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Abstract: Current control has, for decades, been one of the more challenging research fields in the
development of power converters. Simple and robust nonlinear methods like hysteresis or sigma-delta
controllers have been commonly used, while sophisticated linear controllers based on classical control
theory have been developed for PWM-based converters. The one-cycle current control technique is a
nonlinear technique based on cycle-by-cycle calculation of the ON time of the converter switches
for the next switching period. This kind of controller requires accurate measurement of voltages
and currents in order achieve a precise current tracking. These techniques have been frequently
used in the control of power converters generating low-frequency currents, where the reference
varies slowly compared with the switching frequency. Its application is not so common in active
power filter current controllers due to the fast variation of the references that demands not only
accurate measurements but also high-speed computing. This paper proposes a novel one-cycle digital
current controller based on the minimization of the integral error of the current. Its application in a
three-leg four-wire shunt active power filter is presented, including a stability analysis considering
the switching pattern selection. Furthermore, simulated and experimental results are presented to
validate the proposed controller.

Keywords: current control; power converters; one-cycle controller; active power filters; power quality

1. Introduction

Shunt active power filters (SAPFs) improve the power quality and energy efficiency in electrical
systems by compensating the effects of unbalanced currents, reactive power, and harmonic distortion
produced by inefficient loads [1,2]. The SAPF measures load currents and grid voltages at the point of
common coupling (pcc) and then generates the inefficient currents required by the load, as shown
in Figure 1. In this way, the grid provides only useful power, improving power quality and energy
efficiency of the grid.

SAPF current control methods can be classified into two groups: (i) linear designs based on
small-signal models of the SAPF, and (ii) nonlinear designs base on large-signal models of the SAPF.
Linear controllers are based on the application of linear control theory to linearized SAPF models.
In this way, [3–7] propose the use of proportional (P) controllers, proportional–integral (PI) controllers,
and linear quadratic Gaussian (LQG) regulators, all working in a synchronous reference frame. In [3,8]
the use of proportional resonant (PR) controllers is proposed. In [9], the use of an H∞ robust control
design technique together with a Kalman filter for state estimation is proposed. In [10,11], a minimum
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time deadbeat control is proposed. Finally, [12] proposes the application of model predictive control
(MPC) together with a modulation algorithm to improve the current ripple.
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Figure 1. Shunt active power filter (SAPF) connection. 

Some nonlinear controllers applied to the SAPF are the following: hysteresis band current 
control (HCC) [13–17], sigma-delta control (SDC) [18,19], sliding mode control (SMC) [20–22], and 
one-cycle control (OCC) [23–28]. 

The great advantage of HCC is its implementation simplicity and its good dynamic response; 
however, the variable switching frequency is its main drawback. In order to alleviate this problem, 
in [15–17], changing the hysteresis band width dynamically (i.e., adjustable hysteresis band) is 
proposed, so as to obtain a quasi-fixed switching frequency. 

SDC operation is asynchronous, hence, it suffers from the same drawbacks as HCC. In order to 
obtain synchronous sigma-delta control (SSDC), either an external clock signal is added to the sigma-
delta modulator [19], or an adjustable hysteresis band (AHB) is used in the comparator of the sigma-
delta modulator [18]. However, in [19], although the switching frequency is bounded by the external 
clock, it is not fixed because it may be the case that when switching happens, the integral error has 
not reached the hysteresis bound yet. In the case of using an AHB, as in [18], a fixed switching 
frequency can be obtained but at the cost of variable performance, because the current ripple depends 
on the hysteresis band, which is adjusted accordingly to keep the switching frequency fixed. 

The HCC and SDC may be treated as special cases of SMC. SMC defines a sliding surface that 
characterizes the desired system performance, and a switched control that maintains the system on 
the surface. SMC is a well-developed theory with stable and robust results for general nonlinear 
control systems. However, as previously discussed, the design of SMC through HCC [20] and SDC 
results in controllers that can guarantee constant switching frequency or fixed system performance, 
but not both. 

