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Abstract

Background and Objective:

Prostate cancer is one of the most common diseases affecting men worldwide.

The Gleason scoring system is the primary diagnostic and prognostic tool for

prostate cancer. Furthermore, recent reports indicate that the presence of pat-

terns of the Gleason scale such as the cribriform pattern may also correlate with

a worse prognosis compared to other patterns belonging to the Gleason grade

4. Current clinical guidelines have indicated the convenience of highlight its

presence during the analysis of biopsies. All these requirements suppose a great

workload for the pathologist during the analysis of each sample, which is based

on the pathologist’s visual analysis of the morphology and organisation of the

glands in the tissue, a time-consuming and subjective task.

In recent years, with the development of digitisation devices, the use of com-

puter vision techniques for the analysis of biopsies has increased. However, to

the best of the authors’ knowledge, the development of algorithms to automati-
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cally detect individual cribriform patterns belonging to Gleason grade 4 has not

yet been studied in the literature. The objective of the work presented in this

paper is to develop a deep-learning-based system able to support pathologists in

the daily analysis of prostate biopsies. This analysis must include the Gleason

grading of local structures, the detection of cribriform patterns, and the Gleason

scoring of the whole biopsy.

Methods:

The methodological core of this work is a patch-wise predictive model based

on convolutional neural networks able to determine the presence of cancerous

patterns based on the Gleason grading system. In particular, we train from

scratch a simple self-design architecture with three filters and a top model with

global-max pooling. The cribriform pattern is detected by retraining the set of

filters of the last convolutional layer in the network. Subsequently, a biopsy-

level prediction map is reconstructed by bi-linear interpolation of the patch-level

prediction of the Gleason grades. In addition, from the reconstructed prediction

map, we compute the percentage of each Gleason grade in the tissue to feed a

multi-layer perceptron which provides a biopsy-level score.

Results:

In our SICAPv2 database, composed of 182 annotated whole slide images, we

obtained a Cohen’s quadratic kappa of 0.77 in the test set for the patch-level

Gleason grading with the proposed architecture trained from scratch. Our re-

sults outperform previous ones reported in the literature. Furthermore, this

model reaches the level of fine-tuned state-of-the-art architectures in a patient-

based four groups cross validation. In the cribriform pattern detection task,

we obtained an area under ROC curve of 0.82. Regarding the biopsy Gleason

scoring, we achieved a quadratic Cohen’s Kappa of 0.81 in the test subset.

Shallow CNN architectures trained from scratch outperform current state-

of-the-art methods for Gleason grades classification. Our proposed model is

capable of characterising the different Gleason grades in prostate tissue by ex-

tracting low-level features through three basic blocks (i.e. convolutional layer

+ max pooling). The use of global-max pooling to reduce each activation map
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has shown to be a key factor for reducing complexity in the model and avoiding

overfitting. Regarding the Gleason scoring of biopsies, a multi-layer perceptron

has shown to better model the decision-making of pathologists than previous

simpler models used in the literature.

Keywords: prostate cancer, Gleason, cribriform, Whole Side Images,

convolutional neural networks, deep learning.

1. Introduction

Worldwide, prostate cancer (PCa) is the second most common cancer in men,

with 1.3 million new patients in 2018 [1]. According to the World Health Organ-

isation, the yearly number of new cases will increase by more than 40% in this

decade [2]. The main tool to diagnose PCa, once clinical explorations or blood5

test suggest its presence, is the prostate biopsy. Small portions of the tissue are

extracted with a needle, laminated, stained with Hematoxylin and Eosin (H&E)

and finally stored in crystal. Then, the sample is analysed under the microscope

by the pathologist, determining the presence and grade of cancerous patterns

depending on the morphology and organisation of the glands, nuclei and lumen10

using the Gleason grading system [3]. In this system, different cancer patterns

in the tissue are grouped in different grades according to the prognosis of the

cancer. In particular, for two-dimensional tissue slides, the Gleason grades (GG)

range from 3 to 5, correlating inversely with the degree of gland differentiation of

the tissue. The Gleason grade 3 (GG3) includes atrophic well differentiated and15

dense glandular regions. The GG4 contains cribriform, ill-formed, large-fused

and papillary glandular patterns. Finally, GG5 includes isolated cells or file

of cells, nests of cells without lumina formation and pseudo-roseting patterns.

Examples of patterns belonging to different grades are presented in Figure 1.

Pathologists classify by visual inspection the tissue regions, detecting the20

presence of one or more Gleason patterns and, finally, diagnose the combined

Gleason score according to the most prominent grades (e.g. the combined grade

5 + 4 = 9 would be assigned to a sample in which the main cancerous Gleason
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Patches of H&E histology samples presenting different Gleason patterns. (a): Non-

cancerous well-differentiated glands; (b): Gleason grade 3 containing atrophic dense patterns;

(c): Gleason grade 4 containing large fused glandular patterns; (d): Gleason grade 4 containing

cribriform patterns; (e): Gleason grade 4 containing papillary structures; (f): Gleason grade

4 containing individual poorly-formed glands; (g): Gleason grade 5 including nests of cells

without lumen formation; (g): Gleason grade 5 containing files of isolated cells.

grade is 5 followed by the grade 4). Therefore, the combined Gleason score

ranges from 6 to 10, and it is assigned to the whole biopsy. This score is cur-25

rently the best marker of prostate cancer prognosis and it defines the treatment

to apply [4]. However, the Gleason scoring of histological prostate biopsies is a

high time-consuming and repetitive task, which has intra and inter pathologist

variability. Moreover, after the last International Society of Urological Pathol-

ogy (ISUP) Consensus Conference in 2014 [5], new guidelines have been included30

that increase the pathologists’ workload. In particular, it is recommended to

also report the percentage of Gleason grade 4 in the sample, mainly for regions

scored as 3+ 4 = 7, where a higher percentage of Gleason grade 4 indicates the

convenience of an earlier treatment [6], and the presence of cribriform glandular

patterns, which indicate worse prognosis than the presence of other Gleason35
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grade 4 patterns [7, 8]. Computer-Aided Diagnosis systems (CAD) support the

work of pathologists and increase the objectivity in the this process. These are

based on the digitisation of the histological crystals, obtaining whole slide im-

ages (WSIs) and developing computer vision algorithms to detect the cancerous

regions inside the biopsy (or WSI).40

Computer vision algorithms have been widely used to analyse histological

PCa images. This section summarises the works previously presented in the

CADs literature for prostate cancer detection, classifying them according to

three factors: the kind of images included in the analysed database, the ob-

jectives addressed by CAD systems, and the techniques proposed to achieve45

them.

Regarding the images, mainly three types of histological images have been

used: WSIs, prostactetomies and Tissue Micro Arrays (TMAs). TMAs are

clusters of representative tumor areas extracted manually by pathologists [9].

