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Abstract: The massive presence of online learning resources leads many students to have more
information than they can consume efficiently. Therefore, students do not always find adaptive
learning material for their needs and preferences. In this paper, we present a Conversational
Educational Recommender System (C-ERS), which helps students in the process of finding
the more appropriated learning resources considering their learning objectives and profile.
The recommendation process is based on an argumentation-based approach that selects the learning
objects that allow a greater number of arguments to be generated to justify their suitability. Our system
includes a simple and intuitive communication interface with the user that provides an explanation
to any recommendation. This allows the user to interact with the system and accept or reject the
recommendations, providing reasons for such behavior. In this way, the user is able to inspect the
system’s operation and understand the recommendations, while the system is able to elicit the actual
preferences of the user. The system has been tested online with a real group of undergraduate
students in the Universidad Nacional de Colombia, showing promising results.

Keywords: educational recommender systems; explanations; argumentation

1. Introduction

Nowadays, the increasing number of learning resources available online has encouraged the
massive development of Technology Enhanced Learning systems (TEL) [1]. TEL systems make
education accessible to anyone, regardless of where they live. Using this technology, many universities
now offer Massive Online Open Courses (MOOCs) and courses in a flipped classroom format [2].
This new teaching methodology is based on the use of TEL systems, which offer different types of
learning objects (LO, e.g., videos, tutorials) that students can consume online in a non-classroom
setting, and thus classroom sessions can be used to resolve exercises and doubts, group work, and
other activities that require the direct presence of the teacher. However, this massive availability of
LOs brings an overload problem, since students must be able to select the most suitable LOs for their
learning objectives from a large number of available LOs.

This opens new challenges for the research community on recommender systems,
where Educational Recommender Systems (ERS) is now a trending topic. By using ERS, students

Appl. Sci. 2020, 10, 3341; doi:10.3390/app10103341 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6212-9377
https://orcid.org/0000-0002-6209-9603
https://orcid.org/0000-0002-4608-281X
https://orcid.org/0000-0002-2743-6037
http://dx.doi.org/10.3390/app10103341
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/10/3341?type=check_update&version=2


Appl. Sci. 2020, 10, 3341 2 of 18

can efficiently get those LOs that are most appropriate to their educational level, learning objectives,
and learning style. The student’s learning style determines which LOs are more adequate for particular
types of students. For instance, the widely applied VARK model (http://vark-learn.com/) identifies
four distinct learning styles (i.e., Visual, Auditory, Reading, and Kinesthetic) and uses these dimensions
to determine the appropriateness of specific types of online learning resources. For instance, visual
learners rely more on diagrams, charts or graphs, while kinesthetic students learn best from simulations,
videos and movies of ’real’ things. Therefore, it is important to consider students’ learning styles while
developing online learning systems [3] and, consequently, educational recommender systems.

In [4], an ERS was presented that helps undergraduate students to find the LOs that are
more suitable for them, taking into account their profile (level of education, preferred language,
topic and format, learning style, and other personal information), learning practices (LOs that they
already used), and similarity with other students. The system is a hybrid recommendation engine that
combines computational argumentation with other several recommendation techniques (collaborative,
content-based, and knowledge-based). This technique, which selects those LOs whose recommendation
can be better supported by arguments, demonstrated being the most effective for this application.
A detailed description of the technique and the different recommender algorithms can be found in [5].

The system offers a straightforward way of generating textual explanations from arguments.
These arguments capture common inferences of human reasoning. Thus, while arguments are formal
representations for the justification of each recommendation (as elements of an argumentation theory),
explanations are textual representations of these arguments (as elements of the user interface).
These explanations are used to convince students to accept the recommendations of the system
and make use of the LO recommended.

However, online education is a tricky domain where learners’ preferences can be highly
time-variant. In addition, some students may have preferences that contradict the recommendations of
learning theories (for example, because of their usual study practices). These acquired study habits are
difficult to modify and students can quickly leave the ERS if they do not find it useful and effective for
their learning objectives. Learners can even dynamically change their learning preferences or exhibit
ad-hoc ones for specific topics or LOs.

Conversational recommender systems are particularly effective for preference elicitation through
question-asking and recommendation critiquing [6,7]. Therefore, in this paper, a new conversational
version of our system, which we call C-ERS (Conversational Educational Recommender System),
is presented. This system can interact with users, allowing them to express their opinions on the
recommendations, to specify their current preferences, and to correct the system’s wrong assumptions.
Its combination of argumentation theory, explanation generation, and conversational recommendation
provides C-ERS with powerful tools to generate effective recommendations and engage students with
the system.

To evaluate the system, it has been performed a live-user trial with a real group of undergraduate
students of the Universidad Nacional de Colombia, obtaining promising results.