Finally, OCC guarantees that, for each switching cycle, the duty cycle is adjusted to accomplish 
some control objective. In [27], the duty cycle is computed to compensate the reactive power and 
harmonic distortion of load currents for single-phase and three-phase APFs. In [25], OCC is applied 
to a three-phase APF system operating with asymmetrical grid voltages and a load demanding 
unbalanced and nonlinear currents; and in [26], OCC is used in a three-phase four-leg APF to 
compensate the unbalanced, reactive and harmonic components of the load currents. Finally, OCC is 
used to compensate only for the load current harmonic components [23,24]. 

In this work, a new SAPF current control designed on the basis of the OCC paradigm is proposed. 
This control is based on the minimization of the integral error of the current on each switching period. 
Hence, the proposed control provides, with fixed switching frequency, a constant performance level 
of zero current integral error for each switching cycle. The influence of the switching pattern in the 
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As a result of the linearization of SAPF models, the control may degrade when the SAPF is not
working close to the linearization point. Although the design of robust controllers might guarantee the
stability for the whole operating range of the SAPF, it comes at the cost of performance degradation.

Some nonlinear controllers applied to the SAPF are the following: hysteresis band current control
(HCC) [13–17], sigma-delta control (SDC) [18,19], sliding mode control (SMC) [20–22], and one-cycle
control (OCC) [23–28].

The great advantage of HCC is its implementation simplicity and its good dynamic response;
however, the variable switching frequency is its main drawback. In order to alleviate this problem,
in [15–17], changing the hysteresis band width dynamically (i.e., adjustable hysteresis band) is proposed,
so as to obtain a quasi-fixed switching frequency.

SDC operation is asynchronous, hence, it suffers from the same drawbacks as HCC. In order
to obtain synchronous sigma-delta control (SSDC), either an external clock signal is added to the
sigma-delta modulator [19], or an adjustable hysteresis band (AHB) is used in the comparator of the
sigma-delta modulator [18]. However, in [19], although the switching frequency is bounded by the
external clock, it is not fixed because it may be the case that when switching happens, the integral error
has not reached the hysteresis bound yet. In the case of using an AHB, as in [18], a fixed switching
frequency can be obtained but at the cost of variable performance, because the current ripple depends
on the hysteresis band, which is adjusted accordingly to keep the switching frequency fixed.

The HCC and SDC may be treated as special cases of SMC. SMC defines a sliding surface that
characterizes the desired system performance, and a switched control that maintains the system on the
surface. SMC is a well-developed theory with stable and robust results for general nonlinear control
systems. However, as previously discussed, the design of SMC through HCC [20] and SDC results in
controllers that can guarantee constant switching frequency or fixed system performance, but not both.

Finally, OCC guarantees that, for each switching cycle, the duty cycle is adjusted to accomplish
some control objective. In [27], the duty cycle is computed to compensate the reactive power and
harmonic distortion of load currents for single-phase and three-phase APFs. In [25], OCC is applied to a
three-phase APF system operating with asymmetrical grid voltages and a load demanding unbalanced
and nonlinear currents; and in [26], OCC is used in a three-phase four-leg APF to compensate
the unbalanced, reactive and harmonic components of the load currents. Finally, OCC is used to
compensate only for the load current harmonic components [23,24].

In this work, a new SAPF current control designed on the basis of the OCC paradigm is proposed.
This control is based on the minimization of the integral error of the current on each switching period.
Hence, the proposed control provides, with fixed switching frequency, a constant performance level
of zero current integral error for each switching cycle. The influence of the switching pattern in the
controller stability has also been studied. As a result, an alternating switching pattern strategy is selected
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to achieve stable behavior of the controller independently of the grid voltage sign. Implementation
of this controller requires accurate measurements and high-speed computing to calculate the next
switching period control in time. A real setup has been developed using a powerful microcontroller
performing high-speed computing, combined with sigma-delta modulators to obtain precise measures
at high sampling frequencies.

The paper is structured as follows. In Section 2, the current control application is presented.
In Section 3, the proposed controller is derived, and the stability analysis is presented. Section 4
presents stability analysis considering different switching patterns and the final control algorithm.
In Section 5, the control algorithm is tested under simulation. Section 6 shows the experimental setup
and the obtained results. Finally, Section 7 includes the conclusions of the work.

