief operations, particularly the RD&SR, in the early aftermath of MCIs and vice versa. 

Accordingly, formulating practical but effective survival probability functions for such models is specifically demanded. 
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Heterogeneous vehicles of multiple modes: As a function of type, severity, location and spread of a disaster, 

various transportation modes of different types and capacities may be called. The proposed models have to consider 

the transportation needs of all relief resources and the characteristics of relevant transportation modes. 

Various relief items: Beamon et al. (2004) discussed the characteristics of commercial versus humanitarian 

supply chains according to the key aspects such as the demand pattern, inventory control, lead time, etc. Depending 

on the disaster type, various relief items including medical items, food, clothing, tools, etc. may be needed to be 

dispatched to the affected demand nodes. Moreover, these items are generally different in terms of the usage, 

perishability, supplying and dispatching method and so on. The existing RD&SR models mostly assumed a single 

dominant item or did not consider the above differences. 

Studying RD&SR operations on a micro-level: The existing models decided on how to optimize the allocation, 

scheduling or routing of SAR teams among the affected sites. A strongly demanded area of research is to optimize 

the above decisions on RD&SR activities at a given affected site aiming at minimizing the number of casualties to 

be positioned in serious triage groups. 

Impact of preparedness: Slow-onset disasters can be easier to manage that sudden-onset ones as we have ample 

time to prepare. The impact of disaster preparedness on the post-disaster response of RD&SR operations is 

underexplored in the literature of slow-onset disasters. 
 

4. ON-SITE TRIAGE (OST) 

Extricated casualties need first-aid assistance and medical stabilization. Due to the scarcity of medical resources (e.g., 

medical teams and nurses) in the initial hours after a disaster, it is usually impossible to provide first-aid assistance for all 

casualties immediately. Therefore, it is vital to determine treatment priorities according to their injury levels, which is 

referred to as on-site triage. The main purpose of OST is to categorize casualties into different groups to which limited 

medical resources are allocated in a way so as to maximize the survival rate. Normally, sufficient resources for treating 

casualties with severe injuries are available at the emergency units of hospitals. The order of treatment for hospital triage 

is often classified with the labels black, red, yellow and green. Lack of enough resources and simultaneous generation of 

mass casualties in disaster scenarios makes field triage difficult when compared to hospital triage. Field triage, therefore, 

is done by a figure referred to as incident commander and the order of treatment is red, yellow, green and black to try to 

save the highest number of casualties (Venkat et al., 2015). Simplicity in implementation and reliability are the most 

important features of an efficient field triage. Notably, triage is a dynamic process because the medical condition of 

casualties deteriorates as time goes on and re-triage may be needed several times. There are several OST methods: Simple 

Triage and Rapid Treatment (START) by Super et al. (1994), Triage Sieve by Hodgetts and Mackway-Jones (1995), Sacco 

Triage Method (STM) by Sacco et al. (2005), Sort, Assess, Life-saving interventions, Treatment and/or Transport (SALT) 

by Lerner et al. (2008) and Severity Adjusted Victim Evacuation (SAVE) by Dean and Nair (2014). 

START, as one of the most common triage methods, categorizes casualties according to the severity of injuries 

into four color-labeled groups: red, yellow, green and black. People with mild lesions (e.g., minor fractures, soft 

tissue injuries, mild mental and neural disorders, stomachache or headache), who will not lose their lives or suffer 

from permanent side effects, are placed in the green group (or outpatient). The Yellow group (or delayed) includes 

casualties with severe injuries (e.g., mild burns, severe bone, joint and muscle lesions, mild spinal lesions, diabetes 

without disturbance in consciousness, eye injuries and bad wounds) who need treatment in the 2 to 12 hours ahead. 

Urgent casualties with high risks (e.g., respiratory diseases, intense bleeding, consciousness loss, severe internal 
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problems, severe burns, serious injuries, partial amputation, heart attack and severe poisoning), who will die or 

experience severe problems if they do not receive medical treatment within one to two hours are positioned in the 

red group (or critical). Finally, the black group (or deceased) includes dead people or casualties that are expected to 

die in less than an hour (e.g., full and irreversible heart failure) despite receiving medical treatment. Sometimes, 

dying people are called expectant and marked with a blue color. To increase the survival rate, START usually gives 

priority to the red-group casualties. 

Triage Sieve, as the most common method in the UK, also categorizes casualties into four groups. At first, it uses 

a walking filter to determine the delayed group due to the large number of casualties with minor injuries. Then, the 

breathing, respiration rate and capillary refill time or heart rate, depending on the ambient weather and temperature 

conditions, are used to categorize casualties in the other three groups. If there is not an airway, casualties are grouped 

in the dead class. A respiratory rate below 10 and over 29 leads to being grouped in the immediate class. Otherwise, if 

a capillary refill is under 2 seconds, the priority of casualties is urgent (Hodgetts and Mackway-Jones, 1995). In the 

STM method, three scores of Respiration, Pulse and Motor (RPM) on a zero-to-four scale are assigned to each casualty. 

Adding the scores leads to thirteen possible triage classes ranging from 0 to 12. The Delphi technique is used to estimate 

the deterioration of casualties’ health in each class (Sacco et al., 2005). The prioritization of the casualty classes in STM 

can be formulated as a linear programming model aiming at the maximization of the expected number of survivors. The 

variables are subject to constraints on the timing and availability of transportation and resources for treatment. The 

SALT method includes four steps to reflect the fact that OST is more than just assessing casualties’ conditions. Similar 

to STM, it considers the resource availabilities. This method creates an extra gray-colored group named expectant 

whose casualties are not expected to survive given the available resources (Lerner et al., 2008). Tables 5 and 6 

demonstrate the details of OST papers. 
 

Table 5. Details of papers addressing OST. 
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- H MS NR ✓ ✓ - ✓ - - Known jobs, Non-preemptive service Order of jobs S Li and Glazebrook (2010) 

100 jobs SDP MS NR - ✓ - ✓ - - Known jobs, Non-preemptive service, 
DHC Order of jobs S Jacobson et al. (2012) 

- Enumeration MF NR ✓ - - ✓ ✓ - DHC Order of infected 
subpopulation S Rachaniotis et al. (2012) 

- QT O NR, CR ✓ ✓ - ✓ - - Non-preemptive service, DHC Service rate S Kilic et al. (2013) 
50 casualties, 

15 
ambulances 

OPT MS NR - - ✓ ✓ ✓ - Known casualties Prioritize casualty 
transportation S Mills et al. (2013) 

- QT MS, O NR, CR ✓ ✓ - ✓ - - DHC Service rate S Xiang and Zhuang (2014) 
1,281 

casualties BBA O - - - - - ✓ - - Urgent necessity index for 
casualties A Zheng et al. (2014) 

- H MF NR ✓ ✓ - - - - DHC Sequence of serving/ 
transporting triage groups  S Mills (2016) 

25 casualties MDP MF NR ✓ ✓ - ✓ - - Known casualties Order of casualties S Sun et al. (2018) 
 

4.1. Problem category description 

Due to the lack of enough resources in MCIs, extricated casualties are classified according to their injury levels for 

subsequent operations (evacuation or treatment). Field triage is an essential tool in CM. Some of the most recent 

papers addressing OST are explained in detail in the following. 

Allocation: Zheng et al. (2014) proposed a hybrid neuro-fuzzy approach to the online classification of 

earthquake-stricken casualties. A key component of the system is a main network for evaluating urgent necessity 
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index values (Casualty classification) and a sub-network for recognizing movement patterns of casualties. They 

developed a differential biogeography-based algorithm for parameter optimization of both networks. Notably, the 

results indicated good classification performance compared to some other typical neuro-fuzzy networks. The 

proposed algorithm outperformed some state-of-the-art evolutionary algorithms in network learning. 
 

Table 6. Micro analysis of OST papers: uncertainty, dynamics, heuristics, and insights. 
Reference  Uncertain parameter 

Li and Glazebrook (2010) Survival times (G), Casualty treatment times (G) 
Jacobson et al. (2012) Survival times (G), Treatment times (G), Survival probabilities after service (G) 

Kilic et al. (2013) Arrival rates (P), Service times (E), Fatality time when in queue and when under treatment (E) 
Xiang and Zhuang (2014) Arrival rates (P), Service times (E) 
G: General,    P: Poisson process,    E: Exponential 

Reference Dynamic parameter/Information update mechanism* 
Rachaniotis et al. (2012) Number of susceptible, infected, and removed casualties, Rates of sufficient contact, immunizing, and removal 

Kilic et al. (2013) Arrival of casualties, Service times 
* Arrival rates will reach a steady-state 2 days after occurrence of disaster 

Mills et al. (2013) Service rates, Survival probabilities 
Mills et al. (2016) Survival probabilities 

  

Reference Heuristic/Rule of thumb/Insight* 

Jacobson et al. (2012) 
(1) 2-step heuristic, (2) Threshold heuristic, (3) Myopic policy, (4) αrµ-rule, (5) Time-critical-first rule 
* Priority to less urgent patients when severe resource limitations 
* Priority to time-critical casualties if below a threshold 

Mills et al. (2013) (1) Resource-based START, (2) QuickStatic- ReSTART, (3) QuickDynamic- ReSTART 
* Priority to delayed casualties depending on resource availability and number of casualties 

Mills et al. (2016) Survival lookahead decision support rule 

Sun et al. (2018) 
A switching curve and its mathematical expression for when to triage casualties 
* Skip triage when relatively few red casualties 
* Fast triage aiming at leaving yellow casualties 

 

Prioritization/Scheduling: Li and Glazebrook (2010) formulated the OST problem as a single-server, multiple-

class non-preemptive job scheduling system. The goal was to maximize the expected number served to completion. 

They improved an existing heuristic by proposing a robust heuristic and analyzed it considering three general scenarios. 