2. Related Work

It has been acknowledged that online recommender approaches suffer from the cost of retraining
the model, are built to optimize online performance which does not necessarily match online user
behavior, and fail to capture preference drifts [7]. These challenges have boosted research towards the
development of continuously learning systems, such as conversational recommender systems.

Conversational Recommender Systems are usually used to quickly establish preferences for
users when we don’t know too much about the one we are recommending. This is especially helpful
to address the cold-start recommendation problem. The problem of eliciting user preferences can
be addressed through different methods like interviews-based strategies, asking the user to rate
some items, active learning, interactivity, or utilizing feedback in an online setting [7–9]. Interactive
recommenders give the user a more active role so that the recommender system can improve their
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recommendations online. There are different works that use this approach, like critique-based [10],
constraint-based [11], or dialogical recommenders [12].

Our system differs from critiquing-based recommenders since users do not critique items explicitly,
but the way of reasoning that the system has followed to propose those items. In addition, our system
is less affected by the cold-start problem, since recommendations are based on learning theories and
argumentation inferences that also apply to new users once they have logged in the system and their
learning profile is established. Furthermore, all these approaches have some kind of interactivity with
the user to try to learn more from him/her. However, this work will not only try to learn and modify
what the system knows about the user during the conversation, but in addition it will also try to
persuade the user towards the best choice using arguments and explanations.

In [13], the authors present a survey where they compare 24 interactive recommender systems
from the point of view of visualization, which is an effective approach to facilitate human perception
and understanding of what is being recommended to the user. The authors have clustered the
24 analyzed recommenders into different clusters that focus on a feature of the recommender
(transparency, justification, controllability, etc.). The feature most closely related to this work
is the ability to generate justifications. Supporting justifications is usually used to explain the
recommendations by comparing item tags with user preferences. Two examples are Tagsplanation [14]
and MovieExplain [15]. In [16,17], there are more examples of how to use justifications for recommender
systems. The way recommendations are presented to the user influence in the explanation attributes
(or metrics) that are used. These attributes are: transparency (explain how the system worked),
scrutability (which allows users to tell the system it is wrong), trust (to increase user’s confidence in
the system), effectiveness (to help users make good decisions), efficiency (to help users make decisions
faster), satisfaction (to help the user to enjoy the use of the system), and persuasiveness (to convince
users to choose the recommended item). This work focuses in the persuasiveness skills of the system
to convince users by means of arguments generated during the recommender process.

The literature on persuasion systems reports that users find suggestions from sources that have
proven to be reliable more credible [18]. Thus, the more credible a recommender system is, the more
likely are its recommendations to be accepted. However, in [19], the authors analyze how the credibility
of the system can be captured by a proper selection of its features. There are different approaches to
follow, but explanations (i.e., arguments) is an efficient way to increase the system credibility, since
they can clarify the system recommendation (the good intentions and efforts it does to provide the
user the best recommendation) to users [20]. As has been presented above, some attributes or metrics
help the user to trust more on recommendations. That is, they better accept recommendations if they
understand how they were generated by inspecting how the system works (transparency), or if they
can understand and evaluate why recommendations can be suitable to them (education). Furthermore,
it has been shown that even if the recommended items are already known, users still prefer the
system to provide explanations [21]. Explanations may also avoid bad choices. As explained in [17],
the possibility of generating a certain type (style) of explanations depends largely on the algorithm
being used and its ability to produce the information needed to generate these explanations. The styles
of explanations that C-ERS can generate are directly conditioned by the type of knowledge that the
rules of the system handle (collaborative, content-based, and knowledge-based).

Research in ERS has been very active in recent years [22–26]. Providing recommendation
techniques with insights and explanations to learners and educators has become an important
research line [1]. Argumentation theory and their tools have shown many successes in educational
domains, especially regarding the training of critical thinking for law students [27]. Recommender
systems combined with computational argumentation techniques have reported successful applications
to suggest music [28], news [29], movies [30], or content-based web search [31]. Among the
proposed systems, closer similarities exist between our approach and those proposed in [32],
a recommender system that uses defeasible logic programming to recommend movies, and [33],
a products recommender system based on the Toulmin’s argumentation theory. In the former,
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the authors resolve possible attacks between arguments by defining a pre-established criterion of
preference between rules. However, our system uses a probabilistic method to calculate the probability
of one argument prevailing over another, which makes the system more adaptable. In the latter,
the system allows for generating arguments to support the recommendation of specific items (cameras)
and their features. However, the Toulmin’s model only allows for generate claims in favor or against a
specific conclusion (the recommendation of the item), while our system allows for generating different
explanation styles from content-based, knowledge-based, and collaborative information sources and
that allow for critiquing the explanation itself and not only the recommendation.