TMAs are used for testing new techniques in a large number of different tumour50

samples. One of the main limitations of TMAs lies in the small amount of tissue

that can be included in each samples, which may not be representative of the

whole tumor region in epithelial tumors with heterogeneous patterns [10]. This

is the case of prostate cancer, which has different patterns for each Gleason

grade, as previously mentioned. Non-cancerous patterns that could confuse55

CAD systems, as the inflamed tissue or benign multi-nucleation, could be lost

using TMAs. Thus, the strategy based on TMA analysis is not used in clinical

practice [11] and it is more convenient to develop CAD systems based on raw

WSI analysis. A model trained using large databases of WSIs could be used

for both WSIs and prostactetomies. The works in [12, 13, 14, 15, 16, 17, 18]60

follow the strategy of WSI analysis, while in [19, 20, 21] the authors use TMAs

to develop the CAD models.

With regard to the objectives to be addressed, some works focus just on

the detection of prostate cancer against non-cancerous tissue [13, 17] or on

the first-stage prostate cancer detection [22]. A full analysis of Gleason grades65
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from 3 to 5 is usually limited by the size of the collected database, and the

low prevalence of Gleason grade 5. Due to that, numerous researchers classify

differentiating among non-cancerous samples, low grade (Gleason grade 3), and

high Grade (Gleason grade ≥ 4) [18, 23, 24] or among non-cancerous, Gleason

grade 3, and Gleason grade 4 [12, 15]. The most recent works tried to predict70

the full Gleason grading (Benign - Grade 3 - Grade 4 - Grade 5) in [19, 20, 21]

but only using TMAs cores. To the best of the authors’s knowledge, works

analysing deeper the Gleason grades, this is, focusing on the automatic detection

of individual patterns of a Gleason grade (i.e. cribriform pattern, which belongs

to the Gleason grade 4 group) do not exist. This work represents an attempt75

in this direction.

Finally, concerning the techniques used to deal with the different mentioned

objectives, the most common approach to analysed both is to perform a patch-

based strategy (see Figure 2). The motivation for using this strategy is the large

size of both TMAs and, especially WSIs, together with hardware limitations.80

Figure 2: General workflow for high resolution histology slides processing.

Below, we will focus only on the description of the different techniques used,

until now, for the patch-level Gleason grading. In the literature we can find

approaches based on classic machine learning techniques with a hand-crafted
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feature extraction and deep learning algorithms (automatic feature extraction)

by means of convolutional neural networks (CNN). In Nir et al. (2018) [20] a85

comparison between both approaches is carried out with a database of 333 cores

of TMAs. Glands and nuclei are segmented to obtain features related to their

size, intensity distributions and number of elements in each patch at different

resolutions. Those are combined with full patch-level features related to the

colour distribution and SURF descriptors to fit different machine learning mod-90

els as linear discriminant analysis, linear regression, support vector machines,

and random forests. Those models are compared with a U-Net CNN. The best

result reported is a Cohen’s quadratic kappa (κ) overall agreement measure of

0.51 obtained by the linear regression model. Nevertheless, in a later publica-

tion by Nir et al. (2019) [21] a κ of 0.60 was obtained by fine-tuning the CNN95

architecture MobileNet. In Arvaniti et al. (2018) [19] a larger database is used,

with 886 cores. The patch-level grading is addressed through fine-tuning differ-

ent CNN architectures such as VGG16, InceptionV3, ResNet50, DenseNet121,

and MobileNet. The best results are reported with the last one, achieving a κ

of 0.67 in the training set and 0.55 in the test one.100

Regarding the classification of the Gleason score for the whole biopsy (whole

slide image), only a few works have addressed it, and only using TMAs. The

common strategy used is to obtain the percentage of each grade in the analysed

image and to assign the first and second components above a threshold as pri-

mary and secondary grades respectively. In Arvaniti et al. (2018) [19] the full105

Gleason scoring, using TMAs, is addressed, archiving κ of 0.75. Unfortunately,

this simple model did not perform for extreme cases, for example 5 + 5 = 10.

In this case, a precision of 0.10 is reported in this work. In addition, the pri-

mary and secondary grades are not just related to the proportion of the different

grades in the tissue, but also to the severity of each grade (e.g. GG5 could be110

diagnosed as secondary grade even having less proportion than GG4 or GG3 in

the tissue).
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The objective of this work is to develop an automatic Computer-Aided Diag-

nosis system working on WSIs and able to support pathologists in the analysis

of the biopsy during the diagnosis process. The tasks of this analysis, to be115

included in the pathologists’ report, are:

• Detection of the cancerous regions in the tissue according to the Gleason

grading system.

• Detection of cribriform patterns.

• Calculation of the percentage of each Gleason grade in the biopsy.120

• Gleason scoring of the whole biopsy, taking into account not only the grade

proportion but also its severity.

This work is developed using our collected database SICAPv2, the largest

public database of prostate biopsies with pixel-level annotations of Gleason

grades, specifying the presence of cribriform patterns. In the following lines,125

we summarise the main contributions of this paper. The different blocks of our

system are presented in Figure 3. First, we develop a patch-level predictor of

Gleason grades with a carefully-designed CNN architecture trained from scratch.

This architecture is based on three convolutional blocks and global-max pool-

ing after the last block. With this model, we outperform, for the first time in130

the literature, the fine-tunning well-known state of the art architectures. Then,

we discuss the model interpretability by means of the Class Activation Maps

(CAMs) technique. Once the patches are classified, the trained architecture is

fine-tuned to detect the presence of cribriform glandular structures for those

images with Gleason grade 4. To the best of the authors’ knowledge, no study135

has addressed this clinical need previously. Then, the WSIs are reconstructed

in probability maps and the class (i.e. non cancerous, Gleason grade 3, 4 or

5) with the highest probability is assigned to each pixel. Once the percentages

of each Gleason grade in the WSI are obtained, we developed a model, based

on a multi-layer perceptron architecture, to predict the combined Gleason score140
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to the whole biopsy. The obtained results show the good performance of this

model which outperforms the previous state-of-the-art methods.

Figure 3: Flowchart in which the different blocks of our system are presented. Taking as

input a prostate whole slide image (WSI), the system performs a patch-level Gleason grade

prediction through convolutional neural networks. If one patch is classified as Gleason grade 4

(GG4), a cribriform pattern detection is carried out by fine-tuning the model of the previous

stage. Finally, the regions in the WSI are reconstructed and a pixel-level Gleason grade

assignement is carried out. The WSI-level Gleason scoring is performed with a multi-layer

perceptron taking as input the percentage of the Gleason grades in that region.

The paper is organised as follows, in Section 2 we introduce the database

used in this work, SICAPv2, a large set of prostate whole slide images with

pixel-level annotations of the Gleason grades and WSI-level annotations of the145

Gleason scores assigned by expert pathologists. In Section 3 we describe the

methodological details of our proposed CAD system, based on CNNs able to

predict the Gleason grade and presence of cribriform pattern in local patches

of the WSIs. From those local predictions, in this section we also detail the

process of predicting the WSI-level Gleason score. In Section 4 we describe the150

performed experiments in order to validate our models. In particular, Section

4.2 describes the experiments related to the patch-level Gleason grading, Section

4.3 the detection of cribriform patterns and in Section 4.4 we present our results

related to the biopsy-level Gleason scoring. Finally, Section 5 summarises the

conclusions extracted with the carried out experiments.155
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2. Materials: SICAP database

The database presented in this paper, SICAPv2, is, to the best of the au-

thors’s knowledge, the largest public collection of prostate H&E biopsies with

local-level annotations of Gleason grades. SICAPv2 is an extension the database

introduced in [17] and will be publicy available after the publication of this pa-160

per.