Jacobson et al. (2012) formulated the casualty triage, considering the I) resource limitations (ambulances and operating 

rooms), II) disaster scale and III) injury, as a priority assignment problem. Casualties (jobs) were classified based on 

their lifetimes, service times and reward (survival probability) distributions. Both constant and diminishing rewards 

over time were studied. Sample-path methods and stochastic dynamic programming were used to remove conditions 

under which the state information is not needed for prioritization decisions. They partially characterized the optimal 

policy and developed a number of heuristic policies. Rachaniotis et al. (2012) formulated a deteriorating job scheduling 

model for a single resource (mobile medical team) scheduling problem in several areas affected by a mass epidemic 

infection. The model represented an increasing loss rate as being more susceptible to become infected. It outperforms a 

random solution both in terms of the number of infections and completion time. However, the results should be 

interpreted with caution because of neglected uncertainties and heterogeneities. 

Kilic et al. (2013) formulated a two-priority non-preemptive multiple server (medical teams) queuing system 

with a finite capacity to determine the service rate of red and yellow casualty classes with Poisson arrivals and 

deteriorating health conditions. They used Chapman–Kolmogorov differential equations and the Pontryagin’s 

minimum principle to calculate optimal treatment rates for each priority class. The goal was to minimize both the 

difference between the number of servers and patients in the system and the related service costs. While arrival rates 

have almost a steady-state increase, there is also an increase in service rate values. This is not the case when arrival 

rates for both classes are sufficiently high. While the class deterioration rate increases, the service rate rises for red 

class patients but decreases for yellow ones. Mills et al. (2013) proposed a fluid model to characterize the optimal 

policy to prioritize the transportation of serious casualties to hospitals which explicitly considered the disaster size, 
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resource limitations and time-varying survival probabilities. They showed that the recommended policy called 

ReSTART outperforms START in all considered scenarios, sometimes substantially. Xiang and Zhuang (2014) 

developed a two-priority queuing system to model the deterioration in health conditions and prioritize/schedule the 

treatment process of both classes of casualties. Two resource allocation models were formulated to minimize the total 

expected death rate and total waiting time respectively. The results showed that most, but not all, resources should 

be allocated to the queue of mildly injured casualties which is ethical. 
Mills (2016) studied the casualty prioritization problem of an arbitrary number of casualty classifications with 

different survival probabilities deteriorating over time. Using simple heuristic parameterizations, they achieved an 

expected number of survivors similar to that of mathematical programming but with minimal computational support. 

The resulting rules are intuitive and easy to use and to understand in the aftermath of an MCI when resources are 

limited and the time is of the essence. Sun et al. (2018) formulated a static many casualty scheduling problem with a 

single medical provider who has two options: choosing casualties randomly for treatment or spending some time on 

triage and prioritizing them before treatment which will come at the expense of delaying the service. Each class of 

casualties is characterized by its waiting cost and expected service time. They identified a dynamic that balances the 

time spent on triage with the time spent on service by minimizing the total expected cost. When the number of 

casualties is not small, neither skipping a triage entirely nor performing triage on all patients works well and a 

decision depends on the state (number of casualties that are untriaged and triaged as a low priority). 
 

4.2. Critical discussion  

We discuss possible gaps and trends to make suggestions for future research directions on OST: 

Simple yet effective triage rules: The total time required for OST is a key factor in speeding up the whole process 

of CM; therefore, complex and data-intensive decision-making models for OST are naturally inefficient and 

inapplicable. The tradeoff between speed and optimality is critical in designing OST methods. New studies are 

required on the development of dynamically robust, fast and simple to implement OST rules. 

Impact of over/under-triage: Casualties in the same triage group are in diverse positions in terms of the type and 

level of injury. This leads to over- or under-triage and creates some difficulties and inefficiencies in OSM operations 

(Wilson et al., 2016). Frykberg (2005) studied the accuracy of triage after MCIs and found an almost linear relation 

between over-triage and poor patient outcomes. Thus, one direction for future study may be to enrich the triage 

operations by addressing intragroup classification/prioritization to have more effective OSM operations.  

Cross-disciplinary characteristics: Although scholars tried to propose innovative OST systems, cross-disciplinary 

studies are still required to introduce novel, comprehensive and more flexible OST systems considering all the important 

factors regarding, for example, the severity and geographical spread of a disaster, dominant types of injury, field 

conditions, arrival patterns and relief resource limitations. 
 

5. ON-SITE MEDICAL ASSISTANCE (OSM) 

Casualties receive first-aid assistance in compliance with their triage groups at a nearby CTS to stabilize their medical 

condition before transportation to hospitals. CTSs are situated close to affected areas in safe locations such as schools, 

stadiums, shopping malls, parks so that the transportation of casualties is swift and easy. These safe locations also consist 

of some shelters for evacuees that need relief items. At the stations, there are medical personnel (doctors, nurses, etc.) and 

required equipment to service casualties immediately. Several decisions should be made for OSM operations such as the 
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location/re-location of CTSs, allocation/re-allocation of medical personnel and equipment to stations, allocation/re-

allocation of medical personnel and equipment to casualty groups, scheduling casualties in medical units, etc. Tables 7 and 

8 show the details of OSM papers. 

5.1. Problem category description 

Allocation: Salmeron and Apte (2010) developed a two-stage stochastic optimization model for the allocation of 

budget to acquire and position relief assets in natural disaster areas. First-stage decisions addressed the expansion of 

facilities like warehouses, medical facilities, ramp spaces and shelters. Second-stage decisions concerned the deployment 

of allocated resources to rescue and transport casualties. Casualties were categorized into three groups: I) critical, II) stay-

back and III) transfer population and each group needed a different relief service. Rezapour et al. (2018) determined the 

best strategies to allocate emergency units to affected sites and critical casualty groups in the early aftermath of sudden-

onset MCIs when the capacity of emergency units is often inadequate. The studied treatment strategy was a “streaming 

without overflow” in which a number of medical teams are dedicated to each triage group. They found that the strategy 

does make the solutions more robust against any biases in medical teams’ streaming. Lodree et al. (2019) developed a 

discrete-time finite horizon stochastic dynamic programming problem and heuristic policies for the allocation of 

heterogeneous teams to serve queues of three different prioritization levels in the context of an MCI. While nurses and 

doctors serve their dedicated queues, collaborative teams of doctors and nurses serve critical casualties. 

Location-Allocation: Drezner (2004) addressed the location problem of CCPs in case of an MCI. Five objective 

functions were analyzed: p-median, p-center, p-max cover, min-variance and Lorenz curve. The study showed that p-

max cover was the recommended one. The multi-objective solution was close to the single objective solutions if the 

Lorenz curve was not involved. Lee et al. (2009) combined mathematical modeling, large-scale simulation, powerful 

optimization engines and automatic graph-drawing tools for the I) location and planning of the point of dispensing 

(POD) facility setup, II) allocation of required staff to stations in a POD, III) deriving dynamic response strategies to 

mitigate casualties and IV) designing a variety of dispensing exercises to train personnel. Because of the proposed tool’s 

rapid speed, it facilitates the analysis of what-if scenarios and serves as a decision tool for operational planning, actual 

drill preparation and personnel training. Paul and Hariharan (2012) proposed a robust optimization model for the 

locations and capacities of stockpile sites and their allocation to different casualty severity and types in the aftermath of 

a sudden, or slow-onset disaster. Three delays in providing medical assistance to casualties were considered. 

Caunhye et al. (2015) developed a model to locate alternative care facilities for triage and treatment and to 

consider the triage and movement of self-evacuees in devising a casualty allocation plan for catastrophic radiological 

events. They considered three disaster zones around a radiological source: an inner zone containing severely-injured 

causalities and intermediate and outer zones including mildly-and lightly-injured casualties. Casualties were 

classified into self-evacuee and non-self-evacuee groups. They recommended that 1) if excess resources are available, 

the budget of care facilities is limited and the remaining resources are assigned to SAR and capacity building, 2) if 

the total resources are fixed, a right balance is found between the choice of more locations and the increase in 

transportation times, 3) if a hospital is far from the radiation zones, most resources are used for treatment and 4) for 

an overwhelmed CTS, a sufficient triage capacity is allocated. Paul and MacDonald (2016a) developed a stochastic 

optimization model and evolutionary heuristic to determine the location of distribution centers and the allocation of 

emergency stockpiles for treating casualties in the event of a disaster. 
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Table 7. Details of papers studying OSM operations. 
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- LP MC NR ✓ - - - ✓ - Identical resource - Allocate/ schedule personnel 
in CTSs 
- Transport casualties to hospital 

A-S Cook (1977) 

2,846,289 people, 
143 CLs 

MOO O - ✓ - - - ✓ ✓ Euclidean distance, 
Damaged infrastructure 

Locate CCPs L Drezner (2004) 

- S MC NR ✓ ✓ ✓ - - - Identical resource No. of workers  L-A Lee et al. (2009) 
6 AFs, 5 CTSs SP O CF,CF, 

NR 
✓ - ✓ ✓ ✓ ✓ DHC, Similar priority 

of casualties 
- Transport casualties to CTSs 
- Allocate items/workers to facilities 

A Salmeron and Apte (2010) 

100 CLs, 15 AFs OP MC CF ✓ - ✓ ✓ ✓ ✓ DHC - Locate stockpile in AFs 
- Allocate casualties to facilities 

L-A Paul and Hariharan (2012) 

- VNS MF, MT, 
O 

NR, CF - - ✓ ✓ - ✓ DHC Order of tasks S Wilson et al. (2013) 

20,000 casualties, 36 
AFs 

LP MT NR, CF ✓ - ✓ - ✓ ✓ Identical resource - Locate care facilities 
- Allocate casualties to CTSs 

L-A Caunhye et al. (2015) 

32 CTSs, 32 
Ambulances, 10 
teams 

S MF CR, NR - ✓ - ✓ ✓ - DHC - Allocate casualties to 
hospitals 
- Allocate relief teams 

A-S Debacker et al. (2016) 

100 DCs, 34 AFs SP, H MC CF ✓ - ✓ ✓ ✓ ✓ DHC - Locate DCs 
- Allocate supplies to casualties 

L-A Paul and MacDonald (2016a) 

50 CLs, 30 AFs SP, H MC CF ✓ - ✓ ✓ ✓ ✓ DHC - Locate dispensing sites 
- Allocate supplies to casualties 

L-A Paul and MacDonald (2016b) 

- S MF, O NR, CF - ✓ ✓ ✓ - ✓ DHC - Allocate casualties to CTSs 
- Allocate tasks to responder 
- Order of tasks 

S Wilson et al. (2016) 

80 casualties S-OP MF, MT CR - ✓ - - ✓ - DHC, Identical 
resource 

Allocate physicians to 
operations 

S Niessner et al. (2018) 

5 AFs, 1,500 
casualties 

LP, QT MS NR - ✓ - ✓ ✓ ✓ DHC Allocate teams to triage groups A Rezapour et al. (2018) 

33 AFs, 65 CLs, 
700,000 casualties 

OP, 
SAA 

MC CR ✓ ✓ ✓ - ✓ ✓ - - Locate CCPs 
- Allocate AFs to CCPs/ hospitals 
- Allocate casualties to CCPs/ 
hospitals 

L-A Alizadeh et al. (2019) 

- SDP MC NR - ✓ - ✓ ✓ - DHC, Three priority 
levels 

- Allocate medical teams to 
casualty queues  

A Lodree et al. (2019) 

 
Table 8. Micro analysis of OSM papers: uncertainty, dynamics, heuristics, and insights. 

