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Abstract 16 

Laser scanning has the potential to accurately detect the vertical distribution of forest vegetative 17 

components. However, limitations are present and vary according to the system’s platform (i.e., 18 

terrestrial or airborne) and recording method (i.e., discrete return or full waveform). Terrestrial 19 

configurations detect close objects (i.e., lower vegetation strata) in more detail while airborne 20 

configurations detect a more detailed upper strata, with weak backscattered signals from lower 21 

strata. Moreover, discrete lidar systems record single or multiple hits from a given pulse at 22 

intercepted features in contrast to full-waveform systems, which register the pulse’s complete 23 

backscattered signal providing complete vertical profiles. In this study, we examine for a Boreal 24 

and a Mediterranean forest with contrasted conifer canopy densities: (i) the characterization of 25 

the vertical distribution and signal occlusion from three laser scanning configurations: full-26 

waveform airborne (ALSFW), discrete airborne (ALSD), and discrete terrestrial (TLS); (ii) the 27 

comparison in the detection of understory vegetation by ALSFW and ALSD using TLS as 28 

reference; and (iii) the use of a methodological procedure based on the Gini index concept to 29 

group understory vegetation in density classes from both ALSFW and ALSD configurations. Our 30 

results demonstrate, firstly, that signal occlusion can be quantified by the rate of pulse reduction 31 

independently for data from all three laser scanning configurations. The ALSD configuration was 32 

the most affected by signal occlusion, leading to weak signal returns at the lower strata (z < 4 m) 33 

where the rate of pulse reduction was highest as a result of dense canopy covers. Secondly, we 34 

demonstrated the capabilities for both airborne laser scanning configurations to detect understory 35 

vegetation, albeit significantly more accurately with ALSFW. Lastly, we demonstrated the use of 36 

the Gini index as an indicator to determine understory vegetation density classes, particularly for 37 

ALSFW data in dense canopy cover. We proceed to explain the limitations in detecting the 38 
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vertical distribution from different configurations, and indicate that understory vegetation density 39 

classes may be successfully assigned with ALSFW in contrasted conifer canopy densities. 40 

 41 
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1. Introduction 42 

Signal occlusion is the main limitation in acquiring fully comprehensive laser scanning datasets 43 

in forested environments. Signal occlusion occurs when the object to sample is partially or 44 

completely obscured by an intervening object. The presence and amount of signal occlusion 45 

found in a laser scanning dataset depends greatly on the scanning configuration (i.e., above-46 

canopy for aerial or near-ground for terrestrial), vegetation cover and density, and its complexity 47 

(Watt and Donoghue, 2005). Signal occlusion can therefore limit the detection of a forest’s 48 

horizontal and vertical distribution of vegetation, particularly in dense forested environments. It 49 

is important to note that signal occlusion is not to be confounded with forest cover. While forest 50 

cover refers to the proportion of forest covered by the vertical projection of tree crowns, signal 51 

occlusion refers to the shadow (lack of laser signal) caused by canopy elements. Several 52 

strategies have been tested to reduce signal occlusion such as increasing the number of flyovers 53 

for airborne laser scanning (ALS) (Kükenbrink et al., 2017), combining data from multiple 54 

sensors (Giannetti et al., 2018), or sampling the plot with multiple scans from varying viewpoints 55 

with a terrestrial laser scanning (TLS) (Martin-Ducup et al., 2017). Another way to deal with 56 

signal occlusion in TLS data is to divide the point cloud space into voxels and compute the Plant 57 

Area Density (PAD) for each voxel (Béland et al., 2014; Pimont et al., 2018). Analyzing signal 58 

occlusion and its effects on the estimation of forest structural attributes is essential in 59 

understanding the limitations of different laser scanning and sampling configurations, and 60 

therefore sampling designs to best minimize signal occlusion. 61 

 62 

Although signal occlusion is present in all laser scanning datasets, ALS and TLS systems have 63 

nonetheless demonstrated their capability to characterize forest attributes with great precision 64 
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and accuracy. Among ALS sensors, traditional or discrete ALS (ALSD) is now used 65 

operationally to estimate stand attributes for a wide range of forest ecosystems (Kankare et al., 66 

2013a; Hevia et al., 2016; Bottalico et al., 2017), and to classify tree species and forest canopy 67 

fuels (Vaughn et al., 2012; Ruiz et al., 2018; Torralba et al., 2018). On the other hand, less 68 

attention has been attributed to full-waveform ALS (ALSFW) sensors due to the data’s greater 69 

complexity and the current lack of processing tools (Crespo-Peremarch et al., 2018a). ALSFW 70 

data provides the complete signal emitted by the sensor as opposed to discrete hits. The data is 71 

processed as a continuous return signal providing information within the forest vertical 72 

components. Some studies have demonstrated the success of ALSFW to estimate forest stand 73 

variables (Cao et al., 2014a; Cao et al., 2014b; Hermosilla et al., 2014a; Crespo-Peremarch et al., 74 

2016) and classify tree species (Heinzel and Koch, 2011; Cao et al., 2016; Torralba et al., 2018). 75 

In comparison with ALS data, TLS data can provide a more detailed point cloud of a forest 76 

structure, albeit from a different viewpoint. For applications in forested environments, the useful 77 

portion of the TLS point cloud extent is often limited (10 – 30 m) with a hemispherical view 78 

around the sensor. Withstanding that, many studies have demonstrated the capabilities of TLS to 79 

estimate and extract forest stand variables (Srinivasan et al., 2015; Liang et al., 2016; Ravaglia et 80 

al., 2019), and fewer on the classification of tree species (Lin and Herold, 2016; Torralba et al., 81 

2018). 82 

 83 

Since ALS and TLS sensors acquire data from differing positions relative to the forests canopy, 84 

different occluded forest strata can be observed in their point clouds. Consequently, it is of 85 

interest to compare their independent effectiveness to detect the forests horizontal and vertical 86 

distribution, and estimate forest structural attributes. Several studies provide a base for 87 
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comparison between three laser scanning configurations: ALSD, ALSFW and TLS. These studies 88 

generally show that canopy height estimations are more accurate using ALS than TLS (Hilker et 89 

al., 2012; Crespo-Peremarch and Ruiz, 2017), while characterization of the foliage profile is 90 

estimated with more accuracy by TLS, especially in the lower strata (Chasmer et al., 2006; 91 

Hilker et al., 2010), where understory vegetation is found. On the other hand, other studies 92 

concur on a more accurate estimation of forest structural attributes from ALSFW than ALSD for 93 

canopy height (Anderson et al., 2016), aboveground biomass (Nie et al., 2017), stand volume 94 

(Lindberg et al., 2012), and the classification of species composition (Torralba et al., 2018).  95 

 96 

A common challenge in predicting forest structure from ALS data is finding associated reference 97 

data from which reliable error estimation is possible. Most studies on forest structure variables 98 

use a combination of field measurements and allometric relationships as reference data 99 

(González-Ferreiro et al., 2012; Treitz et al., 2012; Ruiz et al., 2014). However, in cases where 100 

3D assessments of vegetative material are required, it can be beneficial to use TLS data as a 101 

reference as these can be difficult and often logistically challenging to quantify directly from 102 

field activities. TLS data often represent the best available information to describe forest 103 

elements (Martin-Ducup et al., 2016; Crespo-Peremarch et al., 2018b; Ravaglia et al., 2019), 104 

being sampled in much more detail when compared with ALS. However, there are important 105 

discrepancies between ALS and TLS point clouds that need to be acknowledged. Looking at a 106 

vertical profile of data points in relative terms, ALSD point clouds have far more hits within the 107 

upper canopy and on the ground, while most of the hits for TLS point clouds are located at the 108 

lower crown, trunks-stems, understory, and ground (Crespo-Peremarch and Ruiz, 2017). These 109 

differences in sampling capabilities lead to estimation divergences (Chasmer et al., 2006). In 110 
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general, ALSD point clouds tend to under-represent the lower strata. While correlation between 111 