After analysing the literature, four main prostate cancer tissue image databases

were found. The largest database with prostate biopsies was released by The

Cancer Genome Atlas project1 [25] with up to 720 prostate biopsy slides. Nev-

ertheless, the lack of annotations at both the local and biopsy levels of the165

Gleason grades restricts the use of these data. The database shared by Arvaniti

et al. [19] includes pixel-level annotations of Gleason patterns from 886 small

regions of slides (cores of TMAs). Unfortunately, as discussed earlier, those

cores do not represent the heterogeneous patterns of local structures of prostate

cancer and benign lesions, so they lack clinical relevance for the slide-level Glea-170

son score diagnosis. Similar limitations are found in the recent database from

the challenge Gleason19 in the MICCAI 2019 conference2, with 331 cores an-

notated by different pathologists, and the dataset used in [16], composed by

625 isolated patches. Although those databases contribute to the validation of

different algorithms, the lack of large databases with clinical reference of het-175

erogeneous patterns has been a limiting factor for the scientific community to

develop deep-learning-based methods which demand a large amount of data.

One of the contributions of this work is the publication of a large database of

WSIs containing biopsy-level labels (i.e. Gleason scores for each biopsy) and

pixel-level Gleason grades annotations, in which for the first time, the presence180

of cribriform glandular regions is indicated.

SICAPv2 database includes 155 biopsies from 95 different patients who

signed the pertinent informed consent. The tissue samples where sliced, stained

1https://portal.gdc.cancer.gov/
2https://gleason2019.grand-challenge.org/Home/
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and digitised using the Ventana iScan Coreo scanner at 40x magnification ob-

taining WSIs. The slides were analysed by a group of expert urogenital patholo-185

gists at Hospital Cĺınico of Valencia, and a combined Gleason score was assigned

per biopsy. In cases where the grade was uncertain, the label was assigned by

consensus of all expert pathologists to avoid inter-observer variability. The

primary Gleason grade (GG) in each biopsy is distributed as follows: 36 non-

cancerous regions, 40 samples with Gleason grade 3, 64 with Gleason grade 4190

and 15 with Gleason grade 5 (henceforth NC, GG3, GG4, and GG5 respec-

tively). Regarding the combined scores, the co-occurrence matrix of primary

and secondary grades is shown in Figure 4.

Figure 4: Description of the Gleason scores in the SICAPv2 database. Co-occurrence matrix

of primary and secondary Gleason grades in each biopsy. NC: non cancerous, GG3: Gleason

grade 3, GG4: Gleason grade 4 and GG5: Gleason grade 5.

The local cancerous patterns were annotated using an in-house software

based on the OpenSeadragon libraries [26], following the Gleason scale and in-195

dicating the presence of cribriform glandular structures. In order to process the

large WSIs, these were down-sampled to 10x resolution and divided into patches

of size 5122 and overlap of 50% between them. Those values were previously

optimised for the detection of cancerous patterns in [17]. A mask of the presence

of tissue in the patches was obtained by applying the Otsu threshold method.200

To develop the model able to predict the main Gleason grade, patches with

less than 20% of tissue were excluded. In addition, patches without cancerous
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patterns annotated by the pathologists belonging to cancerous biopsies where

also discarded. After this procedure, the database contains 4417 non-cancerous

patches, 1635 labelled as GG3, 3622 as GG4, and 665 as GG5. Note that if205

one patched contained more than one annotated grade, the majority grade was

assigned as label. 763 GG4 patches also contain annotated cribriform glandular

regions. A summary of the database description is presented in Table 1.

Table 1: SICAPv2 database description. Amount of whole slide images and their respective

biopsy-level primary label (first row) and number of patches of each one of the Gleason

categories (second row).

Non cancerous Grade 3 Grade 4 (cribriform) Grade 5 Total

#WSIs 37 60 69 (36) 16 182

#Patches 4417 1636 3622 (763) 665 10340

The data collected by Arvaniti et al. [19] was also utilised to validate the

models produced in our study. The cores were resized to match the resolution210

used in our models and patched to the dimensions used in our database. By

this approach, each one of these cores is approximately equivalent to one of our

patches. Thus, 115 non-cancerous images, 274 patches labelled as GG3, 210

GG4, and 104 GG5 were used to validate our work in an external database.

Also, the patches shared by Gerytch et al. [13] were used in our work for the215

validation of our proposed model. After normalisation of the images to match

our methodology, 32 non-cancerous images, 95 patches labelled as GG3, 216

GG4, and 70 GG5 were obtained.

3. Methods

3.1. Patch-Level Gleason Grading220

The patch-level classification in the different Gleason grades is carried out by

means of convolutional neural networks. We propose a self-designed base-model

architecture (from now on called FSConv) which consists of a simple convo-
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lutional architecture with three convolutional layers and dimensional reduction

operation employing max-pooling layers (Table 2).225

Table 2: FSConv architecture description. It consists of three blocks with convolutional

filters, ReLU activation and max-pooling operation.

Layer Name Filter Size Stride Activation Output Shape Connected to

Input − − − (224, 224, 3) −
Conv1 (3, 3, 32) 1 ReLU (224, 224, 32) Input

Max− Pooling1 (2, 2) 2 − (112, 112, 32) Conv1

Conv2 (3, 3, 124) 1 ReLU (112, 112, 124) Max− Pooling1

Max− Pooling2 (2, 2) 2 − (56, 56, 124) Conv2

Conv3 (3, 3, 512) 1 ReLU (56, 56, 512) Max− Pooling2

Max− Pooling3 (2, 2) 2 − (28, 28, 512) Conv3

After the automatic feature extraction blocks (base model), we introduce

as top model a global-max-pooling layer. To show the superior performance of

this architecture, different configurations already applied in the literature to the

same problem, have been also tested as top models and are described next.

One of the main approaches is the flattening of the activation volume re-230

sulting from the final convolutional block and the class prediction through con-

secutive fully-connected layers. In this case, overfitting is addressed by means

of a random dropout of a percentage of the neurons in each training iteration.

Nevertheless, these top-model architectures include a large number of parame-

ters to optimise, increasing the complexity of the model, and they are sensitive235

to the location of the structures in the image. This problem is usually dealt

with data augmentation techniques, applying, for example, random rotations

and translations to the images. Other approaches propose the convenience of

using global-average pooling on the last feature maps as regulariser to make the

model translation-invariant and decrease its complexity [27]. This technique is240

used in [19] for the prediction of prostate cancer Gleason degree with fine-tuned

models. Due to the use of a patch-based strategy with sliding window, the lo-

cation and amount of the cancerous structures in the image is not controlled.
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Thus, as shown in Figure 5, some patches could have small portions of cancerous

tissue. The global-average pooling layer takes into account the information in245

the whole activation map, and in those cases, the output of the filter that detects

this pattern could be diminished. To make the models robust to the amount

and location of cancerous tissue, we propose in this work the use of the global-

max-pooling layer to play the role of the global-average pooling. All different

configurations, fully-connected layer with ReLU activation and dropout regu-250

larisation (FC), global-average-pooling (GAP) and global-max-pooling (GMP)

layers and their combinations are implemented and their performance is dis-

cussed in this work.

