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Abstract

The pre-marshalling problem has been extensively studied in recent years with the aim of min-

imizing the number of movements needed to rearrange the bay. Since we consider time to be a

more realistic objective for measuring process efficiency and does not correlate with the number of

movements, we study the problem of minimizing crane times and develop two exact approaches to

solve it: an integer linear model, and a branch and bound algorithm, with new upper and lower

bounds, dominance criteria, and a heuristic procedure to provide feasible solutions. An extensive

computational study shows the performance of both approaches.

Keywords: logistics, container pre-marshalling, crane time, maritime transport, terminal

operations

1. Introduction

Prior to the 1970s, loading and unloading ships was an expensive and labor-intensive task,

making it unprofitable to transport many types of cargo overseas. With the standardization of

containers, port efficiency skyrocketed, drastically reducing shipping costs, and resulted in a shift

of production to countries with cheaper manufacturing costs. In this context, containerization is

understood as one of the main drivers of globalization. The import costs of many products have

decreased to such an extent that it is sometimes cheaper to transport goods to the other side of

the world than to produce them locally. According to UNCTAD (2018), container ports handled

752.2 million 20-foot equivalent units (TEUs) in 2017, and global container port throughput rose
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by 6%, three times the rate of 2016. Adding to the challenges in the sector is not only the rise in

the volume of cargo transported worldwide, but also the increase in the size of ships. The largest

container ships today can handle more than 20,000 TEUs (e.g., the MSC Mina and MSC Gülsün).

The increasing size of ships and creation of strategic liner shipping alliances have triggered a

new dynamic in which shipping lines have greater bargaining power and influence over the container

terminals and in which terminals must compete for fewer services from larger ships. The need to

handle more containers in the same time puts pressure on both berthing and yard operations. A

good yard arrangement before the arrival of ships contributes significantly to soften workload peaks

and to an increase in terminal productivity, which refers to the number of container moves per

hour of time spent by ships in port, weighted by the call size (UNCTAD, 2018).

Pre-marshalling operations contribute to the proper arrangement of the yard prior to the arrival

of the ship, using the yard cranes when the workload in the terminal is at a minimum, thus acceler-

ating service times once the ship arrives. It consists of sorting the bays (rows of container stacks in

the yard) so that, when the containers are required, they can be accessed without additional relo-

cations. The classic objective of the container pre-marshalling problem (CPMP) is to minimize the

number of moves to transform the initial layout of a bay into a final layout without any containers

blocking the removal of others. The number of moves has previously been used as an indication

of the time employed by the crane to rearrange the bay. However, in many cases, the number of

moves is not entirely representative of crane times. For example, it takes significantly more time

to move a container between the farthest slots of a bay than to do so from the top level of a stack

to the top level of an adjacent stack. Furthermore, such moves differ not only in the amount of

time required by the crane, but also in terms of the energy consumption. According to Wilmsmeier

and Spengler (2016), horizontal activities, such as those used by yard cranes, consume a total of

45% share of energy in the terminal. Their findings regarding the current energy consumption

of container terminals worldwide highlight the need for action to address competitiveness, energy

security, and climate change. With most of the terminal energy being consumed by yard cranes,

it becomes clear how important it is to reduce crane times in order to support green port policies.

We study a variant of the CPMP in which the goal is to minimize the time spent by the crane

to transform the bay into one without blocking containers. We refer to this problem as the pre-

marshalling problem with crane time minimization objective, CPMPCT. We compute the crane
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time by considering whether the movement made is in the vertical or the horizontal axis and if the

movement is loaded or unloaded, since the speed and acceleration of the crane depends on these

aspects. We also consider twistlock1 times that are proportional to the tier where the container to

be moved is located. With a precise estimation of the crane time, we carry out a computational

study that motivates the importance of the problem and shows the non-direct relation between the

number of moves and the crane time. To solve the problem optimally, we propose two different

approaches: a mathematical formulation, and a branch-and-bound based approach. Moreover, we

propose new upper and lower bounds for the number of moves and for the time spent by the crane

to solve the CPMPCT, and we deal with dominance rules proposed in previous academic works

discussing whether or not they can be adapted to this new objective function. Our contributions

are tested on an extensive computational analysis, using datasets from the literature, and the

results show that instances of up to 7 tiers and 5 stacks can be solved to optimality.

We first review the relevant literature in Section 2. In section 3, we formally describe the new

problem of minimizing the crane times, showing that there is no direct relation with the classic

objective of minimizing the number of times and how time cranes can be calculated. Section 4

introduces new upper and lower bounds and dominance criteria that would be used in the exact

approaches. The integer linear model is presented in Section 5, while the components of the branch

and bound algorithm are described in Section 6. The computational results are provided in Section

7 and conclusions and future work are discussed in Section 8.

2. Literature review

Pre-marshalling problems have been extensively studied in recent years both in terms of exact

and heuristic approaches. Concerning mathematical models, Lee and Hsu (2007) propose a first

integer linear model based on a multicommodity network flow. More recently, de Melo da Silva et al.

(2018) have developed a unified model for pre-marshalling and the closely related block relocation

problem. They discretize time, with a move occurring at each time period. An upper bound is

required and it is obtained using a simple heuristic. Parreño-Torres et al. (2019) explore several

alternative ways of modeling the problem, also discretizing time, but they develop an iterative

1A twistlock and corner casting together form a standardized rotating connector for securing shipping containers
that is used for lifting the containers by the cranes.
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procedure in which the upper bound on the number of moves is not needed. van Brink and van der

Zwaan (2014) propose an IP model for which they apply column generation and develop a branch-

and-price procedure. Other exact approaches have also been proposed, such as the A˚ algorithm

of Expósito-Izquierdo et al. (2012) or the iterative deepening A˚ (IDA˚) of Tierney et al. (2017).

Several branch and bound algorithms have also been developed in recent years (Prandtstetter,

2013; Zhang et al., 2015; Tanaka and Tierney, 2018; Tanaka et al., 2019).

Concerning heuristics, Caserta and Voß (2009) develop a heuristic algorithm based on the

Corridor Method, Lee and Chao (2009) a neighborhood search algorithm, and Bortfeldt and Forster

(2012) a heuristic tree search procedure. Jovanovic et al. (2017) develop a deterministic algorithm

based on the randomized greedy procedure by Expósito-Izquierdo et al. (2012). Further heuristic

proposals are the biased random-key genetic algorithm (Hottung and Tierney, 2016), target-guided

procedures (Wang et al., 2015, 2017) and the deep learning tree search of Hottung et al. (2020).

However, all previously mentioned models and algorithms use the minimization of the number of

moves required to rearrange the bay as the objective function. It is a simple and intuitive measure of

the effort required, and allows for the development of high-quality bounds and dominance criteria.

However, as will be shown later, the number of moves does not accurately represent the time or

the cost needed for the pre-marshalling process.

In the closely related block relocation problem, in which containers have to be retrieved from

a bay in a given order, several authors have considered as the objective the time required by

the crane to perform these moves, although most studies consider the minimization of the moves

required. Lee and Lee (2010) use as their objective function the weighted sum of the number of

moves and the crane working time. Lin et al. (2015) develop a heuristic algorithm to minimize

the number of moves. The rule used to select the stack to which a container should be relocated

to penalizes moves to distant stacks instead of favoring shorter crane moves and therefore shorter

working times. They show that solutions with the minimum number of moves do not produce

minimum working times and the tradeoff between these objectives can be controlled by adjusting

the penalty values. Jovanovic et al. (2019) develop an ant colony optimization algorithm, initially

considering the standard minimization of the number of moves, but then adapt the same algorithm

to the objective of minimizing the total crane working time. da Silva Firmino et al. (2019) only

consider the crane working time as the objective of their GRASP algorithm. It should be noted
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that in all these studies the crane time is calculated in very simple ways, just considering a linear

combination of the number of stacks and tiers involved in the container movements. By contrast,

in this paper we consider a more complex crane time computation, considering different speeds

for vertical and horizontal movements (with and without load), as well as crane acceleration and

twistlock times. This crane time closely resembles real observed crane working times in practice.

3. Pre-marshalling problem with crane time minimization objective

The pre-marshalling problem has so far been studied with the aim of minimizing the number

of crane moves. In this section we propose to minimize the time required by the crane to sort the

bay, calculating the crane time precisely. In addition, we motivate the use of this new objective

function by giving examples and computational results that show that decreasing the number of

crane moves is not always linked to a decrease in crane time.

