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Abstract

The method explained in this paper solves the steady-state of the neutron
transport equation for 1D and 2D systems modeled with Cartesian geometry,
by using the Discrete Ordinates method SN for the angular discretization and
the finite difference method for the spatial discretization. The method applies
the multi-group approach for any energy discretization, including upscattering
terms. The method solves the steady-state equation by solving a generalized
eigenvalue problem by means of a Krylov-Schur method. One of the main advan-
tages of the method is the capability to calculate multiple eigenfunctions. The
Discrete Ordinates methodology is used for the angular discretization, which
uses a simple formulation involving the angles and direction cosines. The spa-
tial discretization with finite difference method is selected for its simplicity. The
method is validated with several one-dimensional benchmark problems and four
two dimensional benchmark problems. The results show good agreement with
respect to the reference results for all the cases studied.

Keywords: Neutron transport, Discrete ordinates, Multigroup, Finite
Difference Method, Multiple Eigenvalues, Anisotropic

1. Introduction

The power generated inside nuclear reactors is one of the most important
parameters in Nuclear Safety Analyses. The energy is released by the nuclear
fissions inside the reactor core, which is proportional to the neutron flux. There-
fore, the calculation of the neutron flux distribution can determine the spatial5

and time distribution of the power.
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1. INTRODUCTION

Then, the analysis and design of nuclear reactors are based on the neutron
distribution in the system and the most accurate manner of calculating the
neutron population is by solving the Neutron Transport Equation. This equa-
tion depends on the spatial variables, neutron energy, angular direction and10

time [1]. Although, the real number of neutrons per unit volume is continu-
ously varying with time, even steady-state conditions, under this assumption,
the number density of neutrons oscillates about an average value related to the
solution of the steady state of the neutron transport equation. Many fields of
nuclear engineering make use of a solution of the transport equation, such as,15

reactor physics, in Nuclear Safety and Criticality, and in radiation shielding and
protection.

The spatial distribution of the neutron flux can be determined by solving
the steady state of the neutron transport equation. Analytical solutions are
available in very limited cases, thus, it is necessary to apply numerical methods20

and discretize some variables. The variables to be discretized are the neutron
energy, angular direction and spatial variables.

The multi-energy-group approximation is commonly used for the energy dis-
cretization. So, the neutron transport equation can be written in multi-group
form, leading to a set of G-coupled (G is the total number of groups) integro-25

differential equations.
For the angular discretization there are two commonly used methods : Dis-

crete Ordinates (SN ) and Spherical Harmonics (PN ). The method selected in
this work is discrete ordinates, in which the angular variable is discretized into
a set of directions. Then, the transport equation is written for each direction,30

including coupling terms that describe direction to direction transfer. This is
the most popular and easiest method in numerical transport calculation. How-
ever, the major disadvantage of the Sn method is the well-known ray effect [2].
One simple solution for this problem could be to introduce additional discrete
directions, although this does not always work. Another proposed solution is to35

transform the discrete ordinates equations to spherical-harmonics like form. On
the other hand, spherical harmonics method is based on a truncated polyno-
mial expansion in spherical harmonics of the flux. This method might be more
accurate but it is meaningfully more complex than Sn method.

There are several spatial discretization methods. They are generally classi-40

fied into three groups: Finite Difference Methods (FDM), Finite Volume Meth-
ods (FVM) and Finite Element Methods (FEM). Due to the simplicity of the
method when Cartesian meshes are used, FDM has been selected for this work.
However FDM may present some disadvantages. First, FDM is generally not
conservative because it approximates the neutron flux at grid points. Second,45

the obtained matrices might present singularities.
The discretized steady-state neutron transport equation [3, 4] can be trans-

formed into a generalized eigenvalue problem. Although most methods usually
calculate the largest eigenvalue, the calculation of several eigenvalues and eigen-
vectors can be important for different applications such as the modal analysis50

of nuclear reactors and BWR instabilities analysis or flux fluctuations in cer-
tain PWR. One goal of this work is to develop a methodology for calculating
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2. METHODS

multiple eigenvalues of the multi-group neutron transport equation.
Nevertheless, the solution of the generalized eigenvalue problem could not be

an easy task due to the large and sparse nature of the obtained matrices. This55

work solves the eigenvalue problem by means of the Krylov-Schur algorithm
implemented in the SLEPc library, and calculating several modes. SLEPc is the
Scalable Library for Eigenvalue Problem Computations, a software library for
the solution of large, sparse eigenproblems on parallel computers [5].

SLEPc is the state of art for calculating eigenproblems of large and sparse60

matrices like those obtained with the method of this paper. In addition, SLEPc
uses PETSc [6] (Portable, Extensible Toolkit for Scientific Computation) to ex-
tend it with all the functionality necessary for the solution of eigenvalue prob-
lmes, which includes matrix operations and solution of linear systems.

