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POWER-AGGREGATION OF PSEUDOMETRICS AND THE

MCSHANE-WHITNEY EXTENSION THEOREM FOR LIPSCHITZ

p-CONCAVE MAPS

J. RODRÍGUEZ-LÓPEZ∗ AND E. A. SÁNCHEZ PÉREZ∗∗

Abstract. Given a countable set of families {Dk : k ∈ N} of pseudometrics over
the same set D, we study the power-aggregations of this class, that are defined as

convex combinations of integral averages of powers of the elements of ∪kDk. We

prove that a Lipschitz function f is dominated by such a power-aggregation if and
only if a certain property of super-additivity involving the powers of the elements of

∪kDk is fulfilled by f. In particular, we show that a pseudo-metric is equivalent to a

power-aggregation of other pseudometrics if this kind of domination holds. When the
super-additivity property involves a p-power domination, we say that the elements of

Dk are p-concave. As an application of our results, we prove under this requirement

a new extension result of McShane-Whitney type for Lipschitz p-concave real valued
maps.

1. Introduction

One of the main tools for multi-objective optimization is the aggregation of real valued
(objective) functions for obtaining a new real valued objective map. The aggregation
function usually represents the way the decision maker wants to combine the different
objectives of the multi-valued optimization problem for getting a meaningful solution.
In the basic cases, these functions are weighted linear combinations as well as p-sums
of the set of original functions. In case the objective functions are metrics, we have
a classical optimization problem. Particular cases in which the aggregation function is
given by a weighted p-norm —if the elements of the metric space constitute a subset of
a linear space—, have already become classical tools in multi-objective optimization (see
for example [2], and the notion of Lipschitz p-stability in [3, 1.3.5.]). It is also on the basis
of more sophisticated methods, as the so called OWA (Ordered Weighted Averaging) (see
[3, 1.4.4]).

Motivated in part by this generalized use of averages and p-norms, we are interested
in showing a link among this applied context and some classical tools coming from pure
topology and functional analysis, that would contribute with new ideas for the founda-
tions of the multi-objective optimization and to widen the set of theoretical tools in this
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field. Concerning multi-objective optimization, the Lipschitz properties of the aggrega-
tion functions are, in a way, decisive for the stability of the chosen method ([3, 1.3.5.]).
Moreover, extension of Lipschitz inequalities from a particular test set to the whole met-
ric space in which the optimization is being carried on is also a fundamental tool for the
design of the technique to be used; this is the way the stability of the method can be
preserved when an extension of the aggregation function to a bigger set is required. For
this reason, we are also interested in providing a new extension result for real-valued Lip-
schitz p-concave functions from the metric subspaces to the full metric spaces preserving
the p-concavity for the extended function.

On the other hand, in modern functional analysis classical summability in Banach
spaces is rewritten in terms of domination of linear maps, what gives a characterization
of the so called p-summing operators (see for example [10]). This domination is provided
by integral p-averages, and the generalization to the case of Lipschitz maps has been
developed in the last ten years (see [6, 12, 20]). The analytical tools used there can
be applied to the characterization of power-aggregations. Consequently, the aim of this
paper is to obtain some representation theorems for this classical family of aggregation
functions, that is often used, but for which —as far as we know— there is no general
supporting theoretical framework yet, and to prove some new extension theorems for real
valued maps satisfying a certain concavity-type Lipschitz inequality.

Let us introduce the main ideas. Let D be a set and let D be a uniformly bounded
family of pseudometrics over D. A usual way of considering a uniform treatment of the
family of pseudometrics is given by means of the definition of the supremum pseudometric

dD,∞(a, b) := sup
d∈D

d(a, b), a, b ∈ D,

that can also be considered as an aggregation formula for the family D in the context
of an optimization problem. However, for most applications, this formula is not very
useful. For example, the supremum metric is not compatible, in general, with the product
topology of a countable family of pseudometric spaces [11, Theorem 7.2]. Furthermore,
it also has a bad behaviour with respect to topological and uniform properties as the
next examples show.

Example 1.1. Given n ∈ N, let us consider the metric dn on R given by

dn(x, y) = min{1, n|x− y|}

for all x, y ∈ R. Then D = {dn : n ∈ N} is a uniformly bounded family of metrics on R
and all of these metrics generate the Euclidean topology on R. Nevertheless, it is obvious
that dD,∞ is the discrete metric generating the discrete topology on R different from the
Euclidean topology. Hence, the supremum metric is not topologically well-behaved.

Example 1.2. Let us consider the set X = { 1
n : n ∈ N} and for each k ∈ N define

dk : X ×X → R+ ∪ {0} by

dk

(
1

n
,

1

m

)
=


∣∣ 1
n −

1
m

∣∣ if n,m > k

1 if k ≥ min{n,m}
0 if n = m

.

It is clear that D = {dk : k ∈ N} is a uniformly bounded family of metrics on X.
Moreover, ( 1

n )n is a Cauchy sequence on (X, dk) for all k ∈ N but it is not Cauchy with
respect to the supremum metric dD,∞ which is obviously the discrete metric on X.
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This is the reason we introduce a new family of aggregations for a family D. In fact, we
will define and prove the main results for general aggregations defined as convex combina-
tions of compositions of continuous functions with pseudometrics belonging to countably
many families that are pointwise compact. This will define our general framework, that
will be fixed in several steps—finite families of pseudometrics and power functions—, for
finishing with some applications of the easiest case: p-aggregations. These are generaliza-
tion of weighted p-averages of a finite family of pseudometrics. Since this is the simplest
case, let us illustrate such notion now. Take a finite set of pseudometrics d1, ..., dn and
weights α1, ..., αn, that are positive numbers that add up to 1. Then the associated
p-average —a p-aggregation in our abstract formalism— is given by the formula

d{d1,...,dn},p(a, b) =
( n∑
i=1

αidi(a, b)
p
)1/p

, a, b ∈ D.

In the abstract case, the same notion can be written as follows. Suppose that (D,O)
is a topological space. Let 1 ≤ p ≤ ∞, and suppose that, for every fixed couple (a, b) ∈
D × D, the function F(a,b) : D → R+ ∪ {0} given by F(a,b)(d) := d(a, b) is Lebesgue
p-integrable with respect to a measure µ that is defined over the σ-algebra of all the
Borel sets of D, i. e. F(a,b) ∈ Lp(D, µ). In case everything is well-defined, we will say
that µ defines a p-aggregation of D by the formula

dD,p,µ(a, b) =
∥∥∥F(a,b)

∥∥∥
Lp(D,µ)

=
(∫
D
d(a, b)p dµ(d)

)1/p

, a, b ∈ D.