Reference  Uncertain parameter 
Salmeron and Apte (2010)  Location and magnitude of disaster (S), Casualty flows (S), Commodity demands (S), Survival rates (S), Travel times (S) 
Paul and Hariharan (2012)  Severity of disaster (S), Casualty flows (S), Available capacity (S), Survival times (S), Transport times (S) 

Paul and MacDonald (2016a)  Casualty flows (G), Supply transport times (G), Survival times (G), damages to affected sites (G) 
Paul and MacDonald (2016b)  Casualty flows (G), Supply transport times (G), Survival times (G), Wind speed (G), Damages (G) 

Wilson et al. (2016)  Waiting times and self-presentation times of casualties (E), Rescue times (N), Travel times (L) 
Rezapour et al. (2018)  Arrival rate (P), Treatment rates (P) 
Alizadeh et al. (2019)  Casualty flows (S), Number of lives lost (S), Transportation capacity (S) 
Lodree et al. (2019)  Arrival rate of medical teams and casualties (P) 

S: Scenario-based,   G: General,    E: Exponential,     N: Normal,      L: Lognormal,       P: Poisson process 
 

Reference Dynamic parameter/Information update mechanism* 
Lee et al. (2009) * Rapid analysis of what-if scenarios 

Salmeron and Apte (2010) Affected disaster sites in the first stage (location and capacity expansion) 
Paul and Hariharan (2012) * Considering delays in requesting and releasing federal assets and dispatching supplies to affected sites 

Wilson et al. (2013) Hospital available capacities, Casualty states, Arrival time to CTSs 
Paul and MacDonald (2016b) Setup and supply costs, Wind speed 

Wilson et al. (2016) Available responder units, Casualty flows, Waiting times and self-presentation times of casualties, Rescue times, Travel times 
* Continuous communication between the optimization model and disaster field 

Niessner et al. (2018) Casualty flows, Available physicians, Resource allocation priorities, Casualty queue length 
* Introducing some time points for re-allocating decisions 

Alizadeh et al. (2019) Daily casualty flows 
Lodree et al. (2019) Casualty flows, Number of medical teams 

  

Reference Heuristic/Rule of thumb/Insight* 

Lee et al. (2009) RealOpt©: fast and practical decision-support tool 

Salmeron and Apte (2010) * Match transportation and health capacities for critical casualties unless low survival rates or high penalties for unmet demand 
* Priority to expand warehouses and delivery of commodities as more budget availability 

Paul and MacDonald (2016b) An optimal stopping time framework to determine optimal deployment time of dispensing sites 

Niessner et al. (2018) Three optimized automated policies 
* Policy implications for disaster commanders to determine the criticality of positions and related queues 

Rezapour et al. (2018) * Distribute emergency units among affected sites proportional to their casualty populations not casualty mix ratios 
* Stream fairly emergency units among casualty groups to smooth workload among medical teams 

Lodree et al. (2019) Effective heuristic policy 
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Paul and MacDonald (2016b) developed a stochastic dynamic optimization to determine the stockpile location 

and capacities of medical supplies for casualty treatment in the event of a hurricane. The survival time of casualties 

had a significant impact on the location of dispensing sites, particularly when a location was far away from an affected 

site to reduce the storm-related damage. Alizadeh et al. (2019) formulated a two-stage robust stochastic optimization 

model for network design decisions and multi-period response operational decisions. The results indicated both the 

improved proximity and accessibility to CCPs and the decreased number of lost lives. The optimality gap could be 

improved by taking a risk aversion attitude which results in a lower variability of objectives. 

Scheduling: Wilson et al. (2013) formulated the extrication, treatment and transporting problem of casualties (jobs) 

in responder units (machines) as a static flexible job-shop scheduling problem. Each job is a sequence of operations 

such as pre-rescue treatment, rescue, transportation and pre-transportation stabilization. Each machine has a known 

processing time and can work non-preemptively on one operation at a time. Five objective functions indicating fatality, 

suffering and efficiency factors were analyzed both individually and simultaneously. A reduction in fatalities can be 

achieved primarily through the improved processing of trapped casualties while hospital allocation decisions have a 

little influence. They showed that an increase in the inter-site coordination of responders during a multi-site MCI can 

lead to improved performance. Finally, they recommended an appropriate tradeoff analysis among the three objective 

function factors. Niessner et al. (2018) proposed advanced simulation-optimization techniques to improve the on-field 

policy decisions about staff and casualty scheduling and transportation made by simple heuristics or disaster 

management players. They presented a generic method consisting of (i) an automated policy for dynamic staff re-

allocation to different mass casualty management operations and (ii) three simulation-optimization approaches, namely 

Kiefer-Wolfowitz, metaheuristic OptQuest and Response Surface. Their results showed that optimized automated 

policies outperform decisions made by simple heuristics or human decision-makers. The Kiefer-Wolfowitz algorithm 

with full coverage achieved significant reductions in the rescue time and number of fatalities. 

Allocation-scheduling: Cook (1977) formulated LP models for the allocation and scheduling of medical 

personnel and identical aircraft during the treatment in a field hospital at a crisis zone and the transportation to a 

permanent hospital. He considered several types of casualties and medical personnel. Different objectives were studied: 

minimizing staff requirements for a fixed service level, minimizing resources (i.e., personnel, space and aircraft) costs 

and maximizing casualty service for fixed staff levels. He reported no numerical analyses. Debacker et al. (2016) 

proposed a simulation model; SIMEDIS, consisting of 3 interacting components: I) the casualty creation model, II) the 

casualty monitoring model and III) the medical response model, to handle rescue and triage procedures, the casualty 

allocation and treatment and the medical supervision during the transportation to hospitals. The objective was to 

minimize the mortality and morbidity of survivors. The casualties evolved in parallel through both the victim monitoring 

model and the medical response model. The victim creation model generates very detailed casualty profiles and the 

victim monitoring model continually updates the clinical conditions of casualties, triggered by the elapsed time if no 

treatment is provided or by the medical interventions administered by healthcare responders. Wilson et al. (2016) built 

a real-time system to capture the dynamic and uncertain nature of the MCI response environment by extending the static 

model described in Wilson et al. (2013). They provided a detailed simulation of the model performance, identifying 

several potential explanatory parameters and exploring to what extent they impact upon the application of the 

optimization model. The extension of the model from a ‘static’ design to the online case allowing for continual 

communication between the model and problem environment resulted in a significant improvement in terms of both 

fatality and suffering factors. They emphasized the accurate estimation of task durations. 
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 5.2. Critical discussion 

We discuss possible gaps and trends to propose future research directions on OSM: 

Various aspects of OSM decision making: OSM is a central task in CM to maximize the number of survivors in 

the first hours after a disaster; but, as a main shortcoming, we observe a limited number of research papers in this 

area, especially regarding treatment strategies, allocation of medical teams to casualty groups and scheduling casualty 

treatment for each medical team. 

Practical objective functions: As a necessary objective, maximizing the number of survivors is considered in 

most papers in this area. However, there are other conflicting objectives raised by practitioners such as equity 

(reducing service level variability) and fairness (e.g., in transportation and treatment) that were not addressed in the 

existing studies. For example, Huang et al. (2015) considered lifesaving effectiveness, human suffering and fairness 

as objective functions. Analyzing trade-offs among the objectives will produce valuable managerial insights for 

practitioners in aid agencies. 

Heterogeneous treatment resources: Medical teams may be of multiple modes in terms of treatment type, skill level 

and type and level of equipment. To improve the efficiency of OSM operations, proper matching is necessary to allocate 

preferred medical teams to casualties in the same triage group according to the type and level of injury. 

Multiple injuries for each casualty: Existing OSM models implicitly assume that each casualty suffers from a 

single injury whereas casualties with multiple injuries are common in MCIs that need several treatment operations. 

Therefore, developed models may be more realistic if they consider this research gap. 

Volunteer resources: The people who get out alive or volunteer persons from nearby areas are potential 

resources, which can systematically be involved in relief operations, especially in OSM operations. Therefore, fast 

training and involving volunteers for treatment of green-group casualties or participation in non-skilled parts of 

treatment operations may be a promising area of research. 

Realistic survival probability functions: The deteriorating health condition of casualties is a function of both 

time passage and quality of operations (Wilson et al., 2016). In fact, the survival probability before triage, during the 

transportation from affected sites to CTSs, while waiting for treatment and during the treatment will reduce by 

different functions over time. This means we need a hybrid survival probability function to introduce health 

deterioration into the models well. 

Integrated decision-support models: All the decisions embedded in the OSM operations are significantly 

interdependent. A challenging issue ignored by the existing studies is to create decision-support solutions and insights 

by developing and solving the comprehensive models, which integrate the different aspects of such problems 

including location, transportation, allocation and scheduling. 

Resource/capacity sharing: The efficiency of OSM decisions is significantly dependent upon the efficiency in 

the usage of all relief resources and facilities. Existing models have paid less explicit attention to this issue. Due to 

the dynamics and uncertainty involved in post-disaster environments, resources tend to be constantly unbalanced 

regarding their supply and demand. In such conditions, designing capacity and resource sharing mechanisms among 

the neighboring facilities is a promising strategy that demands future researches. 