Although the impact of explanations on the performance of recommender systems has been
proved [19], few research has been focused on the domain of educational recommender systems.
Designing recommender systems for TEL environments presents several challenges [34]. For instance,
each student learns following a different learning process, with a variety of learning methods and tools.
Our work involves a contribution in these areas by proposing a conversational ERS provided with an
argumentation framework that makes the system able to engage in a conversation with students to
help them to understand the underlying logic of the system, to elicit drifts in their preferences, and to
provide effective recommendations.

3. Conversational Educational Recommender System (C-ERS)

In this section, the recommendation and conversational functionalities of the argumentation-based
C-ERS is presented. The proposed system uses expert knowledge encoded in defeasible rules to match
user preferences with available LOs and infer suitable recommendations. Then, the system interacts
with the user to validate its assumptions by providing explanations. We refer the reader to [5] for
specific details on the recommendation algorithms and an evaluation on the performance of different
recommendation techniques in this domain.

3.1. Recommendation Process

C-ERS follows a hybrid recommendation technique that uses LOs metadata and information
extracted from the student’s profiles to compute the recommendations. Concretely, to represent LOs
the proposed system follows the IEEE-LOM standard (1484.12.1-2002—IEEE Standard for Learning
Object Metadata: https://standards.ieee.org/findstds/standard/1484.12.1-2002.html). These profiles
provide personalized information about the students, their interactivity level, the language they prefer,
some preferences about the format, their learning style ( which can be an auditory learning style,
a kinaesthetic learning style, a reader learning style, or a visual learning style), and their usage history
(see Section 4). The learning styles have been obtained using the Spanish adaptation of the VARK
questionnaire, available at [35].

This technique combines three types of recommender systems: one based on the content of the
items being recommended, one based on comparing user’s actions (called collaborative), and one
based on the knowledge of the domain [36]. This technique models this expert knowledge in a logic
program. The proposal of this work is to use a formalism based on defeasible argumentation (which is
founded on logic programming, similar to DeLP[37]) to implement the logic of the recommendation
system and build arguments to endorse the recommendation of selected Learning Objects. Thus, our
C-ERS gives the users the Learning Objects that have better support by a greater number of arguments.

A defeasible logic program P = (Π, ∆) is modeled by strict knowledge (Π) and defeasible
knowledge (∆) about the domain of the application. In C-ERS, Π represents a set of facts. These facts
are strict inference rules with an empty body. In the example logic program of Table 1, lines 1
to 7 represent facts. The fact user_type(alice, visual) represents a student named ‘alice’ with a visual
learning style. This learning style means that the student has a preference for learning objects with
images or graphs such as png or jpeg, slides such as ppt, etc.

https://standards.ieee.org/findstds/standard/1484.12.1-2002.html
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Table 1. Example logic program.

1: user_type(alice, visual)
2: resource_type(LO1, slides)
3: structure(LO1, atomic)
4: state(LO1, f inal)
5: similarity(alice, paul) > α
6: similarity(LO2, LO) > β
7: vote(paul, LO1) ≥ 4
8: interactivity_type(LO1, low)← resource_type(LO1, slides)
9: appropriate_resource(alice, LO1)← user_type(alice, visual) ∧ resource_type(LO1, slides)
10: appropriate_interactivity(alice, LO1)← user_type(alice, visual) ∧ interactivity_type(LO1, low)

11:
educationally_appropriate(alice, LO1)← appropriate_resource(alice, LO1) ∧
appropriate_interactivity(alice, LO1)

12: generally_appropriate(LO1)← structure(LO1, atomic) ∧ state(LO1, f inal)
13: recommend(alice, LO1)← educationally_appropriate(alice, LO1) ∧ generally_appropriate(LO1)
14: recommend(alice, LO1)← similarity(alice, paul) > α ∧ vote(paul, LO1) ≥ 4
15: recommend(alice, LO2)← similarity(LO2, LO) > β ∧ vote(alice, LO) ≥ 4

Furthermore, the ∆ set depicts defeasible rules of the form P← Q1 ∧ . . . ∧Qk. The above rules
encode the defeasible inference that literals Q1 ∧ . . . ∧Qk can supply arguments to support the belief
in P. Several types of defeasible rules constitute the logic behind each of the recommendations of the
system. A summary of these rules and their associated explanations (explanations are commented in
Section 3.2) are shown in Table 2 (Due to readability reasons, the full set of rules are not provided).

Table 2. C-ERS Defeasible rules and Explanations.