The paper is organized in five sections. After this introduction, we will prove our main
separation result—Lemma 2.4— in Section 2, together with some remarks concerning the
general setting. In Section 3 we introduce the notion of power-concave function, and some
main results and examples are shown.

After this, we will present such p-aggregations —what will be done in Section 4—,
and we will show a concrete result concerning families of pseudometrics for functions
satisfying a Lipschitz type p-concavity inequality (see Definition 4.3). Besides proving a
complete description of the involved property, we will use it for giving a characterization
of when the supremum metric of a family of uniformly bounded pseudometrics is in
fact a p-aggregation (see Corollary 4.10). Finally, Section 5 is devoted to prove the
announced extension result, as a consequence of the characterization theorem (Theorem
4.6): a McShane-Whitney extension theorem for real valued Lipschitz maps preserving
p-concavity (Corollary 5.1).

2. Aggregations of pseudometrics and domination

Let us introduce here some definitions and concepts from General Topology. Let R+

be the positive real numbers. Let D be a nonempty set. A pseudometric on D is a
function d : D ×D → R+ ∪ {0} such that for every a, b, c ∈ D, the following hold:

(1) d(a, a) = 0.
(2) d(a, b) = d(b, a).
(3) d(a, b) ≤ d(a, c) + d(c, b).

If it happens that d(a, b) = 0 implies a = b for every a, b ∈ D, then d is called a metric.
The family of open balls {Bε(a) : a ∈ D, ε > 0} associated to a pseudometric allows

us to define a topology τ(d) on D that clearly has a countable basis.
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We will say that two pseudometrics d and ρ over the same set D are equivalent if there
are constants 0 < K1,K2 such that

ρ(a, b) ≤ K1d(a, b) ≤ K2ρ(a, b) for all a, b ∈ D.

This obviously implies that τ(ρ) = τ(d).
A Lipschitz function (or K-Lipschitz function) between metric spaces (D, d) and (E, ρ)

is a function f : D → E that satisfies that

ρ(f(a), f(b)) ≤ K ′d(a, b), a, b ∈ D,

for a certain constant K ′. The Lipschitz constant K of f is defined to be the infimum of
all the constants K ′ above.

The McShane-Whitney Theorem states that for a subspace S of a metric space (D, d),
and a Lipschitz function f : S → R with Lipschitz constant K, there exists an extension
of f to D which is Lipschitz with the same constant as f .

Such an extension can be given, for example, by the formula

fM (b) := sup
a∈S
{f(a)−K d(b, a)}, b ∈ D,

that is the so called McShane extension of f , or by the Whitney formula, that is

fW (b) := inf
a∈S
{f(a) +K d(b, a)}, b ∈ D.

A look to these formulas and some simple calculations show that the results remain true
if we change metrics by pseudometrics in the definition of Lipschitz function.

From now on, D will denote a family of uniformly bounded pseudometrics over a fixed
nonempty set D.

It is well-known that the pointwise bound of all such pseudometrics, defined as

dD,∞(a, b) = sup
d∈D

d(a, b), a, b ∈ D,

is a pseudometric on D.
From the point of view of the classical p-norms of Lebesgue Banach spaces of integrable

functions, this is an ∞-norm. Let us define in what follows the “p-version” of this ∞-
norm.

Let 1 ≤ p ≤ ∞. For every fixed couple (a, b) ∈ D × D, let us consider the function
F(a,b) : D → R+ ∪ {0} given by F(a,b)(d) := d(a, b) for all d ∈ D. Set F = {F(a,b) :
(a, b) ∈ D×D}. Then we want to obtain a classical Banach space from F by considering
an appropriate compact Hausdorff topology on D which makes all the functions in F
continuous. In this way F would be a subspace of the Banach space of continuous
functions over a compact Hausdorff space with the max norm. In order to achieve this,
we need a topology O over D making all the functions F(a,b) continuous. Of course, the
smallest topology verifying this property is the weak topology on D induced by F [19].
In this topology a net (dλ)λ∈Λ in D is convergent to d if and only if (dλ(a, b))λ∈Λ is
convergent to d(a, b) for all a, b ∈ D so it is the induced topology on D by the pointwise
topology τp on (R+ ∪ {0})D×D, i. e. the product topology on the cartesian product
Π(a,b)∈D×DR+∪{0}. Hence, we have to consider only topologies finer than the pointwise

topology. Notice that ((R+ ∪ {0})D×D, τp) is Hausdorff.
It must be said that compactness of (D,O) will be a necessary requirement in the

paper, since we will need to identify the functionals acting in a space of continuous
functions with countably additive measures. That is, we will use the Riesz Theorem that
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identifies the dual of a space of continuous functions C(D) over a compact Hausdorff
space D with the space of countably additive regular Borel measures M(D).

Moreover, if we want O to be compact the only possibility is to work with the pointwise
topology. In fact, since the identity function iD : (D,O) → (D, τp) is continuous and
(D, τp) is Hausdorff we have that iD must be a homeomorphism. Therefore, the only
candidates for D are the families of pseudometrics over D which are compact subspaces
of (R+ ∪ {0})D×D with the product topology. In the search for this kind of families the
following result is fundamental:

Theorem 2.1 ([19]). Let X be a nonempty set and (Y, τ) a Hausdorff topological space.
A subset F ⊆ Y X is compact relative to the topology of pointwise convergence if and only
if:

(i) F is closed in Y X ;
(ii) for each x ∈ X, the set {f(x) : f ∈ F} has compact closure.

We provide some simple examples of compact topologies over a family of pseudomet-
rics.

Example 2.2.

(a) An obvious example is when D is a finite family of pseudometrics defined on a
nonempty set D and O is a Hausdorff topology on D. Then (D,O) is a compact
Hausdorff space and the functions Fa,b are obviously continuous.

This example could be even the most interesting one for applications. Indeed,
the domination by a p-average that will be proved later on makes sense in this
case and is non-trivial, specially if we are interested in the control of the constant
appearing in this domination. We will see that this is a consequence of a p-
concavity type domination by a family of pseudometrics, that could allow us to
control the parameters appearing when an optimization method is applied.

(b) Now, let D = [0, 1] and consider the family of pseudometrics D :=
{
dn : n ∈

N ∪ {0}
}

where

dn(a, b) =

{
1
n |b− a| if n 6= 0

0 if n = 0

for every a, b ∈ D.
Let O be the restriction of the pointwise topology on [0, 1][0,1]×[0,1] to D. It

is easy to check that D is closed in [0, 1][0,1]×[0,1]. Moreover, {dn(a, b) : n ∈ N ∪
{0}} = { 1

n |a−b| : n ∈ N}∪{0} is obviously compact for every (a, b) ∈ [0, 1]×[0, 1]
so, by the above theorem, (D,O) is compact.