Discrete ordinates method SN is commonly used in several codes such as65

DORT/TORT (Rhoades and Childs, 1993) [7], DANTSY S (Alcouffe et al.,
1995) [8],PARTISN (Alcouffe eta al., 2005) [9], PENTRAN (Sjoden and
Haghighat, 1996) [10] and DRAGON (Marleau et al., 2008) [11]. Other au-
thors use different methods, such as Spherical Harmonics (PN ), simplified PN

(SPN ), Method of Characteristics (MOC). MOC method has been imple-70

mented in some current research codes like MPact code from the University
of Michigan [12], the nTRACER code from Seoul National University [13] and
DRAGON code from Êcole Polytechnique de Montréal. On the other hand,
one of the most accurate methods is NCM applied in (Capilla et. al) [14] to
neutron transport problems calculating also multiple eigenvalues. Most of the75

aforementioned SN codes only calulate the first eigenvalue.
Then, this work develops a methodology to solves the Neutron Transport

Equation with SN , FDM and calculating several eigenvalues and eigenvectors
by means of Krylov Schur of SLEPc. Several angular quadratures for the SN

method were implemented, such as, Level-Symmetric, Gauss-Legendre, and80

Legendre-Chebyshev [15, 16]. This paper shows a simple formulation for the
equations, including any kind of up-scattering. Also, a boundary conditions
analysis is carry out for different boundary conditions.

The outline of the paper is as follows. Section 2 explains the discretization
of the equations and the methodology used. Section 3 describes the benchmarks85

used to validate the method and their results. Section 4 contains few comments
and conclusions about the results.

2. Methods

2.1. One-dimensional case
The one-dimensional steady-state Neutron Transport Equation [17] can be90

expressed as in Eq. 1 :
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2. METHODS

µ
∂ψ(x, µ,E)

∂x
+Σt(x,E)ψ(x, µ,E) =

∫ ∞

0

∫ 1

−1

Σs(x, µ
′, µ, E′ → E)ψ(x, µ′, E′)dµ′dE′

+
1

Keff
χ(x,E)

∫ ∞

0

∫ 1

−1

ν(x,E′)Σf (x,E
′)ψ(x, µ′, E′)dµ′dE′

(1)

Where:

x : Spatial variable
µ : Angular variable or director cosine
E : Energy

ψ(x, µ,E) : Angular neutron flux
Σt(x,E) : Macroscopic total cross-section

Σs(x, µ
′, µ, E′ → E) : Macroscopic scattering cross-section

from energy E′ to E and from direction µ′ to µ
χ(x,E) : Fission spectrum
ν(x,E′) : Average number of neutrons generated per fission

Σf (x,E
′) : Macroscopic fission cross-section

Keff : Multiplication Factor

To derive multi-group equations, one first divide the neutron energy range
into G intervals. The particles in group g are taken to be just those with
energies between Eg and Eg−1, hence the group number increases as the energy
decreases. Then the angular flux for group g can be expressed as:95

ψg(x, µ) =

∫ Eg−1

Eg

ψ(x, µ,E)dE (2)

And if one proceed by dividing the energy integrals in Eq. 1, into the
contributions for each energy group:∫ ∞

0

ψ(x, µ,E′)dE′ =

G∑
g′=1

∫ Eg′−1

Eg′

ψ(x, µ,E′)dE′ (3)

For brevity the shorthand notation of the Eq. 4 is employed:∫
g

dE =

∫ Eg−1

Eg

dE (4)

and integrating between Eg and Eg−1 one obtain:
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2. METHODS

µ
∂

∂x

∫
g

ψ(x, µ,E)dE +

∫
g

Σt(x,E)ψ(x, µ,E)dE

=

G∑
g′=1

∫
g

∫
g′

∫ 1

−1

Σs(x, µ
′, µ, E′ → E)ψ(x, µ′, E′)dµ′dE′dE

+
1

Keff

∫
g

χ(x,E)

G∑
g′=1

∫
g′

∫ 1

−1

ν(x,E′)Σf (x,E
′)ψ(x, µ′, E′)dµ′dE′dE

(5)

Assuming that within each energy group the angular flux can be approxi-100

mated as the product of a known function of energy f(E) and the group flux
ψg(x, µ), the multigroup cross sections can be defined as:

Σt,g(x) =

∫
g

Σt(x,E)f(E)dE (6)

ν(x)Σf,g(x) =

∫
g

ν(x,E)Σf (x,E)f(E)dE (7)

Σs,g′→g(x, µ
′, µ) =

∫
g

∫
g′
Σs(x, µ

′, µ, E′ → E)f(E′)dE′dE (8)

and let:

χg(x) =

∫
g

χ(x,E)dE (9)

and considering: ∫
g

f(E)dE = 1 (10)

then one may write Eq. 5 in the conventional multi-group form:105

µ
∂

∂x
ψg(x, µ) + Σt,g(x)ψg(x, µ)

=

G∑
g′=1

∫ 1

−1

Σs,g′→g(x, µ
′, µ)ψg′(x, µ′)dµ′

+
1

Keff
χg(x)

G∑
g′=1

∫ 1

−1

νg′(x)Σf,g′(x)ψg′(x, µ′)dµ′

(11)
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2. METHODS

On the other hand, the anisotropic scattering cross section is commonly writ-
ten as a Legendre Polynomial Expansion and the angular flux can be expanded
as a Legendre series of degree L. [17].