Figure 5: Patches with small amount of cancerous tissue. Green: GG3, Blue: GG4.

For comparison, together with the proposed architecture trained from scratch,

we fine-tuned several well-known architectures: VGG19 [28], ResNet-50 [29], In-255

ceptionV3 [30] and MobileNetV2 [31]. All of them were pre-trained in the Ima-

genet data set [32]. For the feature extraction stage, the base model from those

pre-trained models is extracted and partially retrained. This strategy is usu-

ally used to transfer the knowledge obtained in extracting features from a large

database to specific domains where the amount of data is limited. Nevertheless,260

the patterns of the images used during the training are very different from the

histology ones. To keep just the low-level features (contours, combination of

basic colours, general shapes, etc.) from the pre-trained models, the weights

of just the first convolutional blocks are frozen, while the rest are re-trained to
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adapt the model to the specific application. The layer from which the freezing265

strategy is applied is empirically optimised for each model, and is specified in

the experimental part of the paper, in Section 4.2.

The output layer for all the different configurations is composed of one neu-

ron per class with soft-max activation function to obtain the final probability per

class. In the training process, we use categorical cross-entropy as loss function,270

modified to deal with the class imbalance in the training set as follows:

L(ŷ, y) = − 1

C

C∑
c=1

wc(yclog(ŷc)) (1)

where y and ŷ contain the one-hot-encoded reference labels and predicted prob-

abilities, respectively, of each class c for a certain instance. wc = (C × N)/Nc

is the weight applied to each class, being N the total number of images, Nc the

number of images belonging to class c and C the number of classes, C = 4 in275

our case (non-cancerous, GG3, GG4 or GG5).

Stochastic Gradient Descend is applied as optimiser and the training pro-

cedure is performed using mini-batches. The values of learning rate and batch

size are fixed empirically for each configuration and experiment, and they are

specified in Section 4.2. Data augmentation techniques are used on the training280

set applying random rotations and translations to the images.

3.2. Cribriform Pattern Detection

The detection of cribriform structures in GG4 patches is also carried out

using convolutional neural networks. Due to the complexity of the task and the

reduced number of samples, we address this problem by fine-tuning the model285

trained for the Gleason grades prediction. To take advantage of the specialised

features extracted by the proposed architecture, the model is re-trained, op-

timising the layer from which the filter weights should be frozen to avoid over

fitting. The top model used here is also proposed in the Gleason grading problem

(global-max-pooling layer) followed by a last layer with one neuron and sigmoid290

activation function. The loss function used is the binary cross-entropy. Again,
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Stochastic Gradient Descent is used as optimiser applied on mini-batches and

including data augmentation with random rotations, translations and brightness

variations.

3.3. Whole Slide Image Gleason Scoring295

To predict the Gleason score of the WSI, it is necessary to compute the tissue

percentage of each Gleason grade present in the WSI. For that purpose, the first

step is to apply the patch-level classification (section 3.1). Then, for each pixel,

the predicted probabilities for each class is estimated by bilinearly interpolating

the predicted probabilities of the closest patches in terms of euclidean distance300

to the center of the patches. Thus, a probability map per class (i.e NC, GG3,

GG4, and GG5) is obtained per each WSI. Finally, the percentage of each

Gleason grade is calculated after assigning each pixel the class, c, with the

highest probability.

The pathologist’s decision making while assigning a Gleason score to a WSI305

takes into account both the percentage of each Gleason grade and the sever-

ity of each grade. To model this process, we propose to train a Multi-Layer

Perceptron (MLP ) to automatically predict the combined Gleason scoring of

a biopsy, by means of a multi-class classification task. This task requires the

prediction of both primary and secondary Gleason grades. To address it, MLP310

is selected as a suitable classifier, due to its flexibility to adapt the architec-

ture to perform a multi-output classification. The proposed MLP architecture

consists of a branch with two outputs (see Figure 6). The branch is composed

of two fully-connected layers with 16 and 8 neurons respectively, and ReLU as

activation function. The branch is then divided into two output layers: one315

for the primary Gleason grade and one for the secondary grade. These output

layers are composed of four neurons each, one neuron per target class (i.e. NC,

GG3, GG4 or GG5) and soft-max as activation function. The loss function used

is the categorical cross-entropy.

16



Figure 6: Proposed Multi-Layer Perceptron (MLP ) for the whole slide image Gleason scoring.

The model takes as input the percentage of each Gleason grade in the whole slide image,

and is composed by a main branch with two fully-connected layers and two outputs. The

intermediate layers consist of 8 and 16 neurons respectively and ReLU as activation function.

The output layers present one neuron per target class and soft-max activation. NC: non

cancerous, GG3: Gleason grade 3, GG4: Gleason grade 4, GG5: Gleason grade 5.

4. Experiments320

In this section we present the results of the different experiments carried out

to show the performance of the proposed approach for the different classification

tasks: patch-level classification, cribriform pattern detection and WSI scoring.

In all cases, when possible, we also present a comparison with current state of

the art methods and discuss the obtained results.325

4.1. Database Partitioning and Metrics

In order to train the models and optimise the hyperparameters involved in

this process, the database was divided following a cross-validation strategy. In

particular, each patient was exclusively assigned to one fold with the aim of
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avoiding overestimation of the performance of the system [21] and ensuring330

its ability of generalisation. Thus, the database was divided into 5 groups

containing approximately 20% of the patches each one. Notice that this process

was carried out trying to guarantee the class balance character between sets. A

summary of the resulting partition is presented in Table 3.

Table 3: Database partition description: number of patients-patches for each grade in each

validation fold (4-fold cross-validation) and test subset.

Patients - Patches

Group Non Cancerous GG3 GG4 (Cribriform) GG5

Cross-validation

1 2 - 685 3 - 625 11 - 979 (237) 2 - 198

2 1 - 717 4 - 346 10 - 950 (41) 2 - 153

3 1 - 644 9 - 361 7 - 670 (126) 2 - 118

4 1 - 1727 8 - 497 9 - 1042 (214) 2 - 247

Test 4 - 644 6 - 393 9 - 853 (145) 2 - 232

Notice that four of the five sets were used to tune the hyper-parameters335

involved in the developed algorithms while the remaining partition was employed

to test the final predictive system. For the evaluation of the patch-level Gleason

grade prediction, a cross-validation strategy was used with the four validation

cohorts, while for the WSI-level prediction of Gleason scores those sets were

joined to apply a leave-one-out strategy per patient in training.340

In order to objectively evaluate the performance of the trained models the

following metrics were used: accuracy, F1-score, and Cohen’s quadratic kappa

statistic. The accuracy (ACC) is defined as the percentage of samples correctly

classified. Nevertheless, this metric does not provide information about the

performance of the model for each class. This information was quantified by345

utilising the F1-score (F1S), a combination of precision and sensitivity per class

computed as follows:
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F1Sc = 2× precisionc × sensitivityc
precisionc + sensitivityc

(2)

Cohewhere c indicates the predicted classes.