ALSD and TLS point clouds has been found to be 0.48 for heights below 20 m, it reached 0.87 112 

when only the upper canopy (z > 20 m) was considered (Hilker et al., 2010). As for canopy 113 

height, estimation from ALSD and TLS were generally similar: (i) an underestimation of 1 m by 114 

the TLS in a mixed forest in Ontario, Canada (Chasmer et al., 2006), (ii) a correlation of 0.94 115 

between estimations from both datasets in a pine-dominated forest in South-Korea (Jung et al., 116 

2011), and (iii) a correlation near 1 in a coniferous forest on Vancouver Island, BC, Canada 117 

(Hilker et al., 2010). Conversely, other studies found ALSD more suited to estimate canopy 118 

height than TLS: (i) with an R2 of 0.96 and 0.86, respectively in a lodgepole pine forest in 119 

Alberta, Canada (Hilker et al., 2012), and (ii) with an underestimation of 2.1 m by the TLS in a 120 

Mediterranean forest (Crespo-Peremarch and Ruiz, 2017). Therefore, there are situations where 121 

ALS and TLS may not accurately estimate the entire vertical forest structure, primarily due to 122 

signal occlusion. This signal occlusion problem is more severe for ALS than it is for the TLS 123 

because of the much smaller number of laser pulses. Fortunately, the beam width and the 124 

multiple return configuration mitigate this problem. Consequently, sampling understory 125 

vegetation is comparably far more comprehensive from TLS than it is from ALS. TLS data are 126 

therefore suitable reference data for the estimation of understory structural attributes and 127 

preferred over using traditional field sampling techniques, which can be laborious and time 128 

consuming (Crespo-Peremarch et al., 2018b). 129 

 130 

Within the vertical distribution of the forest, detection of the lower strata can be challenging 131 

from ALS sensors, especially from ALSD as a result of signal occlusion from the overstory 132 

(Anderson et al., 2016; Crespo-Peremarch and Ruiz, 2017). Nonetheless, ALSD has proven to 133 
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discriminate presence and absence of understory vegetation with promising accuracy (e.g., R2`s 134 

of 0.83 (Martinuzzi et al., 2009), 0.77 (Hill and Broughton, 2009), 0.74 (Wing et al., 2012), and 135 

0.48 (Morsdorf et al., 2010)) and has been demonstrated to be more accurately estimated by 136 

ALSFW than ALSD (Hancock et al., 2017; Torralba et al., 2018). In contrast, point clouds from 137 

TLS provide a large amount of detail on understory vegetation due to the position of the sensor 138 

(Liu et al., 2017). However, most studies have focused on the ability of TLS to characterize 139 

shrubs in ecosystems absent of overstory (e.g., Vierling et al., 2013; Olsoy et al., 2014; Greaves 140 

et al., 2015); few have focused on characterizing the understory vegetation from forested 141 

ecosystems (e.g., Chen et al., 2016). Furthermore, studies have estimated understory cover with 142 

ALSFW using TLS as reference data and obtained a normalized root-mean-square error of 24% 143 

(Hancock et al., 2017) and 9% (Crespo-Peremarch et al., 2018b). Nevertheless, a limited amount 144 

of studies have compared the ability to estimate understory vegetation presence or distribution 145 

from these three different laser scanning datasets (i.e., ALSFW, ALSD and TLS) (e.g., Hancock et 146 

al., 2017; Torralba et al., 2018). These studies confirmed that ALSFW and TLS are both capable 147 

of estimating the spatial distribution of understory vegetation in more detail than using ALSD 148 

data, e.g., with overall accuracies of 86.4% and 77.3%, respectively (Torralba et al., 2018). 149 

These results demonstrate the potential of combining ALSFW and TLS data in a workflow that 150 

estimates the spatial distribution of the understory vegetation beyond what can be estimated from 151 

ALSD data. However, these results were limited in their application as they were assessed in a 152 

fragmented urban forest and an open Mediterranean forest.  153 

 154 

The overarching goal of this study was to assess the ability of different laser scanning 155 

configurations to estimate vertical forest structure in natural forest environments. Specifically, 156 
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we investigated the independent capability of ALSD, ALSFW and TLS to estimate the amount and 157 

spatial distribution of understory vegetation from the lower strata (z < 4 m) for two structurally 158 

contrasting conifer dominated forests: a dense Boreal forest and an open Mediterranean forest. 159 

Three specific objectives were defined to reach the overarching goal: (i) characterize the vertical 160 

distribution and signal occlusion caused by vegetation in these two ecosystems from each 161 

scanning configuration; (ii) determine whether ALSFW allows detecting the distribution of 162 

understory vegetation to a level of detail beyond ALSD capability; and (iii) adapt a 163 

methodological procedure to determine understory vegetation density from ALSFW and ALSD 164 

point clouds. 165 

2. Material and methods 166 

2.1. Study areas 167 

Two study areas were selected based on their contrasting canopy densities and understory 168 

vegetation presence. Both sites are conifer dominated, albeit, structurally very different. Our first 169 

study area (111,257 ha) is located in a Boreal Shield Ecozone in western Newfoundland and 170 

Labrador, Canada and centered around 49.04°N and 57.93°W (Fig. 1a). The ecoregion is 171 

dominated (~70%) by forest land and is located within the most eastern boreal forest region of 172 

North America. Balsam fir (Abies balsamea (L.) Mill)) is the dominant tree species of the region 173 

followed by Black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.). White birch 174 

(Betula papyrifera Marsh.), yellow birch (Betula alleghaniensis Britton), white spruce (Picea 175 

glauca (Moench) Voss) and eastern larch (Larix laricina (Du Roi) K. Koch) are present to a 176 

much lesser extent. The relief is gently undulating to hilly with elevation ranges between ~30 m 177 

and 640 m. Forest understory is extremely variable depending on stand density and age, soil 178 

conditions, status of regeneration and silvicultural treatments such as precommercial thinning 179 
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(e.g., Fig. 2 – Newfoundland, sparse understory). Understory vegetation can be composed of tree 180 

saplings and seedlings, ferns (e.g., Dryopteris carthusiana (Vill.) HP Fuchs) and to a lesser 181 

extent ericaceous shrubs (e.g., Kalmia angustifolia L., Rhododendron groenlandicum (Oeder) 182 

Kron & Judd, Vaccinium spp.). 183 

 184 

The second study area (3,742 ha) is located in a Mediterranean forest located in the Natural Park 185 

of Sierra de Espadán, in the eastern Spanish province of Castellón centered around 39.96°N and 186 

0.41°W (Fig. 1b). The study area is dominated by Aleppo pine (Pinus halepensis Mill.), 187 

maritime pine (Pinus pinaster Ait.) and cork oak (Quercus suber L.). This province is the most 188 

mountainous in Spain with altitudes ranging from sea level to 1,813 m. The presence of 189 

understory in the study area is very variable, mainly depending on the dominant species and soil 190 

properties. Understory vegetation is dominated by the following shrubs and flowering plants: 191 

rosemary (Rosmarinus officinalis L.), tree heath (Erica arborea L.), brezo (Erica multiflora L.), 192 

Mediterranean buckthorn (Rhamnus alaternus L.), kermes oak (Quercus coccifera L.) and mastic 193 

(Pistacia lentiscus L.). Fig. 2 illustrates examples of different understory scenarios.  194 
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  195 
 196 

Fig. 1. Location of plots registered (red) and plots used in the current study (yellow) within each 197 
study area: (a, c) in western Newfoundland, Canada, and (b, d) in the Castellón province, Spain 198 

(Background imagery: PNOA andWorldView-2). 199 

 200 



12 
 

  201 
 202 

Fig. 2. Field photographs from the Newfoundland and Spain sites illustrating the varying 203 
densities of understory vegetation. 204 

 205 

2.2. Forest plots 206 

Circular plots were established with a radius of 11.28 m and 15 m for the Newfoundland and 207 

Spain sites, respectively. Plot center locations for both sites were measured with a GPS RTK 208 



13 
 

with an average accuracy of ~0.40 m. Tree species, living status, diameter at breast height, height 209 

and canopy base height were measured at all plot locations. For the Newfoundland site, 59 210 

established experimental plots from Luther et al. (2019) were made available with associated 211 