We will need the next boundedness properties.

Definition 2.3.

(i) A family D of pseudometrics on a set D is said to be pointwise uniformly bounded
if for every a, b ∈ D, supd∈D d(a, b) <∞.

(ii) A family F of continuous functions F = {φ|φ : R → R} is said to be locally
uniformly bounded if for every c ∈ R+,

sup
φ∈F, t∈[−c,c]

|φ(t)| <∞.

In order to simplify the formulas, we use the duality between `1 and `∞ in the notation
of the following lemma.
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Lemma 2.4. Let D be a nonempty set and fix a countable set {Dk : k ∈ N} of families
of pseudometrics on D such that the topology of pointwise convergence is compact on any
Dk, k ∈ N, and assume that the set ∪k∈NDk is pointwise uniformly bounded.

Let (E, ρ) be a pseudometric space, (βk)k∈N a sequence in `1 and F = {φk : k ∈
N ∪ {0}} a locally uniformly bounded family of continuous self maps on R+ ∪ {0}.

The following statements are equivalent for a map f : D → E.

(1) For every n ∈ N and for every set of elements a1, ..., an, b1, ..., bn ∈ D, we have
that

n∑
i=1

φ0 ◦ ρ(f(ai), f(bi))

≤

〈(
βk

)
k∈N

,
(

sup
d∈Dk

( n∑
i=1

φk ◦ d(ai, bi)
))
k∈N

〉
.

(2) There is a sequence (µk)k∈N of regular Borel probability measures over the cor-
responding spaces Dk such that

φ0 ◦ ρ(f(a), f(b)) ≤
〈(

βk

)
k∈N

,
(∫
Dk

φk ◦ d(a, b) dµk(d)
)
k∈N

〉
for every a, b ∈ D.

Proof. The proof of (2) ⇒ (1) is given by a direct calculation, just taking into account
that the µk’s are probability measures and for every a, b ∈ D the series

∞∑
k=1

βk

∫
Dk

φk ◦ d(a, b) dµk(dk,τ )

appearing in (2), converges.
Thus, the proof of (1) ⇒ (2) is our main concern. It is given by a classical separation

argument; a standard application of the geometric version of the Hahn-Banach Theorem
to subsets of a C(K)-space would give the result. Instead we use a minimax theorem
that is often used in optimization and convex analysis, known as Ky Fan’s Lemma.

First, recall that all the spaces Dk are by assumption compact Hausdorff spaces when
endowed with the topology of pointwise convergence. Therefore, for each k we can
consider the Banach space (C(Dk), ‖ · ‖∞) of all continuous real functions acting in Dk.
By the Riesz-Markov-Kakutani representation theorem, the Banach dual spaces C(Dk)∗,
k ∈ N, can be identified with the spaces M(Dk) of regular Borel measures over Dk.

For every k ∈ N, the set of all the probability measures P(Dk), k ∈ N, is a closed
compact convex set inM(Dk), with respect to the corresponding weak* topologies. Note
that, by the uniform boundedness requirements for both the set ∪k∈NDk (it is pointwise
uniformly bounded) and the set F (it is locally uniformly bounded), we have that for
a1, b1, ..., an, bn ∈ D and 0 < α1, ..., αn such that

∑n
i=1 αi = 1, the sequence

s(α1, a1, b1, ..., αn, an, bn) =
(

sup
d∈Dk

( n∑
i=1

αi φk ◦ d(ai, bi)
))
k∈N

is bounded, and so is 〈s(α1, a1, b1, ..., αn, an, bn), (βk)k∈N〉. Recall that by Tychonoff’s
Theorem, the product Π of the topological spaces P(Dk), k ∈ N, is compact. We can
define the functions Fα1,a1,b1,...,αn,an,bn : Π→ R+ by

Fα1,a1,b1,...,αn,an,bn((µk)k∈N)
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=
〈(
βk

)
k∈N

,
( n∑
i=1

αi

∫
Dk
φk ◦ d(ai, bi)dµk(d)

)
k∈N

〉
−

n∑
i=1

αi φ0 ◦ ρ(f(ai), f(bi)).

=

n∑
i=1

αi

( ∞∑
k=1

βk

∫
Dk
φk ◦ d(ai, bi)dµk(d)

)
−

n∑
i=1

αi φ0 ◦ ρ(f(ai), f(bi)).

Taking into account the convergence of the series of the first term of the above formula,
and the fact that for each k and i the function d 7→ φk ◦ d(ai, bi) belongs to C(Dk), we
get that Fα1,a1,b1,...,αn,an,bn is continuous with respect to the product topology of Π. It
is also convex, and the set of all such functions is closed under convex combinations.

Finally, we use a trick explained in [12, S.2] (the observation seems to be due to M.
Mendel and G. Schechtman; in this connection, Professor Joe Diestel is said to have
pointed out that this trick is possibly older, related to the solution of the functional
equations). Note that using the inequality in (1), repeating the elements ai, bi as many
times as necessary in the sums, and dividing by the appropriate natural number both
parts of the inequality, we get that

n∑
i=1

αi φ0 ◦ ρ(f(ai), f(bi)) ≤
∞∑
k=1

βk sup
d∈Dk

( n∑
i=1

αi φk ◦ d(ai, bi)
)

holds for every rational numbers α1, ..., αn, and then by continuity for all non-negative
real numbers such that

∑n
k=1 αk = 1.

Conditions are given to apply Ky Fan’s Lemma (see for example [10, 9.10]) to the
set of all the functions as Fα1,a1,b1,...,αn,an,bn . It gives that there is a unique element
(µk)k∈N ∈ Π such that Fα1,a1,b1,...,αn,an,bn((µk)k∈N) ≤ 0 for every such a function. In
particular, when only a pair a, b ∈ D is chosen we get

φ0 ◦ ρ(f(a), f(b))−
∞∑
k=1

βk

∫
Dk
φk ◦ d(ai, bi)dµk(d) ≤ 0.

This gives the result.
�

Remark 2.5. A extreme case of Lemma 2.4 is given when the infimum of all the suprema
of the families of pseudometrics is considered. A direct application of the lemma gives—
in the context of the lemma and under the same hypothesis—, the equivalence among
the following facts.

