On Grothendieck Sets

Juan Carlos Ferrando 1,*, Salvador López-Alfonso 2 and Manuel López-Pellicer 3

1 Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche, Spain; salloal@csa.upv.es
2 Depto. Construcciones Arquitectónicas, Universitat Politècnica de València, E-46022 Valencia, Spain; mlopezpe@mat.upv.es
3 Centro de Investigación Operativa, Universidad Miguel Hernández, E-03202 Elche, Spain

Received: 1 February 2020; Accepted: 19 March 2020; Published: 24 March 2020

Abstract: We call a subset \(\mathcal{M} \) of an algebra of sets \(\mathcal{A} \) a Grothendieck set for the Banach space \(ba(\mathcal{A}) \) of bounded finitely additive scalar-valued measures on \(\mathcal{A} \) equipped with the variation norm if each sequence \(\{\mu_n\}_{n=1}^{\infty} \) in \(ba(\mathcal{A}) \) which is pointwise convergent on \(\mathcal{M} \) is weakly convergent in \(ba(\mathcal{A}) \), i.e., if there is \(\mu \in ba(\mathcal{A}) \) such that \(\mu_n(A) \to \mu(A) \) for every \(A \in \mathcal{M} \) then \(\mu_n \to \mu \) weakly in \(ba(\mathcal{A}) \).

A subset \(\mathcal{M} \) of an algebra of sets \(\mathcal{A} \) is called a Nikodým set for \(ba(\mathcal{A}) \) if each sequence \(\{\mu_n\}_{n=1}^{\infty} \) in \(ba(\mathcal{A}) \) which is pointwise bounded on \(\mathcal{M} \) is bounded in \(ba(\mathcal{A}) \). We prove that if \(\Sigma \) is a \(\sigma \)-algebra of subsets of a set \(\Omega \) which is covered by an increasing sequence \(\{\Sigma_n : n \in \mathbb{N}\} \) of subsets of \(\Sigma \) there exists \(p \in \mathbb{N} \) such that \(\Sigma_p \) is a Grothendieck set for \(ba(\mathcal{A}) \). This statement is the exact counterpart for Grothendieck sets of Valdivia’s result for Nikodým sets.

Keywords: property (G); rainwater set; property (N); Nikodým set; property (VHS)

MSC: 28A33; 46B25

1. Introduction

With a different terminology, Valdivia showed in [1] that if a \(\sigma \)-algebra \(\Sigma \) of subsets of a set \(\Omega \) is covered by an increasing sequence \(\{\Sigma_n : n \in \mathbb{N}\} \) of subsets, there is \(p \in \mathbb{N} \) such that \(\Sigma_p \) is a Nikodým set for \(ba(\Sigma) \). We prove that if \(\Sigma \) is covered by an increasing sequence \(\{\Sigma_n : n \in \mathbb{N}\} \) of subsets of \(\Sigma \) there is \(p \in \mathbb{N} \) such that \(\Sigma_p \) is a Grothendieck set for \(ba(\mathcal{A}) \) (definitions below). This statement is both the exact counterpart for Grothendieck sets of Valdivia’s result for Nikodým sets and a refinement of Grothendieck’s classic result stating that the Banach space \(\ell_\infty(\Sigma) \) of bounded scalar-valued \(\Sigma \)-measurable functions defined on \(\Omega \) equipped with the supremum-norm is a Grothendieck space. Our previous result applies easily to Banach space theory to extend some well-known results. For example, Phillip’s lemma can be read as follows. If \(\{\Sigma_n : n \in \mathbb{N}\} \) is an increasing sequence of subsets of \(\Sigma \) covering \(\Sigma \), there is \(p \in \mathbb{N} \) such that if \(\{\mu_n\}_{n=1}^{\infty} \subseteq ba(\Sigma) \) verifies \(\lim_{n \to \infty} \mu_n(A) = 0 \) for every \(A \in \Sigma_p \) and \(\{A_k : k \in \mathbb{N}\} \) is a sequence of pairwise disjoint elements of \(\Sigma \), then \(\lim_{n \to \infty} \sum_{k=1}^{\infty} |\mu_n(A_k)| = 0 \).