3.1. Problem description

The container yard is a large space where inbound containers are stored before being transferred

to the hinterland, and outbound containers are also stored before being loaded onto ships. The yard

is divided into several blocks that are composed of parallel bays. Each bay has the same number

of stacks of containers that have a maximum number of tiers up to a height that is fixed according

to the height of the crane, see Figures 1 and 2. The problem of pre-marshalling with a crane time

minimization objective seeks to obtain a sequence of moves that minimizes the time spent by the

crane to transform the initial configuration of a bay into a final one in which no containers are

blocking the retrieval of others. The main constraint in this problem is that containers do not leave

the bay during the sequence of moves.

Crane

Block

Bay

Stack

Figure 1: Container yard scheme.
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We formally define S as the set of stacks of the bay, where S “ |S| is the total number of

stacks, and H as the set of tiers, where H “ |H| represents the highest tier of the stacks. Each of

the positions in the bay can be described by a tuple ps, hq where s P S and h P H. The order in

which containers will be moved out of the bay is known in advance. We therefore assign a priority

to each container p P t1, ..., P u “ P, where 1 is the highest priority and P the lowest.

Moves are defined by indicating the origin and destination stacks and tiers. Therefore, a

solution is a sequence of moves of the form ps, h, k, eq : s ‰ k P S and h, e P H where ps, hq is the

origin position of the container being moved and pk, eq its destination position. Given a solution

sol “ ps1, h1, k1, e1q . . . psi, hi, ki, eiq . . . psn, hn, kn, enq, the time spent by the crane is denoted as

timepsolq . We include the time spent by the crane to position the spreader from its initial

position outside of the bay to the position of the first container to be moved. We also distinguish

the movements carried out by the crane with and without a loaded container. The crane moves

unloaded from the destination of the last container moved to the position of the next container

to be moved. The crane then picks up the next container to be moved, and moves loaded to the

container’s destination. The function pips, hq gives the priority of the container stored at position

ps, hq after the i-th move. The bay is considered ordered if pnps, hq ě pnps, h` 1q for all s P S and

h P HztHu.

3.2. Parameters used to compute the time required by the crane

There are several types of cranes used to handle containers in port yards, each with different

technical specifications. In this work we consider the rubber tired gantry (RTG) cranes used in the

Noatum terminal of Valencia’s port in Spain. The company Noatum facilitated this information

during their collaboration in the EU Project Transforming Transport (TT, Grant agreement No.

731932). The information corresponds to an RTG Transtainer 79 from Konecranes. To move a

container, the crane is first positioned above it, moving horizontally along the top travel lane to the

corresponding stack and then moving down to reach the requested position. Then the container is

twistlocked, hoisted up, moved horizontally to the destination stack and hoisted down to its new

position. This is a common operation that can be observed in most gantry cranes.

Figure 2 shows the structure of the RTG crane. The values of the parameters represented in

the figure are shown in Table 1. Note that in this work we assume (w.l.o.g.) that all containers in

the bay have the same dimensions.
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Figure 2: Front view of an RTG crane.

Table 1: Parameters referring to storage distances represented in Figure 2.

Letter Notation Description Value

A - Useful distance between legs [m] 21.925

B - Lifting height under spreader [m] 18.200

C ch Container height [m] 2.591

D cw Container width [m] 2.438

E vsep Distance between the top level and the container at the topmost tier [m] 2.000

F hsep Distance between first stack and the truck (or the initial point axis x) [m] 1.000

G msep Distance between containers [m] 0.300

The data provided by the company leads to a differentiation between the time spent by the

crane according to whether it performs a loaded vertical move (vmaxvl), an unloaded vertical

move (vmaxvu), a loaded horizontal move (vmaxrl) or an unloaded horizontal move (vmaxru).

The maximum speeds of the crane for each of these cases and the horizontal and vertical distance

the crane has to travel to reach them can be seen in Table 2. Furthermore, this table shows the

twistlock time, which is directly proportional to the level at which the container to move is placed.

This is due to the oscillation of the crane spreader, which depends on the cable’s length, due to

the sway motion of the suspended load. Crane operators have to wait until the oscillation stops

to twistlock the container. Some cranes employ anti-sway systems that arrest the pendulums and

the rotational sway motion, resulting in reduced twistlock times, but this is not the case for the

studied cranes. We suppose that the crane moves horizontally and requires dr meters to reach its
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maximum speed. Up to that distance, the acceleration is constant and therefore depicts a uniformly

accelerated rectilinear motion. Once it reaches the maximum speed, the crane follows a uniformly

rectilinear motion and starts to decelerate when there are dr meters left until its destination point

(a1 “ ´a). If the distance travelled by the crane is less than 2dr, half the distance is accelerating

and the other half is decelerating.

Table 2: Parameters employed to compute the crane costs provided by the company.

Notation Description Value

vmaxvl Hoisting time loaded [m/s] 0.5

vmaxvu Hoisting time unloaded [m/s] 1.00

vmaxrl Travelling speed loaded [m/s] 1.16̄

vmaxru Travelling speed unloaded [m/s] 2.16̄

dv Distance to max. hoisting speed [m] 2.65

dr Distance to max. travelling speed [m] 2.50

bh Twistlock time at level h [s] 5¨(H-h+1)

Once the maximum speeds of the crane and the distances required to reach them have been

set, equation (1) calculates the acceleration [m{s2] for the moves considered.

aαβ “
pvmaxαβq2

2dα
@α P tv, ru; @β P tl, uu (1)

Let x be the distance travelled by the crane (vertically or horizontally) in meters. The time

spent by the crane (loaded or unloaded) in seconds to carry out the move can be calculated

according to equation (2).

tαβpxq “

$

&

%

2
?
aαβx
aαβ

, If x ă 2dα

2vmaxαβ

aαβ
` x´2dα

vmaxαβ
, If x ě 2dα

@α P tv, ru; @β P tl, uu (2)

With reference to the distances described in Table 1, the distance in meters between the top

travel lane and level h, distancevphq, follows equation (3). Furthermore, the distance in meters

between stacks s and k, distancerps, kq, follows equation (4). If k “ 0, the crane is moved from (or
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to) the initial point, represented as I in Figure 2, to (or from) stack s.

distancevphq “ vsep` pH ´ h` 1q ¨ ch (3)

distancerps, kq “

$

&

%

|k ´ s| ¨ pmsep` cwq, If k ‰ 0

ps´ 1q ¨msep` s ¨ cw ` hsep, If k “ 0
(4)

Note that if s ă S, distancerps, s` pq “ distancerp1, p` 1q for all p P N such that p ă S´ s. Oth-

erwise, distancerps, s´ pq “ distancerp1, p` 1q for all p P N such that p ď S. With all parameters

adjusted, we then calculate the individual costs to compute the total time spent in the rearrange-

ment of the bay following the sequence sol “ ps1, h1, k1, e1q . . . psi, hi, ki, eiq . . . psn, hn, kn, enq.

timepsolq “ tps1, h1, k1, e1q ` ¨ ¨ ¨ ` tpsi, hi, ki, eiq ` ¨ ¨ ¨ ` tpsn, hn, kn, enq (5)

where:

tpsi, hi, ki, eiq “

$

&

%

c0ki´1si
` v0hi ` bhi ` v

1
h1
` c1siki ` v

1
ei ` v

0
ei , If i ‰ 0

c0si0 ` v
0
hi
` bhi ` v

1
h1
` c1siki ` v

1
ei ` v

0
ei If i “ 0

(6)

v0h “ tvu
´

distancevphq
¯

; v1h “ tvl
´

distancevphq
¯

;

c0sk “ tru
´

distancerps, kq
¯

; c1sk “ trl
´

distancerps, kq
¯

;
(7)

For each move we consider the time spent to move the crane (unloaded) along the upper travel

line from its current position to the origin stack of the next container to be moved, the time

spent to move the crane down to reach the container, the twistlock time, the time spent to hoist

the container up, the time spent to move the crane (loaded) along the upper travel line to the

destination stack, the time spent to move the crane down to release the container, and the time

spent to position the crane on the upper travel line.

Hence, a lower bound for the time spent to perform a move tmin is:

tmin “ c012 ` v
0
H ` bH ` v

1
H ` c

1
12 ` v

1
H ` v

0
H “ p2v

0
H ` c

0
12q ` p2v

1
H ` bH ` c

1
12q (8)

in which the crane moves to an adjacent stack, picks up a container at the topmost tier, and
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moves it to the topmost tier of an adjacent stack.