(1) For every n ∈ N and for every set of elements a1, ..., an, b1, ..., bn ∈ D, we have
that

n∑
i=1

φ0 ◦ ρ(f(ai), f(bi)) ≤ inf
k∈N

(
sup
d∈Dk

( n∑
i=1

φk ◦ d(ai, bi)
))
.

(2) There is a sequence (µk)k∈N of regular Borel probability measures over the cor-
responding spaces Dk such that

φ0 ◦ ρ(f(a), f(b)) ≤ inf
k∈N

(∫
Dk

φk ◦ d(a, b) dµk(d)
)

for every a, b ∈ D.
To see this, it is enough to apply the lemma taking as (βk)k∈N all the vectors

of the canonical basis ek separately, and compute the infimum.
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3. Power-type aggregations and power-concavity of pseudometrics

Following the plan that we explained in the Introduction, we are interested in applying
the general separation result provided in the previous section to the case of functions
φk(·) = | · |pk , where 0 < pk <∞ is a real number for every k ∈ N, and φ0 is the identity.

Definition 3.1. Fix a countable set {Dk : k ∈ N} of families of pseudometrics on a set
D such that the topology of pointwise convergence is compact on any Dk, k ∈ N, and
such that ∪k∈NDk is pointwise uniformly bounded. Let (βk)k∈N be a sequence of weights
in `1. Let 0 < r <∞ and take a strictly positive sequence of real numbers (pk)k∈N ∈ `∞.

(a) Consider a sequence (µk)k∈N of probability measures over the sets Dk. We say
that the function

q(a, b) :=

( ∞∑
k=1

βk

∫
Dk
d(a, b)pk dµk(d)

)1/r

, a, b ∈ D,

is a power-aggregation with respect to the measures µ1, ..., µk, ... with indices
r, p1, ..., pk, ... and weights β1, ..., βk, ....

(b) Let (E, ρ) be a pseudometric space. We say that a function f : E → D is power-
concave with indices r, p1, ..., pk, ... and with respect to the families of pseudo-
metrics {Dk : k ∈ N} for the weights (βk)k∈N if for every finite set a1, b1, ..., an, bn
of elements of D, the following inequality holds:

n∑
i=1

ρ(f(ai), f(bi))
r ≤

∞∑
k=1

βk sup
d∈Dk

( n∑
i=1

d(ai, bi)
pk
)
.

In particular, we will say that a pseudometric d over D is power-concave with
indices r, p1, ..., pk, ... and with respect to the families of pseudometrics above for
the weights (βk)k∈N if the identity map Id : (D, d) → (D, d) is power-concave
with indices r, p1, ..., pk, ... .

Recall that—as explained before—for a pointwise uniformly bounded set of pseudo-
metrics D over D, we can define a pseudometric dD,∞(a, b) as supd∈D d(a, b), a, b ∈ D.

As usual, we say that a function f : (E, ρ) → (D, d) between metric spaces is Hölder
continuous if for every a, b ∈ D, d(f(a), f(b)) ≤ Kρ(a, b)α for a certain 0 < α and a
constant K. Moreover, if we have a family of pseudometrics {dτ : τ ∈ T } over D, we
say that the function f is uniformly Hölder continuous with indices {ατ : τ ∈ T } if for
every pair a, b ∈ D there is a constant K such that dτ (f(a), f(b)) ≤ Kρ(a, b)ατ for every
τ ∈ T .

Let us give now our main result on power-aggregations of pseudometrics. Recall that
we are assuming that all the sets Dk, k ∈ N, are pointwise uniformly bounded, and so
finite unions of these sets are too.

Theorem 3.2. Consider a pseudometric ρ in D and consider families of pseudometrics
and weights (βk)k∈N as in Definition 3.1. Suppose that the pseudometric ρ satisfies:

(a) It is power-concave with indices r, p1, ..., pk, ... and with respect to the families of
pseudometrics {Dk : k ∈ N} for the weights (βk)k∈N.

(b) The identity map i : (D, ρ)→ (D, dDk,∞), k ∈ N, is uniformly Hölder continuous
with indices {r/pk : k ∈ N}.

Then there is a sequence (µk)k∈N of regular Borel probability measures over the corre-
sponding spaces Dk such that ρ is equivalent to a power-aggregation q with respect to the
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measures µ1, ..., µk, ... with indices r, p1, ..., pk, ... and weights β1, ..., βk, ... . Moreover,
under these requirements ρ is also equivalent to

t(a, b) =
( ∞∑
k=1

βk dDk,∞(a, b)pk
)1/r

, a, b ∈ D.

Conversely, if the sequence { 1
βk
}k∈N is bounded and positive and there are constants

Q1, Q2 and Q3 such that ρ ≤ Q1 · q ≤ Q2 · t ≤ Q3 · ρ for q and t as in Definition 3.1 (a)
and above, respectively, then (a) and (b) holds for ρ.

Proof. Let us show that (a) and (b) imply the desired inequalities for ρ. Indeed, if a, b ∈
D, Lemma 2.4 together with the assumption (b) give

ρ(a, b) ≤
( ∞∑
k=1

βk sup
d∈Dk

d(a, b)pk
)1/r

=
( ∞∑
k=1

βk dDk,∞(a, b)pk
)1/r

≤
( ∞∑
k=1

βkK
pkρ(a, b)r

)1/r

≤
( ∞∑
k=1

βk

)
sup
k∈N

Kpk ρ(a, b),

what is bounded since (pk)k∈N is a bounded sequence.
For the converse, Lemma 2.4 and the inequality ρ ≤ Q1 ·q gives that ρ is power-concave

with indices r, p1, ..., pk, ... and with respect to the families of pseudometrics {Dk : k ∈ N}
for the weights {βkQr1}k∈N.

Furthermore, the inequality Q2 · t ≤ Q3 · ρ gives (b). Indeed, for a, b ∈ D and each
j ∈ N we have that

dDj ,∞(a, b)pj/r ≤ 1

βj

( ∞∑
k=1

βk dDk,∞(a, b)pk
)1/r

=
1

βj
t(a, b) ≤ 1

βj

Q3

Q2
ρ(a, b)βj

≤ sup
k∈N

1

βk

Q3

Q2
ρ(a, b).

Thus, we get that

dDj ,∞(a, b) ≤ sup
n∈N

{(
sup
k∈N

(
Q3

βk

))r/pn}
ρ(a, b)r/pj

for every a, b ∈ D and for every j ∈ N. Hence (b) holds.
�

Remark 3.3. Although we have proved the requirements for a pseudometric ρ to be
equivalent to a power-aggregation, in general a power-aggregation is not a metric. How-
ever, some easy requirements gives that it is a metric. For example, for r = 1 it is enough
to assure that all the elements d of Dk satisfy that dpk is a metric. We will see other
easy situation like this in the next section.