2. Problem Statement

Consider the three-leg four-wire grid-tied power converter presented in Figure 2. The converter
operates as a three-phase voltage source inverter (VSI) connected to the ac power network through
inductances La,b,c. Equivalent series resistance (ESR) of the dc bus capacitors and the resistive part
of the inductances are neglected for clarity. The fourth wire connects the neutral wire of the power
network to the dc bus midpoint. This power stage configuration is commonly used in SAPFs and can
be treated as three independent single-phase converters sharing a unique dc bus. The VSI switches
should be an IGBT–diode association allowing bi-directional current flow. The switches of a branch
are controlled in a complementary fashion, meaning that at any time, only one switch per branch is
in the ON state. Neglecting switching times, also for simplicity, only two states are possible and the
per-phase equivalent circuit of Figure 3 is obtained. The control system should include dc bus voltage
regulation; dc bus midpoint voltage unbalances compensation and ac-side current control.
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Figure 3. Per-phase equivalent circuit of the grid-tied converter. 
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Consider now the application of one-cycle current control, with fixed switching period Tsw, to the
circuit of Figure 3. The one-cycle control paradigm [23,24] is based on computing the control in one
switching cycle, as shown in Figure 4. As a result, given an initial current through the inductance ik
and a constant current reference value to be tracked irk, the problem is to find the ON time (ton or t1 in
Figure 4) that allows the performance of optimal reference tracking. Subscript z, which refers to the
converter phases, is hereafter omitted for clarity.
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This work proposes a one-cycle control method that seeks to minimize the absolute value of the
current error integral in a switching cycle, that is:

min
ton∈[0,Tsw]

∣∣∣∣∣∣
∫ Tsw

0
e(t)dt

∣∣∣∣∣∣ (1)

where e(t) = irk − i(t). Graphically, the above optimization problem is equivalent to the minimization
of the sum of the gray areas in Figure 4. The minimum value of the optimization problem is zero,
which is achieved when positive areas A+ are equal to negative areas A−. If the optimal value is greater
than zero, then it provides the optimal ON time (ton*) that minimizes the integral error.

The rationale behind this figure of merit lies in the fact that when the minimum value is achieved,
and Vdc and vs are nearly constant for one switching cycle, the control provides, in one cycle, the same
power as the one defined by the current reference. Note that, given the switching nature of the
converter, it is impossible to track perfectly the reference in every instant within a switching cycle;
however, the mean value of the signals over a switching cycle can be equal.

In the rest of the article, the following assumptions are considered:

1. The reference current irk is constant during the switching period.
2. For a switching cycle k, when S = Son, the phase current i(t) increases with slope m+, defined as

m+,k =
Vdc

2 −vs,k
L , which is always positive because Vdc

2 is always greater than vs. On the other hand,

when S = Soff, the phase current decreases with slope m−, defined as m−,k =
−

Vdc
2 −vs,k

L , which is
always negative.

3. Slopes m+ and m− are assumed constant during the switching cycle. For high switching frequencies
(in the range of kHz), vs and Vdc are nearly constant for a switching period. Then, slopes m+

and m− can be considered constant for the entire switching cycle. The error produced by this
assumption is considered and proved not significant, so it does not justify the increased complexity.
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3. One-Cycle Zero-Integral-Error

The optimal ON time ton* is obtained by solving the following constrained optimization problem:

min
t1∈[0,Tsw]

∣∣∣∣∣∣
∫ Tsw

0
e(t)dt

∣∣∣∣∣∣ (2)

With the current error e(t) defined as:

e(t) =
{

e+(t) = irk − (ik + m+t) if 0 ≤ t < t1

e−(t) = irk − (it1 + m−(t− t1)) if t1 ≤ t ≤ Tsw
(3)

it1 is the current at the switching point given by:

it1 = ik + m+t1 (4)

The optimization problem (2) can be solved analytically by first computing the one-cycle integral
error as: ∫ Tsw

0
e(t)dt =

∫ t1

0
e+(t)dt +

∫ Tsw

t1

e−(t)dt (5)

The integral of the error when the switch is ON is:∫ t1

0
e+(t)dt =

∫ t1

0
(irk − ik)︸   ︷︷   ︸

ek

−m+tdt =
(
ek −

m+

2
t1

)
t1 (6)