General Rules

G1: recommend(user, LO)← cost(LO) = 0
Explanation: ‘This LO may interest you, since it is for free’
Responses:
+RG1: ’Accept’
∼RG1: ’Not sure. I don’t care about the cost’
−RG1: ’Reject. I don’t like it’

G2: recommend(user, LO)← quality_metric(LO) ≥ 0.7
Explanation: ‘This LO may interest you, since its quality is high’
Responses:
+RG2: ’Accept’
∼RG2: ’Not sure. I don’t care about the quality’
−RG2: ’Reject. I don’t like it’

Content-based Rules

C1: recommend(user, LO)← educationally_appropriate(user, LO) ∧ generally_appropriate(LO)

C1.1: educationally_appropriate(user, LO)← appropriate_resource(user, LO) ∧ appropriate_interactivity(user, LO)

C1.1.1: appropriate_resource(user, LO)← user_type(user, type) ∧ resource_type(LO, type)
Explanation: ‘This LO may interest you, since it is a [RESOURCE_TYPE], which is suitable for your
[LEARNING_STYLE] learning style’
Responses:
+RC1.1.1: ’Accept’
∼RC1.1.1: ’Not sure. Show me more reasons
−RC1.1.1: ’Reject. I prefer LOs of the type [TYPE]’

C1.1.2: appropriate_interactivity(user, LO)← user_type(user, type) ∧ interactivity_type(LO, type)
Explanation: ‘This LO may interest you, since it requires [INTERACTIVITY_TYPE] interaction, which is suitable for
your [LEARNING_STYLE] learning style’
Responses:
+RC1.1.2: ’Accept’
∼RC1.1.2: ’Not sure. Show me more reasons’
−RC1.1.2: ’Reject. I prefer LOs that require [INTERACTIVITY_TYPE] interaction’
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Table 2. Cont.
C1.2: generally_appropriate(LO)← structure(LO, atomic) ∧ state(LO, final)
Explanation: ‘This LO may interest you, since it is self-contained’
Responses:
+RC1.2: ’Accept’
∼RC1.2: ’Not sure. I do not care that the LO is not self-contained’
−RC1.2: ’Reject. I don’t like it’

C2: recommend(user, LO)← educationally_appropriate(user, LO) ∧ generally_appropriate(LO) ∧ technically_appropriate(user, LO)

C2.1: technically_appropriate(user, LO)← appropriate_language(user, LO) ∧ appropriate_format(LO)

C2.1.1: appropriate_language(user, LO)← language_preference(user, language) ∧ object_language(LO, language)
Explanation: ‘This LO may interest you, since it suits your language preferences: [OBJECT_LANGUAGE]’
Responses:
+RC2.1.1: ’Accept’
∼RC2.1.1: ’Not sure. Show me more reasons’
−RC2.1.1: ’Reject. I prefer LOs in [LANGUAGE]’

C2.1.2: appropriate_format(LO)← format_preference(user, format) ∧ object_format(LO, format)
Explanation: ‘This LO may interest you, since it suits your format preferences: [OBJECT_FORMAT]
Responses:
+RC2.1.2: ’Accept’
∼RC2.1.2: ’Not sure. Show me more reasons’
−RC2.1.2: ’Reject. I prefer LOs with format [OBJECT_FORMAT]’

C3: recommend(user, LO)← educationally_appropriate(user, LO) ∧ generally_appropriate (LO) ∧ updated(LO)

C3.1: updated(LO)← date(LO, date) < 5 years
Explanation: ‘This LO may interest you, since it is updated’
Responses:
+RC3.1: ’Accept’
∼RC3.1: ’Not sure. I do not care that the LO is not updated’
−RC3.1: ’Reject. I don’t like it’

C4: recommend(user, LO)← educationally_appropriate(user, LO) ∧ generally_appropriate(LO) ∧ learning_time_appropriate(LO)

C4.1: learning_time_appropriate(LO)← hours(LO) < γ

Explanation: ‘This LO may interest you, since it suits your learning time preferences (less than [γ] hours to use it)’
Responses:
+RC4.1: ’Accept’
∼RC4.1: ’Not sure. I do not care about the learning time required to use it’
−RC4.1: ’Reject. I don’t like it’

Collaborative Rules

O1: recommend(user, LO)← similarity(user, userk) > α ∧ vote(userk , LO) ≥ 4
Explanation: ‘This LO may interest you, since it likes to users like you’
Responses:
+RO1: ’Accept’
∼RO1: ’Not sure. Show me more reasons’
−RO1: ’Reject. I don’t like it’

Knowledge-based Rules

K1: recommend(user, LO)← similarity(LO, LOj) > β ∧ vote(user, LOj) ≥ 4
Explanation: ‘This LO may interest you, since it is similar to another LO that you liked ([LOj])’
Responses:
+RO1: ’Accept’
∼RO1: ’Not sure. Show me more reasons’
−RO1: ’Reject. I don’t like it’

For instance, in Table 1, lines 8 to 13 represent content-based rules that make recommendations
for the student based on its profile. Then, an example of a rule that shows how the recommendation
system chooses the learning object LO1 as the most suitable for alice is appropriate_interactivity(alice,
LO1)← user_type(alice, visual) ∧ interactivity_type(LO1, low). This is due to the fact that alice has a
visual learning style and LO1 has been labeled as a learning object with low interactivity, which fits
with a learning style of type visual.
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In addition, line 14 represents a collaborative rule that takes information from the students’ profile
to calculate a similarity degree among them and recommends an LO that was suitable for a similar
student paul.