In the search of examples and applications, let us show more concrete conditions
under which a domination by a power-aggregation can be obtained. For the case of
a finite set of families of pseudometrics, the inequality in the following result provides
a sufficient condition for having a special power-concave domination for a metric. It
is closely related with a great class of domination properties for multilinear operators
that have been studied in recent years. Just as an example of such kind of results, the
reader can find information about in [5, 16] and the references therein. In particular, the
argument that proves it for m = 2 is similar to the one that proves Kwapien’s Theorem
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for (p, q)-dominated operators (see the proof for example in [9, 19.2]); a fruitful general
version of this result also for the bilinear case can be found in [8, Th.1].

Corollary 3.4. Let D be a nonempty set and fix a finite set {D1, ...,Dm} of families of
pseudometrics on D such that the topology of pointwise convergence is compact on any
Dk, k = 1, ...,m. Let (E, ρ) be a pseudometric space and let f : (D, dD,∞)→ (E, ρ) be a
Lipschitz map. Set 1 ≤ r, p1, ..., pm <∞ such that 1/r =

∑m
k=1 1/pk.

Suppose that for every n ∈ N and for every set of elements a1, ..., an, b1, ..., bn ∈ D, we
have that( n∑

i=1

ρ(f(ai), f(bi))
r
) 1
r ≤ sup

d∈D1

( n∑
i=1

d(ai, bi)
p1
) 1
p1 · ... · sup

d∈Dm

( n∑
i=1

d(ai, bi)
pm
) 1
pm
.

Then there are regular Borel probability measures µk over Dk, k = 1, ...,m, such that

ρ(f(a), f(b))r ≤
m∑
k=1

r

pk

∫
Dk

d(a, b)pk dµk(d)

for every a, b ∈ D.

Proof. Note that, by Young’s inequality and taking into account that
∑m
k=1 r/pk = 1,

we have that for a1, b1, ..., an, bn ∈ D,

sup
d∈D1

( n∑
i=1

d(ai, bi)
p1
) r
p1 · ... · sup

d∈Dm

( n∑
i=1

d(ai, bi)
pm
) r
pm

≤
m∑
k=1

r

pk
sup
d∈Dk

( n∑
i=1

d(ai, bi)
pk
)
.

Thus, the result follows directly from Lemma 2.4. �

Example 3.5 (A (2, 2)-dominated operator acting in a Hilbert grid.). Let us provide an
example of a function from a metric space satisfying a domination as in Corollary 3.4.
We use the framework of the operator ideals theory, in particular the properties of the so
called (p, q)-dominated operators, mainly a characterization of this class due to Kwapien;
the reader can find all the information that is needed in [9, 19.2]. Consider a self-adjoint
positive linear operator T : `2 → `2 that is (2, 2)-dominated. This means that for every
x1, ..., xn ∈ `2 and y′1, ..., y

′
n ∈ (`2)∗ = `2,

n∑
i=1

|〈T (xi), y
′
i〉| ≤ K sup

x′∈B`2

( n∑
i=1

|〈xi, x′〉|2
) 1

2

sup
y∈B`2

( n∑
i=1

|〈y′i, y〉|2
) 1

2

.

By Kwapien’s Theorem, we have that the operator is in particular 2-summing (see
Remark 4.5), and so it is also Hilbert-Schmidt and compact (see [9, Prop. 11.6]).
Since it is self-adjoint, we use the Spectral Theorem to find a representation of T as
T (·) =

∑∞
i=1 λiei〈ei, ·〉, and we also know that λi ≥ 0 and

∑∞
i=1 λ

2
i = 1. Now take s ∈ N.

We fix the set D =
{
k(ei, ei) ∈ `2 × `2 : i ∈ N, −s ≤ k ≤ s, k ∈ Z

}
, and the function

f : D → R given by f(k(ei, ei)) := 〈T (kei), kei〉 = λik
2. Let us show that this map

satisfies the inequality∣∣f(k(ei, ei))− f(k′(ej , ej))
∣∣ ≤M ∣∣〈T (kei − k′ej), kei − k′ej〉

∣∣, (1)

for all k(ei, ei), k
′(ej , ej) ∈ D and a certain constant M . Indeed, we have that if i 6= j,∣∣〈T (kei − k′ej), kei − k′ej〉

∣∣ = λik
2 + λjk

′2,
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and if i = j,
∣∣〈T (kei − k′ei), kei − k′ei〉

∣∣ =
∣∣〈λi(kei − k′ei), kei − k′ei〉∣∣ = λi(k − k′)2.

Note now that
∣∣f(k(ei, ei))− f(k′(ej , ej))

∣∣ =
∣∣λik2 − λjk′2

∣∣. Thus, if i 6= j,∣∣f(k(ei, ei))− f(k′(ej , ej))
∣∣ =

∣∣λik2 − λjk′2
∣∣ ≤ λik2 + λjk

′2,

and if i = j,
∣∣f(k(ei, ei))− f(k′(ei, ei))

∣∣ = |λi|
∣∣k2 − k′2

∣∣ = λi
∣∣k − k′∣∣ ∣∣k + k′

∣∣
≤ λi

∣∣k − k′∣∣ 2s ≤ 2s λi(k − k′)2.

Therefore, the inequality (1) holds for M = 2s. Now we consider the set(s) of pseudo-
metric(s)

Dt = {dt,x′(k(ei, ei), k
′(ej , ej)) = |〈kei − k′ej , x′〉| : x′ ∈ B`2}, t = 1, 2,

appearing in the right had side of the (2, 2)-summing inequality of T. Therefore, for every
a1, b1, ..., an, bn ∈ D,

n∑
i=1

∣∣f(ai))− f(bi)
∣∣

≤ 2s

n∑
i=1

|〈T (xi), y
′
i〉| ≤ 2sK sup

x′∈B`2

( n∑
i=1

|〈xi, x′〉|2
) 1

2

sup
y∈B`2

( n∑
i=1

|〈y′i, y〉|2
) 1

2

.

Corollary 3.6. Under the same conditions as in Corollary 3.4, suppose that the sets of
pseudometrics {D1, ...,Dm} satisfy that given k ∈ {1, . . . , n} and d ∈ Dk there is qd ∈ Dk,
such that for every (d1, . . . , dm) ∈ D1 × . . .×Dm we have that

max
k=1,...,m

{dk(a, b)pk} ≤ K
m∏
k=1

qdk(a, b)r

for every a, b ∈ D, where K is the Lipschitz constant of f . Then the following statements
are equivalent.

