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Abstract 

 

Objective: Although several different types of bioreactor are currently available with 

mechanical stimulation of constructs or prostheses for tendon regeneration, they are in 

many cases expensive and difficult to operate. This paper proposes a simple bioreactor 

to mechanically stimulate up to three constructs for tendon and ligament repair, 

composed of a stainless-steel frame and an electric motor. 

Methods: The deformation is produced by a cam wheel, whose eccentricity defines the 

maximum deformation. The test samples, braids of PLA seeded in surface with mouse 

fibroblasts, are immersed in the culture medium during mechanical stimulation. 

Results: Its advantages over existing similar bioreactor designs include: easy renewal of 

the culture medium and an external electric motor to avoid heating and contamination 

issues. 

After 14 days of stretching, the culture samples showed enhanced cellular proliferation 

and cell fibre alignment in addition to higher production of type I collagen. The cells 

initially seeded on the braid surface migrated to the inside of the braid. 

Conclusion: Although the results obtained have a poor statistical basis, they do suggest 

that the bioreactor could be usefully applied to stimulate constructs for tendon and 

ligament repair. Anyway, further experiments should be conducted in future. 

 

 

Keywords: bioreactor; mechanical stimulation; construct; regeneration; tendon. 
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1. Introduction 

Prostheses have been used to restore damaged tendons and ligaments over the past 

century. These tissues can be replaced either by natural fibres (silk, catgut or grafts 

(autografts, allografts or xenografts) and synthetic materials (nylon, polyethylene, 

silastic, Teflon, PLA, PGA, etc.) [1-4], although this solution presents certain long-term 

problems, like loosening of the bone anchorage, slackness of the prosthesis, or stiffness 

of the member [5, 6]. Regenerating the native tissue with implants focuses on Tissue 

Engineering techniques, based on a combination of cellular cultures and biomaterials [7-

11]. 

The mechanical conditions under which this regeneration process occurs are especially 

important. It has been repeatedly shown that regeneration of this tissue is more effective 

when the cells are mechanically stimulated, as in the body’s natural reaction to an 

injury. Cell growth on non-stressed supports leads to deficiently organized tissues, 

while the application of a mechanical force during regeneration improves the properties 

of the regenerated tissue [12-18], mainly due to the collagen fibres of stressed tissues 

being aligned in the direction of the force applied and the increased production of type I 

collagen. 

In vitro experiments should resemble as much as possible the in vivo conditions of the 

biological processes during regeneration (acidity, the medium surrounding the tissue, 

nearby tissues, mechanical stress, anchorage to muscle and bone, etc.). Bioreactors aim 

to achieve similar ambient conditions for the cells. Cell cultures should be carried out in 

controlled conditions in a sterile environment, as regards temperature, load ranges and 

deformation, etc. [19]. Bioreactors should also be able to deal with several samples at 

once. 
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During mechanical stimulation, stresses are transferred to the cells through the 

biomaterial support on which they are seeded. Different types of bioreactors can be used 

for different types of tissues [18, 20-29]. The aim of this work was to design, build and 

validate an easily operated bioreactor with an external motor that could be used for 

tissue engineering techniques to mechanically stimulate cell-biomaterial constructs for 

tendon and ligament regeneration. This ex vivo partial tendon and ligament tissue 

regeneration would be an advantage during subsequent surgical implantations, leading 

to better integration of the prostheses in the host body. 

 

2. Materials and methods 

The bioreactor is made up of a stainless steel frame, capable of being sterilized before 

each experiment, either in an autoclave or sanitized with ethanol solution. One end of 

the sample is anchored to the fixed part of the frame and the other to the moving part, 

which is oscillated by an adjustable cam wheel (its eccentricity defines the maximum 

deformation) to subject the sample to variable stretching cycles. To avoid the 

contaminating the cells under culture, the motor is outside the incubator and transmits 

the movement by a steel cable inside a sheath. The culture medium is placed in a Petri 

dish, so that the samples subjected to stretching cycles remain immersed in the culture 

medium, which can be renewed as frequently as required by simply replacing the Petri 

dish. 

The motor can be placed as far from the incubator as needed to avoid heat transfer or 

contamination. The appropriate temperature and ambient conditions can be set up inside 

the incubator. 

 

2.1 Bioreactor. Frame design. 
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The 180x85x55 mm
3
, 304 medical grade stainless steel frame was supplied by 

Mecanizados, S.A. (Alfafar, Valencia, Spain). The glass tubes were manufactured by 

VidraFoc (Valencia, Spain). Figure 1 shows a side view, plan and photo of the 

bioreactor. 
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Fig. 1 a) Bioreactor side view, b) plan and c) photo. The two samples at the left end are 

oscillated by the moving part on the right. Petri dish containing the culture medium can 

also be seen. 

 

The samples are tied to two cables with very high rigidity anchored to the frame in such 

a way that practically all the deformation is absorbed by the sample. The moving part of 

the frame is oscillated by an external motor and applies tensile forces to the samples. 