The integral of the error when the switch is OFF is:∫ Tsw

t1
e−(t)dt =

∫ Tsw

t1
irk − it1 −m−(t− t1)dt

= ek(Tsw − t1) −m+t1(Tsw − t1) −
m−
2 (Tsw − t1)

2 (7)

Finally, adding both integrals yields the following expression:∫ Tsw

0
e(t)dt =

(m+ −m−
2

)
t1

2 + (m− −m+)t1Tsw +
(
ek −

m−
2

Tsw

)
Tsw (8)

As a result, the integral of the error is a quadratic polynomial in t1, equivalently in ton, defined as,
and given by:

p(ton) =
(m+ −m−

2

)
︸       ︷︷       ︸

a

ton
2 + (m− −m+)Tsw︸            ︷︷            ︸

b

ton +
(
ek −

m−
2

Tsw

)
Tsw︸               ︷︷               ︸

c

(9)

The polynomial p(ton) has the following properties:

1. The quadratic function is convex, because d2p(ton)

dton2 = m+ −m− > 0.

2. The minimum of the function is always at ton = Tsw, because dp(ton)
dton

= 0 = (m+ −m−)ton +

(m− −m+)Tsw and dp(ton)
dton

= 0 yields ton = Tsw.

Note that the function to be minimized is not p(ton), but its absolute value
∣∣∣p(ton)

∣∣∣. Its minimum
(ton

∗) can be obtained by the following procedure:

1. Compute p(Tsw). If p(Tsw) ≥ 0, the optimizer is ton
∗ = Tsw, and the optimal value is p(Tsw).

This condition is equivalent to ek ≥
m+

2 Tsw.
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2. Compute p(0). If p(0) ≤ 0, the optimizer is ton
∗ = 0, and the optimal value is

∣∣∣p(0)∣∣∣, because p(ton)
is convex and, with a minimum at ton = Tsw, if p(0) is negative, then p(0) is the maximum value
for ton∈ [0, Tsw] and as we take the absolute value

∣∣∣p(ton)
∣∣∣, it follows that p(0) is positive and the

minimum value for ton∈ [0, Tsw]. This condition is equivalent to ek ≤
m−
2 Tsw.

3. Finally, if m−
2 Tsw ≤ ek ≤

m+
2 Tsw, the optimal ton

∗ is obtained by the solution of p(ton) = 0, that is
given by:

ton
∗ = Tsw −

√
Tsw2 −

(2ek −m−Tsw)Tsw

m+ −m−
(10)

3.1. Control Algorithm

The control algorithm requires us to measure the phase current at the beginning of each switching
cycle (ik) in order to compute the current error ek = irk − ik. Depending on the value of the current error
ek, the optimal control action to be applied is:

1. If ek ≥
m+

2 Tsw, then ton
∗ = Tsw.

2. If ek ≤
m−
2 Tsw, then ton

∗ = 0.
3. If m−

2 Tsw ≤ ek ≤
m+

2 Tsw, then

ton
∗ = Tsw −

√
Tsw2 −

(2ek −m−Tsw)Tsw

m+ −m−

The following remarks are in order:

1. The optimization problem achieves the minimum value of 0 when m−
2 Tsw ≤ ek ≤

m+
2 Tsw. In this

case, the control provides the one-cycle zero integral error.
2. In the case that ek ≥

m+
2 Tsw or ek ≤

m−
2 Tsw, the minimum value achieved is greater than zero and

the one-cycle zero integral error property is no longer achieved, although the algorithm still
minimizes its value. These cases arise when the value of the error is so large that it saturates the
control action (i.e., ton

∗ = Tsw or ton
∗ = 0).

3. In general, slopes m+ and m− are not constant but time varying in each switching cycle. Hence,
the slopes must be updated accordingly in each cycle.