2. Preliminaries

In what follow we use the notation of [2] (Chapter 5). Let \(\mathcal{R} \) be a ring of subsets of a nonempty set \(\Omega \), \(\chi_A \) be the characteristic function of the set \(A \in \mathcal{R} \) and let \(\ell_0^\infty(\mathcal{R}) = \text{span} \{\chi_A : A \in \mathcal{R}\} \) denote the linear space of all \(\mathbb{K} \)-valued \(\mathcal{R} \)-simple functions, \(\mathbb{K} \) being the scalar field of real or complex numbers. Since \(A \cap B \in \mathcal{R} \) whenever \(A, B \in \mathcal{R} \), for each \(f \in \ell_0^\infty(\mathcal{R}) \) there are pairwise disjoint
sets $A_1, \ldots, A_m \in \mathcal{R}$ and nonzero $a_1, \ldots, a_m \in \mathbb{K}$, with $a_i \neq a_j$ if $i \neq j$ such that $f = \sum_{i=1}^{m} a_i \chi_{A_i}$, with $f = \chi_{\emptyset}$ if $f = 0$. Unless otherwise stated, we shall assume $\ell^0_0(\mathcal{R})$ equipped with the norm $\|f\|_\infty = \sup \{|f(\omega)| : \omega \in \Omega\}$. If $Q = \{x_{\emptyset} : A \in \mathcal{R}\}$ is the absolutely convex hull of $\{\chi_{A_1} : A \in \mathcal{R}\}$, then there exists an equivalent norm defined on $\ell^0_0(\mathcal{R})$ by the gauge of Q, namely $\|f\|_Q = \inf \{\lambda > 0 : f \in \lambda Q\}$. For if $f \in \ell^0_0(\mathcal{R})$ with $\|f\|_\infty \leq 1$, it can be shown that $f \in 4Q$ (cf. [2] (Proposition 5.1.1)), hence $\|f\|_\infty \leq \|f\|_Q \leq 4 \|f\|_\infty$.

The dual of $\ell^0_0(\mathcal{R})$ is the Banach space $b_0(\mathcal{R})$ of bounded finitely additive scalar-valued measures on \mathcal{R}, which we shall assume to be equipped with the variation norm

$$\|\mu\| = \sup \sum_{i=1}^{n} |\mu(A_i)|,$$

where the supremum is taken over all finite sequences of pairwise disjoint members of \mathcal{R}. This is the dual of the supremum-norm $\|\cdot\|_\infty$ of $\ell^0_0(\mathcal{R})$. An equivalent norm is given by $\|\mu\| = \sup \{|\mu(A)| : A \in \mathcal{R}\}$, which is the dual norm of the gauge $\|\cdot\|_Q$. We shall also consider the Banach space $b_0(\mathcal{R})^*$ equipped with the bidual norm $\|\cdot\|$ of $\|\cdot\|_\infty$. The completion of the normed space $(\ell^0_0(\mathcal{R}), \|\cdot\|_\infty)$ is the Banach space $\ell_\infty(\mathcal{R})$ of all bounded \mathcal{R}-measurable functions.

The Banach space $\ell_\infty(\mathcal{R})$ embeds isometrically into $b_0(\mathcal{R})^*$, hence each characteristic function χ_A in $\ell^0_0(\mathcal{R})$ with $A \in \mathcal{R}$ can be considered as a bounded linear functional on $b_0(\mathcal{R})$ defined by evaluation $\langle \chi_A, \mu \rangle = \mu(A)$. So, we may write $\{\chi_A : A \in \mathcal{R}\} \subseteq b_0(\mathcal{R})^*$, where $b_0(\mathcal{R})^*$ stands for the unit sphere of $b_0(\mathcal{R})^*$, and the set $\{\chi_A : A \in \mathcal{R}\}$ regarded as a topological subspace of $b_0(\mathcal{R})^*$ (weak*), is the same as $\{\chi_A : A \in \mathcal{R}\}$ regarded as a topological subspace of $\ell^0_0(\mathcal{R})$ (weak).