The frequency of stretching cycles can be controlled by adjusting the motor speed. To 

avoid metal parts coming in contact with the culture medium, the steel cables slide over 

two glass tubes. Two steel rods (10 mm outer diameter) pass through the glass tubes (20 

mm outer and 10 mm inner diameter) to support the forces on the samples and avoid 

breaking the glass. 

The samples can be of any length, although only the part immersed in the culture 

medium can be seeded with cells. The samples remain immersed in the Petri dish 

containing the culture medium. Three samples can be tested simultaneously. 

A methacrylate box (220x180x80 mm
3
) was designed to minimize the risk of sample 

contamination and facilitate the transport of the bioreactor from the laminar flow 

chamber (where the samples are attached to the frame) to the incubator chamber. 

 

2.2 Bioreactor. Power system. 

The samples are tensed at one end by a unit containing a 12 V (maximum voltage) DC 

electric motor and a gearbox (gear ratio r=104) Beru A350 (BorgWarner Inc. Auburn 

Hills, (WHQ) MI, USA), as shown in Figure 2. 
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Fig. 2 Bioreactor power system 

 

The cam wheel is turned by a shaft from the gearbox, that in turn moved a bar (contact 

point A). Such bar, at point B, moved the wire connecting the mobile piece of frame of 

bioreactor. Therefore, depending on the amplitude of movement of cam (de), on the 

lengths le and lp, on the intensity consumed by the motor (I), on the necessary intensity 

to overcome every mechanical friction (I0), and on constant of motor k' (relationship 

between torque and current, k’=0.0155 T∙m
2
), we can obtain the force applied to stretch 

the sample (Fp) and the amplitude of the applied deformation (dp): 
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varied by installing a cam wheel with a different eccentricity. The frequency of the 

movement applied to the sample can be controlled by altering the applied voltage. 

 

2.3 Bioreactor calibration 

The initial deformation applied to the sample was lower than expected due to its sheath 

being too elastic. It was therefore necessary to calibrate the bioreactor by mounting a 

load cell U3 (HBM Ibérica, Madrid, Spain) with a range 0-200 N and a resolution of 0.1 

N, and a displacement sensor (a ruler with a resolution of 0.25 mm) to measure the 

magnitudes really applied to the samples. These sensors were then disassembled and no 

real time acquisition was possible. 

When the power supply was adjusted to 6 V, the samples were subjected to a stretching 

movement of frequency 0.3 Hz. The maximum load applied to the samples was 10 N 

and at an amplitude of 1 mm, or 2% strain, according to the length of the tested sample 

(50 mm). The strength and deformation values were between the usual values quoted in 

the literature [15, 17]. As the motor can supply a maximum 12 V and the revolutions are 

directly related to the applied voltage, the frequency of the movement can reach up to 

0.6 Hz. The width of movement only depends on the cam wheel eccentricity, while the 

force applied to the sample depends on the displacement and on the features of the 

sample. This force applied to the sample could vary during the test due to stress 

relaxation because of the polymeric nature of the sample or even to the extracellular 

matrix maturation process, but the strain will remain unchanged in both cases. 

 

2.4 Static and dynamic cell cultures 

Dynamic tests were carried out to verify the bioreactor’s ability to mechanically 

stimulate the seeded samples and the effective transfer of the mechanical stimulus to the 
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cells. Also static tests were carried out. Other aims were to verify that the bioreactor 

could be easily operated when the culture medium was changed and that the external 

motor avoided contamination and temperature rises. The samples tested were made up 

of hollow PLA braids seeded on the surface with mouse fibroblasts (cellular line L929 

in passage 3). These braids have been self-manufactured and have been proposed as 

elements of a construct intended for tendon regeneration. The materials, manufacturing 

process and physicochemical properties can be found in [8, 30]. Culture times were 7 

(T7) and 14 (T14) days. 

The 100 mm long PLA braid was tied at both ends to a 50 mm long Kevlar braid. The 

PLA sample was sanitized with EtOH 70% solution, conditioned overnight with PBS 

and DMEM with 4.5 g·l
-1

 D-glucose without FBS for 24 h before cell culture. The 

samples were then surface-seeded with 100 µl of a cellular suspension (1x10
5
 cells). 

The samples were incubated at 37°C and 5% CO2 foralong 1 h, mounted in the 

previously sterilized bioreactor, and covered with culture medium (approx. 110 ml) 

(n=2). The set was carried to the incubator and connected to the motor. This connection 

is easily made by inserting the head of the wire into a hole on the moving part of the 

frame. The culture medium was renewed every three days by replacing the Petri dish 

under the frame of the bioreactor, and mechanical stimulus was applied 9 h per day, 

with frequency of 0.3 Hz, maximum load 10 N, and 2 % maximum strain. 

The braided material without mechanical stimulation was used as the control sample 

(static test) in a Petri dish in the same conditions as the dynamic tests (same cell type 

and equal time points). 

  

2.5 Analyses of cultured samples 
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The static and dynamically cultured samples were then subjected to standard 

morphology and immunofluorescence tests [30]. 