3.3. Crane time against number of movements

We now study the relation between the number of moves required to rearrange the bay and

the time taken by the crane to do it. Figure 3 shows the information of a large set of solutions of

four instances belonging to datasets frequently studied in the literature. The x-axis describes the

number of movements to solve the CPMP, with the minimum value being the optimal solution.

The y-axis represents the total crane time measured in seconds. All the alternate optimal solutions

for the CPMP are represented, whereas for a greater number of movements only a set of solutions

is represented. It can be seen that the crane time can increase up to 24% over two feasible solutions

with the same number of moves. It can also be seen that an optimal solution for the CPMP can

have a crane time higher than a non-optimal solution. Even though the examples represented are

small, notice that the variation in the crane time between solutions with the same number of moves

increases with the number of moves. The best solution found for the CPMPCT, not necessarily

the optimal one for this problem, is the optimal one for the CPMP in the cases shown in Figure 3b

and 3c. However, in Figures 3a and 3d the best solution found for the CPMPCT is not the optimal

one for the CPMP.

Figure 4 illustrates an example in which the minimum number of moves to solve the CPMP

is 3, with a crane time of 393.7 seconds (Figure 4a). However, the number of moves to optimally

solve the CPMPCT is 4, with a crane time of 386.5 seconds (Figure 4b).

4. Bounds and dominance criteria

This section proposes upper bounds for the number of moves, lower bounds for the time spent

by the crane, as well as dominance rules to be used in the models and algorithms developed in this

paper for the CPMPCT.

In the following proofs, let sol be a feasible solution for the CPMP and timepsolq be the time

spent by the crane to carry out the solution. We denote as γ the number of blocking containers

in the initial layout of the bay and psb1, hb1q, . . . , psbγ , hbγq the positions where they are initially

stored.
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(a) BZ: data p6 s5 h6 f50 2.txt (b) CV: data4-5-36.txt

(c) EMM: emm s7 t4 p0.75 c1 21.txt (d) ZJY: 6 5 7.txt

Figure 3: Comparison of crane times and number movements on instances from datasets studied in the state-of-the-
art. The horizontal line in red indicates the shortest crane time shown in the figure.

4.1. Upper bound for the number of moves to solve the CPMPTC

Establishing an upper bound on the number of moves to rearrange the bay is not easy in

the classic CPMP, but it can be done using an iterative procedure, progressively increasing the

number of moves until a feasible solution is found (Parreño-Torres et al., 2019). When we solve the

CPMPCT, we cannot determine this upper bound by a similar iterative procedure because it is

possible to get better solutions by increasing the number of moves. Nor can we set the bound as the

number of moves of any solution to the CPMP, as the optimal solution may have a greater number
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(a) Optimal sequence of moves to solve the CPMP. The crane time is 393.696 seconds.

5
5

4

2 5 4 5 4
2 5 3 3 3
2 5 3 3 3

2 3 2 2
2 1 1

1

4
5
5

2 5 4 5 4
2 5 3 3 3
2 5 3 3 3

3 2 2
2 1 1
2 1

4
5

2 5 4 5 4
2 5 3 3 3
2 5 3 3 3

5 3 2 2
2 1 1
2 1

4

2 5 4 5 4
2 5 3 3 3
2 5 3 3 3

5 3 2 2
5 2 1 1

2 1

2 5 4 5 4
2 5 3 3 3
2 5 3 3 3

5 3 2 2
5 2 1 1
4 2 1

(b) Optimal sequence of moves to solve the CPMPCT.The crane time is 386.534 seconds.

Figure 4: An example layout in which the optimal sequence of moves to solve the CPMPCT has a larger number of
moves than the optimal sequence to solve the CPMP. Blocking containers are shown in gray and arcs represent the
movements of the crane loaded (continuous lines) and unloaded (dashed lines).

of moves. However, when using mathematical models for solving the problem, it is necessary to

have an upper bound on the number of movements to ensure that we are solving the problem

optimally.

Proposition 1. The optimal number of moves to solve the CPMPCT is bounded above by t
timepsolq
tmin

u.

Proof. Let sol˚ “ ps1, h1, k1, e1q . . . psi, hi, ki, eiq . . . psn, hn, kn, enq be an optimal solution for the

CPMPCT. We compute the total time spent by the crane as follows:

timepsol˚q “ tps1, h1, k1, e1q ` ¨ ¨ ¨ ` tpsi, hi, ki, eiq ` ¨ ¨ ¨ ` tpsn, hn, kn, enq

ě tmin ` ¨ ¨ ¨ ` tmin ` ¨ ¨ ¨ ` tmin ě n ¨ tmin

As sol˚ is the optimal solution to solve the CPMPCT and tmin ą 0,

timepsolq ě timepsol˚q ě n ¨ tmin ðñ
timepsolq

tmin
ě n

Since n P N, n ď t
timepsolq
tmin

u.
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Proposition 2. The optimal number of moves to solve the CPMPCT is bounded above by:

—

—

—

–

timepsolq ´
řγ
i“1

´

c012 ` v
0
hbi
` bhbi ` v

1
hbi
` c112 ` v

1
H ` v

0
H

¯

` pγ ¨ tminq

tmin

ffi

ffi

ffi

fl

Proof. In order to arrange the bay, all the blocking containers in the initial layout must be moved

at least once. Let sol˚ “ ps1, h1, k1, e1q . . . psi, hi, ki, eiq . . . psn, hn, kn, enq be an optimal solution of

the CPMPCT. The blocking containers should be moved from their positions so the spreader has

to go down to their initial tier and the following inequality is satisfied:

timepsolq ě timepsol˚q ěpn´ γq ¨ tmin `

γ
ÿ

i“1

´

c012 ` v
0
hbi
` bhbi ` v

1
hbi
` c112 ` v

1
H ` v

0
H

¯

Since n P N, we reformulate the inequality above to get:

—

—

—

–

timepsolq ´
řγ
i“1

´

c012 ` v
0
hbi
` bhbi ` v

1
hbi
` c112 ` v

1
H ` v

0
H

¯

` pγ ¨ tminq

tmin

ffi

ffi

ffi

fl ě n

With these proofs, we can take advantage of the many heuristic and exact procedures developed

for the CPMP to obtain feasible solutions in very short times.

4.2. Lower bound for the time spent by the crane

Let LB :“ IBF 4 be the lower bound for the number of moves described in Tanaka et al. (2019).

We use this bound to propose valid lower bounds for the total time spent by the crane.

Proposition 3. LB0
ct :“ LB ¨ tmin is a valid lower bound for the CPMPCT.

Proof. If LB is the smallest number of moves to sort the bay, the minimum time spent by the

crane is that number multiplied by the minimum time spent to perform a single move.

Proposition 4. A valid lower bound for the CPMPCT is:

LB1
ct :“ pLB ´ γq ¨ tmin `

γ
ÿ

i“1

´

c012 ` v
0
hbi
` bhbi ` v

1
hbi
` c112 ` v

1
H ` v

0
H

¯

(9)
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Proof. To sort the bay in the required order, all the blocking containers must be moved at least

once, so the crane has to go down to tier hbi to move blocking container i. Therefore, the minimum

time to move container i is tminpbiq “
´

c012 ` v
0
hbi
` bhbi ` v

1
hbi
` c112 ` v

1
H ` v

0
H

¯

, which is greater

than (or equal to) tmin.

Let h1b1, . . . , h
1
bγ be the γ highest tiers to which the γ blocking containers in the initial layout of

the bay could be moved on top of non blocking containers withouth considering blocking containers.

See Figure 5 for further details.

6

6

5

7

7

5 2 6 3 4 6

4 2 5 3

2 4

1

(a)

5 2 6 3 4 6

4 2 5 3

2 4

1

(b)

Figure 5: Figure (a) shows a layout with 5 blocking containers. Only the non blocking containers are represented in
Figure (b) and the 5 highest tiers to which the blocking containers could be moved are highlighted in red.

Proposition 5. A valid lower bound for the CPMPCT is:

LB2
ct :“ pLB ´ γq ¨ tmin `

γ
ÿ

i“1

´

c012 ` v
0
hbi
` bhbi ` v

1
hbi
` c112 ` v

1
h1bi
` v0h1bi

¯

(10)

Proof. Starting from the initial layout of the bay, all blocking containers must be moved and the

highest tiers to which they can be moved are h1b1, . . . , h
1
bγ . Suppose that we can move some blocking

container to a higher position, this happen in the case that a non blocking container has been placed

in one of the levels h1b1, . . . , h
1
bγ and therefore this vertical distance has already been accounted for,

so the bound holds.