6. TRANSPORTATION TO HOSPITAL (TTH) 

After stabilization in CTSs, severely-injured casualties must be transported to nearby hospitals to receive comprehensive 

medical treatment. Depending on injury levels and the availability of facilities, such movements are performed by 
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various transportation modes such as land (e.g., ambulance and train), water (e.g., ship, boat and hovercraft) and air 

(e.g., helicopter). Various types of injury may also need different specialists and treatment equipment. The 

transportation prioritization, resource allocation/scheduling, vehicle routing and casualty assignment to hospitals are 

critical decisions. Inefficient TTH delays the medical service for casualties and increases death tolls. Tables 9 and 10 

demonstrate the details of TTH papers. 

6.1. Problem category description 

Allocation: Christie and Levary (1998) developed a simulation of a multi-server queuing system for the 

transportation of seriously injured casualties to hospitals after a major, human-caused disaster like an air-crash in a crowded 

city given limited resources. Simulation results indicated that the casualties’ waiting times for transportation increase 

rapidly with an increase in their inter-arrival rates. Gong and Batta (2007) proposed two models for the allocation/re-

allocation of ambulances to casualty clusters in disasters. All ambulances had identical service rates and capacities and 

were initially located at hospitals. First, a casualty cluster deterministic model was developed to calculate the completion 

time for each cluster. Second, an ambulance reallocation problem was presented on the basis of a discrete-time policy. 

With the proposed weights to casualty clusters, the solution for minimizing makespan and weighted total flow time are the 

same, which points to the robustness of the recommended allocation. Yi and Kumar (2007) presented the two sub-problems 

of vehicle route construction and multi-commodity dispatch for the model of Yi and Ozdamar (2007). A fast two-phased 

algorithm iteratively built stochastic vehicle paths and the assignment between vehicle flows and commodities. Ozdamar 

(2011) proposed a mathematical model and a route management procedure to allocate helicopters to affected sites for the 

last mile delivery of emergency items and for transporting severely injured casualties to hospitals. The special aviation 

constraints of helicopters and large-scale helicopter missions were considered. The route management procedure provided 

the flexibility of adjusting the mission completion time against the number of utilized helicopters. Paul and Batta (2011) 

developed models to allocate ambulances to hospitals in the pre-disaster preparedness phase aiming at minimizing the 

social cost as “the cost of a person who dies when he/she does not receive treatment in a survivability time”. Travel time 

to hospitals was estimated using stochastic simulation. Dijkstra algorithm was used to determine the shortest paths. They 

developed an algorithm to dynamically update pre-disaster plans to post-disaster reality considering the hospital status, 

travel times and the survivability time of casualties. Prior allocations might not be optimal in the event of the emergence 

of new casualties and a constant reevaluation of reallocation decisions is necessary. 

Wang et al. (2012) developed an agent-based model to simulate the dynamic emergency medical response to an urban 

MCI with three heterogeneous responders. The model was constructed from a geographic information system and data on 

hospital resources. The simulation results showed that using only partial information may have no benefit or a harmful 

impact on decision making. Moreover, utilizing all available facility resources helps balance the load among hospitals and 

avoids unnecessary waiting and transferring of casualties. Najafi et al. (2013) developed a three-objective, multi-mode, 

multi-commodity and multi-period robust stochastic model for the post-earthquake logistics of both relief items and 

casualties. A solution methodology was suggested, which converted the model into three sub-models and used three steps 

to optimize three objectives hierarchically. Dean and Nair (2014) developed a resource-constrained model to prioritize 

casualties to effectively be transferred to different area hospitals in order not to overwhelm any single hospital. It 

outperformed all low- and high-score first heuristics of the order of 10–30% on average. As the number of available 

ambulances varies but the hospital capacities remain constant, the SAVE model performs better than the closest-first 

heuristic. 
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Table 9. Characteristics of the TTH problems investigated in the papers. 
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100 casualties, 2 hospitals S MT CR ✓* - ✓* - - ✓ Only red triage group with adult casualties Allocate casualties to hospitals A Christie and Levary (1998) 
100 clusters, 98 ambulances, 19 
hospitals 

H MT NR ✓ ✓ - - ✓ - Incapacitated hospitals - Allocate and reallocate ambulances A Gong and Batta (2007) 

60 nodes, 5 CLs, 170 vehicles LP O NR ✓ ✓ ✓ - ✓ ✓ Single transportation mode, Link disruption possibility - Locate CTSs 
- Allocate items and vehicles 
- Transport casualties 

L-A Yi and Ozdmar (2007) 

80 nodes, 1,600 arcs, 55 vehicles ACO O NR ✓ ✓ ✓ - ✓ ✓ One transportation mode, Link disruption possibility Like Yi and Ozdmar (2007) A Yi and Kumar (2007) 
34,890 nodes, 43,445 links, 76 
vehicles, 20 hospitals, 1,190 casualties 

S MS CR, NR ✓ - ✓ - ✓ ✓ DHC, 4 casualty classes, 5 levels of road damage - Routing of emergency vehicles 
- Transport casualties to hospitals 

R Jotshi et al. (2009) 

10,414 casualties LP MT NR ✓ - ✓ - ✓ ✓ One helicopter type, Limited cargo weight, Split pickup/ delivery - Dispatch items to AFs 
- Transport causalities to hospitals 
- Allocate vehicles to links 

A Ozdamar (2011) 

14,449 nodes OP, S MC NR ✓ - ✓* ✓ ✓ ✓ Known AFs, Link disruption possibility, DHC Allocate casualties to hospitals A Paul and Batta (2011) 
150 patients, 24 ambulances, 15 
hospitals 

S MF CF - - ✓ ✓  ✓ Deteriorating health conditions Allocate casualties to hospitals A Wang et al. (2012) 

16 nodes, 91 arc, 74 vehicles H MF, MT NR ✓* - ✓ - ✓* ✓ Known AFs, Heterogeneous vehicles, Different types of injured 
people and items  

- Transport casualties to hospitals 
- Allocate vehicles and items 

A Najafi et al. (2013) 

13,000 casualties LP MS, MT NR ✓ - ✓ - - ✓ Identical resources, Correspondence between ambulances and 
CCPs 

- Locate CCPS and Allocate casualties to 
CCPs/ hospitals 
- Allocate resources to CCPs 

L-A Apte et al. (2014) 

45 casualties, 20 ambulances LP MS NR - - ✓ ✓ - - DHC - Allocate casualties to hospitals 
- Required ambulances and hospital capacity 

A Dean and Nair (2014) 

13 nodes, 38 arcs, 74 vehicles H MF, MT NR ✓ - ✓ - ✓ ✓ Known CLs, Known demands, Six casualty levels, Multi-item, 
Multiple transportation modes 

Like Najafi et al. (2013) A Najafi et al. (2014) 

7,000 casualties H MT NR ✓ ✓ ✓ - ✓ ✓ Known demands Transport casualties to hospitals A Salman and Gul (2014) 
210 casualties, 53 ambulances, 27 fire 
appliances, 21,214 nodes 

S MF, O NR - - ✓ - ✓ ✓ Transportation network disruption Select routing strategy R Wilson et al. (2014) 

2,500 beds, 100 medical resources, 60 
ambulances, 10 helicopters 

B&C MC, MS NR, CF ✓ - ✓ - ✓ ✓ Known facility location - Allocate vehicles to casualties 
- Required beds in shelters 

A Na and Banerjee (2015) 

50 casualties, 4 hospitals, 25 
ambulances 

OP, VNS MT NR ✓ ✓ ✓ - - - Sufficient hospital capacity, Euclidian distance - Allocate ambulances to casualties  
- Prioritize and allocate casualties to 
hospitals 

R Talarico et al. (2015) 

150 casualties, 50 ambulances, 10 
hospitals 

H MT NR ✓ ✓ ✓ - ✓ - Identical resources, Correspondence between ambulances and 
casualties 

- Allocate/ prioritize casualties in hospitals  
- Scheduling ambulances 

A-S Repoussis et al. (2016) 

30 casualties in each class, 30 
ambulances 

CG MS NR ✓ ✓ ✓ ✓ ✓ - Known casualties, Identical resources, Correspondence between 
ambulances and casualties, DHC 

- Allocate ambulances to casualties  
- Allocate/ prioritize casualties in hospitals 
- Arrival time of casualties to hospitals  

A-S Sung and Lee (2016) 

50 casualties, 5 servers H MS NR - ✓ ✓ ✓ ✓ - All casualties are available at time zero, Non-preemptive service No. of casualties served at a given time  A-S Kamali et al. (2017) 
8 AFs, 52,502 casualties BD MT NR ✓ ✓ ✓ - ✓ ✓ DHC - Locate care facilities 

- Allocate casualties to care facilities 
L-A Caunhye and Nie (2018) 

75 casualties, 7 ambulances, 3 
hospitals 

H, S MF NR - ✓* ✓* - ✓ ✓ DHC Allocate ambulances to AFs A Mills et al. (2018) 

9 AFs, 16 hospitals, 18 shelters, 9 
CCPs 

MOO MT CF, CR, 
NR 

- - ✓ ✓ ✓* ✓ Two-mode heterogeneous vehicles, Three-layer transportation 
network, Instantaneous return 

- Locate shelters and transfer points 
- Allocate casualties to transfer points/ hospitals 
- Allocate relief items to shelters 

L-A Sabouhi et al. (2019) 

* Uncertain parameter. 
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Table 10. Micro analysis of TTH papers: uncertainty, dynamics, heuristics, and insights. 
Reference  Uncertain parameter 

Jotshi et al. (2009)  Casualty clusters (G), location of casualties (G), Road condition (G) 
Najafi et al. (2013)  Commodity demands/supplies (G), Casualty flows (G), Hospital capacity (G) 

Caunhye and Nie (2018)  Casualty flows (S), Self-evacuees (S), Transport times (S), Casualty priorities (S) 
Mills et al. (2018)  Travel times (E), Service times (E) 

Sabouhi et al. (2019)  Casualty flow (G) 
G: General,   S: Scenario-based,   E: Exponential. 