ALSD and ALSFW data, while 70 established experimental plots were made available with similar 212 

data for the Spain site (Fig. 1c and d). Among these experimental plots, a structurally 213 

representative sample of ten plots was selected per site for TLS sampling by maximizing the 214 

variability of canopy cover and understory vegetation for analysis in this study. Regarding 215 

canopy cover, we estimated it at plot locations from the proportion of ALSD first hits to total hits 216 

above 2 m per McGaughey (2014). Then, plots with a percentage of first hits above 70% were 217 

classified as having a dense canopy cover, between 40% and 70% as having a sparse canopy 218 

cover, and below 40%, as having a very sparse canopy cover. Furthermore, we assigned 219 

understory vegetation density classes at plot locations through field interpretations and classified 220 

plots as having dense, moderate, sparse, or absence of, understory vegetation (Fig. 2). Fig. 3 221 

illustrates the variability in structure from all conifer dominated plots and the structural 222 

representativeness of the retained sample plots. 223 
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 224 
 225 

Fig. 3. Violin plots representing four structural attributes (canopy cover, understory, canopy 226 

height and stem density) from all available plots. Attribute values for plots retained for analysis 227 
are in red. Abbreviations: D-dense; M-moderate; S-sparse; VS-very sparse; A-absent. 228 

 229 

2.3. Laser scanning data  230 

In our study, we analyzed laser scanning data obtained from three differing configurations, 231 

namely ALSD, ALSFW, and TLS. The ALS data obtained for the Newfoundland site were 232 

acquired between August 15th and September 24th 2016 with a Riegl LMS-Q680i. The 233 

approximate flight altitude was 1000 m above ground level. Data were acquired with a pulse 234 

frequency of 330 kHz and a scan angle range of ± 30º. Not excluding waterbodies, the overall 235 

average laser scanning pulse density was 7.34 pulses·m-2. ALSFW data was discretized by the 236 

service provider (Leading Edge Geomatics, Canada) using the Gaussian pulse estimation 237 
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computation method to extract ALSD data. Average point densities of 16 points·m-2 were 238 

observed at plot locations for ALSD. 239 

 240 

ALS data acquisition at the Spain site was undertaken on September 16th 2015 using an IGI 241 

LiteMapper 6800. Flight altitude ranged between 600 and 820 m above ground level. Data were 242 

acquired with a pulse frequency of 300 kHz and a scan angle range of ± 30º. The overall average 243 

pulse density was 14 pulses·m-2. Again, ALSFW data was discretized by the service provider 244 

(IMAO, France) using the Gaussian pulse estimation computation method to extract ALSD data. 245 

Average point densities of 36 points·m-2 were observed at plot locations for the Spain site for 246 

ALSD. 247 

 248 

The TLS data were collected using a FARO FOCUS 3D 120 phase-based laser scanner using a 249 

multi-scan configuration on both sites, recording only the first hit with an angular density 250 

between pulses of 0.0036 degree. TLS data for the Newfoundland site were acquired between 251 

June and August 2017 while the TLS data for the Spain site were acquired between September 252 

29th and October 23rd, 2015. To minimize signal occlusion, each plot was scanned from nine 253 

positions: one at plot center, four at ~15 m from the center in each cardinal direction (i.e., N, W, 254 

S, E), and four at ~ 7.5 m and ~ 6 m from the center in each primary intercardinal direction (i.e., 255 

NW, SW, SE, NE) for the Spain and Newfoundland sites, respectively. Each scan identified a 256 

minimum of three co-registration spherical targets common with adjacent scans. Co-registration 257 

of the 9 scans was performed using FARO SCENE software version 6.2 (FARO, Lake Mary, 258 

FL). The resulting co-registered point cloud comprised, on average, 392 × 106 hits.  259 

 260 
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2.4. Overview of the methods 261 

An overview of the methodological approach and associated procedures is presented in Fig. 4. 262 

First, ALSFW data were denoised and georeferenced in order to create an ALSFW point cloud 263 

compatible with the ALSD and TLS point clouds (Procedure 1). We then proceeded with the 264 

co-registration of the three laser scanning datasets: ALSFW, ALSD and TLS (Procedure 2). Once 265 

co-registered, all the point clouds were represented independently in voxel grids (Procedure 3a). 266 

Sampling of each voxel by the laser beams depends primarily on three variables: (i) the number 267 

of theoretical laser beams passing through the voxel (Nt), (ii) the number of these theoretical 268 

beams that were occluded prior to reaching the voxel (Nb), and (iii), the number of hits returned 269 

from these theoretical beams within the voxel (Nh). We then estimated these variables for each 270 

voxel of the three datasets (Procedure 3b) in order to derive the vertical distribution profiles from 271 

ALS (NhALS for both discrete (NhALSD) and full waveform (NhALSFW) datasets) (Procedure 3c) as 272 

well as the Plant Area Density from TLS (PADTLS) (Procedure 3d), which is the projected 273 

surface of the vegetated materials (wood and leaves). In order to quantify and compare signal 274 

occlusion within the three laser scanning datasets, we computed for each the rate of pulse 275 

reduction of Nt as the proportion of beams blocked prior to reaching the voxel (Nb/Nt) 276 

(Procedure 3e). A height normalization was then applied to NhALS, PADTLS, and the rate of pulse 277 

reduction from ALSFW, ALSD and TLS (Procedure 4). This created a coherent vertical leveling 278 

between these estimated variables from which we produced vertical profiles of NhALS, PADTLS 279 

and the rate of pulse reduction (Procedures 5a and 5b). These vertical profiles were used to 280 

analyze the relationship between the detection of vegetative material in different strata from 281 

airborne and terrestrial laser scanning configurations and the rate of pulse reduction. We 282 

computed the coefficient of correlation at lower strata (0.5 m ≤ z ≤ 4 m) to quantify the similarity 283 
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of vertical profiles of NhALSFW and NhALSD with PADTLS. Afterwards, the lower strata of the 284 

NhALS vertical profiles were compared to determine which ALS configuration (i.e., ALSFW or 285 

ALSD) depicts the understory vegetation in more detail. An application of the Lorenz curve 286 

(Lorenz, 1905) and the Gini index (Gini, 1912) calculated from the NhALSFW and NhALSD vertical 287 

profiles of the lower strata determined the density of understory vegetation, which we compared 288 

with field observations. Data processing and analysis was carried out in Python (van Rossum, 289 

1995) and R programming languages (Team, 2013). PADTLS was computed with the L-Vox 290 

algorithm (available in the Computree open source framework (Piboule et al., 2015)). 291 

 292 
 293 

Fig. 4. Overview of the methodological approach. Abbreviations: ALSFW: full-waveform 294 
airborne laser scanning, ALSD: discrete airborne laser scanning, TLS: terrestrial laser scanning, 295 

Nh: number of hits, Nt: number of theoretical laser beams, Nb: number of theoretical laser beams 296 
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blocked before reaching a given voxel, NhALS: number of hits extracted from airborne laser 297 
scanning (i.e., full-waveform and discrete), PADTLS: plant area density extracted from terrestrial 298 

laser scanning. 299 

 300 

2.5. Data preprocessing 301 

2.5.1. Denoising and georeferencing the waves from ALSFW 302 

Initial data were available in point cloud format for the ALSD and TLS configurations. Unlike 303 

discrete return lidar sensors which record backscattered energy at precisely referenced points in 304 

time and space, ALSFW sensors record backscattered energy as a nearly continuous signal in a 305 

full-waveform indexed bin. We therefore needed to create an ALSFW point cloud compatible 306 

with the ALSD and TLS point clouds. To do so, we removed the noise contained in the raw 307 