4.3. Dominance criteria

Dominance rules for the CPMP have been highly studied in the literature (Tanaka et al. (2019);

Tierney et al. (2017); Tanaka and Tierney (2018)) and have shown their effectiveness in reducing the

number of nodes to be explored in branch and bound algorithms. Nevertheless, when we study the

CPMPCT we cannot consider the vast majority of them. For example, empty stack rules stating

that if there is more than one empty stack only the move to the left-most stack is considered
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are not satisfied here because all empty stacks are not equivalent in this problem. Nor could we

consider unrelated move symmetries because even in the simplest case in which two consecutive

moves have different origin and destination stack the order of the movements is relevant as can be

seen in Figure 6. Two sequences of 4 moves, leading to the same configuration are not equivalent

in terms of crane times.

13 8 11 1 7 3
9 10 5 6 2
12 4

13 8 11 1 7 3
12 9 10 5 6 2

4

13 8 11 1 7 3
12 10 5 6 2

9 4

13 8 11 1 7 3
12 10 6 2

9 5 4

13 8 11 1 7 3
12 10 6 2

9 5
4

(a) The time spent by the crane to perform the sequence (2,1)(2,3)(4,5)(6,5) is 405.813 seconds.

13 8 11 1 7 3
9 10 5 6 2
12 4

13 8 11 1 7 3
12 9 10 5 6 2

4

13 8 11 1 7 3
12 9 10 6 2

5 4

13 8 11 1 7 3
12 10 6 2

9 5 4

13 8 11 1 7 3
12 10 6 2

9 5
4

(b) The time spent by the crane to perform the sequence (2,1)(4,5)(2,3)(6,5) is 413.864 seconds.

Figure 6: An example showing two sequences considered as unrelated move symmetries in the CPMP whose crane
time is not the same.

Eliminating same group symmetries, which involve the relocation of two containers with the

same priority, is highly relevant in the context of the CPMP. However, in the CPMPCT, two

movements do not take the same crane time if the origin or/and destination stack is modified, so

most of these rules are not satisfied. In Figure 7 two sequences of 3 moves, involving two containers

of priority 5 lead to the same configuration but with different times. The only same group rule

that we can apply to the CPMPCT states that if a container of priority p is moved from one stack

s, no container of priority p will be moved to that stack in the next movement.

Proposition 6. Let t1 “ c1siki ` c
0
kisi`1

` c1si`1si and t2 “ c0sisi`1
` c1si`1ki

` c0kisi, then t1 ą t2.

Proof. See Appendix A.

Proposition 7. A sequence sol “ ps1, h1, k1, e1q . . . psi, hi, ki, eiqpsi`1, hi`1, si, hiq . . . psn, hn, kn, enq

is disallowed for the CPMPCT if pi´1psi, hiq “ pi`1psi, hiq.
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4 7 3 7 2
5 6 2 5

65

4 7 3 7 2
56 2

5 6
5

4 7 3 7 2
56 2 6

5
5

4 7 3 7 2
6 2 6
5 5
5

(a) The time spent by the crane to perform the sequence (1,2)(3,4)(5,4) is 296.9831 seconds.

4 7 3 7 2
5 6 2 5

65

4 7 3 7 2
5 6 2

5 6
5

4 7 3 7 2
5 6 2 6

5
5

4 7 3 7 2
6 2 6
5 5
5

(b) The time spent by the crane to perform the sequence (5,2)(3,4)(1,4) is 314.755 seconds.

Figure 7: An example showing two sequences considered as same group symmetries in the CPMP and whose crane
time is not the same.

Proof. The same layout as in sol is obtained by the sequence sol1 “ ps1, h1, k1, e1q . . . psi`1, hi`1,

ki, eiq . . . psn, hn, kn, enq. Moreover the time spent by the crane to carry out sol1 is shorter than

that spent to carry out sol :

timepsolq “ tps1, h1, k1, e1q ` ¨ ¨ ¨ `
´

c0ki´1si
` c1siki ` c

0
kisi`1

` c1si`1si

¯

`

´

v0hi ` bhi ` v
1
hi

` v1ei ` v
0
ei ` v

0
hi`1

` bhi`1
` v1hi`1

` v1hi ` v
0
hi

¯

` ¨ ¨ ¨ ` tpsn, hn, kn, enq

ą tps1, h1, k1, e1q ` ¨ ¨ ¨ `
´

c0ki´1si
` c0sisi`1

` c1si`1ki
` c0kisi

¯

`

´

v1ei ` v
0
ei

` v0hi`1
` bhi`1

` v1hi`1

¯

` ¨ ¨ ¨ ` tpsn, hn, kn, enq

ą tps1, h1, k1, e1q ` ¨ ¨ ¨ `
´

c0ki´1si`1
` c1si`1ki

¯

`

´

v1ei ` v
0
ei ` v

0
hi`1

` bhi`1
` v1hi`1

¯

` ¨ ¨ ¨ ` tpsn, hn, kn, enq “ timepsol1 q

The first inequality is satisfied by Proposition 6 and the fact that the times are always positive.

The second inequality is satisfied because pc0ki´1si
`c0sisi`1

q ď c0ki´1si`1
and pc0kisi`c

0
sisi`2

q ď c0kisi`2
.

Another dominance rule from the CPMP that applies is the direct transitive rule. This rule

refers to the movement of a container from one stack α to another stack β, and then from the stack
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β to a different one ω in two moves rather than in a single move from stack α to ω.

Proposition 8. A sequence sol “ ps1, h1, k1, e1q . . . psi, hi, ki, eiqpki, ei, ki`1, ei`1q . . . psn, hn, kn, enq

is disallowed for the CPMPCT.

Proof. Since the sequence psi, hi, ki, eiqpki, ei, ki`1, ei`1q and psi, hi, ki`1, ei`1q start and end in the

same stacks and slot pki, eiq is only used for temporary storage of the container, the same layout as

in sol is obtained by the sequence sol1 “ ps1, h1, k1, e1q . . . psi, hi, ki`1, ei`1q . . . psn, hn, kn, enq with

a shorter crane time:

timepsolq “ tps1, h1, k1, e1q ` ¨ ¨ ¨ `
´

c0ki´1si
` c1siki ` c

0
kiki

` c1kiki`1

¯

`

´

v0hi ` bhi ` v
1
hi
` v1ei ` v

0
ei ` v

0
ei ` bei ` v

1
ei ` v

1
ei`1

` v0ei`1

¯

` ¨ ¨ ¨ ` tpsn, hn, kn, enq

ą tps1, h1, k1, e1q ` ¨ ¨ ¨ `
´

c0ki´1si
` c1siki`1

` v0hi ` bhi ` v
1
hi
` v1ei`1

` v0ei`1

¯

` . . .

` tpsn, hn, kn, enq “ timepsol1 q

The inequality follows from the fact that times are always positive and from the fact that we

consider crane acceleration
´

pc1siki ` c
1
k1ki`1

q ą c1siki`1

¯

.

5. Integer programming models

We model the CPMPTC by considering the segments in which a single move takes place,

separated by points in which we have the layout of the bay after the move. If there is a move

between points t and t` 1, the layout of the bays just differ in the position of the container being

moved. The first point corresponds to the initial layout of the bay and the last point T to the

arranged configuration after a solution of at most T ´ 1 moves. Note that T should be strictly

greater than the upper bound for the number of moves required to solve the problem. Otherwise,

the problem could be infeasible or return a solution for which we cannot guarantee its optimality.

Several mathematical models for the CPMP are studied in Parreño-Torres et al. (2019). We

take as starting point the description of the variables of their IPS6 model since it has the best

performance. This model uses two sets of variables, one describing the layout of the bay at each

period, the x variables, and another describing the movement of the container being moved at

each segment. The second set can be divided into two different groups of variables: w variables

that describe the initial position of the container being moved; and z variables that describe the
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destination position where it will be placed. Our model, IPCT, uses two new groups of variables

to link the origin and destination stack of each move, and the destination stack of a move and the

origin stack of the next one.

xshpt “

$

&

%

1, If at time point t there is a container in stack s, tier h, whose priority is p

0, Otherwise

@s P S; @h P H; @p P P; @t P T

wshpt “

$

’

’

’

&

’

’

’

%

1, If in the segment between t and t` 1, a container with priority p

is moved from ps, hq;

0, Otherwise;

@s P S; @h P H; @p P P; @t P T ztT u;

zshpt “

$

’

’

’

&

’

’

’

%

1, If in the segment between t and t` 1, a container with priority p

is moved to ps, hq;

0, Otherwise;

@s P S; @h P H; @p P P; @t P T ztT u;

lskt “

$

&

%

1, If in the segment between t and t` 1 there is a move from stack s to stack k;

0, Otherwise;

@s, k P S : s ‰ k; @t P T ztT u;

uskt “

$

’

’

’

&

’

’

’

%

1, If in the segment between t and t` 1 there is a move from stack k and the

destination stack of the previous move was stack s;

0, Otherwise;

@s, k P S : s ‰ k; @t P T ztT u;

When a container is moved there are two vertical moves in both the origin and destination

positions: one with the crane loaded and another with the crane unloaded. We therefore consider

vh “ v0h ` v
1
h to simplify notation.