Reference Dynamic parameter/Information update mechanism* 
Gong and Batta (2007) Casualty flows, Arrival rates 

Jotshi et al. (2009) * Simulation is updated by an information fusion module 
Najafi et al. (2013) Casualty flows, Commodity demands/supplies, Vehicle availabilities, Hospital capacities 
Apte et al. (2014) Casualty flows, Resource availabilities 

Dean and Nair (2014) Survival probabilities 
Najafi et al. (2014) Casualty flows, Commodity demands/supplies, Vehicle availabilities, Hospital capacities 

Salman and Gul (2014) Casualty flows, Travel times, Available capacities 
* A hierarchical analysis approach to gradually capture data realizations 

Wilson et al. (2014) * An online local search procedure using updated travel time estimates 
Mills et al. (2018) Casualty flows 

  

Reference Heuristic/Rule of thumb/Insight* 

Gong and Batta (2007) Two iterative allocation procedures 

Dean and Nair (2014) Severity-Adjusted Victim Evacuation (SAVE) 
* SAVE is better than STM considering multiple hospitals of limited capacity 

Najafi et al. (2014) * Large number of low-capacity hospitals/suppliers leads to shorter waiting times than few ones with larger capacities 

Wilson et al. (2014) * Autonomous routing strategy for responders leads to improved overall performance 
* Leave routing decisions to responders if they can share knowledge and learn together 

Mills et al. (2018) 
(1) Myopic heuristic, (2) Policy improvement heuristic 
* Heuristics outperform the transportation to the nearest facility  
* More sophisticated policy is reasonable only when casualties do not deteriorate rapidly 

 

Salman and Gul (2014) proposed a multi-period model to optimize location and casualty transportation decisions 

aiming at minimizing the weighted sum of total travel and waiting times of casualties and the total costs of locating new 

facilities. As more resources are acquired over time, the updated solution can guide the allocation of further capacity to 

improve service levels and achieve equity. Najafi et al. (2014) developed a multi-objective dynamic model to 

simultaneously plan commodity transportation to affected sites and casualty transportation to hospitals after earthquakes. 

There are several types of commodity, casualty and transportation vehicles (helicopter, truck, ambulance and train). They 

hierarchically minimized the total time until casualty arrival at a hospital and the total lead time to fulfill commodity needs. 

The model could dynamically re-route the path of en-route vehicles for shorter response times. They investigated the 

impact of network structure and the number of hospitals and suppliers on the model performance. Na and Banerjee (2015) 

proposed an integrated triage-allocation-transportation model to allocate casualties to facilities in which the number of 

survivors and the total evacuation cost are optimized simultaneously. Temporary staging areas were located to transport 

casualties to shelters such as medical facilities. They considered the priority of casualties, multiple vehicle types and several 

categories of relief resources. Mills et al. (2018) developed a Markov decision process and two heuristic policies to I) 

allocate ambulances to casualty locations and II) select hospitals for transportation. 

Location-Allocation: Yi and Ozdamar (2007) formulated a location-routing model to locate CTSs for less serious 

casualties, to dispatch commodities to affected sites and to evacuate and transfer casualties to CTSs and hospitals. The 

location sub-problem involves the sharing of scarce medical resources and achieving a service rate equilibrium among 

different emergency centers. A full exploitation of facility capacities is achieved by the interaction between an allocation 

sub-problem and the service rate equilibrium and location sub-problem. The model expedited a high priority evacuation 

while maintaining an equilibrium among the service rates of medical facilities. Scarce resources were exploited to their 

full extent. Apte et al. (2014) developed an optimization model equipping planners and policymakers with strategic and 

operational insights on the location of CCPs and the allocation of personnel, decontamination units and ambulances to 

maximize the casualty throughput. Accordingly, the substantial cost savings achieved allowed these funds to be used to 

secure other resources that were initially underestimated. The results indicated that the optimal order and timing for the 
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activation of CCPs is not necessarily linear. Caunhye and Nie (2018) proposed a three-stage stochastic model to determine 

the location of care facilities and the allocation of casualties to hospitals and newly-located care facilities. Both non-self-

evacuee and self-evacuee groups of casualties were divided into low-priority and high-priority classes. For a large number 

of scenarios, they proposed a two-stage approximation model to guess right third-stage solutions without corresponding 

decision variables and constraints. The model has a small EVPI; it does not benefit very much from having more accurate 

information. Sabouhi et al. (2019) developed a multi-objective robust possibilistic model for locating transfer points and 

shelters, transporting casualties to hospitals, transporting evacuees to shelters and supplying relief commodities to 

evacuees. Relief equity was achieved by minimizing the maximum transportation time to shelters, transfer points and 

hospitals and the maximum distribution time of relief commodities. The robust model yielded standard deviation values 

lower than those for a possibilistic chance-constrained model. Finally, the best values of shelters’ and transfer points’ 

capacities and the total service time were recommended. 

Routing: Jotshi et al. (2009) developed a robust simulation for the dispatching and routing of emergency vehicles 

to casualty pickup locations and then to appropriate hospitals in a post-disaster environment with the support of data 

fusion. Key factors including casualty priorities, distances, waiting times in hospital emergency rooms, hospital 

capacity and road damage and congestion were considered. Wilson et al. (2014) developed a simulation study to 

show how the routing strategy of emergency responders affects both routing efficiency and uncertainty in travel time 

prediction. They proposed a methodology based on a Bayesian approach to update the travel time distributions for 

centralized routing strategies. Talarico et al. (2015) formulated two models for ambulance routing with two groups 

(on-field assisted green code, hospital-in-need red code) of casualties to minimize the latest service completion time. 

A route is a tour that starts from a hospital, picks up some casualties in a specific sequence and ends at a hospital. In 

the first model, they considered a 2-index variable for routing of identical ambulances while in the second one, the 

routing of heterogeneous ambulances was denoted by a 3-index variable. A large neighborhood search was proposed 

to solve the models. 

Allocation-Scheduling: Repoussis et al. (2016) developed a model for three pre-hospital decisions: dispatching 

and scheduling of ambulances, allocation of casualties to hospitals and casualty prioritization in hospitals. The 

objectives were to hierarchically minimize the overall response time and the total flow time required to treat all 

casualties. They quantified the impact of capacity-based bottlenecks for both ambulances and available hospital beds. 

Moreover, a trade-off between accessing remote hospitals for demand smoothing versus reduced ambulance 

transportation times was established. Sung and Lee (2016) formulated an ambulance routing problem (i.e., the 

allocation and scheduling of the hospital transportation of casualties) as a set partitioning model. All casualties, 

categorized into immediate and delayed classes, were available at time zero. They solved the model for three survival 

probability scenarios (i.e., pessimistic, moderate and optimistic). The recommended solutions outperformed a fixed-

priority resource allocation. Finally, the model was extended by assuming a hierarchical care capability structure, 

casualties in several affected sites and the sequential availability of ambulances. Kamali et al. (2017) studied the 

problem of resource-based prioritization of several casualty groups for service by medical persons and transportation 

by ambulances to hospitals. They analyzed the structure of the optimal solution and compared its performance to the 

current practice and other related models in the literature. Although more critical-first policies for triage might be 

optimal in some cases, in many others, the reverse or some other mixed strategies perform significantly better. 

6.2. Critical discussion 
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Although the literature of the TTH problem is rich and scholars have developed various models for different aspects 

of the problem including scheduling, routing, location, allocation and some combinations of them, the examination 

of Table 9 hints at several gaps in this area: 

Coordination between TTH and road network restoration: In current studies, transportation paths between 

supply (e.g., CTSs) and demand (e.g., hospitals) points are fixed and not updated over time. This means that the 

restoration of disrupted roads during response operations is ignored. Considering road restoration necessitates 

dynamic path selection and transportation planning in TTH models. Shortening transportation paths over time may 

significantly affect the survival probability of casualties. 

Multi-modal transportation plans: In reality, depending on the geographical spread and population density of 

the affected areas, various transportation modes with multiple types of vehicle (having different features like capacity, 

speed, etc.) may be employed to efficiently transport casualties with different health conditions on the routes among 

the nodes of a network. Table 9 shows that most of the existing papers assume a single transportation mode. 

Design and planning of TTH networks: In large-scale MCIs, numerous nodes and routes on both supply and demand 

sides of logistics networks may be damaged and be out of service partly or entirely. The status and capacity of hospitals 

in different nodes is also uncertain. This may prevent perfect point-to-point logistics and a hub-and-spoke solution may 

be an inevitable choice. More focus is needed on designing a hub network in which a limited number of hospitals and 

CTSs is considered as hubs to dispatch the arriving casualties and relief commodities to the other nodes as spokes. So, 

what is the best and most efficient design and planning for such a hub-and-spoke network? 

Integration between forward and reverse logistics: Few papers study the integration of forward (flow of 

commodities from hospitals and supply centers to the field) and reverse (flow of casualties from the field to hospitals) 

logistics in TTH operations. 

7. HOSPITAL TRIAGE AND COMPREHENSIVE TREATMENT (HTT) 

MCIs may generate a vast amount of unplanned demand for hospitals (especially in emergency departments) in addition 

to their routine and daily demands. Therefore, efficient employment of limited medical resources (equipment, personnel, 

beds, surgery rooms, etc.) in the overwhelmed hospitals is vital. Effective hospital capacity planning can improve the 

capability and performance of urgent treatment for injured people affected in a disaster (Yi et al., 2010). The main 

decision which should be made for severely-injured casualties arriving at hospitals is prioritization and allocation of 

medical resources to them. Since the medical conditions of casualties may change during transportation, a re-triage is 

needed at hospitals; accordingly, casualties may be hospitalized in different departments. Tables 11 and 12 show the 

details of HTT papers. 