However, an automatic method should be less penalised when classifying a

GG5 tissue as GG4 than as NC, even more so when taking into account the inter350

and intra-observer variability. In the literature, this fact is addressed using the

Cohen’s quadratic kappa (κ) metric [33]. The metric κ ranges from −1 to 1,

being directly proportional to the level of agreement between observers (-1 no

agreement, 1 total agreement). Although there is not objective interpretation of

which are the reasonable values for κ in medical applications, recent proposals355

[34] define a moderate agreement if κ is higher than 0.6, while a strong agreement

is stated when κ is higher than 0.8.

The patch-level Gleason grading models are evaluated using all the afore-

mentioned figures of merit.

In order to evaluate the system for the detection of cribriform patterns,360

the area under the Receiver Operating Characteristic (ROC) curve (AUC) was

used. In medical applications, a system is considered reliable if the AUC value

exceeds 0.80 [35]. The predicted labels are obtained by thresholding the scores

(cribriform if the probability is above 0.5), and then evaluated by means of

ACC, sensitivity and specificity.365

Regarding the evaluation of the WSI-level Gleason scoring, the Cohen’s

quadratic kappa was used.

4.2. Patch-Level Gleason Grading

In the case of the patch-level Gleason grading model, in this section besides

the obtained results using SICAPv2 database, we also discuss its performance370

in an external database.

4.2.1. FSConv Architecture Benchmarking

After optimising the hyperparameters (learning rate, batch size, number of

epochs, etc.), table 4 shows the obtained results in the validation sets for the
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proposed network FSConv with different top models: fully-connected layers375

(FC), global-max pooling (GMP), global-average pooling (GAP), or a combina-

tion of them (GAP+FC or GMP+FC). Table 4 also presents the results for the

best tested fine-tuned architectures, VGG19 and RestNet, using the same top

models as FSConv. The optimum hyperparameters were: learning rate of 0.01

for FSConv and 0.0001 for the finned-tunned networks, batch size of 32 images380

and 200 epochs in all cases. The base model of the fine-tuned networks were

also optimised, being selected to freeze the first convolutional block for VGG19

and setting all layers as trainable for RestNet. Futhermore, Table 5 presents a

comparison in terms of storage space (in kilobytes, KB) and number of trainable

parameters of each architecture.385

Table 4: Results for patch-level Gleason grades prediction in the validation set. The perfor-

mance of the different models ResNet, VGG19 and FSConv are presented with the different

configurations of top models. The metrics presented are the accuracy (ACC), the F1-Score

(FS1), computed per class and its average, and the Cohen’s quadratic kappa (κ). GMP:

global-max pooling, GAP: global-average pooling and FC: fully-connected layers.

Experiment ACC F1S Avg-F1S κ

NC GG3 GG4 GG5

VGG19+FC 0.7218± 0.0411 0.8871± 0.0178 0.6639± 0.0509 0.6041± 0.1694 0.5206± 0.0996 0.6689± 0.0650 0.7346± 0.0324

VGG19+GMP 0.7213± 0.0542 0.8729± 0.0207 0.6480± 0.0609 0.6032± 0.1673 0.5450± 0.0943 0.6673± 0.0766 0.7174± 0.0641

VGG19+GMP+FC 0.7273± 0.0424 0.8860± 0.0194 0.6821± 0.0633 0.6093± 0.1508 0.5313± 0.0820 0.6772± 0.0651 0.7474± 0.0648

VGG19+GAP 0.7306± 0.0460 0.8814± 0.0267 0.6434± 0.0961 0.6530± 0.1164 0.5138± 0.0847 0.6729± 0.0472 0.7175± 0.0730

VGG19+GAP+FC 0.7246± 0.0485 0.8795± 0.0130 0.6905± 0.0601 0.6099± 0.1542 0.5216± 0.1185 0.6754± 0.0724 0.7179± 0.0623

ResNet+FC 0.6952± 0.0316 0.8383± 0.0151 0.6670± 0.0753 0.5726± 0.1271 0.4845± 0.0534 0.6406± 0.0550 0.6811± 0.0463

ResNet+GMP 0.6879± 0.0380 0.8368± 0.0181 0.6424± 0.0729 0.5567± 0.1315 0.5069± 0.0739 0.6357± 0.0609 0.6780± 0.0330

ResNet+GMP+FC 0.6991± 0.0220 0.8458± 0.0137 0.6748± 0.0811 0.5521± 0.1230 0.4925± 0.4925 0.6413± 0.0440 0.6890± 0.0534

ResNet+GAP 0.6965± 0.0269 0.8487± 0.0131 0.6777± 0.0834 0.5455± 0.1240 0.5019± 0.0405 0.6434± 0.0552 0.6927± 0.6927

ResNet+GAP+FC 0.7024± 0.0287 0.8471± 0.0075 0.6826± 0.0890 0.5556± 0.1268 0.5184± 0.0523 0.6509± 0.0557 0.6982± 0.0427

FSConv+FC 0.7330± 0.0303 0.8395± 0.0437 0.6503± 0.0229 0.6964± 0.0606 0.5441± 0.1294 0.6826± 0.0207 0.6809± 0.0273

FSConv+GMP 0.7622± 0.0075 0.8766± 0.0167 0.7277± 0.0228 0.7093± 0.0540 0.5364± 0.1062 0.7125± 0.0251 0.7328± 0.0465

FSConv+GMP+FC 0.7286± 0.0610 0.8724± 0.0341 0.6955± 0.0374 0.6317± 0.2017 0.4529± 0.0379 0.6631± 0.0592 0.7200± 0.0405

FSConv+GAP 0.5317± 0.0886 0.6830± 0.0805 0.3228± 0.2408 0.4418± 0.2587 0.3391± 0.1835 0.4467± 0.1501 0.4153± 0.2376

Regarding the results obtained in the fine-tuned models, the use of archi-

tectures with residual blocks provided slightly worse results than the sequential

approach, similarly as the previous results reported in the literature where se-

quential models used to outperform residual ones [17, 19, 20]. In relation to

the use of different top models, no differences were found in the accuracy of the390

fine-tuned architectures, observing similar results for all of them.
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Table 5: Number of parameters and memory usage of the different CNN architectures tested

for the patch-level Gleason grading task. KB: kilobytes.