∫ 1

−1

Σs,g′→g(x, µ
′, µ)ψg(x, µ

′)dµ′

=

∫ 1

−1

∞∑
k=0

(2k + 1)Σs,g′→g,k(x)Pk(µ)Pk(µ
′)

L∑
l=0

(2l + 1)Pl(µ
′)ϕg′,l(x)dµ

′

(12)

Considering the orthogonality relation of the Legendre Polynomials:∫ 1

−1

Pk(µ)Pl(µ)dµ =
1

2l + 1
δkl (13)

with δkl Kronecker delta, equal to 1 if k = l and 0 otherwise. The Eq. 12110

takes the form:

∫ 1

−1

Σs,g′→g(x, µ
′, µ)ψg(x, µ

′)dµ′ =

L∑
l=0

Pl(µ)Σs,g′→g,l(x)ϕg′,l(x) (14)

The Legendre moments Σs,g′→g,l are typically calculated and stored for each
material region [4]. The Discrete Ordinates method consists in considering only
a set of directions µn and apply a quadrature approximation to the integral term.
To solve the equation, one can define N discrete directions (µ1, µ2, ..., µN ) with115

−1 ≤ µ ≤ +1 and corresponding weighting coefficients (w1, w2, ..., wN ). In
Discrete Ordinates equations the scalar flux is approximated by the following
quadrature formula:

ϕ(x) =

∫ 1

−1

ψ(x, µ)dµ =
1

2

N∑
n=1

wnψ(x, µn) (15)

and the Legendre moments by:

ϕl(x) =
1

2

N∑
n=1

wnPl(µn)ψ(x, µn) (16)

Note that both the flux and the Legendre moment approximation are divided
by 2, that is because the quadrature formula is normalized by120

N∑
n=1

wn = 2 with wn > 0 (17)

Including Eqs. 14-16 into Eq. 11, it is reformulated as:
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2. METHODS

µ
∂ψg(x, µ)

∂x
+Σt,g(x)ψg(x, µ)

=

G∑
g′=1

L∑
l=0

Pl(µ)Σs,g′→g,l(x)
1

2

N∑
n=1

wnPl(µn)ψg′(x, µn)

+
1

Keff
χg(x)

G∑
g′=1

νg′(x)Σf,g′(x)
1

2

N∑
n=1

wnψ(x, µn) (18)

The choice of the weighting factors wN is commonly made with respect to an
even number of discrete ordinates µN chosen in a symmetric way with respect
to µ = 0. Hence, one can define this group of directions and corresponding
weighting coefficients as:

µn > 0

µN+1−n = −µn for n = 1, 2, ...,
N

2
.

wN+1−n = wn

(19)

Finally, the Finite Difference Method for the spatial discretization is used.
To discretize the spatial variable one define a one-dimensional spatial grid with
I mesh points. The cross-sections are taken to be constant inside each interval
(xi−1/2, xi+1/2). Moreover, the cell-centered points are defined by:

xi =
1

2
(xi−1/2 + xi+1/2) (20)

and defining:

Σ(x) = Σ(i) with xi−1/2 < x < xi+1/2 (21)

The flux derivative term and the flux are approximated by:

∂

∂x
ψg(x, µ) =

ψg(i+ 1/2, µn)− ψg(i− 1/2, µn)

h
(22)

ψg(x, µ) =
ψg(i+ 1/2, µn) + ψg(i− 1/2, µn)

2
(23)

where h = xi+1/2 − xi−1/2 = ∆xi.
125

Then, the Eq. 18 is converted into multi-group steady-state Neutron Trans-
port Equation with SN and FDM discretizations:
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2. METHODS

µn
ψg(i+ 1/2, µn)− ψg(i− 1/2, µn)

h
+Σt,g(i)

ψg(i+ 1/2, µn) + ψg(i− 1/2, µn)

2

− 1

4

G∑
g′=1

L∑
l=0

Σs,g′→g,l(i)Pl(µn)

N∑
m=1

wm[ψg′(i+1/2, µm)+ψg′(i−1/2, µm)]Pl(µm)

=
1

Keff

χg(i)

4

G∑
g′=1

νg′Σf,g′(i)

N∑
m=1

wm[ψg′(i+ 1/2, µm) + ψg(i− 1/2, µm)]

(24)

Where:

1 ≤ n ≤ N with N the number of discrete directions
1 ≤ g ≤ G with G the total number of energy groups

0 ≤ l ≤ L with L the order of the Legendre polynomial scattering expansion
wm are the weighting coefficients of directions µm and i is the mesh cell number

2.2. Two-dimensional case
The two-dimensional steady-state Neutron Transport Equation can be ex-

pressed as:130

µ
∂ψ(x, y, Ω̂, E)

∂x
+ η

∂ψ(x, y, Ω̂, E)

∂y
+Σt(x, y, E)ψ(x, y, Ω̂, E) =∫ ∞

0

∫
4π

Σs(x, y, Ω̂
′ → Ω̂, E′ → E)ψ(x, y, Ω̂′, E′)dΩ̂′dE′

+
1

Keff

χ(x, y, E)

4π

∫ ∞

0

∫
4π

ν(x, y, E′)Σf (x, y, E
′)ψ(x, y, Ω̂′, E′)dΩ̂′dE′ (25)

8



2. METHODS

Where

x, y : Spatial variables
θ : Polar angle
φ : Azimuthal angle

Ω̂ : = µ
−→
i + η

−→
j + ξ

−→
k

µ :cos(θ)

η :
√
(1− µ2)cos(φ)

ξ :
√
1− µ2 − η2

E : Energy
ψ(x, y, Ω̂, E) : Angular neutron flux
Σt(x, y, E) : Macroscopic total cross-section

Σs(x, y, Ω̂
′ → Ω̂, E′ → E) : Macroscopic scattering cross-section

from energy E′ to E and from direction Ω̂′ to Ω̂

χ(x, y, E) : Fission spectrum
ν(x, y, E′) : Average number of neutrons generated per fission