7.1. Problem category description 

Cotta (2011) addressed a multi-tier casualty prioritization problem for treatment in identical operating rooms considering 

lifetime expectancy and resource consumption. They applied four state-independent heuristics for the problem. To alleviate 

the locality of decision making, a metaheuristic layer was added. The results show that the proposed approach is 

competitive in multiple scenarios regarding the number of operating rooms, casualties and triage tiers. However, it is 

sensitive to the presence of large uncertainties in operation times. Chan et al. (2013) studied the problem of prioritization 

and bed allocation for two-groups of casualties with known survival probabilities after a fire disaster. As the existing burn 

centers were not sufficient to meet the surge in demand, a mix of burn-beds and non-burn beds was considered. Burn level, 

age and inhalation injuries were the main determinants of the survival probability. The casualty prioritization was 
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implemented according to the length of stay and co-morbidity. Although the proposed method outperformed several other 

triage methods, it was shown to be highly unlikely that all casualties can be transferred into a tier 1 burn bed within five 

days. They recommended that the proposed tiered system may be sufficient in small to moderately sized events. Cohen et 

al. (2014) developed a fluid model to allocate surgeons among two treatment stations in the emergency department of a 

hospital after an MCI to minimize mortality during the treatment, operation or waiting. They only focused on the 

immediate group’s casualties. The casualties arrived continuously and were admitted in two stations: a life-saving station 

or an operating station. The model was tested on two scenarios designed based on a real terror attack. In both of them, the 

optimal policy gave a treatment priority to the life-saving station over the operation station. Jin et al. (2014) studied medical 

resource allocation and casualty transportation in a three-layer network including disaster areas, an on-site clinic and 

hospitals. According to their survival probabilities, casualties might be transferred to general hospitals either directly or 

through the on-site clinic. They considered four scenarios based on the different factors of response logistics and compared 

the model for two objective functions under each or a combination of scenarios. Wanying et al. (2016) studied the logistic 

response to a bioterrorist anthrax attack and proposed an optimization model that linked the disease progression, medical 

interventions and the deployment of the logistics together to extract crucial insights. The model considered the change of 

recovery rate because of time lag among two periods: (1) the period when casualties transfer into different disease stages 

and (2) the period when the medical intervention begins. 
 

Table 11. Detailed information about the papers addressing HTT operations. 

 

Reference Dynamic parameters/Information update mechanism* 
Jin et al. (2014) Casualty flows, Survival probabilities 

Wanying et al. (2016) Casualty flows, Survival probabilities, Service times 
  

Reference Heuristic/Rule of thumb/Insight* 

Jin et al. (2014) * Maximizing the number of survivors is more effective than minimizing the total cycle time 
Wanying et al. (2016) * Increasing both the detection ability and the capacity of dispensing centers decreases the number of deaths effectively 

7.2. Critical discussion 

We discuss possible gaps and trends for future research directions on HTT: 

Large-scale disasters (overwhelmed conditions): Numerous works have been published on the HTT in regular 

conditions or when common emergency incidents happen. However, as seen in Table 11, an important gap is the limited 

number of studies focusing on the HTT in large-scale MCIs (sudden, or slow-onset disasters). There is a need to 
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20 casualties in each class, 5 
operating rooms 

H MS NR ✓ ✓ - ✓ ✓ - Identical resource Order of casualty 
treatment 

P Cotta (2011) 

775 casualties 210 beds H MS NR  ✓ - ✓ ✓ - DHC, Exponential lifetime Allocate casualties to beds P-A Chan et al. (2013) 
10 surgeons S MF NR ✓ ✓ - - ✓ - First-come-First-service priority, 

Constant mortality rates 
No. of surgeons A Cohen et al. (2014) 

1,400 casualties, 12 clinics, 3 
hospitals 

LP MS NR, CF - ✓ ✓ ✓ ✓ ✓ Known casualties, Fixed facility 
locations, DHC 

- Transport casualties to 
clinic/ hospital 
- No. of casualties at 
clinic/ hospital 
- Allocate doctors to 
clinic/ hospital 

A Jin et al. (2014) 

35,000 casualties/ day, 4 DCs MDP MF NR, CF ✓ ✓ - ✓ ✓ - DHC, Stochastic MDP between the 
disease stages  

- Schedule the treatment 
- Transport medicines to 
hospitals 

A-S Wanying et al. (2016) 

 
Table 12. Micro analysis of HTT papers: uncertainty, dynamics, heuristics, and insights. 

Reference Uncertain parameters 
Cotta (2011) Survival times (W), Operation times (E) 

W: Weibull,     E: Exponential. 
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reformulate HTT models developed under regular conditions to address the requirements of a disaster environment. 

Conflicting objectives: HTT is a multi-objective problem in nature. However, the objective function column in 

Table 11 shows that scholars have not considered important objectives such as hospital resource efficiency, total 

operations costs and equity and fairness in treatment. It seems that decision-makers should establish a logical trade-

off between several more-or-less conflicting objectives. 

Cooperation among hospitals: Several hospitals with different capacities and capabilities are naturally involved 

in the triage and treatment of arriving MCI casualties. Moreover, the induced uncertainty and dynamics make the 

hospital network significantly unbalanced regarding the demand and supply. So, the models may be enriched under 

cooperative arrangements among hospitals (for sharing capacity, resource, inventory and information) to enhance the 

whole performance of HTT operations. 

Re-arranging daily operations: When disaster casualties with higher priorities arrive at hospitals, some minor 

or major modifications to the operations of current patients like delaying some elective patients and/or discharging 

the existing regular patients with lower priorities, etc. are necessary. Hence, an interesting area is to develop effective 

re-arrangement decision tools.  

Personnel scheduling and medical inventory management: The extra workload of personnel and a 

shortage/wastage of medical resources are critical challenges for hospitals involved in HTT operations in response 

to MCIs. While Table 11 shows that existing models did not address such an issue, a direction for future study is to 

develop HTT models including hospital personnel scheduling and medical inventory management. 

8. CONCLUSIONS AND FUTURE RESEARCH 

The most relevant review papers on OR&MS techniques for humanitarian operations and disaster management 

and research related to post-disaster CM were reviewed by categorizing, analyzing and assessing the published papers 

by the end of 2019. Published papers were selected from leading journals that use OR techniques for modeling and 

solving CM problems. The reviewed papers were grouped into five categories, namely RD&SR, OST, OSM, TTH 

and HTT. The objective function, main constraints, important assumptions, decision variables, input parameters, 

solution techniques and the largest problem size solved were described for each paper. In each category, the related 

papers were critically discussed. According to this study, the RD&SR and TTH problems are richer than the other 

problems considered. Most models in different categories were on allocation and scheduling. We observed that the 

most popular objective function is to maximize the number of survivors. The main resource constraints are related to 

teams, ambulances and doctors. Non-preemptive services are the main assumption in most papers. The deteriorating 

health condition of casualties after the disaster was considered by scholars. However, developing more realistic 

survival probability functions is needed. Another micro analysis was presented on how some papers in each category 

developed approaches for dealing with the involved uncertainty and dynamics in the post-disaster environment. Only 

35% of the papers paid attention to this issue. Accordingly, RD&SR and TTH categories are richer in this regard 

while OST, OSM, and HTT need more attention. Moreover, few (19) papers proposed any heuristic or rule-of-thumb 

to efficiently be implemented in the disaster scene instead of solving frequently the optimization models. It seems 

that all problem categories need special attention in this area. Specific research gaps and future research directions 

were suggested at the end of each section. We also systematically summarize in Table 13 the future research 

directions recommended in the reviewed papers (if any). When it comes to case-based studies among the papers 

published in the five problem categories, Table 14 gives the papers, categorization, case study and source of data. 
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Some papers used real-world data whereas others borrowed data from the literature. Accordingly, 47 papers (more than 

50%) provided a case study to demonstrate practical aspects of their models and 28 of them are about earthquakes. Most 

case studies are in RD&SR operations while papers published in the OST and HTT category presented fewer case 

studies. Notably, case studies in man-made disasters (10 cases) are much less numerous than natural disasters. 
 

Table 13. Future research directions suggested by scholars. 
References Future direction suggested 

Gong and Batta (2007) - Continuous-time policy for allocating ambulances to casualty clusters 
- Balance between frequent re-allocations and long waiting times 

Salmeron and Apte (2010) - Alternative objectives 
- Survivability curve of casualties over time 
- Other needs such as security and communication 
- Budget as a decision variable. 

Cotta (2011) - Addressing uncertainties 
- After-treatment survival probabilities 

Nolz et al. (2011) - Various mitigation activities to restore infrastructure more quickly 
Paul and Batta (2011) - Using simulation for other disasters such as earthquake 

- Capacity re-allocation for other facilities like CTSs 
Chen and Miller-Hooks 
(2012) 

- Spatial correlations in travel times between affected sites 
- Continuous representation of space 
- Dynamic distribution of parameters 
- Stochastic dynamic programming for USAR team deployment problem 
- Subdivision of the population by risk group and disease stage 
- Non-homogeneous mixing 
- Different types of infectious contacts 
- Different rates of exit from different groups 

Jacobson et al. (2012) - Simulation test-bed for priority decisions in emergency response 
Paul and Hariharan (2012) - Modeling hospital operations and casualty transport and their impacts on stockpiles 

- Epidemics and manmade disasters 
- Regions that are prone to multiple disasters 
- Uncertainty regarding the epicenter 

Rachaniotis et al. (2012) - Examining the time horizon’s impact and incorporating time-varying action rates 
- Subdividing population by risk group and disease stage 
- Non-homogeneous mixing 
- Different types of infectious contacts 
- Non-constant population size 
- Different rates of exit from different groups 
- Stochastic parameters 

Wang et al. (2012) - Other performance criteria 
- Negotiated agreements or financial factors 
- Deriving various concrete sub-types of casualties 
- Ranking-and-selection methods to identify a single best policy with a few simulation runs 

Edrissi et al. (2013) - Bi-level model to allocate a lump sum of money between agencies 
- Capture link travel times obtained from the stochastic behavior of evacuees 
- Differences in time of operation for each agency 

Dean and Nair (2014) - Impact of increase in inpatient casualties on patient flow at hospitals 
- Using some ambulances to transfer existing inpatients to a ‘‘farther’’ hospital 

Jin et al. (2014) - Addressing the vehicle dispatching 
Najafi et al. (2014) - Vehicle transportation costs 

- Uncertainty and dynamics travel time, capacities and demands 
- Dynamic and online scheduling model based on real data 

Salman and Gül (2014) - Trade-offs between performance and equity by optimization and simulation 
Wex et al. (2014) - Performance degradation of rescue units and preemptive scheduling 

- Time windows for incidents 
- Collaboration between rescue units and coordination of autonomous agents 
- Uncertain parameters 

Wilson et al. (2014) - Time-varying disruption links and correlation among adjacent links 
Xiang and Zhuang (2014) - Multi-server 

- Time-varying parameters 
- Common resources for serving patients 
- Batch arrivals 