The objective function of our model, IPCT, can be formulated as follows:
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Min
S
ÿ

s“1

˜

S
ÿ

k“1
k‰s

´

pc00s ¨ lsk1q `
T´1
ÿ

t“1

´

c1sk ¨ lskt

¯

`

T´1
ÿ

t“2

´

c0sk ¨ uskt

¯¯

`

H
ÿ

h“1

P
ÿ

p“1

T´1
ÿ

t“1

´

pvh ` bhq ¨ wshpt ` vh ¨ zshpt

¯

¸

(11)

The upper line of equation (11) considers the time spent by the crane to perform all the

horizontal moves and the bottom line the time spent by the crane to perform all the vertical

moves. The first term of the upper line corresponds to the movement of the spreader from its

initial position (out of the bay) to the position of the first container to be moved.

The constraints of IPCT model are as follows.

S
ÿ

s“1

H
ÿ

h“1

wshpt “
S
ÿ

s“1

H
ÿ

h“1

zshpt @p P P, @t P T ztT u (12)

S
ÿ

s“1

H
ÿ

h“1

P
ÿ

p“1

wshpt ď 1;
S
ÿ

s“1

H
ÿ

h“1

P
ÿ

p“1

zshpt ď 1 @t P T ztT u (13)

S
ÿ

s“1

H
ÿ

h“1

P
ÿ

p“1

wshpt`1 ď
S
ÿ

s“1

H
ÿ

h“1

P
ÿ

p“1

wshpt @t P T ztT ´ 1, T u (14)

P
ÿ

k“p

xsh`1kT ď
P
ÿ

k“p

xshkT @s P S, @h P HztHu, @p P P (15)

P
ÿ

p“1

xs1pt `
P
ÿ

p“1

zs1pt ď 1 @s P S, @t P t2, . . . , T u (16)

P
ÿ

p“1

xsh`1pt `
P
ÿ

p“1

wshpt `
P
ÿ

p“1

zsh`1pt ď
P
ÿ

p“1

xshpt @s P S, @h P HztHu, @t P T ztT u (17)

xshpt ` zshpt “ xshpt`1 ` wshpt @s P S, @h P H, @p P P, @t P T ztT u (18)

P
ÿ

p“1

xshpt `
P
ÿ

p“1

xsh`1pt `
P
ÿ

p“1

wshpt `
P
ÿ

p“1

zsh`1pt `
P
ÿ

p“1

zshpt ď 2

@s P S, @h P HztHu, @t P T ztT u (19)
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H
ÿ

h“1

P
ÿ

p“1

zshpt `
H
ÿ

h“1

P
ÿ

p“1

wshpt`1 ď 1 @s P S, @t P T ztT ´ 1, T u (20)

H
ÿ

h“1

wshpt `
H
ÿ

h“1

zshpt`1 ď 1 @s P S, @p P P, @t P T ztT ´ 1, T u (21)

H
ÿ

h“1

P
ÿ

p“1

`

wshpt ` zkhpt
˘

ď 1` lskt @s, k P S : s ‰ k, @t P T ztT u (22)

H
ÿ

h“1

P
ÿ

p“1

`

zshpt´1 ` wkhpt
˘

ď 1` uskt @s, k P S : s ‰ k, @t P T zt1, T u (23)

wsh1pT´1q “ 0 zsh1pT´1q “ 0 @s P S, @h P H (24)

ws1ppT´1q “ 0 @s P S, @p P Pzt1u (25)

xshpt, wshpt, zshpt P t0, 1u @s P S, @h P H, @p P P, @t P T ztT u (26)

lskt, uskt P t0, 1u @s, k P S, @t P T ztT u (27)

Constraints (12) force the number of containers of each priority remains constant throughout

the moves. At most one move can be made in each segment by constraints (13). Moves are placed

in the earliest time segments by constraints (14), i.e., if there has been a move in the segment

between t and t ` 1 points, another move must have been made between t ´ 1 and t, otherwise

the former move could have been made earlier. In this way, we force the bay to be ordered at the

last point T , constraints (15). Constraints (16) and (17) ensure that each slot can place at most

one container. Moreover, constraints (16) are strengthened so that if one slot of the bottom tier is

occupied, it cannot receive another container. Constraints (17) also have two other effects: when a

slot is occupied, the slots below it must also be occupied; and only the highest containers can move.

Constraints (18) say that if a container does not move, it is still present in the layout of the bay

of the next point. If a container moves in the segment between t and t` 1, it will be in its initial

position in the layout of point t, but not in the layout of point t` 1. Analogously, the position to

which a container moves cannot be occupied in the layout of point t since it will be occupied in

t` 1. Constraints (19) strengthen our formulation by limiting the moves that can be made when

we consider two consecutive tiers of the same stack. Constraints (20) avoid direct transitive moves

and (21) the movement of the same container in two successive moves. Constraints (20) and (21)

are not used on instances where all containers have different priority. Finally, constraints (22) and
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Algorithm 1 Branch and bound algorithm pseudocode.
1: function CPMPCT-BB(bay)
2: lb, lbcÐ LowerBoundpbayq
3: π Ð Heuristicpbayq Ź Feasible solution
4: if π “ ∅ then uÐ8

5: else
6: uÐ Upperpbay , πq Ź Upper bound for the number of moves

7: lÐ lb
8: while l ď u do
9: DFSpbay , π, l, uq

10: if l “ movespπq ` 1 and l ‰ u then l “ u
11: else
12: lÐ l ` 1

13: return π

(23) establish between which stacks the movements are made. Constraints (22) connect the stacks

between which a move of a container occurs and (23) connect the destination stack of a move with

the origin stack of the next container to be moved.

6. Branch and Bound algorithm

6.1. Structure of the search tree

We propose a branch and bound algorithm whose search strategy is to repeatedly run a limited

depth version of the depth first search (DFS) with increasing depth limits, see Algorithm 1 for its

pseudocode. It is known in computer science as iterative deepening search and combines depth-first

search with breadth-first search (BFS). Given the initial configuration of the bay, our approach

computes the lower bound for the number of moves, lb, and run the DFS until a depth l “ lb.

Unlike in the CPMP, even if it finds a solution with l moves at level l, the algorithm increases the

depth by one and the DFS is run again , because it is possible to obtain solutions with a lower

crane time with a higher depth limit. Every time a better solution π is found, the upper bound

for the number of moves to solve the CPMPCT, u, is updated. Note that the upper bound u is

computed according to Proposition 2 taking into account the disposition of the initial layout of

the bay (root node). The algorithm stops when l “ u, guaranteeing that the solution obtained

is optimal. Once the algorithm reaches a solution with movespπq “ l, if the DFS with the depth

limit increased by one does not improve that solution, it directly updates l “ u and explores the

whole tree.

All possible moves are explored at each level, prunning branches that satisfy at least one of
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these criteria: (i) Proposition 8 is satisfied, (ii) a lower bound for the number of moves is greater

than the current depth limit, (iii) the lower bound for the crane time lbc, using LB1
ct, exceeds the

crane time of the best solution obtained so far. If LB1
ct fails, we use LB2

ct, but as its computational

cost is higher, we only compute it if considering that the blocking containers move to the bottom

tier the branch could be pruned.

Our algorithm first explores branches with the lowest lower bound for the number of moves,

using as a tie breaking criterion the lowest lower bound for the crane time LB1
ct. During the search,

a heuristic tries to repair unfeasible solutions into a feasible solution for the problem.

6.2. A heuristic algorithm for repairing non-feasible solutions

The heuristic makes BG2 and GG moves such as those proposed in Tanaka and Tierney (2018),

but also GB moves, stopping when the partial solution obtained is worse than the best current

solution. (see Algorithm 2 for the pseudocode). It first performs BG moves, selecting the best

move (Best) according to the following order of preference:

1. The move with the smallest difference between the container at the top of the destination

stack and the container moved.