A subfamily \mathcal{F} of an algebra of sets \mathcal{A} is called a Nikodým set for $b_0(\mathcal{A})$ (cf. [3]) if each set $\{\mu_{a_0} : a_0 \in \Lambda\}$ in $b_0(\mathcal{A})$ which is pointwise bounded on \mathcal{F} is bounded in $b_0(\mathcal{A})$, i.e., if $\sup_{a_0 \in \Lambda} |\mu_{a_0}(A)| < \infty$ for each $A \in \mathcal{F}$ implies that $\sup_{a_0 \in \Lambda} |\mu_{a_0}| < \infty$. The algebra \mathcal{A} is said to have property (N) if the whole family \mathcal{A} is a Nikodým set for $b_0(\mathcal{A})$. Nikodým’s classic boundedness theorem establishes that every σ-algebra has property (N). An algebra \mathcal{A} is said to have property (G) if $\ell_\infty(\mathcal{A})$ is a Grothendieck space, i.e., if each weak* convergent sequence in $b_0(\mathcal{A})$ is weakly convergent in the Banach space $b_0(\mathcal{A})$. The fact that every σ-algebra has property (G) is also due to Grothendieck. Every countable algebra lacks property (N), and the algebra \mathcal{G} of Jordan-measurable subsets of the real interval $[0, 1]$ has property (N) but fails property (G) (cf. [4] (Propositions 3.2 and 3.3) and [5]). Let us recall that a sequence $\{\mu_n\}_{n=1}^{\infty}$ in $b_0(\mathcal{A})$ is uniformly exhaustive if for each sequence $\{A_i : i \in \mathbb{N}\}$ of pairwise disjoint elements of \mathcal{A} it holds that $\lim_{k \to \infty} \sup_{n \in \mathbb{N}} |\mu_n(A_k)| = 0$. We shall use the following result, originally stated in [4] (2.3 Definition).

Theorem 1. An algebra of sets \mathcal{A} has property (G) if and only if every bounded sequence $\{\mu_n\}_{n=1}^{\infty}$ in $b_0(\mathcal{A})$ which converges pointwise on \mathcal{A} is uniformly exhaustive.

An algebra \mathcal{A} is said to have property (VHS) if every sequence $\{\mu_n\}_{n=1}^{\infty}$ in $b_0(\mathcal{A})$ which converges pointwise on \mathcal{A} is uniformly exhaustive. It should be mentioned that $(VHS) \iff (N) \land (G)$, where the proof of the non-trivial implication can be found in [6] (see also [7] (Theorem 4.2)). For later use we introduce the following definition.

Definition 1. A subfamily \mathcal{M} of an algebra of sets \mathcal{A} will be called a Grothendieck set for $b_0(\mathcal{A})$ if each sequence $\{\mu_n\}_{n=1}^{\infty}$ in $b_0(\mathcal{A})$ which is pointwise convergent on \mathcal{M} is weakly convergent in $b_0(\mathcal{A})$, i.e., if there is $\mu \in b_0(\mathcal{A})$ such that $\mu_n(A) \to \mu(A)$ for every $A \in \mathcal{M}$, then $\mu_n \to \mu$ weakly in $b_0(\mathcal{A})$.

If an algebra \mathcal{A} contains a Grothendieck subset for $b_0(\mathcal{A})$, clearly \mathcal{A} has property (G). Grothendieck sets are closely related to the so-called Rainwater sets (defined below) for $b_0(\mathcal{A})$, and the study of the Rainwater sets for $b_0(\mathcal{A})$ leads to Theorem 4 below, from which the following result is a straightforward corollary.
Theorem 2. If Σ is a σ-algebra of subsets of a set Ω which is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets of Σ there exists $p \in \mathbb{N}$ such that Σ_p is a Grothendieck set for $ba(\Sigma)$.