Σf (x, y, E
′) : Macroscopic fission cross-section

Similarly to one-dimensional case, the multi-group equation takes the form:

µ
∂

∂x

∫
g

ψ(x, y, Ω̂, E)dE+η
∂

∂y

∫
g

ψ(x, y, Ω̂, E)dE+

∫
g

Σt(x, y, E)ψ(x, y, Ω̂, E)dE =

G∑
g′=1

∫
g

∫
g′

∫
4π

Σs(x, y, Ω̂
′ → Ω̂, E′ → E)ψ(x, y, Ω̂′, E′)dΩ̂′dE′dE

+
1

Keff

χ(x, y, E)

4π

G∑
g′=1

∫
g′

∫
4π

ν(x, y, E′)Σf (x, y, E
′)ψ(x, y, Ω̂′, E′)dΩ̂′dE′dE

(26)

And introducing the multi-group cross-sections like in the Equations 6,7 and
8:

9



2. METHODS

µ
∂

∂x
ψg(x, y, Ω̂) + η

∂

∂y
ψg(x, y, Ω̂) + Σt,g(x, y)ψg(x, y, Ω̂) =

G∑
g′=1

∫
4π

Σs,g′→g(x, y, Ω̂
′ → Ω̂)ψg′(x, y, Ω̂′)dΩ̂′

+
1

Keff

χg(x, y)

4π

G∑
g′=1

∫
4π

νg′(x, y)Σf,g′(x, y)ψg′(x, y, Ω̂′)dΩ̂ (27)

Similar to one-dimensional case the scalar flux can be approximated by
quadrature formula:

ϕ(x, y) =

∫ 2π

0

∫ 1

−1

ψ(x, y, µ, φ)dµdφ =
1

8

N∑
n=1

wnψ(x, y, µn, φn) =
1

8

N∑
n=1

wnψ(x, y, µn, ηn)

(28)
From here, the scattering term will be dealt with separately.

µn
∂ψg(x, y, µn, ηn)

∂x
+ ηn

∂ψg(x, y, µn, ηn)

∂y
+Σt,g(x, y, E)ψg(x, y, µn, ηn) =

qs(x, y) +
1

Keff

χg(x, y)

8

G∑
g′=1

νg′(x, y)Σf,g′(x, y)

N∑
m=1

wmψg′(x, y, µm, ηm) (29)

135

Where qs(x, y) term can be , like in the one-dimensional case, expanded with
Legendre Polinomials , but in this case, it is also necessary to use an Spherical
Harmonics Expansion for the angular flux defined in terms of the Associated
Legendre Polynomials [17, 18]. Then the qs term is expressed as:140

qs(x, y) =
1

8

G∑
g′=1

L∑
l=0

(2l+1)Σs,g′→g,l(x, y){Pl(µn)

N∑
m=1

wmPl(µm)ψg′(x, y, µmηm)

+ 2

l∑
k=1

(l − k)!

(l + k)!
P k
l (µn)[

N∑
m=1

wmP
k
l (µm)ψg′(x, y, µm, ηm)cos(kφm)cos(kφn)

+

N∑
m=1

wmP
k
l (µm)ψg′(x, y, µm, ηm)sin(kφm)sin(kφn)]} (30)

Note that, both terms, scattering and fission, are divided by 8. This is because
the weights corresponding to each octant are normalized to sum 1. Rearranging

10



2. METHODS

terms:

qs(x, y) =
1

8

G∑
g′=1

N∑
m=1

wmψg′(x, y, µm, ηm) · Σs,g′→g,L,n,m(x, y) (31)

Where

Σs,g′→g,L,n,m(x, y) =

L∑
l=0

(2l + 1)Σs,g′→g,l(x, y){Pl(µn)Pl(µm)

+ 2

l∑
k=1

(l − k)!

(l + k)!
P k
l (µn)P

k
l (µm)[cos(k(φn − φm))]} (32)

To reduce the number of equations by half without loss of precision, the authors
have decided to use the property of symmetry for the case of 2D plane geometry
with respect to the polar angle. This can be demonstrated if one can consider
that µ1 = µ2 and φ1 = −φ2 due to the z-axis symmetry explained at Fig. 1145

Figure 1: Symmetry

For the previous two directions, one can sum the terms Σs,g′→g,L,n,m as in
Eq. 33:

11



2. METHODS

Σs,g′→g,L,n,1(x, y) + Σs,g′→g,L,n,2(x, y)

=

L∑
l=0

(2l + 1)Σs,g′→g,l(x, y){Pl(µn)[Pl(µ1) + [Pl(µ2)]

+ 2

l∑
k=1

(l − k)!

(l + k)!
P k
l (µn)[P

k
l (µ1)[cos(k(φn − φ1))] + P k

l (µ2)[cos(k(φn − φ2))]]}

=

L∑
l=0

(2l + 1)Σs,g′→g,l(x, y){Pl(µn)[2Pl(µ1)]

+ 2

l∑
k=1

(l − k)!

(l + k)!
Pl(µn)P

k
l (µ1)[cos(k(φn − φ1))] + [cos(k(φn + φ1))]} (33)

Using the trigonometry relation cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y) the
Eq. 33 is simplified as scattering term considering the whole unit sphere (3D)150

[19]:

Σs,g′→g,L,n,m(x, y)3D = 2

L∑
l=0

(2l + 1)Σs,g′→g,l(x, y){Pl(µn)[Pl(µ1)]

+ 2

l∑
k=1

(l − k)!