2. The container with the highest priority.

When no further BG moves are possible, the algorithm performs GG moves selecting them in order

according to the following list:

1. The move with the largest difference between the new top of the origin stack and the top

of the destination stack before the movement. We only consider the moves in which the

difference is at least one.

2. The move with the largest priority of the new top of the origin stack.

3. The move with the fewest number of containers in the origin stack.

As soon as the bay is ordered, the heuristic ends and updates the best solution obtained so far,

π, with the new solution reached if the crane time is lower. Otherwise, as long as the number of

moves that have been made is lower than the upper bound for the number of moves, u, and the

partial solution does not exceed the crane time of the best solution, GB moves are carried out.

2According to Bortfeldt and Forster (2012), a bad-good (BG) move is a move in which a blocking container is
moved to a stack where it is no longer blocking. A good-good (GG) move is a move in which a non blocking container
is moved to a stack where it is also well placed. A good-bad (GB) move is a move in which a well placed container is
moved to a stack where it blocks the retrieval of other containers.
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Algorithm 2 Heuristic pseudocode.

1: function Heuristic(bay , π1, π)
2: M Ð π1 Ź Partial solution
3: B Ð tps, dq P S ˆ Su
4: while movespMq ă u and timepMq ` cmin ă timepπq do
5: Ź u is the upper bound for the number of moves and cmin the minimum cost of performing a move
6: mÐ ∅
7: mÐ BestpB XBGq
8: if m “ ∅ then mÐ BestpB XGGq

9: if m “ ∅ then
10: flag Ð Try GBpM, bayq
11: else
12: M Ð Applypbay ,Mq Ź Make the move
13: if BlockspMq “ 0 and timepMq ă timepπq then
14: π ÐM Ź Update the best solution so far
15: return
16: if m “ ∅ and flag “ False then
17: return
18: return

The idea of the Try GB function is to empty a stack that has no blocking containers, placing

its containers on stacks where there are also no blocking containers. The stack with the smallest

number of containers is always selected to be emptied and its containers are moved to the second

stack with the smallest number until it is filled, then to the third stack and so on. Since the

containers moved through GB moves will be placed upside down, in the following iterations the

empty column will be filled up employing BG moves. If a feasible solution is not obtained, the

function returns False. This function is just used if there is at most one blocking container per

stack. Refer to Figure 8 for a example in which a feasible solution is obtained by performing GB

moves.

6
5

6 5 4 6 6 2
5 5 2 4 5 1
4 4 3 5 1

4 2 1
4 2
3

(a)

6
5

6
4
5

5 4 6 6 2
5 2 4 5 1
4 3 5 1
4 2 1
4 2
3

(b)

6
6
5
5
4

5 4 6 6 2
5 2 4 5 1
4 3 5 1
4 2 1
4 2
3

(c)

Figure 8: Figure (a) shows a layout in which neither BG nor GG moves satisfying the heuristic criteria can be
performed. Figure (b) shows the layout after emptying one stack. Finally, the bay is arranged by performing only
BG moves as shown in Figure (c).
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7. Computational experiments

We conduct an extensive computational analysis to test the performance of the mathematical

model and the branch and bound algorithm proposed. We refer them as IPCT and CTA, respec-

tively. Both were coded in C/C++ and executed on virtual machines with 4 virtual processors and

16 GBytes of RAM running Windows 10 Enterprise 64 bits. The virtual machines are run in an

OpenStack virtualization platform supported by 12 blades, each with four 12-core AMD Opteron

Abu Dhabi 6344 processors running at 2.6 GHz and 256 GBytes of RAM, for a total of 576 cores

and 3 TBytes of RAM. We fix the time limit to be 3600 seconds and use CPLEX 12.7 with 4

threads as a solver.

We assess our approaches using these four well-known datasets from the scientific literature:

EMM dataset. The instances from Expósito-Izquierdo et al. (2012). In total, 450 instances with 4

tiers and with the number of stacks varying among 4, 7 or 10 stacks.

ZJY dataset. Instances from Zhang et al. (2015) that are grouped into 5 categories of 20 instances

each, with 6, 7, 8 or 9 stacks and 4 tiers, and 6 stacks and 5 tiers.

BZ dataset. This dataset from van Brink and van der Zwaan (2014) contains instances with 4 and

5 tiers and a number of stacks ranging in size from 3 to 9, with a total of 960 instances.

CV dataset. Instances from Caserta and Voß (2009) range in size from 3 stacks and 5 tiers up to

10 stacks and 10 tiers, totalling 760 instances. These instances are among the most difficult in the

pre-marshalling literature because all containers have different priorities and all stacks are filled to

the same tier with two empty tiers on top of each stack.

7.1. Performance of the mathematical model IPCT

Since IPCT requires an initial feasible solution to set the T value, we asses its performance

using the instances from EMM, ZJY, BZ, and CV datasets solved by IPS6 in Parreño-Torres et al.

(2019). Thus, the T used to solve IPCT is obtained from the solution provided by IPS6 according

to Proposition 2. Mathematical models for the CPMP are flexible and easier to implement, but

fail to solve the largest CV instances sizes. Therefore, only the CV instances ranging in size from

3 stacks and 5 tiers up to 7 stacks and 6 tiers, are considered.
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We focus here on evaluating the performance of our model and on seeing if the crane time of

the solutions obtained really differ from that of the solutions obtained with IPS6 (which solves the

classic CPMP). Table 3 shows the results obtained for the four datasets grouping the instances by

number of tiers (H) and number of stacks (S). Column “#Inst.” gives the total number of instances

tested at each group and columns “#Opt.” and “#Feas.” represent the number of optimal and

feasible solutions obtained by IPCT, respectively. The “Crane Time” columns represent the average

time spent by the crane on those instances and the “CPU(s)” columns the average running time (in

seconds) spent by each model. Even though the objective function of IPS6 does not minimize the

crane time, given a solution for the model it is easy to compute its crane time. Column “AVRPD”

shows the average of the relative percentage deviation in the instances optimally solved, i.e., the

average (%) of the differences between the crane time obtained with IPS6 and the crane time

obtained with IPCT divided by the crane time obtained with IPS6. Finally, column “MAXRPD”

represents the maximum relative percentage deviation again in the instances solved to optimality.

In the light of the results, IPCT solves to optimality 87.98%, 85.33%, 43.21%, and 67.48% of the

instances belonging to EMM, ZJY, BZ, and CV datasets. These percentages increase significantly

to 97.95%, 87.65%, 97.76%, and 83.43% if we consider the instances in which the model obtains a

feasible solution. The average crane time of the solutions reached with IPS6 do not correspond in

any case to that of the optimal solution obtained by IPCT for the CPMPCT and furthermore the

relative deviation can be up to 24%.

We focus now on the BZ dataset, groups with 7 and 9 stacks, and 4 and 6 tiers. The crane

time decreases on average between 4.7% and 7.7% and between 13.83% and 24% in instances that

present the best improvement. These cases represent fairly common bay sizes in terminals around

the world. The practical implications are huge. The presented results indicate that minimizing

crane time results in much shorter pre-marshalling operations, effectively saving on expensive

hourly wages of stevedores, crane operations, etc.

With respect to the running times, the highest are obtained in the datasets in which the model

solves a lower percentage of instances, CV and ZJY datasets. In these datasets the average times

are 486.68 and 683.26 seconds. On the other hand, BZ dataset has the shortest average running

time, 129.77 seconds and is followed by EMM dataset with an average of 248.23 seconds.

25



Table 3: Performance of IPCT model on the instances optimally solved by IPS6 from EMM, ZJY, BZ, and CV
dataset.

IPCT IPS6 IPCT vs. IPS6

Avg. Avg.