Indeed, in [1] (Theorem 1) Valdivia showed that if a σ-algebra Σ of subsets of a set Ω is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets (subfamilies) of Σ, there exists some $p \in \mathbb{N}$ such that Σ_p is a Nikodym set for $ba(\Sigma)$ or, equivalently, that given an increasing sequence $\{E_n : n \in \mathbb{N}\}$ of linear subspaces of $\ell^p_0(\Sigma)$ covering $\ell^p_0(\Sigma)$, there exists $p \in \mathbb{N}$ such that E_p is dense and barreled (see also [8] (Theorem 3)).

As a consequence of Theorem 4 we show that if a σ-algebra Σ is covered by an increasing sequence $\{\Sigma_n : n \in \mathbb{N}\}$ of subsets, there exists some $p \in \mathbb{N}$ such that $\{\chi_A : A \in \Sigma_p\}$, regarded as a subset of the dual unit ball of $ba(\Sigma)$, is also a Rainwater set for $ba(\Sigma)$. This easily implies Theorem 2. In the last section we give some applications of Theorem 2 to classic Banach space theory which seems to have gone unnoticed so far. Let us point out that some results of this paper hold for Boolean algebras [9] (Theorem 12.35).

3. Rainwater Sets for $ba(\mathcal{A})$

A subset X of the dual closed unit ball $B_{\ell^p_0}$ of a Banach space E is called a Rainwater set for E if every bounded sequence $\{x_n\}_{n=1}^{\infty}$ of E that converges pointwise on X, i.e., such that $x^*x_n \to x^*x$ for each $x^* \in X$, converges weakly in E (cf. [10]). Rainwater’s classic theorem [11] asserts that the set of the extreme points of the closed dual unit ball of a Banach space E is a Rainwater set for E. According to [12] (Corollary 11), each James boundary of E is a Rainwater set for E. As regards the Banach space $C(X)$ of real-valued continuous functions over a compact Hausdorff space X equipped with the supremum norm, if $K = \text{Ext} B_{C(X)}$ is the set of the extreme points of the compact subset $B_{C(X)}$ of $C(X)^*$ (weak*), the Arens-Kelly theorem asserts that $K = \{ \pm \delta_x : x \in X\}$ (see [13]). By the Lebesgue dominated convergence theorem, if $\{f_n\}_{n=1}^{\infty}$ is a norm-bounded sequence in $C(X)$ (with respect to the supremum-norm) then $f_n \to f$ weakly in $C(X)$ if and only if $f_n(x) \to f(x)$ for every $x \in X$, that is, $(f_n, \mu) \to (f, \mu)$ for every $\mu \in C(X)^*$ if and only if $(f_n, \delta_v) \to (f, \delta_v)$ for each $v \in K$ (see [14] (IV.6.4 Corollary)). This is Rainwater’s theorem for $C(X)$. In [10] the weak K-analyticity of the Banach space $C^b(X)$ of real-valued continuous and bounded functions defined on a completely regular space equipped with the supremum norm is characterized in terms of certain Rainwater sets for $C^b(X)$. The next theorem, based on [3] (Proposition 4.1), exhibits a connection between Rainwater sets and property (G). We include it for future reference and provide a proof for the sake of completeness.

Theorem 3. Let \mathcal{A} be an algebra of sets. The following are equivalent
1. \mathcal{A} has property (G).
2. $\{\chi_A : A \in \mathcal{A}\}$ is a Rainwater set for $ba(\mathcal{A})$, considered as a subset of $ba(\mathcal{A})^*$.
3. The unit ball of $\ell^p_0(\mathcal{A})$ is a Rainwater set for $ba(\mathcal{A})$.
4. The unit ball of $\ell^p_0(\mathcal{A})$ is a Rainwater set for $ba(\mathcal{A})$.