Experiment Storage Space (KB) Trainable Parameters

VGG19+FC 180700 46203652

VGG19+GMP 78290 19987716

VGG19+GMP+FC 79832 20380676

VGG19+GAP 78289 19987716

VGG19+GAP+FC 79833 20380676

ResNet+FC 496022 126822916

ResNet+GMP 92579 23542788

ResNet+GMP+FC 97170 24716036

ResNet+GAP 92580 23542788

ResNet+GAP+FC 97179 24716036

FSConv+FC 104899 26846212

FSConv+GMP 2486 630276

FSConv+GMP+FC 4026 1023236

FSConv+GAP 2485 630276

In relation to FSConv architecture, interesting results were obtained while

testing the use of different top models. The best performing architecture to

validate the system is the one with global-max pooling, FSConv+GMP. The

outperforming of the global-max pooling compared to the fully-connected con-395

figuration could be explained by the reduction in the number of weights to be

optimised (see Table 5), making the model simpler and more capable of gener-

alising to new images, and by the invariance to the pattern location provided

by the global-pooling operations. However, the FSConv model did no converge

properly using global-average poling in the top model (FSConv+GAP), an ef-400

fect non observed in the case of fine-tuned architectures. The explanation of

this behaviour could be related to the receptive field of the model. The recep-

tive field is defined as the region of the image involved in the cross-correlation
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operation resulting in one output element in the activation map. As FSConv is

a shallow architecture, the final receptive field (i.e. in the last convolution layer)405

is limited, and then the extracted features are more local than the obtained by

deeper architectures. Then, if the pattern to be detected is just located in a

small portion of the tissue, the activation could be masked in the global aver-

age. This effect is not present in deep networks with a large receptive field as

the VGG19 or ResNet, and it could explain the similar behaviour of both top410

models for the pre-trained networks. Therefore, the use of top models based on

global-max pooling in shallow architectures allows to extract relevant features

to train models from scratch reducing the number of trainable parameters of

the model and increasing its robustness against size and location variability of

the region of interest.415

Paying attention to Table 4 and taking into account all the figures of merit,

we conclude that FSConv+GMP configuration is the best performing one for

the patch-level Gleason grading. In the validation set used, this model outper-

forms the VGG19+GMP+FC architecture in terms of accuracy (0.7622 com-

pared to 0.7273) and average F1-score (0.7125 against 0.6772). Furthermore,420

the FSConv+GMP model performs specially well when distinguishing between

GG3 and GG4, the most difficult task in the pathologists’ work, reaching F1-

scores of 0.7277 and 0.7093 respectively (see Table 4). This is the first time

in the literature that self-defined architectures trained from scratch outperform

fine-tuned architectures from the state-of-the-art pre-trained in Imagenet for425

Gleason grading. Moreover, the reduced amount of parameters (2 × 107 in

the VGG19+GMP+FC model against 6 × 105 in the FSConv+GMP model,

see Table 5), makes more convenient the FSConv architecture for deployment.

Thus, the model FSConv+GMP was trained using all the images in the cross-

validation sets in order to evaluate its performance in the external test cohort.430

The results of the proposed model for the test set and a comparison of

them with previous state-of-the-art works are reported in Table 6. κ value

increases up to 0.77 in the test subset for FSConv+GMP. In comparison with

previous studies, our results outperform the state of the art, obtaining almost a
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strong agreement between our model and the pathologist, while just moderate435

agreement (κ = 0.55 [19]) was obtained previously in the test set. Figure 7 shows

the performance evaluation of FSConv. In particular, the confusion matrix for

validation and test subsets are presented. From this figure, it can be observed

that most of the errors occur between adjacent classes.

Table 6: Results for the patch-level Gleason grading in the test set for the model

FSConv+GMP and comparison with previous literature. The metrics presented are accu-

racy (ACC), F1-Score (1S), computed per class and its average, and Cohen’s quadratic kappa

(κ). Note that for the results reported in previous literature not all the metrics were reported.

GMP: global-max pooling.

Experiment ACC F1S Avg-F1S κ

NC GG3 GG4 GG5

FSConv+GMP Test 0.67 0.86 0.59 0.54 0.61 0.65 0.77

Arvaniti et al. [19]
Validation - - - - - - 0.67

Test - - - - - - 0.55

Nir et al. [21] Validation - - - - - - 0.61

(a) (b)

Figure 7: Confusion Matrix of the patch-level Gleason grades prediction done by FSConv

network in (a) validation set and (b) test set.

4.2.2. Model Interpretation440

One of the main drawbacks of deep learning models in medical practice is

the lack of interpretability. This fact creates distrust in the clinicians, the final
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users of CAD systems. To deal with this problem, in this research we study the

interpretability of the trained models by means of the Class Activation Maps

technique (CAMs). Both VGG19+GMP+FC (the best fine-tuned model) and445

FSConv+GMP models are compared in this section using CAMs.

This technique was proposed in [36] as a procedure to obtain a heatmap

indicating the regions of the input image to which the model is paying attention

to predict certain class. CAMs for both models are obtained for images correctly

classified (see Figure 8) and for images miss-classified by the VGG19 model (see450

Figure 9). These illustrations are organised as follows: the first row corresponds

to the original patch, and the second and third rows show the CAMs for VGG19

and FSConv models, respectively. In Figure 8 each column shows an example

per class: NC, GG3, GG4 and GG5 accordingly. The main difference in the

results obtained by VGG19 and FSConv is the best differentiation between455

GG3 and GG4 by the second model (see Table 4), the most difficult task in the

pathologists’ work. In Figure 9 three of those cases are presented in each column:

two cases predicted by the VGG19 as GG3 and one as GG5, respectively. Those

cases were correctly classified as GG4 by FSConv model.

CAMs obtained for VGG19 in NC, GG3 and GG4 show that the model is460

basing the decision in glandular regions detected and classified correctly. In the

case of GG5, the highlighted region presents a group of single cells and infiltrat-

ing cords without lumen formation, characteristic patterns of poor differentiate

tissue in GG5. In the case of FSConv architecture, the CAM heatmap does not

detect large regions, but small dots instead. Although the glandular regions are465

not detected, paying attention to the position where the dots are pointing at,

we can extract interesting insights (see Figure 8). In the case of GG4, the map

is activated in a small nest belonging to a fused-glands structure with irregular

cribriform shape. Regarding the GG3 image, the dot indicates thick cytoplasm

in different medium-sized tubular glands. In the image marked as GG5, the470

CAM highlights single isolated cells with hyperchromasia. Less interpretable is

the CAM obtained in the NC image, where any gland is detected. We speculate

that the model carries out this classification by dismissing the presence of cancer-
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(a) (b) (c) (d)

Figure 8: Original image (first row) and Class Activation Maps (CAMs) obtained by the

VGG19 model (second row) and the FSConv network (third row) in four images correctly

classified. Non-Cancerous (a), Gleason grade 3 (b), Gleason grade 4 (c) and Gleason grade 5

(d).

ous patterns. Regarding the cases where VGG19 miss-classifies GG4 in Figure

9, a correct detection of the regions of interest is observed. However, these glan-475

dular regions are not correctly classified as GG4, while FSConv model does

it just paying attention to closed lumens in small ill-formed glands. At this

stage of understanding, we believe that this fact is the cause of the different

performance by both models. VGG19 focuses the prostate cancer detection on

detecting epithelial and glandular regions, and these structures present a larger480

heterogeneity than its basic components (colour and size of individual glands,

diameter and opening degree of lumens in the glandular region, etc.). This could

be the reason why the VGG19 generalises slightly worse than FSConv.
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(a) (b) (c)

Figure 9: Original images (first row) and Class Activation Maps (CAMs) obtained on the

VGG19 model (second row) and the FSConv network (third row) in images with GG4 cor-

rectly classified by the FSConv. The VGG19 model classification of those cases is GG3 in

(a) and (b) and GG5 in (c).