Dataset H S #Inst #Opt #Feas. Crane Time CPU(s) Crane Time AVRPD MAXRPD

EMM 4 4 150 150 150 472.93 251.90 477.46 1.13 21.29
4 7 126 115 124 605.08 185.89 630.02 3.75 14.66
4 10 115 79 109 670.03 332.02 715.00 6.28 15.30

Total 391 344 383 562.37 248.23 583.01 3.19 21.29

ZJY 4 6 20 10 17 878.60 740.87 912.82 3.48 9.41
4 7 17 11 16 987.85 533.23 1012.90 2.62 8.91
4 8 18 9 17 794.97 839.89 813.80 2.61 5.54
4 9 17 4 13 846.07 265.92 880.24 3.90 4.45
5 6 9 1 8 1261.70 2017.25 1263.11 0.11 0.11

Total 81 35 71 898.66 683.26 925.10 2.94 9.41

BZ 4 3 120 120 120 374.34 0.62 376.93 0.54 7.68
4 5 120 120 120 444.76 5.00 457.37 2.61 14.15
4 7 120 117 120 535.70 100.70 562.20 4.74 18.51
4 9 96 98 119 600.71 200.94 644.29 6.96 24.03
6 3 120 116 119 917.30 43.50 924.27 0.79 9.09
6 5 120 95 100 1023.02 237.54 1054.03 2.87 18.69
6 7 104 64 92 1050.33 391.55 1111.04 5.42 13.83
6 9 93 32 83 1018.88 439.58 1106.15 7.69 15.10

Total 893 762 873 686.69 129.77 712.45 3.38 24.03

CV 5 3 40 40 40 984.27 201.16 994.09 0.91 4.24
5 4 38 34 37 973.75 342.69 992.59 2.12 12.66
5 5 32 21 29 987.73 817.42 1018.80 3.15 7.91
5 6 23 8 15 956.86 1057.91 985.91 2.76 5.34
5 7 11 1 5 940.13 868.36 1010.72 6.98 6.98
5 8 7 0 2 - - - - -
6 4 9 5 7 1170.06 861.35 1179.32 0.79 1.74
6 5 2 1 1 1360.83 3032.89 1391.82 2.23 2.23
6 6 1 0 0 - - - - -

Total 163 110 136 991.15 486.68 1009.93 1.91 12.66

7.2. Comparing the mathematical model IPCT with the branch and bound algorithm CTA

We compare the performance of IPCT and that of CTA over the set of instances tested in

the previous section. Table 4 shows the results obtained. It provides the number of optimal and

feasible solutions reached by IPCT and CTA, as well as the average running times for the instances

in which both of them reached the optimal solution.

The algorithm CTA obtains a feasible solution in all of the instances whereas IPCT did not

obtain any in a few of the cases. Regarding to the number of optimal solutions, CTA obtains 96

more optimal solutions than IPCT over the 1528 instances tested, or 6.3% more. Although CTA

solves 3.6%, 45.7%, and 31.9% more than IPCT on EMM, ZJY, and CV datasets, on BZ it solves

0.7% less than IPCT due to the effect of the largest instances in this dataset.

Considering the instances optimally solved by both of them (column “#Both”), it is remarkable
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Table 4: Comparing CTA vs. IPCT in the EMM, ZJY, BZ and CV instances used to evaluate the performance of
the mathematical model IPCT in the previous section.

#Opt. #Feas. Avg. Avg. CPU(s)

Dataset H S #Inst. IPCT CTA IPCT CTA #Both Crane Time IPCT CTA

EMM 4 4 150 150 150 150 150 150 472.93 251.90 0.27
4 7 126 115 125 124 126 115 605.08 185.89 0.79
4 10 115 79 83 109 115 76 654.80 294.54 107.00

Total 391 344 358 383 391 341 558.03 239.14 24.23

ZJY 4 6 20 10 20 17 20 10 878.60 740.87 0.41
4 7 17 11 17 16 17 11 987.85 533.23 1.32
4 8 18 9 17 17 18 9 794.97 839.89 16.90
4 9 17 4 9 13 17 4 846.07 265.92 18.27
5 6 9 1 9 8 9 1 1261.70 2017.25 6.26

Total 81 35 72 71 81 35 898.66 683.26 7.14

BZ 4 3 120 120 120 120 120 120 374.34 0.62 0.01
4 5 120 120 120 120 120 120 444.76 5.00 0.02
4 7 120 117 119 120 120 117 535.70 100.70 4.85
4 9 120 98 98 119 120 96 590.17 135.02 65.75
6 3 120 116 120 119 120 116 917.30 43.50 0.02
6 5 104 95 102 100 104 94 1014.21 211.95 19.80
6 7 96 64 56 92 96 53 962.17 125.93 201.11
6 9 93 32 21 83 93 21 918.22 267.80 502.67

Total 893 762 756 873 893 737 664.38 85.06 40.65

CV 5 3 40 40 40 40 40 40 984.27 201.16 0.01
5 4 38 34 38 37 38 34 973.75 342.69 0.03
5 5 32 21 32 29 32 21 987.73 817.42 0.15
5 6 23 8 23 15 23 8 956.86 1057.91 0.54
5 7 11 1 11 5 11 1 940.13 868.36 0.52
5 8 7 0 6 2 7 0 - - -
6 4 9 5 9 7 9 5 1170.06 861.35 0.07
6 5 2 1 2 1 2 1 1360.83 3032.89 1.13
6 6 1 0 1 0 1 0 - - -

Total 163 110 162 136 163 110 991.15 486.68 0.10

that the average running times are cut down by CTA between 52.20% on the BZ dataset and 99.98%

on the CV dataset. We further note that in some groups such as those with 5 tiers and 4 or 5

stacks, the average running times greatly decrease from 342.69 seconds to 0.03 seconds and from

817.42 seconds to 0.15 seconds, though in the largest groups of BZ, with 6 tiers and 7 or 9 stacks,

the situation reverses.

7.3. Performance of branch and bound algorithm CTA

We evaluate our algorithm on the instances of EMM, ZJY and BZ datasets, and also on all the

instances of CV dataset. The results are shown in Table 5 and 6. For the instances optimally solved

by CTA, they show the average crane times and the average running times. For the instances in

which a feasible solution is found, the average crane times and the average running times required

to get the best solution.
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In Table 5, a solution is found for all the instances and in a running time that on average does

not exceed 180 seconds for any of the datasets. In addition, an optimal solution is found for around

80% of the instances in the three datasets.

Table 5: Performance of CTA on EMM, ZJY, and BZ datasets.

Avg. Opt. Avg. Feas.

Dataset H S #Inst #Opt. Crane Time CPU(s) #Feas. Crane Time CPU(s)

EMM 4 4 150 150 472.93 0.27 150 472.93 0.27
4 7 150 125 657.64 27.13 150 905.64 87.25
4 10 150 83 692.36 197.32 150 1222.22 395.29

Total 450 358 588.30 55.33 450 866.93 160.94

ZJY 4 6 20 20 1053.42 16.92 20 1053.42 16.92
4 7 20 18 1071.74 23.39 20 1122.24 21.24
4 8 20 17 976.58 238.74 20 1053.99 202.94
4 9 20 10 1078.95 585.43 20 1266.02 295.57
5 6 20 15 1448.46 488.19 20 1582.43 366.21

Total 100 80 1118.48 224.94 100 1215.62 180.58

BZ 4 3 120 120 374.34 0.01 120 374.34 0.01
4 5 120 120 444.76 0.02 120 444.76 0.02
4 7 120 119 546.53 12.55 120 553.47 12.50
4 9 120 98 600.48 94.52 120 724.87 128.94
5 3 120 120 949.12 0.03 120 949.12 0.03
5 5 120 105 1102.35 47.29 120 1233.84 41.40
5 7 120 56 996.30 265.96 120 1528.31 265.03
5 9 120 21 918.22 502.67 120 1932.41 814.76

Total 960 759 694.19 54.25 960 967.64 157.84

We now focus on Table 6, which contains the results for the CV dataset. The algorithm solves

654 out of the 760 instances, but just 245 to optimality. All the instances with 5 and 6 tiers

are solved, and 249 of the 280 instances with 7 tiers. The worst performance is presented in the

instance with 8 tiers.

8. Conclusions

We propose the pre-marshalling problem considering crane time minimization objective (CPM-

PCT). Even though the pre-marshalling problem has been widely studied in the literature in the

last years due to its relationship with the increase in productivity of container terminals in an

extremely competitive environment, all previous papers minimize the number of moves as their

objective function to rearrange the bay. In this paper, crane times have been calculated in a pre-

cise way, considering different speeds and accelerations depending on whether the crane is moving

with load or not, as well as twistlock times. We show that the number of moves is not a suitable

indicator for measuring crane time.
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Table 6: Performance of CTA on CV dataset.

Avg. Opt. Avg. Feas.