(l + k)!
P k
l (µn)P

k
l (µ1)[cos(kφn)cos(kφ1)]} (34)

and then if one want only consider a unit semi-sphere (2D):

Σs,g′→g,L,n,m(x, y)2D =
Σs,g′→g,L,n,m(x, y)3D

2
=

L∑
l=0

(2l+1)Σs,g′→g,l(x, y){Pl(µn)[Pl(µm)]

+ 2

l∑
k=1

(l − k)!

(l + k)!
P k
l (µn)P

k
l (µm)[cos(kφn)cos(kφm)]} (35)

Note that for the new formulation changed the consideration of 8 octants155

to 4, since only the positive polar angles are considered. Then, the sum of
weighting coefficients is 4 and the qs term and fission term will be divided now
by 4.

q2Ds (x, y) =
1

4

G∑
g′=1

N∑
m=1

wmψg′(x, y, µm, ηm) · Σs,g′→g,L,n,m(x, y)2D (36)

12
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Therefore, Eq. 37 is the 2D version of the Eq. 29.

µn
∂ψg(x, y, µn, ηn)

∂x
+ ηn

∂ψg(x, y, µn, ηn)

∂y
+Σt,g(x, y, E)ψg(x, y, µn, ηn) =

q2Ds (x, y) +
1

Keff

χg(x, y)

4

G∑
g′=1

νg′(x, y)Σf,g′(x, y)

N∑
m=1

wmψg′(x, y, µm, ηm)

(37)

With this formulation, the number of considered directions is the half than160

if the whole unit sphere is considered. Consequently, the number of equations
is reduced by half.

The Finite Difference Method is used for calculating the spatial derivatives
and the cell average value of the angular neutron flux, as shown in Eq. 38-40.
In these equations, ψn

i,j is the angular neutron flux for the direction n and the165

node i, j. Fig. 2 shows an example of the numbering of the nodes.

∂ψg(x, y, µn, ηn)

∂x
=
ψn
i,j + ψn

i,j−1 − ψn
i−1,j − ψn

i−1,j−1

2h
(38)

∂ψg(x, y, µn, ηn)

∂y
=
ψn
i,j + ψn

i−1,j − ψn
i,j−1 − ψn

i−1,j−1

2k
(39)

ψg(x, y, µn, ηn) =
ψn
i,j + ψn

i−1,j + ψn
i,j−1 + ψn

i−1,j−1

4
(40)

Figure 2: Spatial discretization and 2D angular distribution example for S2
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2.3. Boundary Conditions
The boundary conditions commonly used in neutron transport problems are170

vacuum, periodic, reflective and albedo conditions. One of the advantages of
considering an even ordinate set for one-dimensional cases is that the vacuum,
reflective or albedo boundary conditions are simply approximated by

ψn(i) = β · ψN+1−n(i) with i = 0 and n = 1, 2, ..., N/2

or (41)

i = I and n =
N

2
+ 1,

N

2
+ 2, ..., N

where if

β = 0 (vacuum condition) ; β = 1 (reflective condition) ; β ∈ ( 0 , 1 ) (albedo condition)

Vacuum, reflective and albedo condition can be expressed similarly to one-
dimensional case using Eq. 42 for two-dimensional cases, in which the only175

difference is the β value.

ψn
i,j = β · ψ

N
2 +1−n
0,j ; 0 ≤ j ≤ J and (i = 0 or i = I) for 1 ≤ n ≤ N

2

ψn
i,j = β · ψ

3N
2 +1−n

0,j ; 0 ≤ j ≤ J and (i = 0 or i = I) for N
2

≤ n ≤ N (42)

ψn
i,j = β · ψN+1−n

0,j ; 0 ≤ i ≤ I and (j = 0 or j = J) for 1 ≤ n ≤ N

such that Ωn · n⃗ < 0

β = 0 (vacuum condition) ; β = 1 (reflective condition) ; β ∈ ( 0 , 1 ) (albedo condition)

The Periodic boundary condition can be defined by Eq. 43.

ψn
0,j = ψn

I,j with 0 ≤ j ≤ J 1 ≤ n ≤ N

ψn
i,0 = ψn

i,J with 0 ≤ i ≤ I 1 ≤ n ≤ N (43)

180
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2.4. Angular Quadratures
The discrete ordinates method Sn is commonly used in nuclear engineering to

calculate a numerical solution of the integro-differential form of the Boltzmann
transport equation. The method calculates the integral terms depending on185

the angles. Basically, the method consist in a numerical integration based on
collocation points, which are the discrete directions and their weights. The
combination of discrete angular directions and weights is called quadrature set.

Carlson and Lathrop proposed to use specialized quadrature sets [20, 21],
that satisfy higher order moments of the direction cosines. For one dimensional190

cases, the scattering term only depends on one angular variable (polar angle
or its direction cosine µ). This work analyzes the following Quadrature Sets
for one-dimensional cases: Gauss-Legendre, Chebyshev type 1, and Chebyshev
type 2. For two dimensional cases the following Quadrature Sets are studied:
LQN (Level-Symmetric), Pn − EW (Gauss-Legendre Equal Weight), Pn − Tn195

(Gauss-Legendre Chebyshev) [22, 23, 24].