3.2. Stability Analysis

Once ton
∗ is obtained, a stability analysis is performed. The phase current at the end of switching

cycle ik+1 is related to the current at the beginning ik by:

ik+1 = ik + m+ton + m−(Tsw − ton) (11)

Subtracting Equation (11) from the reference current in one-cycle irk, the evolution of the error is
obtained as:

ek+1 = irk − ik+1 = irk − ik︸︷︷︸
ek

−m+ton −m−(Tsw − ton) = ek −m−Tsw + (m− −m+)ton (12)

The objective is to analyze the error evolution of Equation (12) when the optimal ON time (10)
is applied. Substituting (10) into (12) and arranging terms, the following nonlinear iterated map is
obtained:

ek+1 = ek −m+Tsw +
√
(m+ −m−)Tsw

√
m+Tsw − 2ek (13)
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First, the fixed points of the map are computed, that is, e = ek = ek+1. The fixed points are given
by solving:

−m+Tsw +
√
(m+ −m−)Tsw

√
m+Tsw − 2e = 0 (14)

The unique solution is:

e = −
Tsw

2
m+m−

(m+ −m−)
(15)

The next step is to determine the stability of the fixed point. For unidimensional iterated maps

xk+1 = f (xk), the fixed point x is stable if
∣∣∣∣ d f (xx)

dxk
|xk=x

∣∣∣∣ < 1. Particularizing the stability result to Equation
(14):

dek+1
dek

= 1 +
√
(m+ −m−)Tsw

(
1
2

)
(m+Tsw − 2ek)

−1/2(−2)

= 1−
√
(m+ −m−)Tsw(m+Tsw − 2ek)

−1/2 = 1−
√

(m+−m−)Tsw
(m+Tsw−2ek)

(16)

Particularizing the derivative Equation (16) with the fixed point e given in (15):

dek+1

dek
= 1−

m+ −m−
m+

= 1−
(
1−

m−
m+

)
=

m−
m+

(17)

Finally, the system is stable if: ∣∣∣∣∣ m−
m+

∣∣∣∣∣ < 1 (18)

Considering the equivalent circuit in Figure 3, the stability condition (18) leads to an unstable
behavior of the controller during the positive half-cycle of the supply voltages, where m− is greater
than m+. Stability properties considering the switching pattern are analyzed and a stable controller for
a complete voltage cycle is derived in Section 4.

4. Stability and Switching Pattern

Consider the evolution of the phase current with the switching pattern shown in Figure 5. In this
case, the switching period starts in the OFF state and turns on at time t1, remaining in the ON state
until the end of the switching period.
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Using this switching pattern, and following an analog procedure, i.e., the one in Section 3,
the one-cycle integral defines again a quadratic polynomial in ton = Tsw − t1, given by

p(ton) = −
(m+ −m−

2

)
︸       ︷︷       ︸

a

ton
2 +

(
ek −

m−
2

Tsw

)
Tsw︸               ︷︷               ︸

c

(19)

The polynomial p(ton) has the following properties:

1. The quadratic function is concave, because d2p(ton)

dton2 = −(m+ −m−) < 0.

2. The minimum of the function is always at ton = 0, because dp(ton)
dton

= −(m+ −mm−)ton and
dp(ton)

dton
= 0 yields ton = 0.

In an analogous manner to the previous section, the minimum of
∣∣∣p(ton)

∣∣∣ can be obtained by the
following procedure:

1. Compute p(0). If p(0) ≤ 0, the optimizer is ton
∗ = 0, and the optimal value is

∣∣∣p(0)∣∣∣. This condition
is equivalent to ek ≤

m−
2 Tsw.

2. Compute p(Tsw). If p(Tsw) ≥ 0, the optimizer is ton
∗ = Tsw, and the optimal value is p(Tsw). This

condition is equivalent to ek ≥
m+

2 Tsw.
3. Finally, if m−

2 Tsw ≤ ek ≤
m+

2 Tsw, the optimal ON time is obtained by solving p(ton) = 0, that is
given by:

ton
∗ =

√
(2ek −m−Tsw)Tsw

m+ −m−
(20)

The stability analysis for the optimal ton
∗ obtained with the new switching pattern is repeated.

The resulting nonlinear map of the current error is, in this case:

ek+1 = ek −m−Tsw +
√
(m+ −m−)Tsw

√
m+Tsw − 2ek (21)

The fixed point is given by:

e =
Tsw

2
m+m−

(m+ −m−)
(22)

As can be seen, the fixed point is equal in magnitude, but with opposite sign to the one previously
computed in (15). Finally, the stability condition is shown to be:∣∣∣∣∣m+

m−

∣∣∣∣∣ < 1 (23)

That is complementary to stability condition (18) computed in Section 3 with the switching pattern
of Figure 4. Summing up, the use of two distinct switching patterns (one for each half-cycle of the
voltages) renders the one-cycle zero-integral-error current control stable.