Finally, line 15 represents a knowledge-based rule that uses information about other LO which
the user has already evaluated previously to make a recommendation of a similar LO: LO2. Note
that, although the fact vote(alice, LO) ≥ 4 does not appear in the example logic program, in the
proposed defeasible argumentation, formalism is not assumed negation as failure. We follow
the approach of extended logic programming for non-monotonic reasoning, as proposed in [38],
by allowing, in addition to negation as failure, a second, explicit form of negation, written as ∼.
Therefore, the non-existence of a fact does not prevent the triggering of those rules that include it
and, hence, the knowledge-based rule of line 5 can be used to generate an argument that supports
the recommendation of LO2. Afterwards, rules can be defeated by the inclusion of new knowledge in
the system.

The program that represents the logic of the C-ERS can be queried to resolve if an argument
that supports a specific recommendation can be derived. Thus, when a recommendation of LOs for a
certain student is submitted to C-ERS, it attempts to derive every recommend(user, LO) defeasible rule by
backward chaining facts and defeasible rules and applying a mechanism similar to the SLD (Selective
Linear Definite) derivation of standard logic programming. Next, it is presented how arguments are
defined in this framework, since C-ERS has the ability to produce an argument that supports the literal
that can be derived from each defeasible rule:

Definition 1 (Argument). An argument A for h (〈h,A〉) is a minimal non-contradictory set of facts and
defeasible rules that can be chained to derive the literal (or conclusion) h.

For instance, it can be derived from the program represented in Table 1 two arguments that support
the recommendation of LO1 to alice (Arg1 = 〈 recommend(alice, LO1), {educationally_appropriate(alice,
LOk), generally_appropriate(LOk)} 〉 and Arg2 = 〈 recommend(alice, LO1), {similarity(alice, paul) >
α, vote(paul, LO1) ≥ 4} 〉). Moreover, other arguments to support the suitability of LO1 for alice can
be derived. Some examples of such arguments would be: educationally_appropriate(alice, LO1),
{appropriate_resource (alice, LO1), appropriate_interactivity(alice, LO1)}. In addition, it can
be also derived one argument that supports the recommendation of LO2 to the student alice
(Arg3 = 〈 recommend(alice, LO2), {similarity(LO2, LO) > β, vote(alice, LO) ≥ 4} 〉).

In our argumentation formalism, an argument can receive an attack from other arguments that
rebut them (for instance by proposing the opposite conclusion) or undercut them (i.e., by attacking
clauses of their body). Following the example above Arg1 and Arg2 attack Arg3 while Arg3 attacks
Arg1 and Arg2.

Definition 2 (Attack). An argument 〈q,B〉 attacks argument 〈h,A〉 if we can derive ∼ h from B or if q
implies that one of the clauses ofA does no longer hold (there is another argument 〈h1,A1〉 used to derive 〈h,A〉
such that Π ∪ {h1, q} is contradictory).

Attacks between arguments are addressed through the use of a measure of probability that
calculates the likelihood of an argument succeeding based on the aggregated probability of the facts
and clauses in the body of the rules employed to build the argument. Therefore, C-ERS uses a
simplified probabilistic argumentation framework that maps values of probability to the arguments and
then aggregates such values to calculate a suitability score for classifying and recommending LOs [39].

Definition 3 (Argumentation Framework). An argumentation framework is defined in C-ERS as the tuple
(Arg, PArg, D) where Arg is a set of arguments, D ⊆ Arg× Arg is a defeat relation, and PArg :→ [0 : 1]
represents the probability that an argument holds.
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To calculate the probability of an argument Arg (where Arg = 〈h,A〉):

PArg =


1 if A ⊆ Π

k

∑
i=1

PQi

k
if A ⊆ ∆ | h← Q1, . . . , Qk

(1)

A fact has probability of 1. You can compute the probability of a defeasible rule as the mean of
the probabilities for the literals Q1, . . . , Qk that form their body. For instance:

• 1← if they are facts.
• 0← if it is not possible to be solved.
• PQi ← if they are derived from other defeasible rules.

The suitability value of a recommendation is then calculated as the product of the probabilities of
all its supporting arguments.

Definition 4 (Defeat). An argument defined as 〈q,B〉 defeats another argument 〈h,A〉 in C-ERS if B attacks
A and PB > PA.

For instance, Arg1 and Arg2 would have probability 1 and Arg3 probability 0.5 (since we have no
information on the vote that alice assigned to LO in the past and the fact vote(alice, LO) ≥ 4 cannot be
resolved). Therefore, following the above defeat relation, Arg1 and Arg2 would defeat Arg3 and LO1

would be recommended to alice. Otherwise, if different arguments to support the recommendation of
different LOs would still hold at the end of the recommendation process, such LO with the greatest
suitability value would be recommended.