3. Numerical Results

The algorithms proposed in the previous section were implemented in a
FORTRAN program called n-DOTEC (neutron - Discrete Ordinates Trans-
port Equation Code). This section shows n-DOTEC results for several one and200

two-dimensional problems or benchmarks. This section shows the results of
eigenvalues and the neutron flux distribution or the power distribution. The
results are evaluated by means of the eigenvalue errors, which are the relative
errors multiplied by 105.

pcm =
|ref.value− value|

ref.value
· 1× 105 (44)

3.1. One-dimensional cases205

To test the one-dimensional version of n-DOTEC, this section shows the
results for several one-dimensional benchmark cases including different bound-
ary conditions, both types of scattering (isotropic and anisotropic), different
number of materials and different number of energy groups.

3.1.1. ISSA Benchmark210

This is a one-energy one-dimensional slab problem with 2 regions, a fissile
material on the left and a moderator material on the right (Fig.3). The ma-
terial cross-sections are shown in Fig.3. The boundary condition on the left
is reflective and on the right is vacuum. For the spatial discretization 100
mesh intervals were discretized. The Quadrature used was Gauss-Legendre and215

with an order of S8. The four largest eigenvalues obtained with n-DOTEC
were 1.67835, 0.798004, 0.451980, and 0.292597. The reference value of the
largest eigenvalue (Keff ) is 1.67840 for S16 and 100 mesh intervals, calculated
with ANISN (A One Dimensional Discrete Ordinates Transport Code With

15



3. NUMERICAL RESULTS

Anisotropic Scattering) code supported by Oak Ridge National Laboratory [25].220

The normalized scalar flux is displayed in Fig.4. As can be seen, the eigenvalue
error is 2.979 pcm.

Figure 3: Geometry and cross sections for ISSA Benchmark
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Figure 4: Normalized Scalar Flux for ISSA Benchmark calculated with n−DOTEC

3.1.2. Seven Alternate Region
This problem is composed of seven slab regions of three different combina-

tions of fuel, reflector and absorber [26]. The one-energy group cross sections for225

these materials are shown in Table 1. Three different cases are considered, one
without absorber, one with absorber in position 5 and another with absorber
in position 6. A scheme is shown in Fig.5. All cases use vacuum conditions
for both boundaries, on the left and right. Each region is subdivided into 50
fine mesh cells and Gauss-Legendre quadrature set was selected with an order230

of S32 for n-DOTEC simulation. Table 2 shows the results for the 3 largest
eigenvalues. These results are compared with the reference values obtained by
means of Green´s Function Method (GFM) [26]. Also, the first eigenvalue was
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3. NUMERICAL RESULTS

calculated by DANTSYS with 500 fine mesh cells in each region and S96. One
can see that the values obtained by n-DOTEC are in agreement with the ref-235

erence values. The error eigenvalue error for the first eigenvalue in base case
is 2.55 pcm, for the absorber in the position 5 is 141 pcm and for the absorber
in the position 6 is 15 pcm. Figure 6 shows a comparison between n-DOTEC
results and PARTISN results.

Table 1: Cross-Sections for Seven Region Slab

νΣf (cm
−1) Σs(cm

−1) Σt(cm
−1)

Fuel (U-235) 0.178 0.334 0.415
Reflector (Be) 0.0 0.334 0.371
Absorber (Be w/c = 0.1) 0.0 0.037 0.371

Figure 5: Cases for Seven Region Slab
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Figure 6: Scalar fluxes for each case of the 7 alternate region problem
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Table 2: Seven-region eigenvalues

Case nº Eigenvalue GFM DANTSYS n-DOTEC pcm (∆Keff )
No absorber 1 1.17361 1.17361 1.17364 2.55

2 0.758525 - 0.756857 219
3 0.551768 - 0.549998 320

Abs. in Pos. 5 1 0.942676 - 0.941346 141
2 0.655770 - 0.653801 300
3 0.529032 - 0.527203 345

Abs. in Pos. 6 1 1.02265 1.02265 1.022493 15
2 0.603382 - 0.601812 260
3 0.208455 - 0.207234 585

3.1.3. Others240

For the validation of the code, in addition to the aforementioned cases, sev-
eral additional cases with isotropic and anisotropic scattering has been modeled
according to the Analytical Benchmark Test Set for Criticality Code Verifica-
tion [27]. Table 3 shows a resume of the results of the multiplication factor for
different problems included in the analytical benchmark and the previous cases.245

3.2. Two-dimensional cases
This section exhibits four more realistic cases used to test the two-dimensional

version of n-DOTEC program. The first one is the MOX test Problem, which
was selected to check vacumm boundary conditions and non-homogeneous sys-
tems. Next two cases test reflective conditions in an homogeneous fuel and250

non-homogeneous fuel with rods: BWR cell test problem and BWR rod bundle
test problem. Finally, the last problem is the C5G7 test problem, a known 2-D
fuel assembly benchmark on deterministic transport without spatial homoge-
nization.

3.2.1. MOX test Problem255

This problem is a modification of the MOX benchmark problem described
in Capilla et. al (2008) [14] and adapted from Brantley and Larsen (2000) [28].
The core configuration is composed of 7× 7 fuel assemblies of two types of fuel
(MOX/UO2) as can be seen in Fig.7. The core is surrounded by a reflector
material and each assembly has dimensions of 21.42× 21.42 cm. This problem260

has two-energy groups and three different materials. The cross sections are
shown in Table 4. The boundary conditions are vacuum.