Control Algorithm

This subsection summarizes the one-cycle zero-integral-error control algorithm. The control
algorithm requires us to measure the phase current at the beginning of each cycle (ik) in order to
compute the current error ek = irk − ik. Furthermore, the algorithm also requires computing the slopes
m+ and m− that, in general, are time varying at each switching cycle. The slopes are necessary to
choose the stable switching pattern and to compute the optimal ON time. Hence, the slopes must be
updated each cycle. The control algorithm is resumed in the flowchart of Figure 6.
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Figure 6. Flowchart of the digital control algorithm.

5. Simulation Results

Consider the power system presented in Figure 7. A three-phase four-wire SAPF is used to achieve
balanced currents, low current total harmonic distortion (THD) and unity power factor (PF) upstream
from the pcc, where a linear load and a nonlinear load are connected.
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Figure 7. Block diagram of the power system under consideration.

The values used in the circuit Figure 7 are: La = Lb = Lc = 3 mH; rLa = rLb = rLc = 0.1 Ω;
C1 = C2 = 4.7 mF. The dc bus voltage is Vdc = 450 V. Supply voltages (va_s, vb_s and vc_s) are symmetrical
with rms values equal to Va_s = Vb_s = Vc_s = 120 V. Fundamental frequency is 50 Hz. SAPF switching
frequency is 20 kHz. The nonlinear load uses a diode-based three-phase rectifier feeding a series R-L
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load. An unbalanced three-phase linear load is also connected at the pcc. Load values are presented in
Table 1.

Table 1. Load values.

Linear load

Za Zb Zc

Ra = 24 Ω
La = 18 mH

Rb = 50 Ω
Lb = 6 mH

Rc = 350 Ω
Lc = 12 mH

Nonlinear load
Three-phase Rectifier + R-L Load

Lr = 6 mH Rr = 37 Ω

Current slopes for each phase are given by: m+z =
Vdc

2 −Vz_s sin(wt+ϕz)
L ; m−z =

−
Vdc

2 −Vz_s sin(wt+ϕz)
L .

where z = a, b, c and ϕz are the corresponding phase-shifts ϕa = 0, ϕb =
−2π

3 , ϕc =
−4π

3 .
The power system has been simulated with Matlab/Simulink®. Figure 8 shows the load currents,

while the active filter reference currents are presented in Figure 9. By generating these currents,
the SAPF achieves global compensation, meaning that reactive, unbalanced and distortion powers are
reduced to near-zero values.
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Figure 9. SAPF reference currents.

Figure 10 presents the current tracking performance of the controller proposed in Section 4,
while two details of this figure are presented in Figures 11 and 12. The quality of the proposed control
is demonstrated by the precise current tracking achieved. Note that a small current surge appears
when a zero-crossing of the phase voltages occurs, exactly when the control changes the switching
pattern. It appears because two consecutive high or low states are concatenated in the change of
pattern. It also causes a small transient that stabilizes in several µs, as can be seen in Figure 12. In order
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to reduce these surges, it is possible to modify the control algorithm to force the ON or OFF time to be
small for the first switching period of the new pattern.
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Figure 13 shows the current tracking error corresponding to the detail of Figure 12. Figure 14 shows
the supply currents before and during the SAPF operation (t > 0.055 s). The current waveforms become
a set of balanced, sinusoidal currents, showing a THD of 1.83% and a PF equal to 0.9987. The error
observed in the tracking of high reference derivatives can be reduced by increasing the switching
frequency. However, for the one-cycle control technique, it means increasing control frequency and
reducing computing time, as well as increasing the switching losses.

Finally, Figure 15 presents the harmonic spectrum of supply currents obtained during
compensation. Low-order harmonic components are small compared to the fundamental component,
as indicated by the resulting THD value. Higher harmonics are concentrated around the switching
frequency (order 400 for 20 kHz).
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6. Experimental Results

Figure 16 shows the prototype implemented in the lab to perform the experimental tests.
SAPF has been implemented by means of a Toshiba PM75CG1B120 (75 A, 1200 V) three-phase power
stage switching at 20 kHz. The scheme of the power system matches the one shown in Figure 7.
SAPF component values (dc bus capacitors and phase inductances) as well as the load components
are the same as those presented for the simulation example in Section 5. A Pacific Power A-360MX
three-phase power supply generates the 120 V rms three-phase supply voltages. A dc bus voltage
controller assures Vdc = 450 V and a capacitor voltage-balancing controller keeps the voltage equally
distributed between the capacitors [2]. A LeCroy waveJet 324 oscilloscope (200 MHz-2 GS/s) is used to
carry all measurements and to obtain the voltage and current figures presented in this section.