3.2. Conversational Process

As pointed out in Section 1, an extra benefit from our argumentation-based recommendation
technique is the straightforward way to generate explanations from arguments. These explanations are
justification texts that can be offered to the user to persuade them to try certain LOs and to explain why
the system has proposed a specific LO. With each explanation, the user can interact with the system by
selecting one of the three possible pre-defined responses (one to accept the explanation and hence the
recommendation, one to ask for more justifications, and another one to reject the recommendation).
Thus, the current version of C-ERS implements a constrained mode of user interaction that does not
provide a natural language interface.

Table 2 shows an example of the explanations that the system is able to generate. Note that the
system do not provide explanations for all arguments that the system is able to generate from rules,
but only for those rules that represent ’leafs’ in the rule tree. These represent the deeper clauses that
more general ’recommendation’ rules aggregate to support recommendations. This simple design
decision allows us to reduce the complexity of the dialogue and to improve the system’s expressiveness.

In addition, the natural order to perform the backward chaining of rules and facts to derive
arguments that support recommendations allows us to establish a conversational process between
the C-ERS and the user. By this process, the system is able to elicit the actual preferences of the user
and allows him/her to correct the system’s wrong assumptions. Concretely, the following priority
orderings have been established for rules and their associated explanations (as a result of the possible
combinations among the different types of rules):

• P1: First, show arguments that suit the student profile and preferences (CONTENT-BASED
ARGUMENTS): C1.1.1 > C1.1.2 > C1.2 > C2.1.1 > C2.1.2 > C3.1 > C4.1 > K1 > O1 > G1 > G2
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• P2: First, show arguments that suit the profile and preferences of similar users
(COLLABORATIVE ARGUMENTS): O1 > C1.1.1 > C1.1.2 > C1.2 > C2.1.1 > C2.1.2 > C3.1 >

C4.1 > K1 > G1 > G2
• P3: First, show arguments that suit the usage history of the users (KNOWLEDGE-BASED

ARGUMENTS): K1 > C1.1.1 > C1.1.2 > C1.2 > C2.1.1 > C2.1.2 > C3.1 > C4.1 > O1 > G1 > G2
• P4: First, show arguments that justify the format of the object (GENERAL ARGUMENTS):

G1 > G2 > C1.1.1 > C1.1.2 > C1.2 > C2.1.1 > C2.1.2 > C3.1 > C4.1 > K1 > O1

Figure 1 illustrates the sequence of explanations that the system shows, depending on the rules
that have been triggered to generate arguments for the recommendations and the decisions made by
the user in each step of the dialogue.
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Figure 1. Steps of the conversational dialogue between the C-ERS and the user.
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4. Evaluation

To evaluate C-ERS, an online evaluation to demonstrate the ability of the system was performed:

1. To provide effective recommendations that suit the students’ profile and learning
objectives (effectiveness).

2. To persuade students to try specific LOs (persuasiveness).
3. To elicit the actual preferences of the user by allowing him/her to correct the system’s

assumptions (scrutability).

4.1. Methodology

For the evaluation tests of our C-ERS, a prototype was implemented that uses 75 LOs from FROAC
(Federation of Learning Objects Repositories of Colombia). These LOs include learning materials from
computer science such as database, systems, algorithms, programming, etc. The LOs are also provided
with metadata that represents information about the title, description, keywords, type, language,
format, and interactive level. All learning objects were in Spanish and 20% of them also had an
English version.

The tests were performed by a group of 50 bachelor degree students in Computer Science of
the Universidad Nacional de Colombia. The students signed an informed consent to participate.
During the registration, the system requested from these students information about their topics of
interest (interest keywords) and level of education (years as bachelor degree student). They also
completed a test to determine their appropiate learning style. Thus, the system was able to register the
next features for each student:

• Personal data: ID, name, surname, sex, date of birth, nationality, city of residence, address,
language, phone, and mail.

• Student’s educational preferences:

– Interactivity level: high human–computer interaction LOs (preferred by nine students),
medium human–computer interaction LOs (preferred by 38 students), or LOs that focus on
presentation of content (preferred by three students).

– Preferred language: all students mother tongue was Spanish, and thus all preferred LOs
in Spanish.

– Preferred format: jpeg was selected by nine students, mp4 by eight students, pd f by
31 students, and ’other formats’ by two students.

• Learning Style: to model the learning style of each student, it was followed the VARK
(http://vark-learn.com/) model. The model classified 25 as visual students, 6 as auditory, 12 as
reader, and 7 as kinesthetic.

• History of uses: for each LO ranked by the student, the system stores its ID, the rating assigned,
and the date of use.