(i) For every n ∈ N and for every set of elements a1, ..., an, b1, ..., bn ∈ D, there
exists a constant K1 > 0 such that( n∑

i=1

ρ(f(ai), f(bi))
r
) 1
r ≤ K1 sup

d∈D1

( n∑
i=1

d1,τ (ai, bi)
p1
) 1
p1
... sup
d∈Dm

( n∑
i=1

dm,τ (ai, bi)
pm
) 1
pm
.

(ii) For n ∈ N and a1, ..., an, b1, ..., bn ∈ D, there exists a constant K2 > 0 such that

n∑
i=1

ρ(f(ai), f(bi))
r ≤ K2

n∑
i=1

max
k=1,...,m

sup
d∈Dk

{d(ai, bi)
pk}.

(iii) There are regular Borel probability measures µk over Dk, k = 1, ...,m, and a
constant K3 > 0 such that

ρ(f(a), f(b))r ≤ K3

m∑
k=1

r

pk

∫
Dk

d(a, b)pk dµk(d)

for every a, b ∈ D.
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Proof. (i) implies (iii) is given by Corollary 3.4, changing ρ by ρ/Kr
1 .

For (iii) implies (ii). We can assume w.l.o.g. that K3 = 1. Consider the following
computations. Since the sets Dk are compact, given k ∈ {1, . . . ,m} and i ∈ {1, . . . , n}
there exists dk,i ∈ Dk such that supd∈Dk d(ai, bi) = dk,i(ai, bi). Then

n∑
i=1

ρ(f(ai), f(bi))
r ≤

n∑
i=1

m∑
k=1

r

pk

∫
Dk

1

γpk
d(ai, bi)

pk dµk(d)

=

m∑
k=1

r

pk

∫
Dk

n∑
i=1

d(ai, bi)
pk dµk(d) ≤

m∑
k=1

r

pk
sup
d∈Dk

( n∑
i=1

d(ai, bi)
pk
)

≤
m∑
k=1

r

pk

( n∑
i=1

dk,i(ai, bi)
pk
)

=

n∑
i=1

( m∑
k=1

r

pk
dk,i(ai, bi)

pk
)

≤
n∑
i=1

max
k=1,...,m

dk,i(ai, bi)
pk =

n∑
i=1

max
k=1,...,m

sup
d∈Dk

{d(ai, bi)
pk}.

Finally, for (ii) implies (i) we use the specific requirement for the families Dk appearing
in the statement of the corollary. We can assume again that K2 = 1. Note that given
k ∈ {1, . . . ,m} and i ∈ {1, . . . , n} by compactness of Dk, there exist elements dk,i ∈ Dk
such that

n∑
i=1

ρ(f(ai), f(bi))
r

≤
n∑
i=1

max
k=1,...,m

sup
d∈Dk

{d(ai, bi)
pk} =

n∑
i=1

max
k=1,...,m

dk,i(ai, bi)
pk .

By assumption, and using Hölder inequality, we have that for every k ∈ {1, . . . , n} and
every i ∈ {1, . . . ,m} we can find qdk,i ∈ Dk such that

n∑
i=1

max
k=1,...,m

dk,i(ai, bi)
pk ≤ K

n∑
i=1

m∏
k=1

qdk,i(ai, bi)
r

≤ K
( n∑
i=1

qd1,i(ai, bi)
p1
) r
p1
...
( n∑
i=1

qdm,i(ai, bi)
pm
) r
pm

≤ K sup
d∈D1

( n∑
i=1

d(ai, bi)
p1
) r
p1
... sup
d∈Dm

( n∑
i=1

d(ai, bi)
pm
) r
pm
.

This finishes the proof.
�

4. p-concavity for Lipschitz maps and p-aggregations of pseudometrics

In this section we center our attention in the case of a unique family of pseudometrics
D and a unique parameter 1 ≤ p <∞. In particular, this provides the classical definition
of p-aggregation of a set of metrics, as can be found in the mathematical literature.

Definition 4.1. Let 1 ≤ p < ∞, D be a nonempty set and D a uniformly pointwise
bounded family of pseudometrics on D such that the topology of pointwise convergence
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on D is compact. Fix a regular Borel probability measure µ over D. The p-aggregation
of D with respect to µ is defined as the function dD,p,µ : D ×D → R+ ∪ {0} given by

dD,p,µ(a, b) := ‖F(a, b)‖Lp(D,µ) =
(∫
D
d(a, b)p dµ(d)

)1/p

, a, b ∈ D.

If µ is a convex combination of a finite set of Dirac’s deltas δd1 , ..., δdn of elements of
D for coefficients 0 < α1, ..., αn < 1,

∑n
i=1 αi = 1, we get

dD,p,µ(a, b) =
(∫
D
d(a, b)p d(

n∑
i=1

αiδdi)(d)
)1/p

=
( n∑
i=1

αi di(a, b)
p
)1/p

,

a, b ∈ D. The last formula provides the typical example of p-aggregation used in opti-
mization theory, that is clearly again a metric. In fact, this is true even when the general
integral formula is used, as we show below.

Lemma 4.2. Let D be a nonempty set and D be a family of pseudometrics on D such
that the topology of pointwise convergence on D is compact. Fix a regular Borel proba-
bility measure µ over D. Then the associated p-aggregation of D with respect to µ is a
pseudometric.

Proof. The triangle inequality that holds for each of the elements of D, together with
the fact that ‖ · ‖Lp(D,µ) is a norm, gives the triangle inequality for the p-aggregation,
and so it gives the result. �

We next introduce the following p-concavity type property, which is the key of the
characterization of when the supremum pseudometric of a family of uniformly bounded
pseudometrics is a p-aggregation.

Definition 4.3. Let D be a family of uniformly pointwise bounded pseudometrics on a
nonempty set D. Let (E, ρ) be another pseudometric space and f : (D, dD,∞) → (E, ρ)
be a Lipschitz map. We say that f is Lipschitz-p-concave if there exists K > 0 such that
for every n ∈ N, and for every set of elements a1, ..., an, b1, ..., bn ∈ D, we have that( n∑

i=1

ρ(f(ai), f(bi))
p
)1/p

≤ K sup
d∈D

( n∑
i=1

d(ai, bi)
p
)1/p

.

Remark 4.4. With this name we intend to suggest the relationship between the new
defined notion and the concept of p-concavity coming from the theory of Banach lattices.
Let 1 ≤ p, p′ <∞ such 1/p+ 1/p′ = 1. A Banach space valued linear operator T acting
in a Banach lattice X is said to be p-concave if there is a constant K > 0 such that for
every x1, ..., xn ∈ X, ( n∑

i=1

‖T (xi)‖p
)1/p

≤ K
∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

X
.