ALSFW waveforms and georeferenced the remaining bins (Procedure 1). We adopted the process 308 

proposed by Lefsky et al. (2005), and further described by Hermosilla et al. (2014b), which first 309 

defines a noise threshold as the mean of the waveform’s amplitude summed with four times its 310 

standard deviation. All the waveforms whose amplitudes were below this threshold were 311 

discarded as noise. After removing noisy waveforms, background noise was suppressed from the 312 

remaining waveforms by subtracting a noise value (133% of the mode of the amplitudes) from 313 

each amplitude value of the waveform. We then computed each bin’s XYZ coordinates from: (i) 314 

the coordinates of at least one hit belonging to the waveform, (ii) the elapsed time between the 315 

known hit and the anchor point (i.e., the beginning) of the waveform, (iii) the distance between 316 

two consecutive bins, and (iv) the waveform line parameters Xt, Yt and Zt. The coordinates and 317 

orientation of the waveform were derived from the known hit coordinates and waveform line 318 

parameters. The coordinates of the anchor point were derived from the known hit coordinates, 319 

orientation of the waveform, and elapsed time between the known hit and anchor point. Each 320 

bin’s XYZ coordinates were then defined by the coordinates of the anchor point, the orientation 321 
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of the waveform, and the distance between two consecutive bins. The resulting ALSFW data 322 

contained only significant waveforms with the noise removed from which we were able to create 323 

a georeferenced point cloud compatible with those from the two other configurations: ALSD and 324 

TLS. 325 

 326 

2.5.2. XY co-registration of ALS and TLS datasets 327 

Considering that the main goal of this research is to compare the data obtained from three 328 

different laser scanning configurations, it was necessary that all point clouds were co-registered 329 

in the same coordinate system (Procedure 2). Co-registration is a critical step to ensure that the 330 

three point clouds can be compared in our analysis. Georeferencing of the ALS data followed 331 

common practice and was done by registering the flight trajectory coordinates from the airborne 332 

GPS to a set of ground control points. These ground control points allowed for an accurate 333 

georeferencing of the flight lines, and therefore the resulting waveforms and point clouds. Given 334 

that the ALSD is derived from the ALSFW data, co-registration between these two datasets was 335 

not necessary.  336 

 337 

Co-registration of the TLS data to the ALS data was performed using the latter as reference. 338 

These data were co-registered on a plot-level basis. For each plot, Canopy Height Surfaces 339 

(CHS) were generated independently from both ALSD and TLS data. The geometric distribution 340 

of tree crowns and canopy gaps guided the selection of homologous points from both CHS. A 2D 341 

affine matrix transformation was then computed from the homologous point coordinates and 342 

applied to the TLS point clouds. Only translation in the horizontal plane and rotation around the 343 

vertical axis were applied since the distance values from both laser scanner systems needed to be 344 
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maintained, therefore not altering the scale. The root-mean-square error (RMSE) of the 2D affine 345 

transformation was 9 cm ± 4 cm and 7 cm ± 7 cm for the Newfoundland and Spain data, 346 

respectively. The co-registration process was carried out by extracting the coordinates with 347 

QGIS open source software (QGIS, 2016) and computing the 2D affine transformation.  348 

 349 

2.6. Estimating voxel sampling variables and the rate of pulse reduction 350 

The 3D space of the point clouds was discretized in voxels to produce vertical profiles 351 

(Procedure 3a). The point density from the TLS point clouds was sufficiently high to allow the 352 

adoption of very small voxels (e.g., ~5cm). However, assessing the capacity of each laser 353 

scanning configuration to detect understory vegetation required adopting a common voxel size: a 354 

trade-off between the fine vertical features of vegetation density and the availability of sufficient 355 

hits from laser scanning signal within a voxel. We therefore adopted a voxel size for all three 356 

datasets according to (i) the pulse spacing of ALS in XY plane, (ii) the temporal sample spacing 357 

of ALSFW in the Z axis, and (iii), avoiding empty voxels in either datasets (Crespo-Peremarch et 358 

al., 2018a). The most suitable voxel size was determined to be 0.5 m in X, 0.5 m in Y and 0.15 m 359 

in Z (vertical). 360 

 361 

We first computed for all datasets the number of beams crossing the voxel (Nt), the number of 362 

hits within the voxel (Nh), and the number of beams blocked prior to reaching the voxel (Nb) 363 

(Procedure 3b). The computation approach of these three sampling variables differed between 364 

the TLS and ALS datasets due to their distinct sensor-signal-scene configurations. The approach 365 

taken for the TLS data used the one (first) hit per pulse of the TLS phase-shift technology. The 366 

approach taken for the ALS data assumed that all recorded hits were associated with an 367 
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independent laser pulse having no cross-section (i.e., a vector with no divergence). This, 368 

however, is an abstraction. In fact, multiple hits originate from the same beam. Hence, the 369 

sampling variables derived from TLS data are not directly comparable with those derived from 370 

ALS data. We therefore assumed the number of hits in each voxel to be a representation of the 371 

forest vertical distribution only from ALS for both NhALSD and NhALSFW (Procedure 3c) while the 372 

forest vertical distribution from TLS was represented by the cumulative PADTLS (Procedure 3d). 373 

In addition to Nt, Nh and Nb, the path length of all pulses crossing the voxel was estimated from 374 

the TLS data. The three voxel sampling variables and the path length of all pulses crossing the 375 

voxel allowed calculating PADTLS, in m2·m-3, for each voxel according to the mathematical 376 

framework proposed by Pimont et al. (2018). We used a minimum of five pulses reaching a 377 

voxel (Nt-Nb ≥ 5) as a threshold for calculating PADTLS, otherwise the voxel was assigned as 378 

being occluded. A negligible number of TLS voxels were tagged as occluded due to the large 379 

voxel size relative to point density.  380 

 381 

In order to quantify signal occlusion caused by vegetation, we computed the rate of pulse 382 

reduction as the proportion of beams blocked prior to reaching the current voxel (Nb/Nt) 383 

(Procedure 3e). Knowing the rate of pulse reduction provides insight on the potential or 384 

drawbacks of the different laser scanning configurations. 385 

 386 

2.7. Extracting forest vertical distribution and rate of pulse reduction profiles 387 

In Section 2.5, through the 2nd procedure, TLS data were co-registered only in XY (not in Z) to 388 

the ALSD data. Absolute heights of the canopy needed to be maintained in order to define the 389 

original laser pulse trajectories, which was critical in computing NhALSD, NhALSFW, PADTLS, and 390 
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the rate of pulse reduction. However, in order to extract and make meaningful plot-level 391 

comparisons of the vertical profiles of these attributes (stored as 3D matrices of voxels), a co-392 

registration in the Z-axis was necessary (Procedure 4). Co-registration ensured that the base of 393 

each column of voxels was set to a common Z reference system where all ground voxels were set 394 

to a height of 0 m. Both the ALS and TLS datasets had their respective DTMs created with a cell 395 

size of 0.5 m. The DTMs for ALS data were generated from ALSD data. Classification of ground 396 

points was done using the Axelsson algorithm (Axelsson, 2000) implemented in LAStools 397 

(Isenburg, 2017). The DTMs for the TLS data were produced for every plot using an open source 398 

ground classification algorithm in Computree (Piboule et al., 2015). Height normalization of the 399 

3D matrices was therefore done with their respective DTM; e.g., NhALSD and NhALSFW were 400 

normalized to its respective ALS-derived DTM as PADTLS was normalized to its respective 401 

TLS-derived DTM. 402 

 403 

Next, we extracted vertical profiles of these 3D matrices to represent the vertical distribution of 404 

forest elements for each horizontal layer of voxels (i.e., a vertical bin with a height of 0.15 m). 405 

The value of each vertical bin was calculated as the sum of the voxel values of the corresponding 406 

horizontal layer for NhALSD, NhALSFW and PADTLS (Procedure 5a). The rate of pulse reduction 407 

was calculated as the average of the voxel values for that horizontal layer (Procedure 5b). Only 408 

information 0.5 m above the ground was considered therefore removing values associated to an 409 

understory zone strongly influenced by soil micro-relief and very low vegetation. This procedure 410 

provided the normalized vertical profiles of NhALSD, NhALSFW and PADTLS, and the rate of pulse 411 

reduction. 412 

 413 
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In order to assess how well we captured the vertical distribution profiles at different heights from 414 