 

2.5.1 Morphology 

Scanning electronic microscopy (JEOL JSM-5410, Japan) was used to observe the 

surface morphology of the braided PLLA. The samples were washed twice in phosphate 

buffer solution (PBS) and fixed with a solution of glutaraldehyde 2.5 % for 1 h at 4ºC, 

then washed 3-4 times with PBS at 5 min intervals. Prior to SEM observation, the 

samples were dehydrated by changing the water for EtOH. The samples were dried and 

gold sputtered for further analysis. Micrographs were taken at 10 kV. 

The outer braid surface was studied for static and dynamic cell cultures at T7 and T14. 

To observe the internal braid morphology, the sample was cut lengthwise with a scalpel. 

The inner braid surface of the dynamic cultures was observed at T14.  

 

2.5.2 Immunofluorescence 

Cell distribution, morphology and type I collagen were examined by 

immunofluorescence analysis using a confocal microscope with inverted laser (Leica 

TCS SP2 AOBS, Germany). 

The samples were washed with phosphate buffer solution (PB 0.1 M) for 5 minutes at 

room temperature. Blocking buffer was added and maintained for 2 h, after which the 

primary and secondary antibodies (Col I:PB ratio 1:40 and Cy3:PB ratio 1:200) were 

successively added (10 μl per sample of bodipy-FL phalloidin (Invitrogen) was also 

added to stain the cytoskeleton), incubated in the dark at room temperature and washed 

three times with PB 0.1 M every 5 minutes at room temperature. The nuclei were then 

stained with a solution of DAPI-Vectashield (Vector Laboratories) 1:1000 (DAPI:H2O) 
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and incubated for 15-30 min in the dark. The solution was then removed and the 

samples washed three times every 5 minutes with PB 0.1 M and mounted on 

microscope slides with a drop of medium. 

Static and dynamic cell cultures were observed at T7. 
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3. Results and discussion 

After 7 and 14 days culture, the samples were fixed and the morphology of fibroblasts 

seeded on the braid surface was analysed by SEM. The main objective was not to 

analyse the changes in the samples, but to verify the bioreactor’s performance and the 

effects of the mechanical stimulation. 

The 7 and 14-day static and dynamic cell culture micrographs can be seen in Figure 3. 

The dynamic culture cell density is clearly higher than that of the static cell cultures for 

the same time (see figures bI, bII and bIII versus figures aI and aII for T7, and figures 

bIV, bV and bVI versus figures aIII and aIV for T14). The dynamically cultured cells 

can be seen to adhere to the entire braid surface. Increased cell density and better cell 

alignment in the direction of the fibres can also be seen with a more extended and 

fusiform morphology in the dynamic cultures. 
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Fig. 3 SEM images of morphology of L929 cells on PLA braid surface after 7 and 14 

days (T7 and T14) of static culture (set a) and dynamic culture (set b), with different 
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magnifications: very low (bI and bIV), low (aI, aIII, bII and bV) and high (aII, aIV, bIII 

and bVI). 

 

The inner part of the dynamically cultured braid was also analysed by SEM images 

(Figure 4 a and b), which revealed the presence of internal cells, thus suggesting that the 

cells had migrated from the surface. As happened outside the braid, the cells exhibit an 

extended morphology in the same direction as the microfibres. 

 

Fig. 4 SEM images of L929 fibroblasts morphology inside the PLA braid after 14 days 

of dynamic cell culture with two different magnifications: a) low and b) high. 

 

Figure 5 shows immunofluorescence images after dyeing the cytoskeleton with actin 

and the nuclei with DAPI. The cells subjected to a mechanical stimulus seem to express 

more type I collagen than those cultured in static conditions (see figures bI, bII and bIII 

versus figures aI, aII and aIII), as reported by other authors [31, 32]. 

Type I collagen is the predominant protein of tendinous tissue and its expression and 

secretion are key factors in the regeneration process of this tissue [33, 34]. In both cases, 

a well-developed actin cytoskeleton can be seen. 
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Fig. 5 Immunofluorescence images of type I collagen (red) and dyed actin cytoskeleton 

(green) of fibroblasts seeded on the PLA braid after 7 days of static (set a) and dynamic 

(set b) cultures with different magnifications: low (aI and bI), high (aII and bII) and 

very high (aIII and bIII). The cell nuclei were dyed with DAPI (blue). 

 

Even though these results are only preliminary results, they show that the prototype 

bioreactor mechanically stimulated the tendon and ligament constructs, produced 

greater cellular proliferation, cell alignment in the direction of the fibres and cell 

migration to the inside of the sample. 
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The cell alignment indicated that the stress applied to the fibres was transmitted to the 

cells and increased the quantity of type I collagen. 

 

4. Conclusions 

Even though our tests were not statistically significant because of their insufficient 

number, they do suggest that the proposed bioreactor mechanically stimulated the 

tendon and ligament constructs. The strain applied to the sample can be easily modified 

by simply changing the cam wheel. The bioreactor also has the important advantages 

over those currently available of being easy to operate and its easy renovation of the 

culture medium. Further experiments should be conducted in order to state the 

effectiveness of the bioreactor. 
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