H S #Inst #Opt. Crane Time CPU(s) #Feas. Crane Time CPU(s)

5 3 40 40 984.27 0.01 40 984.27 0.01
5 4 40 40 1043.19 0.11 40 1043.19 0.11
5 5 40 40 1187.69 37.69 40 1187.69 37.69
5 6 40 35 1270.00 204.94 40 1338.96 179.33
5 7 40 25 1374.62 610.68 40 1531.04 384.34
5 8 40 11 1326.97 985.54 40 1633.31 273.04
6 4 40 35 1830.44 61.12 40 1897.71 53.76
6 5 40 9 1789.99 78.93 40 2218.00 18.54
6 6 40 3 1600.40 921.00 40 2405.58 76.17
6 7 40 0 - - 40 2765.90 181.16
7 4 40 6 2221.35 178.50 40 2933.43 597.13
7 5 40 1 1876.20 434.54 38 3208.36 373.53
7 6 40 0 - - 37 3925.59 1288.49
7 7 40 0 - - 36 4282.63 1327.28
7 8 40 0 - - 36 4973.35 1780.95
7 9 40 0 - - 32 5588.67 1596.88
7 10 40 0 - - 30 5864.61 1758.06
8 6 40 0 - - 2 5252.07 1346.71
8 10 40 0 - - 3 9134.43 1632.72

Total 760 245 1315.10 171.07 654 2737.96 546.25

We present a novel dominance criteria to solve the CPMPCT, upper bounds for the number

of movements required to solve the CPMPCT, and lower bounds for the problem. Two exact

approaches are proposed: a mathematical model and a branch and bound algorithm. An extended

computational analysis highlight the need to consider the new objective function as opposed to

the one used so far, cutting the crane time down by 24% in some cases. The branch and bound

algorithm outperforms the mathematical models, obtaining a solution in 95% of the instances

tested.

We consider the crane time but the approaches developed in the paper could be used for other

goals such as minimizing energy consumption during the arrangement. Further lines of research will

develop new lower bounds for the problem and also integrate the problem into a robust framework

that could prevent the need for several iterations of the CPMPCT due to last minute changes in

container retrieval orders from delays.
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Appendix A. Proof of Proposition 6

Proof. Let t1 and t2 be:

t1 “ c1siki
` c0kisi`1

` c1si`1si “ trl
´

distancerpsi, kiq
¯

` tru
´

distancerpki, si`1q

¯

` trl
´

distancerpsi`1, siq
¯

t2 “ c0sisi`1
` c1si`1ki

` c0kisi “ trl
´

distancerpsi, si`1q

¯

` tru
´

distancerpsi`1, kiq
¯

` trl
´

distancerpki, siq
¯

To address this proof, we rewrite equation (2) as a function of the distance travelled x, the

maximum speed reached vmaxrβ , and the distance to achieve the maximum travelling speed dr.

Note that acceleration relies on the last two factors above.

trβpxq “

$

&

%

2
?
2drx

vmaxrβ
, If x ă 2dα

x`2dr

vmaxrβ
, If x ě 2dα

@β P tl, uu

Therefore, t1 and t2 depend on the distances among si, si`1, and ki, which depend on their relative

position in the bay. If we sort 3 stacks in non-decreasing order, we get six cases. Nevertheless we

just have to consider three of them because distancerps, kq “ distancerpk, sq:

x1 x2

x3

(a)

si ki si`1

(b)

si si`1 ki

(c)

ki si si`1

(d)

Figure A.9: Given three stacks at distances x1, x2, and x3 (Figure A.9a), Figures A.9b to A.9d show the different
relative positions that must be addressed.

Case 1. si ă ki ă si`1, Figure A.9b.

Case 2. si ă si`1 ă ki, Figure A.9c.

Case 3. ki ă si ă si`1, Figure A.9d.

In Figures A.9b to A.9d, the lines above and below the segment describe the relative position

between the stacks. Solid lines represent the movements of the crane loaded and dashed lines show

the crane unloaded. The time spent to perform the movements represented above the segment is

t1 and below the segment is t2.

The difference t1´t2 can be described as a function of three terms t1´t2 “ pterm1term3q{term2,

where term1 “ pvmaxru ´ vmaxrlq, term2 “ vmaxruvmaxrl, and term3 changes according to
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the case discussed. We study the different cases, proving that t1 ´ t2 ą 0 Ø t1 ą t2. Since

vmaxru ą vmaxrl and the speeds are positive values, term1 and term2 are greater than 0, thus we

just need to prove that term3 is greater than (or equal to) 0.

Case 1. si ă ki ă si`1, Figure A.9b.

We consider x1 “ distancerpsi, kiq, x2 “ distancerpki, si`1q, and x3 “ distancerpsi, si`1q, so

t1 “ trlpx1q ` trupx2q ` trlpx3q and t2 “ trupx3q ` trlpx2q ` trupx1q. Five scenarios should be

discussed:

S1: x1, x2, x3 ă 2dr

term3 “ 2
a

2drx1 ` 2
a

2drx3 ´ 2
a

2drx2 ą 2
a

2drx1 ą 0

The first inequality is satisfied because x3 ą x2, so 2
?

2drx3 ą 2
?

2drx2 and the second

one because the distance x1 is positive (si ‰ ki).

S2: x1, x2 ă 2dr and x3 ě 2dr

term3 “ 2
a

2drx1 ` x3 ` 2dr ´ 2
a

2drx2q ą 2
a

2drx1 ` x3 ´ 2dr ą 2
a

2drx1 ą 0

Since x2 ă 2dr, then 2drx2 ă 4pdrq2 Ñ 2
?

2drx2 ă 4dr and the first inequality is satisfied.

The second and third one follows from the fact that x3 ě 2dr and that x1 ą 0.

S3: x1 ă 2dr and x2, x3 ě 2dr

Distance x3 is greater than x2 and x1 ą 0, so term3 “ p2
?

2drx1`x3´x2q ą 2
?

2drx1 ą 0

S4: x2 ă 2dr and x1, x3 ě 2dr

As x2 ă 2dr, then 2
?

2drx2 ă 4dr. Moreover the distances are positive because si ‰ ki ‰

si`1, thus term3 “ px1 ` x3 ` 4dr ´ 2
?

2drx2q ą x1 ` x3 ą 0.

S5: x1, x2, x3 ě 2dr

The distance x3 is greater than x2 and all distances are greater than 0, so the inequality

term3 “ px1 ` x3 ` 2dr ´ x2q ą 0 is fulfilled.

Therefore, given three stacks si, ki, si`1 such as si ă ki ă si`1, the inequality t1 ą t2 is always

satisfied.

Case 2. si ă si`1 ă ki, Figure A.9c. Analogous proof to that in the previous case.

Case 3. ki ă si ă si`1, Figure A.9d.

In this case, x1 “ distancerpsi, kiq, x2 “ distancerpsi, si`1q, and x3 “ distancerpki, si`1q,
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therefore t1 “ trlpx1q ` t
rupx3q ` t

rlpx2q and t2 “ trupx2q ` t
rlpx3q ` t

rupx1q.

S1: x1, x2, x3 ă 2dr

Since x3 “ x1 ` x2,

term3 “ 2
a

2drx1 ` 2
a

2drx2 ´ 2
a

2drx3 “ 2
?

2dr
´

?
x1 `

?
x2 ´

?
x3

¯

“ 2
?

2dr
´

?
x1 `

?
x2 ´

?
x1 ` x2

¯

The term 2
?

2dr is greater than 0 and
?
x1 `

?
x2 ě

?
x1 ` x2 . Therefore term3 ą 0.

S2: x1, x2 ă 2dr and x3 ě 2dr

Since 2dr ą x1 Ñ
?

2drx1 ą x1, 2dr ą x2 Ñ
?

2drx2 ą x2, x3 “ x1 ` x2, and x3 ě 2dr,

the following inequalites are satisfied:

term3 “ 2
a

2drx1 ` 2
a

2drx2 ´ x3 ´ 2dr ą 2px1 ` x2q ´ x3 ´ 2dr “ x3 ´ 2dr ě 0

S3: x1 ă 2dr and x2, x3 ě 2dr

Since x3 “ x1 ` x2, and 2dr ą x1 Ñ
?

2drx1 ą x1,

term3 “ p2
a

2drx1 ` x2 ´ x3q “ p2
a

2drx1 ´ x1q ą 0.

S4: x2 ă 2dr and x1, x3 ě 2dr. Proof analogous to the previous scenario.

S5: x1, x2, x3 ě 2dr

The last scenario follows from x3 “ x1`x2 and 2dr ą 0, then term3 “ x1`x2`2dr´x3 “

2dr ą 0.

Therefore, given three stacks si, ki, si`1 such as ki ă si ă si`1, the inequality t1 ą t2 is always

satisfied.
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