Proof. 1 \Rightarrow 2. Assume that \mathcal{A} has property (G) and let $\{\mu_n\}_{n=1}^{\infty}$ be a bounded sequence in $ba(\mathcal{A})$ and $\mu \in ba(\mathcal{A})$ such that $\langle \chi_A, \mu_n \rangle \to \langle \chi_A, \mu \rangle$ for each $A \in \mathcal{A}$, i.e., such that $\mu_n(\mathcal{A}) \to \mu(\mathcal{A})$ for each $A \in \mathcal{A}$. By Theorem 1 the sequence $M = \{\mu_n : n \in \mathbb{N}\}$ is (bounded and) uniformly exhaustive on \mathcal{A}, so [15] (Corollary 5.2) produces a nonnegative real-valued finitely-additive measure λ on \mathcal{A} such that $\lim_{n \to \infty} \sup_{A \in \mathcal{A}} |\mu_n(A)| = 0$. Hence, [14] (4.9.12 Theorem) shows that M is relatively weakly sequentially compact. Given that $\mu_n(\mathcal{A}) \to \mu(\mathcal{A})$ for each $A \in \mathcal{A}$, necessarily μ is the only possible weakly adherent point of the sequence $\{\mu_n\}_{n=1}^{\infty}$. So we get that $\mu_n \to \mu$ weakly in $ba(\mathcal{A})$, which shows that $\{\chi_A : A \in \mathcal{A}\}$ is a Rainwater set for $ba(\mathcal{A})$.

2 \Rightarrow 3. If $B_{ba(\mathcal{A})^*}$ denotes the second dual ball of the closed unit ball $B_{ba(\mathcal{A})}$ of $\ell^p_0(\mathcal{A})$ and B_0 stands for the unit ball of $\ell^p_0(\mathcal{A})$, from the relations $\{\chi_A : A \in \mathcal{A}\} \subseteq B_0 \subseteq B_{ba(\mathcal{A})^*}$ it follows that B_0 is a also Rainwater set for $ba(\mathcal{A})$.

3 \Rightarrow 4 is obvious.
Theorem 4. Assume that \mathcal{M} is a Nikodým set for $ba(\mathcal{A})$ and let $\{\mathcal{M}_n : n \in \mathbb{N}\}$ be an increasing covering of \mathcal{M} by subsets of \mathcal{M}. If $\{\chi_A : A \in \mathcal{M}\}$ is a Rainwater set for $ba(\mathcal{A})$, there exists some $p \in \mathbb{N}$ such that $\{\chi_A : A \in \mathcal{M}_p\}$ is a Rainwater set for $ba(\mathcal{A})$.

Proof. Assume that $\{\chi_A : A \in \mathcal{M}\}$ is a Rainwater set for $ba(\mathcal{A})$. First we claim that

$$\{\chi_A : A \in \mathcal{A}\} \subseteq \bigcup_{n=1}^{\infty} n \cdot abx \{\chi_A : A \in \mathcal{M}_n\}^{\|\cdot\|_\infty}$$

Let us proceed by contradiction. Assume otherwise that there exists $B \in \mathcal{A}$ such that $\chi_B \notin n \cdot abx \{\chi_A : A \in \mathcal{M}_n\}^{\|\cdot\|_\infty}$ for all $n \in \mathbb{N}$. In this case the separation theorem provides $\mu_n \in ba(\mathcal{A})$ with $|\mu_n(B)| = 1$ such that

$$\sup \left\{ \|f, \mu_n\| : f \in abx \{\chi_A : A \in \mathcal{M}_n\}^{\|\cdot\|_\infty} \right\} \leq \frac{1}{n}$$

So, in particular it holds that

$$\sup \{\|\mu_n(A)\| : A \in \mathcal{M}_n\} \leq \frac{1}{n}$$

for every $n \in \mathbb{N}$. If $\mathcal{M} \subseteq \mathcal{M}_n$ for every $n \geq k$. Consequently $|\mu_n(M)| \leq \frac{1}{n}$ for $n \geq k$, which shows that $\mu_n(M) \to 0$. Since \mathcal{M} is a Nikodým set and $\{\mu_n\}_{n=1}^{\infty}$ is pointwise bounded on \mathcal{M}, it follows that $\{\mu_n\}_{n=1}^{\infty}$ is bounded in $ba(\mathcal{A})$. So, the fact that $\mu_n(M) \to 0$ for all $\mathcal{M} \subseteq \mathcal{M}_n$ along with the assumption that \mathcal{M} is a Rainwater set leads to $\mu_n \to 0$ weakly in $ba(\mathcal{A})$. This is a contradiction, since $\langle \chi_B, \mu_n \rangle = 1$ for every $n \in \mathbb{N}$. The claim is proved.