Note that we are treating the pseudometrics dk,τ as elements of a space of continuous
functions. When X is a space of continuous functions C(K), it is well-known that the
norm can be written as∥∥∥( n∑

i=1

|xi|p
)1/p∥∥∥

C(K)
= sup
w∈K

sup
(λi)∈B`p′

∣∣∣ n∑
i=1

λixi(w)
∣∣∣

= sup
µ∈B(C(K))∗

sup
(λi)∈B`p′

∣∣∣ n∑
i=1

λi〈xi, µ〉
∣∣∣ = sup

µ∈B(C(K))∗

( n∑
i=1

|〈xi, µ〉|p
)1/p

.
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Now consider vectors as x1
i −x2

i instead of isolated elements xi in this expression. Taking
into account that in this case ‖T (x1) − T (x2)‖ = ρ(T (x1), T (x2)), if we change T by a
Lipschitz map and the norm by a general distance, we get Definition 4.3.

Related notions and even the same name has been used for a similar inequality in the
context of Lipschitz operators between Banach spaces. The interested reader can find
more information about this in [1, 7]. In [12], Farmer and Johnson gave a definition of
p-summing operator for the case of Lipschitz maps between metric spaces. Our definition
of Lipschitz p-concavity is, in a sense, a generalization of the one given there. Further
developments have been made in this direction in recent years; we refer to the papers
[6, 20] and the references therein for more information about the topic.

Remark 4.5. Let us show that p-summing operators are indeed in the category of
Lipschitz-p-concave operators. Given 1 ≤ p <∞, a linear operator T : (E, |·|)→ (F, ‖·‖)
between Banach spaces is called p-summing (see, for example, [10, p.31]) if there is a
constant K > 0 such that for every finite set of vectors x1, ..., xn ∈ E,( n∑

i=1

‖T (xi)‖p
)1/p

≤ K sup
x′∈BE∗

( n∑
i=1

|〈xi, x′〉|p
)1/p

.

where BE∗ is the closed unit ball of the dual space E∗ of E.
Let us consider the family of pseudometrics D = {dx′ : x′ ∈ BE∗} where dx′(y, z) =

|〈y − z, x′〉| for every y, z ∈ E. Clearly, this set is uniformly bounded and dD,∞(y, z) =
supx′∈BE∗ dx′(y, z) = |y − z|. Then it is straightforward to check that T : (E, dD,∞) →
(F, d‖·‖) is Lipschitz-p-concave if and only if T : E → F is p-summing. In fact, if T is
Lipschitz-p-concave we can find K > 0 such that for every finite set {x1, . . . , xn} ⊆ E we
have that( n∑

i=1

‖T (xi)‖p
)1/p

=
( n∑
i=1

‖T (xi)‖p
)1/p

=
( n∑
i=1

d‖·‖(T (xi), T (0E))p
)1/p

≤ K sup
x′∈BE∗

( n∑
i=1

dx′(xi, 0E)p
)1/p

= K sup
x′∈BE∗

( n∑
i=1

|〈xi, x′〉|p
)1/p

.

Conversely, if T is p-summing, given n ∈ N and a1, ..., an, b1, ..., bn ∈ E we have( n∑
i=1

d‖·‖(T (ai), T (bi))
p
)1/p

=
( n∑
i=1

‖T (ai − bi)‖p
)1/p

≤ K sup
x′∈BE∗

( n∑
i=1

|〈ai − bi, x′〉|p
)1/p

= K sup
x′∈BE∗

( n∑
i=1

dx′(ai, bi)
p
)1/p

.

Theorem 4.6. Let D be a nonempty set and D be a pointwise uniformly bounded family
of pseudometrics on D such that the topology of pointwise convergence on D is compact.
Let (E, ρ) be a pseudometric space and f : (D, dD,∞)→ (E, ρ) be a Lipschitz map. The
following statements are equivalent.

(1) The function f is Lipschitz-p-concave with constant K > 0.
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(2) There is a regular Borel probability measure µ over D such that

ρ(f(a), f(b)) ≤ K
(∫
D
d(a, b)p dµ(d)

)1/p

for every a, b ∈ D. That is, f is K-Lipschitz for a p-aggregation dD,p,µ of D.

The result is a concrete consequence of Corollary 3.6 for the easiest case m = 1 and
r = p. However, this result can be proved using other results that can be found in the
references. All of them use a Hahn-Banach separation argument, or—equivalently in this
case—Ky Fan’s Lemma (see for example [10, 9.10]). The original proof of the Pietsch’s
Domination Theorem for p-summing linear operators (see [10, 2.12]) can be adapted
to get a proof. It is also a direct corollary of the unified Pietsch domination theorem
provided in [4, Th. 2.2]. Therefore, the first consequence of the above theorem is the
classical Pietsch’s Theorem.

Remark 4.7 (Pietsch’s Domination Theorem [10, p.44] ). A linear operator T : E → F
between Banach spaces is p-summing if and only if there is a regular Borel measure µ on
BE∗ , when it is endowed with the weak* topology, such that for all x ∈ E,

‖T (x)‖ ≤ K
(∫

BE∗

|〈x, x′〉|pdµ(x′)
)1/p

.

This is a direct consequence of Remark 4.5, the linearity of T and how the metric is
defined in a Banach space

Let us show two easy examples with families of metrics satisfying the requirements for
the application of Theorem 4.6.

Example 4.8. Consider the Banach spaces of sequences `1 and `2, and recall that
`1 ⊂ `2. Take D = B`1 and define the family D = {dτ : τ ∈ [0, 1]} of pseudometrics on
D where

dτ (a, b) = τ‖b− a‖`1 + (1− τ)‖b− a‖`2
for every a, b ∈ D and every τ ∈ [0, 1]. We next check that D endowed with the pointwise
topology O is compact. In fact, the function h : [0, 1] → D given by h(τ) = dτ for all
τ ∈ [0, 1] is a homeomorphism. We only have to take into account that the following
equation holds:

|dα(a, b)− dλ(a, b)| = (‖b− a‖`1 + ‖b− a‖`2)|λ− α|

for every α, λ ∈ [0, 1] and every a, b ∈ D. This gives that a net (τλ)λ in [0, 1] converges
to τ if and only if (dτλ)λ is pointwise convergent to dτ .