After the registration, the evaluation tests were performed as follows. Each student participated
in 10 recommendation processes, where the system recommended LOs that match his/her profile for a
specific search (a list of specific keywords). As pointed out in Section 3.2, the system could follow four
different argumentation strategies, which result in different orderings to show arguments (see Figure 1
for details on which arguments succeed to others). In the recommendation processes, the system was
settled to follow the following prioriority orderings:

• Recommendation processes 1–2: P1 (show content-based arguments first)
• Recommendation processes 3–4, P2 (show collaborative arguments first)
• Recommendation processes 5–6, P3 (show knowledge-based arguments first)
• Recommendation processes 7–8, P2 (show general arguments first)

VARK Model:
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• Recommendation processes 9–10, random

Among these recommendation processes, the system computed the best top five recommendations
(those with the largest number of generated arguments) and provided the student with the best of the
list (the one with the more arguments generated). Then, the student had to provide an initial rating for
the LO recommended.

Furthermore, for 5 out of these 10 recommendation processes (even recommendation processes,
i.e., 2, 4, 6, 8, 10), the system showed an explanation for the LO recommended. When no explanation
was provided (odd recommedantion processes), the system’s interface allowed the student to ’Accept’
the recommendation, ’Reject’ it, or ’Ask for a justification’. When an explanation was provided,
the student could ’Accept’ the LO, ’Reject’ the LO, or else, ’Reject’ the explanation (and hence,
the underlying argument).

When the student accepted or rejected the recommendation at the fist step of the recommendation
process, he/she was able to run the next recommendation process of the evaluation tests. When the
student rejected the argument (and its underlying explanation), different situations could arise. On the one
hand, the explanation could be rejected just because it was not sufficiently convincing for the student
and he/she asked for further explanations (e.g., ’Not sure. Show me more reasons’ or ’Not sure. I do not
care that the LO is not updated’ in Figure 1). In this case, the next available argument (if any) was used to
generate a new explanation in a second step of the recommendation process. If the student rejected the
explanation again, a new one was provided in a new step of the recommendation process and so on
until he/she accepted or rejected the LO or there were no longer available arguments. In that case,
the recommendation was just rejected.

On the other hand, the explanation could be rejected due to the content of the explanation
itself, which may include errors or outdated information in the system’s assumptions about the
student’s preferences (e.g., ’Reject. I prefer LOs of the type [RESOURCE_TYPE]’ or ’Reject. I prefer LOs
in [SPECIFIC_LANGUAGE]’). This entails a change in the profile of the student and the system
had to compute again the recommendations taking this new information into account (which
yielded to the next recommendation process, if the student had not already completed the 10
recommendation processes).

Finally, at the end of each recommendation process (after all possible steps), the student was
urged to revise his/her initial rating and change it if desired. With these evaluation tests, a database of
472 ratings was obtained from the total number of 500 recommendation processes (50 students × 10
recommendation processes each). An schema of this process is shown in Figure 2.

4.2. Results

The experiments evaluated the effectiveness of C-ERS to provide recommendations that
suit the students’ profile and learning objectives. The advantages of the argumentation-based
recommendation over other approaches in this domain, such as content-based, collaborative filtering,
and knowledge-based, was previously demonstrated in our previous work [4]. Therefore, we do not
intend to evaluate the whole learning process of students, as proposed, for instance, in Kirkpatrick’s
model [40], which tries to evaluate the learning process from reaction, to learning, to behavior, and to
organisational performance. Here, we just focus on Kirkpatrick’s level 1, evaluating the reaction of the
students to the learning objects proposed by the system. As shown in Figure 3, for all recommendation
processes, we computed the average of original ratings that students provided to the learning objects
that the system recommended to them in two separated groups, the average rating of the learning
objects that were provided in recommendation processes were explanations were shown (’With
Argument’ in the figure), and the average rating to those learning objects that were provided in
recommendation processes where the system did not show any explanation (just the object, ’Without
Argument’ in the figure). In addition, 25th and 75th percentiles are marked by the boundaries of the
boxes, and the average ratings by dots.
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Figure 2. Schema followed by the described experiment.

Figure 3. Average ratings provided by the students without and with arguments and their
associated explanations.

Moreover, Figure 4 shows exactly how often each rating was chosen. As we can see in the figures,
students provided higher ratings to those LOs that presented explanations, which demonstrates the
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advantages of using explanations to offer effective recommendations. Furthermore, the number of
highly rated objects (3 to 4) increased when they came with explanations.

Figure 4. Histogram with the rating comparison between students without and with arguments.

We consider as a baseline the case in which students do not receive explanations attached to
the recommendation (without argument), since the hypothesis to be demonstrated is that the ratings
assigned to ’justified’ recommendations are higher, in other words that students are more satisfied
when they understand the reason why the system provides them with a specific recommendation.
On the data shown in Figure 3, the tests of statistical significance show a p-value of 0.0046 and g of
Hedges of 1.27 (effect size significant for samples with different variances −1.21 without arguments;
1.64 with arguments), which demonstrate the significance of the results obtained.