Set $Q := \{\chi_A : A \in \mathcal{A}\}$. Since we are assuming that \mathcal{M} is a Nikodým set for $ba(\mathcal{A})$, the larger set \mathcal{A} is also a Nikodým set for $ba(\mathcal{A})$, which implies that $\ell_0^\infty(\mathcal{A})$ is a metrizable barrelled space, hence a Baire-like space (see [17]). On the other hand, as a consequence of the previous claim, the family $\{W_n\}_{n=1}^{\infty}$ with

$$W_n := n \cdot abx \{\chi_A : A \in \mathcal{M}_n\}^{\|\cdot\|_\infty}$$

is an increasing sequence of closed absolutely convex sets covering $\ell_0^\infty(\mathcal{A})$. So, there exists $p \in \mathbb{N}$ such that

$$Q \subseteq p \cdot abx \{\chi_A : A \in \mathcal{M}_p\}^{\|\cdot\|_\infty},$$

which shows that

$$abx \{\chi_A : A \in \mathcal{M}_p\}^{\|\cdot\|_\infty}$$

is a Rainwater set for $ba(\mathcal{A})$.

We claim that this implies that $\{\chi_A : A \in \mathcal{M}_p\}$ is a Rainwater set for $ba(\mathcal{A})$. In order to establish the claim it suffices to show that $abx \{\chi_A : A \in \mathcal{M}_p\}$ is a Rainwater set for $ba(\mathcal{A})$. So, let $\{\lambda_n\}_{n=1}^{\infty}$ be a bounded sequence in $ba(\mathcal{A})$ such that $\langle u, \lambda_n \rangle \to 0$ for every $u \in abx \{\chi_A : A \in \mathcal{M}_p\}$. Let us show that $\langle v, \lambda_n \rangle \to 0$ for each $v \in abx \{\chi_A : A \in \mathcal{M}_p\}^{\|\cdot\|_\infty}$. If $v \in abx \{\chi_A : A \in \mathcal{M}_p\}^{\|\cdot\|_\infty}$ there exists a
sequence \(\{ u_k \}_{k=1}^{\infty} \) in \(\text{abx} \{ \chi_A : A \in \mathcal{M}_p \} \) such that \(\| u_k - v \|_\infty \to 0 \). Consequently, given \(\epsilon > 0 \) there is \(k (\epsilon) \in \mathbb{N} \) with

\[
\left\| u_{k(\epsilon)} - v \right\|_\infty < \frac{\epsilon}{2 \left(1 + \sup_{n \in \mathbb{N}} |\lambda_n| \right)}.
\]

Let \(n (\epsilon) \in \mathbb{N} \) be such that

\[
\left| \left< u_{k(\epsilon)}, \lambda_n \right> \right| < \frac{\epsilon}{2}
\]

for every \(n \geq n (\epsilon) \). Consequently, one has

\[
|\langle v, \lambda_n \rangle| \leq |\langle v - u_{k(\epsilon)}, \lambda_n \rangle| + |\langle u_{k(\epsilon)}, \lambda_n \rangle| \leq \left\| u_{k(\epsilon)} - v \right\|_\infty |\lambda_n| + \left| \left< u_{k(\epsilon)}, \lambda_n \right> \right| < \epsilon
\]

for all \(n \geq n_0 (\epsilon) \). This proves that \(\langle v, \lambda_n \rangle \to 0 \) for each \(v \in \text{abx} \{ \chi_A : A \in \mathcal{M}_p \} \). Since we have shown before that \(\text{abx} \{ \chi_A : A \in \mathcal{M}_p \} \) is a Rainwater set for \(ba (A) \), we get that \(\lambda_n \to 0 \) weakly in \(ba (A) \). Therefore the absolutely convex set \(\text{abx} \{ \chi_A : A \in \mathcal{M}_p \} \) is a Rainwater set for \(ba (A) \), a stated.

\[\square\]

Corollary 1. Let \(A \) be an algebra of sets with property \((VH)\). If \(\{ A_n : n \in \mathbb{N} \} \) is an increasing covering of \(A \) consisting of subsets of \(A \), there is some \(p \in \mathbb{N} \) such that \(\{ \chi_A : A \in A_p \} \) is a Rainwater set for \(ba (A) \).