Let (E, ‖·‖E) be a Banach space and take a Lipschitz operator T : D → E of Lipschitz
constant equal to one. Then

‖T (a)− T (b)‖E ≤ ‖b− a‖`2 ≤ τ‖b− a‖`1 + (1− τ)‖b− a‖`2 = dτ (a, b)

for all τ ∈ [0, 1]. Thus, it can be considered as a Lipschitz map from (D, dD,∞) to (E, ‖·‖).
For 0 < p < ∞, and using this inequality for computing the next inequality term-wise,
we get for every set of elements a1, ..., an, b1, ..., bn ∈ B`1 ,

n∑
i=1

‖T (ai)− T (bi)‖pE ≤
n∑
i=1

dτ (ai, bi)
p ≤ sup

τ∈[0,1]

( n∑
i=1

dτ (ai, bi)
p
)
.

Thus, T is Lipschitz-p-concave with constant K ≤ 1.
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Example 4.9. Consider a bounded set D of R2, and the family of pseudometrics D on
D defined as

dτ ((x1, x2), (x′1, x
′
2)) = τ |x1 − x′1|+ (1− τ)|x2 − x′2|

for all τ ∈ [0, 1], (x1, x2), (x′1, x
′
2) ∈ D. Take

M := sup
(x1,x2)∈D

2|x1|+ sup
(x1,x2)∈D

2|x2|,

and consider the function f : D → R given by f(x1, x2) = x2
1 + x2

2, (x1, x2) ∈ D. Given
a finite family {(x1,i, x2,i), (x

′
1,i, x

′
2,i) : i ∈ {1, . . . , n}} of elements in D, then

n∑
i=1

∣∣f(x1,i, x2,i)− f(x′1,i, x
′
2,i)
∣∣ =

n∑
i=1

∣∣(x2
1,i − x′21,i) + (x2

2,i − x′22,i)
∣∣

=

n∑
i=1

∣∣(x1,i + x′1,i)(x1,i − x′1,i) + (x2,i + x′2,i)(x2,i − x′2,i)
∣∣

≤ max
i=1,...,n

∣∣x1,i + x′1,i
∣∣( n∑

i=1

∣∣x1,i − x′1,i
∣∣)+ max

i=1,...,n

∣∣x2,i + x′2,i
∣∣( n∑

i=1

∣∣x2,i − x′2,i
∣∣).

Take τ0 =
maxi=1,...,n

∣∣x1,i+x
′
1,i

∣∣(
maxi=1,...,n

∣∣x1,i+x′1,i

∣∣+maxi=1,...,n

∣∣x2,i+x′2,i

∣∣) . Then we have that

n∑
i=1

∣∣f(x1,i, x2,i)− f(x′1,i, x
′
2,i)
∣∣

≤M

(
τ0

( n∑
i=1

∣∣x1,i − x′1,i
∣∣)+ (1− τ0)

( n∑
i=1

∣∣x2,i − x′2,i
∣∣))

= M

n∑
i=1

dτ0((x1,i, x2,i), (x
′
1,i, x

′
2,i)) ≤M sup

dτ∈D

n∑
i=1

dτ ((x1,i, x2,i), (x
′
1,i, x

′
2,i)).

Therefore, the function f is Lipschitz 1-concave with constant less than or equal to M.

For the particular case ρ = dD,∞ and f the identity map, we get the following direct
result.

Corollary 4.10. Let D be a nonempty set and D be a family of pseudometrics on D such
that the topology of pointwise convergence on D is compact. Let (E, ρ) be a pseudometric
space and f : (D, dD,∞)→ (E, ρ) be a Lipschitz map. Then the following statements are
equivalent.

(1) The identity map Id : (D, dD,∞) → (D, dD,∞) is Lipschitz-p-concave with con-
stant K > 0.

(2) The metric dD,∞ is equivalent to a p-aggregation dD,p,µ of D.

Proof. Assume (1). By Theorem 4.6, the identity map is Lipschitz-p-concave, if and only
if there is a constant K > 0 and a probability measure µ over D such that

dD,∞(a, b) ≤ K
(∫
D
d(a, b)pdµ(d)

)1/p

a, b ∈ D.

On the other hand, it is obvious that(∫
D
d(a, b)pdµ(d)

)1/p

≤ sup
d∈D

d(a, b), a, b ∈ D,
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and so we get (2). The converse is a direct application of the implication (2) ⇒ (1) of
Theorem 4.6. �

For instance, the family presented in Example 4.8(i) satisfies the requirements in
Corollary 4.10, and so dD,∞ is equivalent to a p-aggregation.

5. Application: McShane-Whitney uniform extensions of
Lipschitz-p-concave functions

Consider a uniformly bounded family D of pseudometrics on a nonempty set D. Let
S be a subset of D, that is considered as a pseudometric subspace of all the spaces
(D, d), where d ∈ D. Suppose that the function f : (S, d) → R is a Kd-Lipschitz map,
such that the set of all the Lipschitz constants {Kd : d ∈ D} is uniformly bounded, and
infdKd = K. Since the set D is uniformly bounded, we have that f : (S, dD,∞) → R is
K-Lipschitz, and so the McShane-Whitney extension theorem for Lipschitz real-valued
maps gives an extension to D.

We will show in what follows that this result can also be obtained for extensions of
Lipschitz-p-concave functions. We prove in this way that the McShane-Whitney exten-
sion theorem for Lipschitz real maps also works for real operators that are Lipschitz-p-
concave, preserving this property. So, using the characterization of the domination of a
Lipschitz map by a p-aggregation of a family of pseudometrics provided by Theorem 4.6,
we get the following result.

Corollary 5.1. Let D be a nonempty set and D be a family of pseudometrics on D
such that the topology of pointwise convergence on D is compact. Let S ⊆ D. Let f :
(S, dD,∞)→ (R, d|·|) be a Lipschitz map that is Lipschitz-p-concave with constant K > 0.

Then there is a Lipschitz extension of f to D that is also Lipschitz-p-concave with the
same constant K > 0.

Proof. The proof of the result is direct after Theorem 4.6. Under the given assumptions,
there is a Borel regular measure µ over D such that∣∣f(a)− f(b)

∣∣ ≤ K (∫
d∈D

d(a, b)p dµ(d)

)1/p

= KdD,p,µ(a, b)

for all a, b ∈ S. Then f is Lipschitz in the metric space (S, dD,p,µ). Note that dD,p,µ is
a pseudometric on D, and then the classical McShane-Whitney Theorem provides a K-
Lipschitz extension to D. Again an application of Theorem 4.6 —the other way round—,
gives the result.

�
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[6] J. A. Chávez-Domı́nguez, Duality for Lipschitz p-summing operators, J. Funct. Anal. 261 (2011),

387–407.
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