ALS, we assessed the relationships between NhALS and PADTLS by means of ratios. To do so, we 415 

computed, plotted and compared the ratios between NhALS and PADTLS (i.e., NhALSD/PADTLS and 416 

NhALSFW/PADTLS). The resulting vertical profiles highlighted limitations in detecting the 417 

different vertical strata based on a unitless indicator. Higher values imply a higher detection of 418 

the vegetation, while lower values imply a more limited detection. 419 

 420 

2.8. Classifying the vertical distribution of understory vegetation from ALS data 421 

Once the forest vertical profiles were generated for NhALS, both ALS configurations (ALSD and 422 

ALSFW) were compared to detect the understory vegetation. The height range for this comparison 423 

was set between 0.5 m and 4 m to detect the lower strata through NhALS vertical profiles. The 424 

upper limit of 4 m was deemed appropriate to capture high shrubs within our study sites. 425 

Detection of the understory vegetation was addressed through the characteristics of the NhALS 426 

vertical profiles, whose curvature depends on the presence of understory vegetation. To quantify 427 

the curvature of the NhALS vertical profiles, we combined the fitting of the Lorenz curve (Lorenz, 428 

1905) with the Gini index (Gini, 1912) (Procedure 6). The Gini index is a measure of statistical 429 

dispersion initially created to measure inequality of countries’ wealth. It is computed as the area 430 

between the curve and the equality line (i.e., 1:1 line) (see area A in Fig. 5a) divided by the area 431 

below the equality line and delimited by the main axes (see area B in Fig. 5a). Fig. 5b and 5c 432 

show the two extreme cases, i.e., complete equality (i.e., Gini index = 0) and complete inequality 433 

(i.e., Gini index = 1), respectively. Consequently, the Gini index quantifies the curvature of a 434 

distribution, or in our application, a vertical profile. The Lorenz curve and Gini index have been 435 

widely used in economics, but also in some forestry applications. For instance, Valbuena et al. 436 
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(2013) and Valbuena et al. (2014) proposed several indicators describing tree size inequality 437 

related to forest vertical structure. These indicators were based on the combined analysis of the 438 

Lorenz curve from ALSD data, including the Gini index. In addition, the Gini index obtained 439 

from ALSD was proposed to identify differences in structural complexity of forests (Valbuena et 440 

al., 2016).  441 

 442 
 443 

Fig. 5. Description of the Gini index for (a) a general case, and two examples showing (b) 444 

equality (i.e., Gini index = 0) and (c) inequality cases (i.e., Gini index = 1), respectively. 445 
 446 

In our study, each NhALS vertical profile (NhALSD and NhALSFW) is represented by a Lorenz curve. 447 

The Gini index was estimated from this Lorenz curve through the ratio A / (A + B) (Fig. 5a, 6b). 448 

To do so, we applied the following three steps: 449 

 450 

1. NhALS vertical profiles were first filtered to exclude overstory following the same 451 

procedure for ALSFW and ALSD. We discarded the NhALS values in the vertical profiles 452 

that had a height greater than the first relative minimum of NhALS (see Fig. 6b). 453 

Consequently, high shrubs were included in the analysis but lower crowns were excluded 454 

from the computation of the Gini index (see Fig. 6a). 455 

 456 
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2. NhALS values were then normalized between 0 and 1 using Eq. (1) (see Fig. 6c). The 457 

normalization facilitated the comparison between plots since NhALS values are variable 458 

according to the different plots and acquisition configurations.  459 

      (1) 460 

where NhALS
norm refers to the normalization (between 0 and 1) of NhALS. Also, min(NhALS) 461 

and max(NhALS) are the minimum and maximum values, respectively, of NhALS for the 462 

current plot between 0.5 and 4 m. 463 

 464 

3. Finally, the Gini index was computed as the area between the curve and the equality line 465 

divided by the area below the equality line and delimited by the main axes (see Fig. 6c). 466 

Application of the Gini index was performed using the ineq package (Zeileis et al., 2009) 467 

in the R programming language (Team, 2013).  468 

 469 

The PAD estimation of the lower strata from the TLS data is a far less affected by signal 470 

occlusion because of the position of the scanner. Therefore the PADTLS vertical profile was used 471 

as a reference to compare the ability of ALSFW and ALSD to detect understory vegetation. NhALS 472 

vertical profiles were compared with PADTLS by calculating the correlation coefficient at lower 473 

strata (0.5 m ≤ z ≤ 4 m) and its significance using the Student’s t-test (Gosset, 1908). This 474 

coefficient is a unitless quantity, and therefore allows comparing different datasets with different 475 

units and orders of magnitude, such as NhALSFW, NhALSD and PADTLS vertical profiles.  476 
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 477 
 478 

Fig. 6. Depiction of (a) separation between understory vegetation and overstory, (b) the filtering 479 
of NhALSFW vertical profile corresponding to the lower strata from plot P3-NF and NhALSFW 480 

vertical profile, and (b) estimation of the Gini index from the resulting NhALS vertical profile. 481 
 482 

3. Results 483 

3.1. Forest vertical distribution and rate of pulse reduction profiles 484 

The data processing steps led to a representation of the vertical distribution and rate of pulse 485 

reduction profiles from the three laser scanning configurations, shown for a sample of plots from 486 

the Newfoundland and Spain sites in Fig. 7 and 8, respectively. Overall, results show that ALS, 487 

viewing the forest from the top-down, was more limited to sample the lower strata, while TLS, 488 

viewing the forest from bottom-up, was more limited to sample the top of the canopy. Despite 489 

these limitations, the vertical distribution profiles generally represented the forest’s vertical 490 

structure, capturing components of the different vertical strata. For instance, plot P5-SP (Fig. 8b) 491 

has a mixed presence of maritime pines and cork oaks. This heterogeneous vertical structure was 492 

represented by different peaks in associated PADTLS vertical profiles. Conversely, plots with a 493 

homogeneous vertical structure (e.g., plot P7-SP, Fig. 8c) were represented by a single and well-494 

defined peak in their associated vertical distribution profiles. A visual comparison between 495 

vertical distribution profiles (i.e., PADTLS, NhALSD and NhALSFW) and associated rated of pulse 496 

reduction with the one meter wide point cloud transects reveals an obvious correlation: both 497 
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vertical profiles of element distribution and point cloud density decreased as the rate of pulse 498 

reduction increased. The rate of pulse reduction profiles generally followed a distribution in the 499 

form of a sigmoid function or “S”-shaped curve, whose form, or increment of slope of the rate of 500 

pulse reduction, depended on the laser scanning configuration as well as the density of the upper 501 

canopy. For example, all plots with dense canopy cover (e.g., Fig. 7a, 7b, 8a, 8b, and 8d) had rate 502 

of pulse reduction profiles following a clearly defined sigmoid distribution. However, converse 503 

trends were observed in the rate of pulse reduction from ALS and TLS: increasing rates of pulse 504 

reduction were associated with decreasing heights from ALS and increasing heights from TLS. 505 

Furthermore, in some instances, observed high values in the rate of pulse reduction were 506 

associated with very low values from the vertical distribution profiles (i.e., where PADTLS and/or 507 

NhALS reached or approached 0). This occurred more frequently for Newfoundland plots where 508 

conifer species on this site grow dense, creating a dense upper canopy (e.g., P2-NF and P4-NF in 509 

Fig. 7a and 7b, respectively). For these plots, the rate of pulse reduction profiles transition to 510 

high values (i.e., 35-40% for TLS; 80-90% for ALS) at heights of ~10-13 m. Conversely, for 511 

plots with sparsely distributed vegetation, the rate of pulse reduction was very low. In conditions 512 

of sparse vegetation, the rate of pulse reduction curve followed the typical sigmoid distribution, 513 

however did not reach the high values observed from denser plots (e.g., P7-SP in Fig. 8c). Sparse 514 

and very sparse sites often displayed a relatively flat vertical line, terminating near the ground by 515 

a steep high value (e.g., P6-NF and P10-NF in Fig. 7c and 7d). Overall, but more specifically in 516 

dense canopy covers, an offset in the x-values from the midstory strata of PADTLS was observed 517 

relative to NhALS. This offset coincides with the large discrepancy in the number of hits returned 518 

by ALS and TLS systems from the midstory strata, where ALS did not detect tree stems to the 519 

same degree as TLS. On the other hand, little variability was observed in NhALSD vertical profiles 520 
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in the lower strata, except in some cases where canopy cover was very sparse (e.g., P10-NF). 521 