Proof. This is a straightforward consequence of the Theorem 4 for \(M = A \), since as mentioned earlier an algebra \(A \) has property \((VH)\) if and only if \(A \) has both properties \((N)\) and \((G)\) (this also can be found in [7] (Theorem 4.2)). So, on the one hand \(A \) is a Nikodým set for \(ba (A) \) and, on the other hand, according to Theorem 3, the family \(\{ \chi_A : A \in A \} \) is a Rainwater set for \(ba (A) \). \[\square\]

Proof of Theorem 2. If \(\Sigma \) is a \(\sigma \)-algebra of subsets of a set \(\Omega \) which is covered by an increasing sequence \(\{ \Sigma_n : n \in \mathbb{N} \} \) of \(\Sigma \)-subsets, Corollary 1 and Valdivia’s result [1] provide an index \(p \in \mathbb{N} \) such that \(\Sigma_p \) is a Nikodým set for \(ba (\Sigma) \) at the same time that \(\{ \chi_A : A \in \Sigma_p \} \) is a Rainwater set for \(ba (\Sigma) \). If \(\{ \mu_n \}_{n=1}^{\infty} \) verifies that \(\mu_n (A) \to \mu (A) \) for every \(A \in \Sigma_p \) the sequence \(\{ \mu_n \}_{n=1}^{\infty} \) is bounded in \(ba (\Sigma) \) since \(\Sigma_p \) is a Nikodým set for \(ba (\Sigma) \). But then \(\mu_n \to \mu \) weakly in \(ba (\Sigma) \) due to \(\{ \chi_A : A \in \Sigma_p \} \) is a Rainwater set for \(ba (\Sigma) \). Consequently \(\Sigma_p \) is a Grothendieck for \(ba (\Sigma) \) and we are done.

\[\square\]

Corollary 2. If \(\{ A_n : n \in \mathbb{N} \} \) is an increasing sequence of subsets of \(\Sigma = 2^\mathbb{N} \) covering \(2^\mathbb{N} \), there exists some \(p \in \mathbb{N} \) such that each sequence \(\{ \mu_n \}_{n=1}^{\infty} \) in \(ba (2^\mathbb{N}) \) that converges pointwise on \(A_p \) converges weakly in \(ba (2^\mathbb{N}) = \ell_\infty \).

Proof. Apply Theorem 2 to the \(\sigma \)-algebra \(2^\mathbb{N} \). \[\square\]

We complete our study of Rainwater sets for \(ba (A) \) with the following result. Note that if \(X^{\text{w}^*} \) (weak* closure) with \(X \subseteq \overline{B}_{ba (A)} \) is a Rainwater set for \(ba (A) \) then \(X \) could not be a Rainwater set for \(ba (A) \). However the following property holds.

Theorem 5. Let \(A \) be an algebra of sets. Assume that \(\{ \chi_A : A \in A \} \) is a Grothendieck set for \(ba (A) \).

If \(\{ \chi_A : A \in M \} \) is a \(G_\delta \)-dense subset of \(\{ \chi_A : A \in A \} \) under the relative weak* topology of \(ba (A) \) or, which is the same, under the relative weak topology of \(\ell_0^\infty (A) \), then \(\{ \chi_A : A \in M \} \) is a Grothendieck set for \(ba (A) \).