The proposed one-cycle control requires high-speed computing, because it has to calculate the
reference currents and the ON times of the next switching period in a few microseconds. To obtain good
current tracking, it also needs accurate measurements of load and SAPF phase currents at the beginning
of the switching period, as shown in Figures 4 and 5. Dc bus and supply voltage measurements are not
so time-critical because they change slowly compared with the switching period. However, to wait
until the end of the cycle means overlapping part of the next switching period with the calculations
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needed to compute its corresponding ON time. This is a problem because no action is possible until
the computations are finished.
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To avoid this problem, SAPF currents and load currents are measured using six AMC1303E2520
sigma-delta modulators that feature 20 mega samples per second (MSPS), an internal clock and
Manchester modulation. Using these sigma-delta modulators, 40 high-precision samples per switching
cycle (at 800 kSPS) are obtained, allowing us to precompute the slope of each one of the six currents
and their values at the end of the switching period, whilst avoiding possible mismeasurements
due to semiconductor switching. This forward calculation allows for computing the next ON time,
avoiding the need to wait until the end of the switching period to sample the currents and compute
the ON times. It is also important to remark that, due to the switching times of the semiconductors
in the power stage, a dead-band is needed. Considering this restriction, minimum and maximum
values for ton could be limited to 5% and 95% of the switching period, respectively. This characteristic
also conditions the dc voltage level needed to track reference currents, which must be slightly higher,
consequently increasing the current ripple of phase currents.

In order to carry out these high-speed tasks, a Texas Instruments dual core TMS320F28379D
microcontroller has been selected. This digital controller features up to 800 MIPS (200 MHz),
and includes two programmable control law accelerators (CLAs), an IEEE 754 floating-point unit
(FPU), a trigonometric math unit (TMU), eight sigma-delta filter module (SDFM) input channels and
many other peripherals. Combining the powerful microcontroller and the sigma-delta modulators,
the proposed control has been implemented and the experimental results are shown in the next figures.

Figure 17a shows the supply voltages, a set of three-phase balanced voltages of 120 V rms.
The load currents are shown in Figure 17b and correspond to the mixed load presented in Table 1.
The currents delivered by the SAPF to achieve global compensation are presented in Figure 18a and
details of SAPF phase currents are presented in Figures 18b and 19. These detailed waveforms show
the good shape of the currents, in both positive and negative half-cycles. As expected, a small surge
and a short instability appear at zero-crossings of the supply voltages, when the control changes
the switching pattern. The excellent performance of the current tracking is validated by the good
supply current waveforms obtained during the compensation. Figure 20 shows how supply currents
become a set of balanced sinusoidal currents. The small surges in the waveforms have two causes.
As mentioned before, there are surges caused by the change of switching pattern at zero-crossings of
voltages, and second, there are surges due to the normal error produced in tracking the sudden slope
changes in the reference currents. The supply current THD is 2.8% and PF reaches a value of 0.997.
A slight increment in the current THD value compared with the one obtained in the simulation can
be appreciated. This is caused by the real characteristics of the semiconductors and tolerances of the
passive components used in the experimental setup.
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7. Conclusions

In this work, a one-cycle digital current controller has been proposed. Based on the minimization
of the current integral error, the optimal ON time is obtained for every switching period. Two switching
patterns have been studied and stability analysis demonstrates that both patterns are complementary
and stable for one half-cycle of the supply voltages. After this conclusion, a current controller combining
the two switching patterns were proposed. Simulated and experimental methods were carried out
over a shunt active power filter platform, demonstrating the quality of the proposed controller that
performs current tracking well, achieving low THD and high PF. A powerful microcontroller combined
with sigma-delta-based measurements was used to implement the demanding control system.
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