The analysis of vertical distribution profiles from the lower strata generally showed lower 522 

NhALSD when compared to NhALSFW. In addition, similarity in overall shape, quantified and 523 

reported in section 3.2 by means of the coefficient of correlation, was greater between NhALSFW 524 

and PADTLS than between NhALSD and PADTLS. Furthermore, NhALSFW values had an exponential 525 

increment as they approached the ground when understory vegetation was absent. This trend was 526 

less obvious in plot P4-NF and most Newfoundland plots with higher rates of pulse reduction (> 527 

80%). 528 

 529 
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 530 
 531 

Fig. 7. Vertical profiles representing four plots of the Newfoundland site (a-d). The three figures 532 
from left to right represent: (i) the number of hits from ALS and cumulative Plant Area Density 533 
from TLS, (ii) a point cloud transect of one meter wide, and (iii) the rate of pulse reduction from 534 

the three configurations (i.e., TLS, ALSD and ALSFW). Dashed lines represent the limits of the 535 
lower strata (i.e., 0.5 and 4 m). 536 
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 537 
 538 

Fig. 8. Vertical profiles representing four plots of the Spain site (a-d). The figures from left to 539 
right represent: (i) the number of hits from ALS and cumulative Plant Area Density from TLS, 540 
(ii) a point cloud transect of one meter wide, and (iii) the rate of pulse reduction from the three 541 

configurations (i.e., TLS, ALSD and ALSFW). Dashed lines represent the limits of the lower strata 542 
(i.e., 0.5 and 4 m). 543 

 544 
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Considering TLS as reference, the ratios between NhALS and PADTLS in Fig. 9 illustrate the 545 

limitations of ALS configurations in detecting the vertical distribution profiles at different 546 

heights based on a unitless indicator. Ratios were calculated as NhALS divided by PADTLS, 547 

therefore implying higher detection of vegetation as this ratio value increases. The highest values 548 

for the ratio calculated from NhALSD were observed in the upper strata for all plots (Fig. 9). In 549 

most cases, ALSD incoming pulses were blocked by the dominant strata, generating signal 550 

occlusion underneath. ALSFW (NhALSFW/PADTLS) and ALSD (NhALSD/PADTLS) ratio values were 551 

most similar in the upper strata. Nevertheless, ALSFW ratio values below the dominant strata 552 

(i.e., intermediate and/or lower strata) remained high, while ALSD ratio values dropped. 553 

Generally, ALSD ratios dropped below 1 m, and in some cases below 2.5 m (e.g., P10-NF in Fig. 554 

9). 555 

 556 
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 557 
 558 

Fig. 9. Vertical profiles representing the ratio (NhALS/PADTLS) between the Nh from ALS (i.e., ALSFW in green and ALSD in red) and 559 

cumulative PAD from TLS for a sample of plots. Dashed lines represent the limits of the lower strata (i.e., 0.5 and 4 m). 560 
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3.2. Understory characterization from ALS 561 

In the previous subsection it was observed that although the values of the vertical distribution 562 

profiles may differ between NhALS and PADTLS, they remained similar in terms of shape, albeit 563 

with different units and order of magnitude. This similarity in terms of shape of the vertical 564 

distribution profiles was quantified between NhALS and PADTLS by using the coefficient of 565 

correlation (see Table 1), which ultimately allows for determining whether understory vegetative 566 

material was detected. Coefficients of correlation were calculated between NhALS (i.e., NhALSFW 567 

and NhALSD) and PADTLS vertical profiles from the lower strata. Null coefficient of correlation 568 

values (e.g., observed from ALSD for plots P4-NF, P5-NF and P6-SP, and for plot P6-SP from 569 

ALSFW) were due to the fact that no values were registered at the lower strata, and therefore the 570 

standard deviations of the corresponding vertical profiles were equal to zero. Coefficients of 571 

correlation between NhALSFW and PADTLS were rarely below 90%, and all were considered to be 572 

significant correlations according to the Student’s t-test (Table 1). The range of coefficients of 573 

correlation for ALSFW was between 53.48% and 99.58%, with an average value of 90.11% and 574 

an associated standard error of 3.04%. On the other hand, with the exception of plot P9-NF, all 575 

coefficients of correlation between NhALSD and PADTLS were all lower or at par, with one 576 

correlation not being considered as significant (plot P7-SP). The range of coefficients of 577 

correlation for ALSD was between 30.60% and 97.36%, with an average value of 82.57% and an 578 

associated standard error of 4.29%. Regarding summary statistics of the differences in 579 

coefficients of correlation between ALSFW and ALSD, the range was between 22.01% and -580 

68.36% (being negative values when coefficients of correlation for ALSFW were greater), with an 581 

average value of -9.50% and an associated standard error of 4.62%. Hence, although ALSFW 582 

detected understory vegetation with a much larger number of hits than ALSD (see Figures 7, 8 583 
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and 9), the latter still had a significant correlation with PADTLS. Remarkably, strong correlations 584 

between NhALSFW and PADTLS were observed for dense canopy cover plots from the 585 

Newfoundland site, where the rate of pulse reduction was large in lower strata. For instance, 586 

plots P2-NF and P4-NF had rates of pulse reduction ~85% for ALSFW at the lower strata and an 587 

associated coefficient of correlation with PADTLS equal to 98.50% and 93.39%, respectively. 588 

NhALSFW and NhALSD were equally correlated with PADTLS (i.e., < 1% of difference) in only a 589 

few plots having a dense canopy cover (plots P8-SP and P10-SP) and in a plot with very sparse 590 

canopy cover (plot P10-NF). 591 

 592 

Table 1. Coefficient of correlation values between NhALS (i.e., NhALSFW and NhALSD) and 593 

PADTLS as reference at the lower strata. 594 
 595 

Site Plot ID Correlation NhALSFW-PADTLS (%) Correlation NhALSD-PADTLS (%) 

N
ew

fo
u

n
d

la
n

d
 

P1-NF 63.25 56.21 

P2-NF 98.50 97.36 

P3-NF 92.95 88.09 

P4-NF 93.39 NA 

P5-NF NA NA 

P6-NF 95.66 67.40 

P7-NF 98.09 87.29 

P8-NF 96.06 90.46 

P9-NF 69.77 91.78 

P10-NF 96.64 96.70 

S
p

a
in

 

P1-SP 96.89 92.31 

P2-SP 98.73 67.89 

P3-SP 99.58 91.13 

P4-SP 98.78 96.97 

P5-SP 94.96 84.02 

P6-SP 53.48 NA 

P7-SP 98.96 30.60* 

P8-SP 89.89 90.46 

P9-SP 84.37 82.16 

P10-SP 92.21 92.93 

* Correlation deemed not significant from Student’s t-test with a confidence level of 95%. 596 

 597 
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3.3. Understory vegetation density classification 598 

Afterwards, the variation of the NhALS vertical profiles at the lower strata was quantified by 599 

means of the Gini index, whose values for ALSD and ALSFW are presented in Table 2. Generally, 600 

sparse understory vegetation densities had large Gini indices (i.e., gradual increments of NhALS), 601 

while dense understory vegetation had low Gini indices (i.e., steep increments of NhALS). Despite 602 

considerable differences between the structure of Boreal and Mediterranean forests, the Gini 603 

index values confirmed a coherent behaviour for both sites as a vegetation density indicator. 604 

Specific Gini index ranges derived from the NhALSFW vertical profiles were associated to 605 

understory vegetation density classes as follows: absent (91.63% ± 0.13), sparse (90.59% ± 606 

2.23), moderate (84.31% ± 0.00), and dense (75.45% ± 7.86). Similarly, from the NhALSD vertical 607 

profiles, Gini index ranges were associated to understory vegetation density classes as follows: 608 

absent (97.69% ± 4.01), sparse (83.79% ± 12.31), moderate (53.38% ± 0.00) and dense (59.37% 609 