Proof. Let \(\{ \mu_n \}_{n=1}^{\infty} \) be a sequence in \(ba (A) \) such that \(\mu_n (Q) \to 0 \) for every \(Q \in M \). Given \(B \in A \), let us define \(G_n := \{ C : C \subseteq A, \mu_n (C) = \mu_n (B) \} \). Then one has that \(\chi_B \in \bigcap_{n=1}^{\infty} G_n \), so that \(G := \bigcap_{n=1}^{\infty} G_n \) is a nonempty intersection of countably many zero-sets of \(\{ \chi_A : A \in A \} \), hence a non-empty \(G_\delta \)-set in \(\{ \chi_A : A \in A \} \) in the relative weak topology of \(\ell_0^\infty (A) \). According to the hypothesis \(G \) meets \(\{ \chi_A : A \in M \} \). Hence there exists \(M_B \in M \) such that \(\chi_{M_B} \in G \cap \{ \chi_A : A \in M \} \), which means that \(\mu_n (M_B) = \mu_n (B) \) for every \(n \in \mathbb{N} \). Since \(\mu_n (M_B) \to 0 \), it follows that \(\mu_n (B) \to 0 \). So, we conclude

\[\square\]
that $\mu_n(B) \to 0$ for every $B \in \mathcal{A}$. Putting together that (i) $\{\chi_A: A \in \mathcal{A}\}$ is a Grothendieck set for $ba(\mathcal{A})$, and (ii) $\mu_n(B) \to 0$ for all $B \in \mathcal{A}$, we get that $\mu_n \to 0$ weakly in $ba(\mathcal{A})$. Thus $\{\chi_A: A \in \mathcal{M}\}$ is a Grothendieck set for $ba(\mathcal{A})$. ☐

4. Application to Banach Spaces

Theorem 2 facilitates the extension of various classic theorems of Banach space theory. As a sample, we include three of them: namely, the Phillips lemma about convergence in $ba(\Sigma)$, Nikodým’s pointwise convergence theorem in $ca(\Sigma)$ and the usual characterization of weak convergence in $ca(\Sigma)$, the linear subspace of $ba(\Sigma)$ consisting of the countably additive measures in Σ (see [18] (Chapter 7)).

Proposition 1. Let Σ be a σ-algebra of subsets of a set Ω. If $\{\Sigma_n: n \in \mathbb{N}\}$ is an increasing sequence of subsets of Σ covering Σ, there exists some $p \in \mathbb{N}$ enjoying the following property. If $\{\mu_n\}_{n=1}^\infty \subseteq ba(\Sigma)$ verifies $\lim_{n \to \infty} \mu_n(A) = 0$ for every $A \in \Sigma_p$ and $\{A_k: k \in \mathbb{N}\}$ is a sequence of pairwise disjoint elements of Σ, then

$$\lim_{n \to \infty} \sum_{k=1}^\infty |\mu_n(A_k)| = 0. \tag{1}$$

Proof. According to Theorem 2 there is $p \in \mathbb{N}$ such that Σ_p is Grothendieck set for $ba(\Sigma)$. So, if $\lim_{n \to \infty} \mu_n(A) = 0$ for every $A \in \Sigma_p$, then $\mu_n \to 0$ weakly in $ba(\Sigma)$. In particular, $\mu_n(A) \to 0$ for every $A \in \Sigma$. Hence, (1) holds by Phillip’s classic theorem. ☐

Proposition 2. Let Σ be a σ-algebra of subsets of a set Ω. If $\{\Sigma_n: n \in \mathbb{N}\}$ is an increasing sequence of subsets of Σ covering Σ, there exists some $p \in \mathbb{N}$ such that if $\{\mu_n\}_{n=1}^\infty \subseteq ca(\Sigma)$ verifies $\mu_n(A) \to \mu(A)$ for every $A \in \Sigma_p$ then the set $\{\mu_n: n \in \mathbb{N}\}$ is uniformly exhaustive and $\mu \in ca(\Sigma)$.

Proposition 3. Let Σ be a σ-algebra of subsets of a set Ω. If $\{\Sigma_n: n \in \mathbb{N}\}$ is an increasing sequence of subsets of Σ covering Σ, there exists some $p \in \mathbb{N}$ such that $\mu_n \to \mu$ weakly in $ca(\Sigma)$ if and only if $\mu_n(A) \to \mu(A)$ for every $A \in \Sigma_p$.

Author Contributions: The authors (J.C.F., S.-L.A., M.-L.P.) contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grant PGC2018-094431-B-I00 of Ministry of Science, Innovation and Universities of Spain.

Acknowledgments: The authors wish to thank the referees for valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).