The order of discrete ordinates used by n-DOTEC was S2 Gauss-Legendre
Chebyshev (Pn − Tn) quadrature set, the spatial discretization was a mesh of
36× 36 elements. The four dominant eigenvalues calculated by n-DOTEC were265

compared with those calculated with the Spherical Harmonics Nodal Collocation
(SHNC) in Capilla et. al (2008) [14]. The comparison is shown in Table 5.
In Figs.8 and 9, the scalar flux distribution is displayed for the second and
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Figure 7: MOX benchmark problem geometry

third subcritical degenerated modes. The results show low errors for the first
eigenmode, but these are slightly higher for the rest of eigenvalues.270

3.2.2. BWR cell test problem
The second case is a homogeneous BWR cell [29, 30]. This case has been

selected due to the fact that it considers upscattering. The problem is composed
of a central homogenized fuel region surrounded by water moderator as can be
seen in Fig. 10. The two energy group cross-sections are shown for the two ma-275

terials of the problem in Table 6. All boundary conditions are reflective. The
number of mesh intervals considered are 30 × 30 and the quadrature set used
for different orders is Pn − Tn. The four largest eigenvalues were calulated, but
only the first eigenmode was compared. The reference infinity multiplication
factor calculated with SURCU code developed at Federal Institute of Technol-280

ogy, Zurich, Switzerland (that uses Quadruple Spherical Harmonics) is 1.2127
as can be seen in J. Stepanek et al. [29]. In addition, results from DANTSYS
were also compared. Table 7 shows n-DOTEC results for different orders of the
quadrature sets. Only the first group flux distribution for the four dominant
eigenvalues can be seen in Fig. 11. The second energy group is not showed due285

to the extent of the paper. The Keff calculated with S8 has an error of 20 pcm
with respect to the reference and 0.083 pcm with respect to DANTSYS with
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Figure 8: Scalar flux distribution for 2nd eigenvalue

Figure 9: Scalar flux distribution for 3rd eigenvalue

the same quadrature set and order.

3.2.3. BWR rod bundle test problem290

This test problem is a two-dimensional fuel bundle of BWR [30, 31]. There
are seven materials in this case: materials ranging from 1 to 4 are different fuel
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3. NUMERICAL RESULTS

Figure 10: BWR cell problem geometry.

types, material 5 is an homogenized fuel with poison. Surrounding these mate-
rials there is a wall assembly of stainless steel (material 6) which is surrounded
by water (material 7). A scheme of this geometry configuration is shown in Fig.295

12. The problem has two energy groups and the cross-sections are displayed
in Table 8. All boundary conditions are reflective. The n-DOTEC simulation
used a spatial discretization of 1 × 1 for each cell of the problem and different
Legendre-Chebyshev (Pn − Tn) quadrature orders. The reference solution for
this problem was calculated by using a mesh of 4×4 and angular approximation300

S8 by DOT code. Table 9 shows a comparison of the results. The eigenvalue
error with respect to the reference is 49 pcm for S8 order and 7 pcm with respect
to DANTSYS.

3.2.4. C5G7 test problem
This case corresponds to a quarter symmetric core of the PWR C5G7 MOX305

fuel assembly problem [32]. The benchmark geometry is composed of 4 assem-
blies surrounded by a water reflector region, as can be seen in Fig. 14. as
well as the boundary conditions. Each fuel assembly is made up of 17 × 17
square pitch array of cylindrical fuel pins. Since n-DOTEC can only deal with
Cartesian geometry, this cylindrical pin is modeled by a square with the same310

area as the corresponding cylinder. A representation of this approximation is
displayed in Fig. 15. The composition layout and the mesh is shown Fig. 16.
In addition, in Fig. 17 displays a zoomed detail of Fig. 16. Cross-sections
are described in the benchmark [32], with 7 energy groups for the seven corre-
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Figure 11: Four dominant eigenvalues flux distribution for the BWR cell test problem.

Figure 12: Material distribution and mesh for the BWR rod bundle test problem.

sponding materials. The reactor is composed of three MOX fuels with different315

enrichments, UO2 fuels, guide tubes, fission chambers and moderator. Table
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Figure 13: Four dominant eigenvalues flux distribution for the BWR rod bundle test problem.

11 resumes the comparison of results obtained by n-DOTEC with S4 and S8
Pn − Tn quadrature and those obtained by MCNP, which is the reference code.
The Keff error is 88 pcm for S4 order and the mean relative error is 1.413
%. Other power comparison results show good agreement with respect to the320

benchmark results. Furthermore, the sub-critical modes have been compared in
the 10, where it can be seen that the result is independent of the any kind of
angular discretization [33].
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Figure 14: Assembly.

Figure 15: Pin cell approximation.
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Table 3: Analytical Benchmark Results. *AB=Analytical Benchmarck [27].
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Table 4: MOX benchmark problem cross-sections. g=1 (fast energy group), g=2 (thermal
energy group).

Material Group Σt νΣf Σs,1→g Σs,2→g χg

MOX fuel 1 0.550 0.0075 0.520 - 1.000
2 1.060 0.450 0.015 0.760 0.000

UO2 fuel 1 0.570 0.005 0.540 - 1.000
2 1.100 0.125 0.020 1.000 0.000

Reflector 1 0.611 0.000 0.560 - 0.000
2 2.340 0.000 0.050 2.300 0.000

Table 5: Dominant eigenvalues for the MOX problem. *SHNC=Spherical Harmonics Nodal
Collocation.