4.2.3. Validation on External Databases

With the purpose of testing the generalization capability of the trianed485

model, FSConv net was validated on two external databases. The databases

used were shared by Arvaniti et al. [19] and Gerytch et al. [13]. The first

database is composed of 886 cores from Tissue-Micro Arrays digitised at 40×
magnification, and the second has 625 patches of prostate histology images at

20× magnification. Each core was resized to 10× resolution and a central patch490

with dimensions 5122 was extracted. For both databases, the ground truth

was generated following the procedure in [19]. Non-cancerous patches were ex-
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tracted from images with only benign structures annotated, labels GG3, GG4,

and GG5 were assigned to patches with only the corresponding grade annotated.

Examples of the obtained images from the Arvaniti et al. and Gerytch et al.495

databases are presented in the first and second rows of Figure 10, respectively.

Note that the H&E stain color images are different from those appearing in the

SICAPv2 database (see Figure 1 for examples of the images used to train the de-

veloped models). To normalise the colour distribution of the images in external

databases, the method presented in [37] was used after applying a channel-wise500

histogram matching of the external images to a SICAPv2 database reference

image. This image was selected by the expert pathologists involved in this work

based on its structural and colour properties. Then, our best performing model,

i.e. FSConv, was used to predict and evaluate our performance on the exter-

nal databases. Table 7 and Figure 11 show the obtained figures of merit and505

confusion matrices, respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Examples of patches used from the external database from Arvaniti et al. (first row)

and Gerytch et al. (second row). (a) and (e): Benign glands; (b) and (f): Patches containing

GG3 patterns; (c) and (d): Patches containing GG4 patterns; (d) and (h): Patches containing

GG5 patterns.
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Table 7: Results of the patch-level Gleason grading in the Arvaniti and Gerytch databases by

our proposed model, FSConv. The metrics presented are accuracy (ACC), F1-Score (F1S),

computed per class and its average, and Cohen’s quadratic kappa (κ).

Database ACC F1S Avg-F1S κ

NC GG3 GG4 GG5

Arvaniti et al. [19] 0.5861 0.5660 0.6858 0.4688 0.5603 0.5702 0.6410

Gerytch et al. [13] 0.5136 0.2901 0.6162 0.4990 0.4958 0.4753 0.5116

(a) (b)

Figure 11: Confusion Matrix of the patch-level Gleason grades prediction in external databases

using the proposed FSConv model. (a): Arvaniti database and (b): Gerytch database.

The obtained results in Arvaniti et al. database were slightly worse than the

ones reached in our test cohort. The macro-averaged F1 score was 0.57, while

0.65 was obtained in the test cohort (see Table 6). To the best of the authors’s

knowledge, this is the first time in the literature that a model trained for patch-510

level Gleason grading in tested on an external database. This is a challenging

task, taking into account the known inter-pathologist variability of the Gleason

grading task and the differences in the histology sample preparation. Thus, the

difference in the results could be explained by those factors. In comparison to

the results obtained in [19] on this database, the reported κ in the test subset515

was 0.55 (see Table 6), while the κ obtained by our model was 0.64. Our

proposed model outperforms the current state of the art on this set of images,

even though we used the whole database for testing, and they reported the
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result on a specific test subset.

Regarding the obtained results on the Gerytch et al. database, a macro-520

averaged F1 score of 0.47, and a κ of 0.51 were obtained. Note that the small

amount of non cancerous patches in this database (32 patches with only benign

annotation, compared to 116 in Arvaniti et al. set) could be negatively affecting

the figures of merit. Unfortunately, to the best of the authors’ knowledge, no

work has been reported on the use of the entire set of grades on this database,525

which makes the comparison impossible.

4.3. Cribriform Pattern Detection

To detect cribriform patterns in GG4 patches, FSConv trained in the Glea-

son grading stage was re-trained as specified in the subsection 3.2 with a learning

rate of 0.001 and a batch size of 32 samples during 200 epochs. The results were530

optimised freezing the weights of the convolutional filters at different depths.

Concretely, at filters conv1, conv2 and conv3 (see Table 2 for FSConv architec-

ture details). The output probability of each model was used to compute the

Receiver Operative Curve (ROC) and evaluate the Area Under Curve (AUC).

Then, probabilities were thresholded to output a positive classification when535

they are above 50%. The results obtained for the cross-validation set are pre-

sented in Table 8, and the Receiver-Operative-Curve in Figure 12 (a).

Table 8: Results in the detection of cribriform pattern in the validation set. The accuracy

(ACC), Sensitivity, specificity and area under ROC curve (AUC) are presented for the fine-

tuned FSConv model freezing up to the convolutional layers conv1, conv2 or conv3.

Experiment ACC Sensitivity Specificity AUC

conv1 0.8218± 0.0541 0.8837± 0.0525 0.5263± 0.1159 0.8172± 0.0689

conv2 0.8350± 0.0599 0.8993± 0.0436 0.5223± 0.1435 0.8225± 0.0733

conv3 0.8103± 0.0712 0.8586± 0.0650 0.5476± 0.2229 0.7965± 0.1018

The best results were obtained for the validation set by the network whose

weights were frozen up to the layer conv2. Thus, just the last layer, conv3

and the output neuron were trained. The accuracy obtained through this con-540

figuration was 0.8225, with a sensitivity and specificity of 0.8993 and 0.5223,
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(a) (b)

Figure 12: ROC curves obtained for cribriform pattern detection in samples with Gleason

grade 4.

respectively. The reached AUC was 0.8225. Slightly better results were ob-

tained by this model in the test subset. The ROC computed in the test subset

is presented in Figure 12 (b), and it encloses an AUC of 0.8240. This value is

at the permissible confidence level of systems for medical applications, above545

0.80 [35]. Although the accuracy value decreases to 0.7239, the sensitivity and

specificity are more balanced, with values 0.7168 and 0.7586, respectively. To

the best of the authors’s knowledge, this is the first time that the detection

of cribriform patterns in histology prostate images is addressed and evaluated,

so that it is not possible to establish comparison with previous works. Nev-550

ertheless, the studies comparing the inter-observer variability of the Gleason

patterns classification show the challenging character of this task. In [38] the

reproducibility in this problem was studied with 23 genitourinary pathologists.

The consensus was achieved for cribriform glands in only 23% of the cases, and

a consensus was not reached in how to classify the complex fused glands with555

cribriform shapes. We observed that the misclassified instances in our approach

were mainly due to this kind of pattern. In Figure 13 few representative exam-

ples are presented, being (d), (e), and (f) images with complex fused glands that

the model misclassified as cribriform pattern. Therefore, the results obtained
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by the model are auspicious, and its main limitation is the misclassification of560

patterns with large inter-pathologist variability.

(a) (b) (c)

(d) (e) (f)

Figure 13: Examples of the system performance in the test subset for cribriform pattern

detection. (a): True Positive, (b): True Positive, (c): True Negative, (d): False Positive, (e):

False Positive, (f): False Positive.

4.4. WSI-Level Gleason Scoring

Once the patch-level prediction is performed with model FSConv, the prob-

ability maps for each Gleason grade are obtained, as specified in the subsec-

tion 3.3. The usability of these maps in the clinical practice were qualitatively565

validated by expert pathologists with satisfactory results.