Zheng et al. (2014) - Fine tuning the search using self-adaptive mechanisms 
- multiple populations which interact with each other 
- Multi-objective optimization 

Caunhye et al. (2015) - Monitor absorbed radiation doses of casualties over time, reassignment of facilities’ capacities, reallocation of 
triage capacities and queues with waiting and service times 
- How emergency responders pick casualties from demand points 

Edrissi et al. (2015) - Joint failure probability of multiple links 
- Tradeoffs between the emergency response reliability measure and other day-to-day reliability measures 
- Facility location problem 

Na and Banerjee (2015) - A large-scale stochastic optimization model 
- Using geospatial methodologies 

Talarico et al. (2015) - Different types of ambulance 
- Time windows 
- Route length constraints 
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References Future direction suggested 
Debacker et al. (2016) - Stochasticity in the SIMEDIS model 

- Considering the emergency department 
Mills (2016) - Estimate survival probability curves for different types of disaster 

- Coordination between first responders, their managers and hospitals  
Paul and MacDonald 
(2016a) 

- Specific needs for each casualty within the same severity 
- Limited budgets 
- Aftershocks and foreshocks 

Su et al. (2016) - Integration with GIS maps to visualize and understand essential information 
- Secondary disasters 

Wanying et al. (2016) - A general model for most of human transmissible diseases 
Wilson et al. (2016) - Partially dynamic problem scenario 

- Agent-based simulation with significantly accurate and up-to-date information 
Al Theeb and Murray 
(2017) 

- Assignment of vehicles and work crews for debris removal 
- Multi-objective optimization 

Haghi et al. (2017) - Different types of vehicle and transportation costs 
- Routing and scheduling of vehicles 

Kamali et al. (2017) - Considering the possibility of death before receiving service 
- Stochastic casualty arrival 
- Multiple affected sites 
- Hospital selection 

Zhang et al. (2017) - Collaborative assignment model to coordinate resource collisions among emergency depots 
Bravo et al. (2019) - Other performance measures suggested by interviewees 

- A real UAV in a private terrain or a military area 
Cao et al. (2018) - All dimensions of sustainability simultaneously 
Caunhye and Nie (2018) - Markov decision processes 

- Interaction between responder and self-evacuees by game theory 
Gu et al. (2018) - Multiple periods 

- Hierarchical medical shelters with different service levels 
- Vehicle routing problem to pick up casualties 

Mahootchi and 
Golmohammadi (2018) 

- Evacuation of affected people 
- Vehicle routing problem 
- Sending medical personnel and supplies for ambulatory treatment of casualties 

Rezapour et al. (2018) - Integration with TTH and HTT operations 
- Multi-period models 
- The heterogeneous process for rescue and treatment operations 

Rodríguez-Espíndola et al. 
(2018) 

- Imperfect information and/or resilience 
- Routing and scheduling problems and casualty transportation according to the organization hierarchy 
- Adaptation of the model to function with real-time information 
- Collaborative rather than centralized models 

Safaei et al. (2018) - Uncertain relief costs 
- Study of fuzzy supplier risks 
- Different transportation modes and the disruption of network 
- Multi-dimensionality of the risk factor 

Shiripour and Mahdavi-
Amiri (2018) 

- Multiple groups of casualties 
- More accurate relations for casualty and destruction percentages 

Sun et al. (2018) - Estimating survival probability functions along with remaining lifetime probability distributions 
- A priori analysis to recommend simple guidelines for training medics 

Alinaghian et al. (2019) - Multiple tours for vehicles 
Alizadeh et al. (2019) - Hybrid simulation-optimization approach for casualty evacuation 

- A qualitative system dynamic 
- Robust min-max regret stochastic programming model 
- A maximal accessibility network design 

Baharmand et al. (2019) - Considering fairness or social cost 
Ghasemi et al. (2019) - Routing of relief distribution and evacuation of casualties 

- Fuzzy sets or robust optimization approach 
Li and Chung (2019) - Considering uncertainty in loading and unloading times 
Li et al. (2019) - The complexity of rescue tasks and the collaborative effect among rescuers 

- Inadequate number of rescuers 
Liu et al. (2019) - A quantitative empirical approach or mathematical method such as queue theory and stochastic scheduling 

method to classify casualties and study the survival probability function under time-varying number of casualties 
- Determine the order of medical service for casualties 

Liu et al. (2019) - Intelligent forecast method for predicting the uncertainties in supply and demand 
- Considering multi-modal transportation 

Ozbay et al. (2019) - The risk of losing some shelters 
Paul and Zhang (2019) - Hospital capacity and transportation 

- Vehicle round trips to visit multiple points 
- Priority for perishable products 

Rauchecker and Schryen 
(2019) 

- Preemption of the casualty processing 
- Considering time windows 
- Handling uncertainty 

Sabouhi et al. (2019) - Disruption of facilities or transportation links 
- Uncertainty in transportation time, capacity of facilities and available relief items 
- Classification of hospitals 

Setiawan et al. (2019) - More effective heuristic methods 
- Road capacity 

Yu et al. (2019) - Varying or stochastic lead times and demands 
Zhu et al. (2019) - Relaxation of some assumptions 

- Uncertain scenarios 
- Investigating equity and priority in other aspects of CM  
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Table 14. Details of case-based studies in the CM literature. 

Reference Case study Source of data 

R
D

&
SR

 

O
ST

 

O
SM

 

T
T

H
 

H
T

T 

Christie and Levary (1998) Air crash in a residential area of St. Louis City Emergency Management Agency, The EMS in St. Louis    ✓  

Drezner (2004) Hypothetical earthquake in Orange County, California 2000 Census data   ✓   

Gong and Batta (2007) Earthquake in Northridge Al-Momani and Harrald (2003)    ✓  

Yi and Ozdmar (2007) Hypothetical earthquake in Istanbul Bogazici University (2002) ✓   ✓  
Jotshi et al. (2009) Hypothetical earthquake in Northridge, Los Angeles  Tele-Atlas database    ✓  
Ozdmar (2011) Earthquake in Istanbul 1999 www.ibb.gov.tr/sites/akom/Documents/index.html ✓   ✓  
Nolz et al. (2011) Hypothetical earthquake in Manabí, Ecuador Not reported ✓     
Paul and Batta (2011) Hurricane in New Orleans Jotshi et al. (2009)    ✓  
Chen and Miller-Hooks (2012) 2010 Earthquake in Port-au-Prince, Haiti UNOSAT,2010 ✓     
Paul and Hariharan (2012) Hurricane Katrina in New Orleans, Earthquake Northridge, California GPO Access Reports 2005, Klein and Nagel (2007), Franco et al. (2006) ✓  ✓   
Rachaniotis et al. (2012) Influenza in Greece, 2009 www.statistics.gr/portal/page/portal/ESYE/PAGE-themes?p_param=A1604  ✓    
Rauner et al. (2012) Austria (general disaster) Austrian informational sources   ✓   
Chan et al. (2013) New York City World Trade Center attacks on September 11, 2001 Yurt et al. (2005)     ✓ 
Apte et al. (2014) Columbia (general disaster) National Medical Response Teams  ✓  ✓ ✓  
Jin et al. (2014) Department store collapse South Korea-1995 You et al. (1997)   ✓ ✓ ✓ 
Salman and Gul (2014) Earthquake in Istanbul JICA report (2002)  ✓  ✓  
Zheng et al. (2014) 2013 Ya’an Earthquake in China Red Cross Society of China, Yang et al. (2013)  ✓    
Caunhye et al. (2015) Radiological dispersal devices in Los Angeles Department of Homeland Security (2005)  ✓ ✓   
Edrissi et al. (2015) Earthquake in Tehran, Iran Tehran Atlas, 2014 ✓     
Debacker et al. (2016) Airplane crash at Zaventem airport in Belgium Belgian EMS system  ✓ ✓ ✓  
Paul and MacDonald (2016a) Earthquake in Northridge region in Los Angeles California,1994 RSMeansOnline, 2013   ✓   
Repoussis et al. (2016) Hypothetical Terror attack, New York Randomly data    ✓ ✓ 
Karatas et al. (2017) Maritime incidents, Turkey Turkish Coast Guard ✓     
Zhang et al. (2017) 2008 earthquake in Wenchuan, Sichuan Province, China Not reported ✓     
Bravo et al. (2019) Tornado in Brazil, Refugee camp in South Sudan, Nuclear accident in Fukushima, Japan. Canes (2015), Reach Resource Centre (2015), Verdu (2016) ✓     
Cao et al. (2018) Earthquake in Wenchuan of Sichuan in China on May 12, 2008 Not reported ✓     
Caunhye and Nie (2018) Earthquake in California Jones et al. (2008)     ✓  
Kim et al. (2018) Terrorist attack, Seoul, Korea Kang et al. (2015) ✓     
Mahootchi and Golmohammadi (2018) Hypothetical earthquake in Tehran, Iran JICA- Japanese International Cooperation Agency (2000), Reports of Tehran Municipality ✓     
Mills et al (2018) Hypothetical Earthquake in San Francisco  California Office of Statewide Health Planning and Development (2016)    ✓  
Mollah et al. (2018) Flood in Barrackpore Block II, India State Government of West Bengal, India ✓     
Niessner et al. (2018) Gas explosion at a farmers’ market in Austria Rauner et al. (2016)* ✓ ✓ ✓ ✓  
Rezapour et al. (2018) Earthquake in New Madrid Seismic Zone of Illinois New Madrid Seismic Zone (2009) ✓  ✓   
Rodríguez-Espíndola et al. (2018) Hurricanes in Veracruz and Guerrero, Mexico, 2010, 2013 Multiple organizations reported in Table 2 of the paper ✓     
Safaei et al. (2018) Flood in villages of Mazandaran, Iran Central warehouse of Mazandaran, Sari Municipality, historical data and published local studies ✓     
Shiripour and Mahdavi-Amiri (2018) Earthquakes in Tabriz, Iran Statistical Center of Iran, Tabriz Crisis Management Organization, Tabriz municipality and Tabriz DEMMC ✓     
Alizadeh et al. (2019) Hypothetical leak of toxic gas in Bhopal, India Indian Council of Medical Research (ICMR, 1985)  ✓ ✓ ✓  
Baharmand et al. (2019) 2015 Nepal earthquake UN World Food Program handbook, Logcluster.org, 2011 Nepal census report, Semi-structured interviews ✓     
Davoodi and Goli (2019) Hypothetical Earthquake in Tabriz, Iran Expert estimations ✓     
Doan and Shaw (2019) Simultaneous hypothetical disasters in three different cities Document review, retired commander interview, Double-check by two other commanders ✓     
Ghasemi et al. (2019) Hypothetical earthquake in district one of Tehran, Iran Not reported ✓   ✓  
Li et al. (2019) 2014 earthquake in Ludian, China Not reported ✓     
Liu et al. (2019) 2010 Earthquake in Yushu, China http://www.qhnews.com/; Mills et al. (2013); Ni et al. (2018) ✓     
Liu et al. (2019) 2008 Great Wenchuan Earthquake, Sichuan Province, China Earthquake Agency of P.R. China ✓     
Sabouhi et al. (2019) Hypothetical disaster in district 4 of Tehran, Iran Reports of Tehran Municipality, Tehran City Council, Tehran Red Crescent Society and polls of experts ✓   ✓  
Setiawan et al. (2019) Padang Pariaman District after the West Sumatra earthquake Ministry of Health Affairs office ✓     
Zhu et al. (2019) 2017 Houston Flood FEMA, CNN report ✓     