± 16.71). Nevertheless, the Gini index class interval thresholds computed from ALSD were 610 

fuzzier, implying more overlap between classes, than those from ALSFW. Class intervals derived 611 

from computed Gini index values showed larger standard deviations for ALSD than ALSFW. 612 

Furthermore, misclassification between sparse and absent understory vegetation density classes 613 

occurred when derived with ALSD data. Some plots with a moderate or sparse understory had a 614 

Gini index from NhALSD lower than plots with a dense understory vegetation (e.g., P7-SP vs. P3-615 

SP), which lead to a misclassification. Similarly, plot P5-NF, with sparse understory vegetation, 616 

had a Gini index from NhALSFW larger than that observed for plots with absent understory, which 617 

also lead to a misclassification.  618 

 619 
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Table 2. Gini index from NhALSFW and NhALSD vertical profiles for each plot from the 620 
Newfoundland and Spain sites. Plots are in ascending order according to the Gini index 621 
computed from NhALSFW. 622 

 623 

Plot ID 
Understory 

vegetation 

Canopy 

cover 

Gini index NhALSFW 

(%) 

Gini index NhALSD 

(%) 

P9-NF Dense Very Sparse 59.63 33.47 

P6-NF Dense Sparse 65.10 45.97 

P1-SP Dense Dense 72.65 55.04 

P2-SP Dense Sparse 74.98 51.21 

P7-NF Dense Sparse 75.74 89.94 

P4-SP Dense Dense 78.88 60.13 

P10-NF Dense Very sparse 80.09 66.87 

P10-SP Dense Dense 80.12 69.82 

P8-NF Dense Sparse 83.03 45.25 

P3-SP Dense Dense 84.27 76.04 

P7-SP Moderate Sparse 84.31 53.38 

P8-SP Sparse Dense 86.83 64.14 

P2-NF Sparse Dense 90.55 79.33 

P3-NF Sparse Dense 90.57 90.71 

P5-SP Sparse Dense 90.61 77.81 

P1-NF Sparse Dense 91.14 94.91 

P4-NF Absent Dense 91.48 100.00 

P9-SP Absent Dense 91.67 93.06 

P6-SP Absent Dense 91.74 100.00 

P5-NF Sparse Dense 93.81 95.83 

 624 

4. Discussion 625 

In this study, we assessed the ability of different laser scanning configurations to estimate 626 

vertical forest structure, linking it with a new method to estimate signal occlusion in the different 627 

strata. In addition, we also assessed and compared the suitability of ALSFW and ALSD to classify 628 

in understory vegetation density classes. Key results highlighted the limitations inherent to 629 

different configurations in estimating vertical forest structure and the importance of signal 630 

occlusion. More specifically, in the lower strata, which is highly occluded by ALS 631 

configurations, understory vegetation density was successfully assessed through vertical canopy 632 
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density profiles. Moreover, the analysis of vertical profiles from our testing plots demonstrated 633 

that ALSFW improved understory identification and density estimation over ALSD. 634 

 635 

Overall, our results confirmed the general trend largely accepted by the scientific community, 636 

which implies that laser scanning signal occlusion prevails in sectors blocked by dense canopy 637 

covers. Signal occlusion therefore depends largely on the laser scanning configuration: ALS, 638 

viewing the forest from the top-down, is more limited to sample the lower strata, while TLS, 639 

viewing the forest from bottom-up, is more limited to sample the top of the canopy (Hilker et al., 640 

2012; Anderson et al., 2016; Crespo-Peremarch and Ruiz, 2017). Regarding ALS configurations, 641 

canopy density of the upper layer is the single most important environmental factor in defining if 642 

sufficient airborne laser pulses reach the complete vertical range of the forest. Hence, signal 643 

occlusion can limit exhaustive sampling of the lower vertical strata with ALS data. In this sense, 644 

Maltamo et al. (2014) distinguished between signal occlusion and canopy cover as two different 645 

but related phenomena, both affecting the overestimation of canopy base height when using 646 

ALS. Conversely, for plots with sparsely distributed vegetation, the level of signal occlusion is 647 

very low. Consequently, estimation of the distribution of vegetative material is possible 648 

throughout the vertical range of the forest. In these cases, vertical distribution of forest materials 649 

can be estimated with high level of accuracy. LaRue et al. (2020) also observed that estimating 650 

canopy density of the lower strata is best achieved in open canopy covers for ALS 651 

configurations, because of the influence of signal occlusion caused by dense canopy covers. 652 

 653 

In cases where significant signal occlusion exists, ALS configurations detection of lower strata 654 

density capabilities are limited. The reliability of vertical distribution profiles is directly 655 
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dependent on the level of signal occlusion. In this regard, we proposed to use the rate of pulse 656 

reduction as an indicator of the amount of signal occlusion occurring at various heights in the 657 

forest. Inferring the ability to detect vertical distribution from our reference dataset (PADTLS) and 658 

the plotted values of rate of pulse reduction profiles led us to propose a threshold of the rate of 659 

pulse reduction from which the estimation of the distribution of vegetative material is no longer 660 

possible. This threshold is variable and related to the density of the canopy cover, which remains 661 

plot-specific. We noticed that NhALS values between the height with a rate of pulse reduction 662 

above ~80-90% and the ground do not provide reliable estimates of vegetation density. A similar 663 

principle, reversed vertically, applies to TLS datasets where PADTLS between the height with a 664 

rate of pulse reduction above ~35-40% and the top of the canopy. The slope of the rate of pulse 665 

reduction curve, which follows a sigmoid function, depends on the laser scanning configuration 666 

as well as the density of the upper canopy. Currently we suggest an approximate threshold for 667 

the rate of pulse reduction. The ability to define a more specific threshold may be tied to 668 

parameters of this sigma curve as a discriminating indicator of the overall signal occlusion and 669 

defining the vertical area where vegetation density can be estimated. 670 

 671 

ALSFW and ALSD data come from the same signal, however, further processing steps before 672 

obtaining the final product make them different. Using the complete (i.e., ALSFW) or the 673 

discretized (i.e., ALSD) signal in the detection of the top of the canopy is not significantly 674 

different to assess vegetation density. Nonetheless, ALSFW provided a definite advantage to 675 

detect vegetation density for intermediate and lower strata than ALSD. Lower strata are generally 676 

occluded due to overstory blocking incoming laser pulses. Consequently, NhALSD vertical 677 

profiles do not show much features in the lower strata, except in some cases where signal 678 
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occlusion caused by overstory is low (e.g., very sparse canopy cover). Nevertheless, when using 679 

PADTLS as reference, NhALS (i.e., NhALSFW and NhALSD) vertical profiles correlations are 680 

considered as significant, albeit NhALSFW is more correlated. Although curve correlation is more 681 

accurate, and the number of hits much larger at the lower strata with ALSFW, our results 682 

confirmed that understory vegetation was captured by ALSD, albeit to a lesser extent and in plots 683 

with a high rate of pulse reduction (i.e., ~85%). Other studies have also found difficulties 684 

associated with ALSD to detect the internal forest structure (Chasmer et al., 2006; Hilker et al., 685 