Eigenvalue SHNC* n-DOTEC Leg-Cheby S2 pcm (∆Keff )
Keff 0.9925 0.992538 3

2nd eigen. 0.9665 0.966344 16
3rd eigen. 0.9665 0.966344 16
4th eigen. 0.9399 0.939566 35

Table 6: BWR cell benchmark problem cross-sections. g=1 (fast energy group), g=2 (thermal
energy group).

Material Group Σt νΣf Σs,1→g Σs,2→g χg

Fuel 1 0.196647 0.006203 0.178000 0.001089 1.000
2 0.596159 0.1101 0.010020 0.525500 0.000

Moderator 1 0.222064 0.000 0.199500 0.001558 0.000
2 0.887874 0.000 0.021880 0.878300 0.000

Table 7: BWR cell benchmark problem multiplication factor results for different quadrature
order.

Order Quadrature nº of angular directions Keff pcm (∆Keff )
Reference value - - - 1.2127 -

n-DOTEC S2 Leg-Cheby 4 1.218693 494
DANTSYS S2 Leg-Cheby 4 1.21869384 494
n-DOTEC S4 Leg-Cheby 12 1.214271 129
DANTSYS S4 Leg-Cheby 12 1.21427157 129
n-DOTEC S8 Leg-Cheby 40 1.212944 20
DANTSYS S8 Leg-Cheby 40 1.21294501 20
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Table 8: BWR rod bundle benchmark problem cross-sections. g=1 (fast energy group), g=2
(thermal energy group).

Material Group Σt νΣf Σs,1→g Σs,2→g χg

1 1 0.253100 0.0059250 0.2334270 - 1.000
2 0.573200 0.0981700 0.010690 0.514280 0.000

2 1 0.253600 0.0052420 0.2339200 - 1.000
2 0.576700 0.0822800 0.010950 0.524960 0.000

3 1 0.253500 0.0048200 0.2337900 - 1.000
2 0.579070 0.0720000 0.011120 0.532530 0.000

4 1 0.253300 0.0043370 0.2336900 - 1.000
2 0.583700 0.0590000 0.011130 0.542300 0.000

5 1 0.250600 0.0056050 0.2308400 - 1.000
2 0.585300 0.0242400 0.010160 0.422700 0.000

6 1 0.217200 0.0000000 0.2070700 - 0.000
2 0.474800 0.0000000 0.009095 0.470416 0.000

7 1 0.247600 0.0000000 0.2105800 - 0.000
2 1.123000 0.0000000 0.036820 1.115200 0.000

Table 9: BWR rod bundle benchmark problem multiplication factor results for different
quadrature order.

Order Quadrature nº of angular directions Keff pcm (∆Keff )
Reference DOT S8 - 40 1.08714 -

n-DOTEC S2 Leg-Cheby 4 1.092126 458
DANTSYS S2 Leg-Cheby 4 1.09245586 488
n-DOTEC S4 Leg-Cheby 12 1.088717 145
DANTSYS S4 Leg-Cheby 12 1.08881782 154
n-DOTEC S8 Leg-Cheby 40 1.087596 41
DANTSYS S8 Leg-Cheby 40 1.08768147 49

Table 10: Sub-critical modes comparison. 1SHNC=Spherical Harmonics Nodal Collocation.

mode n-DOTEC S2 n-DOTEC S4 1SHNC P1 1SHNC P3
1st 1.188877 1.187619 1.183847 1.177241
2nd 0.912220 0.918477 0.904490 0.910234
3rd 0.868536 0.873095 0.859548 0.867538
4th 0.730518 0.727383 0.703131 0.719696
5th 0.571266 0.592365 0.562243 0.587400
6th 0.570752 0.591601 0.561512 0.586667
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Figure 16: composition layout.
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Figure 17: composition layout.

Figure 18: Flux 1st eugenvalue for energy groups 1 and 7.
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Figure 19: Flux 2nd eigenvalue for energy groups 1 and 7.

Figure 20: Power Distribution of C5G7 problem.
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Table 11: C5G7 Test problem results.
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4. Conclusions

The method explained in this work solves the one and two-dimensional325

steady-state multi-group neutron transport equation using Cartesian geome-
try. Spatial and angular discretization were performed with Finite Difference
Method and Discrete Ordinates Method, respectively. The method is capable
of calculating multiple eigenvalues with a simple formulation. The method
can consider both kind of scattering: isotropic and anisotropic. The algo-330

rithms have been programmed in a FORTRAN code called n-DOTEC. This
program has been validated with several one-dimensional benchmarks and four
two-dimensional benchmarks. The four realistic two-dimensional problems se-
lected are MOX test problem, BWR cell test problem, BWR rod bundle test
problem and C5G7 test problem. The methodology used in this work shows335

that n-DOTEC 1D results show good agreement with reference values, even
when anisotropic scattering is considered. Moreover, n-DOTEC 2D is capable
of modeling cylindrical geometries without spatial homogenization under the
simplification of Cartesian. This modeling was tested in the C5G7 benchmark,
which obtains good results and it demonstrates that the code is capable of sim-340

ulating any number of energy groups. Because the calculation time increases
with the spatial or angular discretization and with the number of groups, for
practical purposes in the future it is expected to implement the algorithms in
parallel to accelerate the calculations.In addition, future works will develop the
solution for nonmultiplying systems with other kind of particles (photons) and345

the solution of problems with fixed source, which are interesting in shielding
and radiation protection.
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