Total 29 7 11 17 3 
* Rauner, M.S., Niessner, H., Leopold-Wildburger, U., Peric, N., Herdlicka, T. (2016) A policy management game for mass casualty incidents: an experimental study. Flexible Services and Manufacturing Journal, 28(1-2), 336-365. 
** Yang, J., Chen, J., Liu, H., Zhang, K., Ren, W., Zheng, J. (2013) The Chinese national emergency medical rescue team response to the Sichuan Lushan earthquake. Natural Hazards, 69(3), 2263-2268. 

http://www.qhnews.com/
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Finally, in this section, some general directions are suggested which are applicable for all categories of CM: 

Coordination/Integration: Coordination among interrelated CM operations is critical in saving the highest 

number of casualties. Some researchers developed integrated models that simultaneously take into account two or 

more categories (among RD&SR, OST, OSM, TTH and HTT). However, there exists a space for improvement and 

extension. The coordination of RD&SR activities with downstream operations (e.g., OSM, TTH, etc.) was 

understudied. The prioritization made by OST methods depends on the balance between the supply and demand of 

relief resources which, in turn, is determined by the arrival rate of casualties (pushed by RD&SR operations) and 

service rate of medical units (pulled by OSM operations). Also, both OSM and TTH problems are strongly 

interrelated which calls for the integration of resource allocation and scheduling decisions. Finally, TTH decisions 

determine the casualty arrival patterns at HTT while the performance of HTT operations may mutually affect the 

hospital workload and accordingly, the acceptance rate of casualties sent by TTH operations. Well-established 

coordination allows addressing important issues like balancing the hospital workload to prevent overwhelming. 

Another path for future research is to incorporate other non-CM but relevant decision areas such as debris 

management, corpse management and volunteer management. 

Dynamisms: Extra sources of dynamics on both demand and supply sides of post-disaster circumstances are involved. 

The occurrence of new incidents, discovery of new affected sites and collapse of infrastructures, facilities and buildings 

during the relief operations cause some demand-side dynamics. Moreover, the survival probabilities of different casualty 

groups are not fixed and deteriorate over time. The unplanned arrival of new national and international resources at disaster 

scenarios and damage to the morale and mentality of relief personnel are examples of supply-side dynamics. The number 

and status of SAR and medical units and relief facilities (e.g., ambulances) changes significantly over time. In HTT 

operations, the arrival pattern of casualties and the service pattern of medical resources are also non-stationary and vary 

over time. These highlight the importance of employing novel but efficient methods to capture dynamics in CM models. 

Extreme uncertainty: Most developed models were formulated in deterministic and close-to-normal 

environments. In fact, the current literature mainly assumes the existence of perfect information about all aspects of 

CM problems which is not realistic and practical. The existing models mainly focused on uncertain parameters like 

arrival and treatment times and deteriorating health conditions. Considering various aspects of uncertainty and 

incomplete and asymmetric information is a severe demand in the CM field. 

Real-time decision making: Lack of valid data is one of the most critical challenges in a chaotic post-disaster 

environment in which data acquisition is difficult and time-consuming and perfect information is gradually provided 

by better assessment of affected areas over time. The number, location and condition of affected sites, number and 

status of affected people, the number and capacity of relief resources, etc. are updated continuously after collecting 

more precise information. However, most of the existing models are off-line and mostly ignore such facts. These 

unrealistic assumptions should be relaxed in future studies by developing real-time optimization to re-adjust decisions 

(i.e., re-locate, re-allocate, re-schedule, re-route, etc.) in a timely manner. 

Heuristics/rules of thumb: The majority of papers assumed the model will be solved every time a casualty 

management problem occurs. In fact, few papers employed the optimization models as policy-making tools for 

proposing simple yet effective heuristics/rules of thumb to help practitioners make on-time decisions in the scene of 

disaster without solving frequently the formulation itself. This is a highly demanded direction for future research. 

Continuous-time models: The majority of parameters in CM problems like the number of casualties, their types 

and situations change continuously. Discretizing the response time horizon at different intervals even of short enough 
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length results in an inaccurate simulation of the environment. Though difficult-to-solve, a strong stream of future 

research is to develop continuous-time models for the different operations, especially RD&SR, OST and OSM. 

Empirical studies: There are not enough empirical studies to provide valid historical data on parameter 

estimation in CM operations for any disaster occurrence in terms of critical factors like severity, spread, location, 

time and so on. Very little primary data regarding the early response of past MCIs was recorded and published in 

detail even by valid worldwide professional databases such as CRED, EM-DAT and WHO. This shortcoming 

questions the efficiency level of the proposed approaches. 

Disaster-specific research: The type of disaster is an important factor that can affect the relief operations. For 

example, there is no warning time in sudden-onset disasters, while some disasters occur with notice and provide 

ample time for deployment of relief teams. Therefore, real CM is dependent on the disaster type to identify a realistic 

decision-making problem. 

Role of other organizations: At the moment, the literature does not sufficiently pay attention to the interaction 
between all players acting in casualty management at disaster scenes, and that can be addressed in the future. In CM, 
humans are servicing humans while the parties are experiencing unusual physical and mental conditions and living 
in a chaotic environment. A single organization cannot manage an MCI due to the requirement for different resources 
and services. The multi-agent nature of post-disaster casualty management enforces the presence of various players 
(public, private and voluntary), each having their own missions, policies and authorities, but with the same objective in 
mind. Additionally, the significant role of volunteers should not be ignored. According to the Fritz Institute (2005), 90% 
of the people interviewed in Indonesia were rescued by volunteers. Many activities during the initial emergency 
response are done by civilians (Telford et al., 2006). This indicates a cooperative competition (named as ‘coopetition’) 
network of agents, which is a challenging issue. Game theory and multi-agent systems are two approaches to formulate 
the dynamics and interactions of several actors in casualty management well. 

Behavioral aspects: Even the best logistics models show bias in implementation due to civil intervention. The 
worsening morale and state of mind of all responders (SAR and medical teams, doctors, transporters, etc.) affects their 
efficiency, flexibility and consistency. In contrast, families that have lost their members are in severe mental health 
difficulties after a disaster. Studying the behavioral considerations in post-disaster situations is a serious request of 
practitioners. Therefore, incorporating behavioral and psychological considerations in developed decision-making tools 
is a way to make the studies more realistic. Perhaps developments in behavioral operations such as bounded rationality, 
prospect theory and immediacy can help scholars to come up with more existing and impactful models and techniques. 

Data-efficient/ data-driven models: Few papers studied real-world case studies and the rest lack empirical data. Most of 

the existing models are highly data-demanding. This field needs primary and secondary data to not only familiarize academics 

with detailed aspects of a practical problem in terms of assumptions, objectives and constrictions but also feed them with 

parameters to test the efficiency of their developed techniques. While in post-disaster situations, it is difficult to gather all the 

required information, run the models and generate results and insights. Therefore, there is a significant need for efficient 

models to be developed which can produce appropriate solutions despite limited available or easy-to-collect/estimate data. 

Impact of IT: The impact of various high-tech devices and data/big-data analytics cannot be ignored in any aspects 

of casualty management. Maps and geographic information systems can indicate the location, spread and severity of 

disasters as well as the availability of infrastructures and assess the assessment of the damage level after a disaster 

(Ozdmar and Ertem, 2015). Satellite, UAVs and radio frequency identification sensors are also other tools, which can 

be used in humanitarian logistics and relief operations, especially in the RD&SR activity. In the Fukushima nuclear 

power plant incident, only robots could be used to do any activity due to harmful radiation (Habib et al, 2016). There is 
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little historical data in this field and finding the data for the estimation of parameters is usually very hard; hence, the 

internet of things may be used to constantly gather in-field real-data and data/big-data analytics. Additionally, machine 

learning possesses useful techniques that can be used to prepare this data with simulation and optimization models. 

Finally, the proposed CM approaches will only be effective if they are systematically and artistically embedded in easy-

to-use IT-based decision support apps that allow real-time optimization and what-if analysis by updated data. 

Solution approaches: Metaheuristic and heuristic techniques were designed for the models in CM. According 

to Zheng et al. (2015), evolutionary algorithms are applied in a large variety of disaster relief operations problems. 

Exact methods or their combinations with heuristics or Metaheuristics can help to solve such models. The 

decomposition approach for combinatorial models is also suggested as an avenue for further research. 

Simulation-based Optimization: Total response time, as a priceless resource in post-disaster CM, should 
constantly be under control. In fact, practitioners need to make robust high-quality decisions in the shortest possible 

time to be able to do the greatest things for the greatest number. Therefore, model developers have to solve their 

models previously, extract, evaluate and validate the easy-yet-effective policies and decision rules and suggest them 

to practitioners. Simulation is one of the best methods to evaluate and validate the outcomes of models in the 

experimental environments that are similar to the disaster field. Moreover, to obtain the optimal solution with 

minimum computation time for the intractable integrated mathematical models in the field of CM with frequent data 
updates, the iterative simulation-based optimization technique is a well-known alternative. 
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