2010; Hilker et al., 2012). The higher potential of ALSFW when compared with ALSD to detect 686 

and determine understory vegetation density classes was also found in several studies (Hancock 687 

et al., 2017; Crespo-Peremarch et al., 2018b; Torralba et al., 2018). Our results confirm the 688 

potential of both ALS configurations to detect non-occluded strata (i.e., top of the canopy) and 689 

demonstrated the increased capability of ALSFW to detect strata with signal occlusion (i.e., 690 

intermediate and lower strata). Although ALSD may be used to estimate understory vegetation at 691 

a plot-level, the signal is generally weak in dense canopies and hence limits the estimation of 692 

density in the lower strata at such fine spatial scales. 693 

 694 

Vertical profiles with NhALSFW display a systematic artefact near the ground in the form of an 695 

exponential increment, even if understory vegetation is absent. This increment depends mainly 696 

on two factors: the large number of hits from the ground and the hits from the understory 697 

vegetation. The histogram of hits from the ground usually follows a Gaussian curve for which 698 

the upper side can be merged by the hit from understory, if present. When understory is present, 699 

generally variation of the NhALSFW values relates to the understory vegetation density classes, 700 

whereas NhALSD values are not responsive, except for open canopies with a rate of pulse 701 
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reduction below ~50%. Regardless, the number of hits from the ground dominates to the point of 702 

masking the understory signal in most situations. Hence, although NhALSFW vertical profiles 703 

increase exponentially as they approach the ground for all the understory vegetation scenarios, 704 

variation of NhALSFW increment can be used to identify and determine understory vegetation 705 

density classes.  706 

 707 

We demonstrated the Gini index to be a useful and accurate indicator to determine understory 708 

vegetation density classes from either NhALS vertical profiles. Our results demonstrated that 709 

understory vegetation density classes can be identified and further grouped by processing the 710 

ALS data in both dense and porous forests. Despite strong signal at lower heights in the forest, 711 

ALS and especially ALSFW, the Gini index identifies understory densities. Additionally, Gini 712 

index thresholds established for understory vegetation densities coincide for both sites: Boreal 713 

and Mediterranean. Thus, the understory vegetation density classes are represented by the 714 

following Gini value ranges from NhALSFW: below a value of ~85% for dense understory 715 

vegetation density, between ~85% and ~90% for sparse, and above ~90% for absent. 716 

Fortunately, and contrary to ALSD, misclassification from ALSFW is not occurring between 717 

sparse and other understory vegetation density classes. In a related study, Valbuena et al. (2012) 718 

discriminated forest structural types by using an application of the Lorenz curve and the Gini 719 

index based on the basal area and the number of trees. Apart from a Gini index of 0% and 100% 720 

representing the complete equality and inequality, respectively, they also found that a value of 721 

50% was relevant. This value represents a uniform distribution of the basal area of the trees. 722 

However, with our datasets, Gini index values from NhALSFW were all above 56%, since the 723 

Lorenz curves start increasing below the height considered as upper limit of the lower strata (i.e., 724 
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4 m), and therefore Gini index values are higher. Other indicators such as L-Skewness (Valbuena 725 

et al., 2017) and Shannon Index (Almeida et al., 2019) are complementary to Gini index. L-726 

skewness allows for quantifying the asymmetry of the Lorenz curve. This facilitates estimating 727 

mean height and absence of understory vegetation. Additionally, the Shannon Index represents 728 

the diversity of the dataset using a variable as reference (e.g., species). Therefore, it would be 729 

feasible to use height thresholds as a variable to determine understory vegetation density classes. 730 

Nonetheless, when signal occlusion caused by overstory is important, the ability to use the 731 

Shannon or Gini indices is strongly compromised. It is therefore critical to estimate the level of 732 

signal occlusion by means of the rate of pulse reduction prior to carry out the analysis.  733 

 734 

We proposed a simple way to identify the understory vegetation layer and exclude the overstory. 735 

The procedures most frequently adopted in the literature apply a threshold at 2 m height 736 

assuming that it covers the understory vegetation. This procedure is non-discriminant, not plot-737 

specific, and therefore it may exclude shrubs or include lower crowns. Instead, we propose 738 

considering the vertical distribution of gaps in the density profiles to identify a local minimum 739 

separating overstory from understory vegetation. This results in different height values 740 

delimiting understory vegetation from overstory, which for our dataset varied between 0.525 and 741 

3.975 m. The accuracy of this procedure depends on vegetation homogeneity. This vertical gap 742 

assessment was done at a plot-level, but it can also be applied at a finer scale (e.g., at voxel-743 

column) if a minimum hit density is reached for all heights to avoid false gaps. The procedure we 744 

proposed is plot-specific and allows for an automatic height division of overstory and understory 745 

vegetation layers. 746 

 747 
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Some limitations in the application of the developed methodological procedure are noteworthy. 748 

Currently, PAD estimates are limited to being derived from TLS data, as the estimation of PAD 749 

from ALS configurations is currently not possible. The unbiased estimation of PAD from the 750 

mathematical framework proposed by Pimont et al. (2018) decreases significantly the influence 751 

of signal occlusion for a reliable representation of vertical profiles. Therefore, it is a useful 752 

reference to represent distribution of vertical structure. PAD estimation from all the 753 

configurations would have allowed for a comparison in the detection of the vertical distribution 754 

profiles. Unfortunately, no methods were currently available to estimate PAD from multiple 755 

returns ALS data. Nevertheless, the number of hits in the ALS data in the non occluded areas can 756 

be used as a unitless indicator (i.e., coefficient of correlation) comparable with PADTLS. 757 

Furthermore, we note that the Gini index was successful in determining understory vegetation 758 

density classes from both airborne and terrestrial laser scanning data, but can not be implemented 759 

with emerging full-waveform spaceborne laser scanning data such as GEDI (Global Ecosystem 760 

Dynamics Investigation) (Dubayah et al., 2020). GEDI emits four laser beams with a large 761 

footprint (~19-25 m) that do not overlap. The method proposed in this study assumes that many 762 

laser beams cross a same voxel, and then the number of hits is used as a driving variable to 763 

calculate the Gini index. Nevertheless, other metrics based on return amplitude (Crespo-764 

Peremarch and Ruiz, 2020) may be more suited to characterize understory vegetation on large 765 

areas with GEDI. 766 

 767 

Knowing the limitations of laser scanning configurations is fundamental to use lidar point clouds 768 

for the estimation of forest canopy structure. The most severe limitation is caused by signal 769 

occlusion by vegetative elements, which can be quantified with the rate of pulse reduction. 770 
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Despite high level of signal occlusion in the lower strata for ALS configurations, the proposed 771 

method allows estimating presence and density of understory vegetation in both dense and 772 

porous canopies of Boreal and Mediterranean forests through the Gini index applied to ALSFW 773 

data. This new indicator becomes one of the few options to characterize understory vegetation 774 

for ALS configurations, which has many implications for forest ecology and wildfire mitigation.  775 

 776 

5. Conclusions 777 

This study assessed the limitations and potentials of airborne and terrestrial laser scanning 778 

configurations to estimate the vertical forest structure. We conclude that understory vegetation 779 

density classes can successfully be determined more accurately with ALSFW than with ALSD. 780 

More specifically, three key points stand out from our study. Firstly, the rate of pulse reduction 781 

profiles was demonstrated to be a good indicator to quantify signal occlusion along the vertical 782 

profile. This information can be used to determine the reliability of vegetation density estimates 783 

from different laser scanning configurations for specific vertical strata. Secondly, both ALS 784 

configurations (discrete and full waveform) showed their capability to detect understory 785 

vegetation, albeit significantly more accurately with ALSFW due to the greater number of hits 786 

registered in lower strata. The considerably lower number of hits registered from ALSD in the 787 

lower strata suggests that a forest plot would be the finest spatial scale (i.e. minimal mapping 788 

unit) for which understory vegetation can be successfully detected, and hence, our methods could 789 

be applied to. Finer scales would inevitably lack sufficient registered hits in understory 790 

vegetation for accurate understory characterization. Finally, and thirdly, we demonstrated the use 791 

of the Gini index as a way to determine understory vegetation density classes from both ALS 792 

configurations, again, more accurately with ALSFW. Understory vegetation density classes 793 
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(absent, sparse, moderate and dense) were defined through thresholds applied to the index for 794 

both ALSFW and ALSD. Computing the rate of pulse reduction and Gini index characterized the 795 

vertical structure and understory vegetation of these structurally differing forests. The 796 

applications for which this contribution may be relevant are several, such as characterizing 797 

wildlife habitats, assessing timber productivity and improving silvicultural decision-making in 798 

support of wildfire mitigation. Further research is needed to better understand the relationships 799 

between estimates of PAD and vertical profiles of number of hits for ALS configurations, 800 

vertical profiles of rate of pulse reduction and classification of forest types, and the use of the 801 

Gini indicator to estimate presence and density of understory vegetation. 802 
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