Different examples of the test subset are presented in Figures 14, 15, and 16.

These figures are organised as follows: in the first column, the WSI with pixel-

level annotations (a) and pixel-level predictions (b) are presented, while in the
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second, the heatmaps of GG3 (c), GG4 (d) and GG5 (e) are shown from top to570

bottom, respectively. The regions of interest in the WSIs are highlighted with a

higher resolution window to facilitate visualisation. The example in Figure 14 is

a biopsy with Gleason score 3+ 4 = 7, the biopsy in Figure 15 corresponds to a

3+3 = 6 sample and the case in Figure 16, 5+5 = 10. Finally, a non-cancerous

case is presented in Figure 17.575

(a) (c)

(b) (d)

(e)

Figure 14: Whole slide image level prediction of a biopsy diagnosed as Gleason Score 3+4 = 7.

(a): manual annotations, (b): system predictions. Green: GG3, Blue: GG4, red: GG5. (c):

GG3 heatmap, (d): GG4 heatmap, (e): GG5 heatmap.

In the case presented with Gleason score 3 + 4 = 7 (see Figure 14), the

GG3 and GG4 regions are correctly classified. In a subsequent review of this

case, pathologists detected that some glands in the right region without pathol-

ogist’s annotations in the ground truth and classified as GG3 by the model were
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(a) (c)

(b) (d)

(e)

Figure 15: Whole slide image level prediction of a biopsy diagnosed as Gleason Score 3+3 = 6.

(a): manual annotations, (b): system predictions. Green: GG3, Blue: GG4, red: GG5. (c):

GG3 heatmap, (d): GG4 heatmap, (e): GG5 heatmap.
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(a) (c)

(b) (d)

(e)

Figure 16: Whole slide image level prediction of a biopsy diagnosed as Gleason Score 5+5 = 10

(a): manual annotations, (b): system predictions. Green: GG3, Blue: GG4, red: GG5. (c):

GG3 heatmap, (d): GG4 heatmap, (e): GG5 heatmap.
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Figure 17: Non-cancerous biopsy without Gleason grades detected by the model.

actually cancerous patterns. Additionally, the few non-cancerous dilated and580

fusiform glands were correctly classified as non-cancerous (see Figure 14 (b),

regions of interest highlighted). Regarding the biopsy with Gleason score of

3 + 4 = 7, the model correctly detects the region with GG3 glands, but due to

the patch resolution (5122 pixels) some nearby stroma regions are highlighted

as cancerous. Finally, analysing the case with a score of 5 + 5 = 10, a papilar585

GG4 pattern is being correctly detected. The same occurs in the GG5 regions

with isolated cells and pseudorosetting patterns. Nevertheless, in regions with a

score of GS ≥ 9 some stroma regions are frequently highlighted as GG5 by the

model. This phenomenon does not occur in stroma of biopsies with GS < 9,

as can be seen in the other cases. This fact suggests that the model could be590

detecting some hidden pattern of interest in the structure of the stroma in these

regions.

Then, the percentages corresponding to each grade per WSI were obtained

as specified in the methodology (Section 3.3). The proposed architecture MLP

was then trained using as input the percentages obtained in the cross-validation595

subset. Adam optimiser was used, with a learning rate of 0.01, and a constant

decay to zero over the 2000 epochs. The batch size was 32. The training strategy
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was leave-one-out.

This proposed approach is compared with the method proposed by Arvaniti

[19] using T = 10% as minimum number of pixels with a certain label to be600

consider the corresponding grade in the WSI grading. The confusion matrix at

biopsy level obtained for both methods is presented in Figure 18, and Cohen’s

quadratic kappa (κ) was calculated as a figure of merit.

(a) (b)

Figure 18: Confusion Matrix of the whole slide image level Gleason scoring in the validation

cohorts. (a): Method proposed in [19]; (b): MLP model.

The κ value obtained for Arvaniti’s approach was 0.7693, in line with the

results presented in [19] using their own database (using TMAs), where the605

obtained κ value was 0.75. Better results were obtained with the proposed model

MLP (see Figure 18 (b)), obtaining a κ value of 0.8177. The main difference

between methods was observed in few samples misclassified as Gleason score

8 and Gleason score 10 by Arvaniti’s proposal which were correctly classified

by our model. Therefore, our proposed strategy seems to model better the610

pathologist’s decision to assign a Gleason score to the full image of the slide

than the previous scoring methodology. The results obtained in the test subset

by MLP model are similar to those obtained for the validation cohorts, with a

κ value 0.8168.
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5. Conclusions and future work615

In this work, we have proposed and validated end-to-end approaches to au-

tomatically support the pathologists analysis of prostate whole slide images.

This support includes the pixel-level prediction of Gleason grades, cribriform

patterns detection, calculation of the percentage of each grade in the tissue and

finally the scoring of the entire biopsy.620

We have compared fine-tuned state-of-the-art architectures and self-designed

convolutional neural network architectures trained from scratch for the patch-

level Gleason grades prediction. In addition, we have discussed the use of a

global-max-pooling and global-average-pooling layers in the top model for this

application. The use of global-max pooling has showed interesting properties in625

the model trained from scratch. It supports the use of shallow architectures with

a small receptive field and a reduced amount of parameters, diminishing one of

the main drawbacks of training from scratch: the over fitting to the training

set. Thus, with a concise model composed of three convolutional layers, we have

achieved the best results in our data set, reaching a Cohen‘s quadratic kappa of630

0.77 in the test images. Furthermore, by just re-training the filter weights of the

last convolutional layer, we have predicted the presence of cribriform regions in

patches with Gleason grade 4, with an AUC value of 0.82 in the test subset.

To the best of the authors’s knowledge, this is the first work contemplating the

automatic detection of cribriform patterns in prostate histology images. We635

also have studied the interpretability of the developed deep-learning models by

means of Class Activation Maps. Additionally, we have obtained probability

heat maps indicating the presence of the different Gleason grades in the whole

slide image. Finally, making use of the percentage of non-cancerous, Gleason

grade 3, 4, and 5 tissues in the biopsy we have predicted its combined Gleason640

score through a multi-layer perceptron, reaching a Cohen’s quadratic kappa of

0.8168 in the test cohort. This model reproduces better the decision-making

of the pathologist reporting the biopsy score than previous ones based on just

assigning the two first grades with a higher percentage.
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The limitations of the study naturally include the intra-observer variability645

of the annotator. This fact is not present on the trained algorithm, but it could

affect the figures of merit obtained. Additionally, the large heterogeneity inside

each Gleason grade makes difficult to balance the different folds, representing

all the different patterns of the Gleason grades in all the training and testing

groups.650

It is important to note that this work brings an important contribution to

the scientific community: the SICAPv2 database, the largest public database

containing pixel-level annotations of prostate biopsies.

Further research will focus on developing convolutional-neural-network ar-

chitectures that combine low and high-level features in the classification stage,655

as well as the inclusion in those models the prediction of all the individual can-

cerous patterns (i.e. ill-fused, papillary or large-fused) as the cribriform one, in

an end-to-end training. Furthermore, the SICAPv2 database will be enlarged

with additional annotated whole slide images.
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