In Figures 5 and 6, experiments also evaluated the average ratings provided by the students
for each priority ordering to show the explanations, and how often each rating was chosen for each
priority ordering. As depicted in the figures, all priority orderings seem to have a similar performance,
with a slight increase in the average rating and in the quantity of LOs that got better ratings for P3
(first show arguments that suit the usage history of the users).

Figure 5. Average ratings provided by the students for each priority ordering to show the explanations.
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Figure 6. Histogram with the rating comparison between students for each priority ordering to show
the explanations.

To evaluate the persuasive power of C-ERS, the initial rating provided by the student to LOs and the
final one after the ’conversation’ between the system and the student were compared. Figure 7 shows
the average percentage of decreased, improved, and unchanged ratings throughout the conversational
recommendation process (from the 1st iteration to the end). As illustrated in the figure, a wide
percentage of ratings were improved by the interchange of explanations between the C-ERS and the
student, which demonstrates the persuasive power of explanations to improve the opinion of students
about the LOs recommended.

Figure 7. % of decreased, improved, and unchanged ratings in the conversation (from the 1st iteration
to the end).

In addition, Figure 8 shows the average percentage of students that accepted the recommendation
in the 1st iteration (without and with explanations), and at the end of the dialogue with the system.
As illustrated in the figure, most students preferred to receive explanations before they accept the LO
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recommended, which again demonstrates the effectiveness of explanations to influence the students’
will to accept recommendations.

Figure 8. Average % of students that accepted the recommendation in the 1st iteration (without and
with explanations), and at the end of the conversation.

To evaluate the scrutability of C-ERS, the average percentage of students was analyzed that
rejected explanations because they changed any of their initially declared preferences. Results shown
in Figure 9 demonstrate that a significant percentage of students decided to change their preferences at
any step of the recommendation process (especially those regarded to the interactivity type required to
use LOs). On average, over the total number of the recommendation processes where they participated,
38% of students decided to change any preference. Our C-ERS system is able to capture these changes
and allow students to indicate that it has made a wrong inference about his/her preferences, which
is crucial in this educational recommendation domain to provide them with recommendations that
actually suit their learning objectives.

Figure 9. Average % of students that changed their declared preferences.
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Moreover, the system performance as the average number of explanations that it has to provide
until the user accepts the recommendation was also measured. We got an average number of 2.2
explanations needed to convince the students to accept LOs. This is short enough to ensure that the
average time required to end each conversational dialogue is not as excessive as to bore students and
make them abandon the recommendation process.

5. Conclusions

An argumentation-based Conversational Educational Recommender System (C-ERS) has been
presented in this paper. The proposed system helps students to find the more suitable learning
resources considering different aspects such as learning objectives, educational level, and learning style.
According to this, the main contribution of the proposed system is that it allows the user to interact
with the system and accept or reject the recommendations, providing reasons for such behavior.
These reasons are used by the system to convince students to accept the recommendations of the
system and make use of the recommended learning objects.

The proposed system has been tested and evaluated with a real group of undergraduate students
in the Universidad Nacional de Colombia. In the proposed experimentation, each student participated
in 10 recommendation processes, where the system recommended learning objects that match the
students’ profile for a specific search. Additionally, the system showed an explanation for the
recommended learning objects. Results have shown the ability of the system to provide effective
recommendations that suit the students’ profile and learning objectives, to try to persuade students to
use certain learning objects, and to elicit their actual preferences by allowing students to correct the
system’s wrong assumptions.

Actually, the current system constitutes a proof of concept tested with a set of 50 students of
computer science. This could entail some bias in the students’ profile. As additional work, we will try to
extend the evaluation tests to a large number of students with more heterogeneous profiles. Moreover,
we want to study to what extent the new user model acquired with the new preferences elicited during
the conversation should be updated and stored permanently or just should be considered as an ad-hoc
profile for the current recommendation process.

Finally, as future work, we plan to enhance the interaction mode of the system with a new natural
language interface, able to conduct dialogues in natural language with the students. In addition, in our
C-ERS explanations are textual versions of arguments. In doing so, we are just using one format of
explanations, and, in fact, we acknowledge that this type is not the best type for all learners (clearly, it
is more suitable for “readers”) [41]. Thus, in future work, we will translate our arguments to different
formats of explanations.

Author Contributions: Conceptualization, V.J. and N.D.-M.; Formal analysis, P.R. and S.H.; Investigation, J.P.,
P.R., and S.H.; Methodology, V.J., N.D.-M., J.P., P.R., and S.H.; Project administration, V.J.; Supervision, V.J.;
Writing—original draft, J.P., P.R., and S.H.; Writing—review, V.J., J.P., P.R., and S.H. and editing, J.P., S.H., and V.J.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by MINECO/FEDER RTI2018-095390-B-C31 project of the Spanish
government, and by the Generalitat Valenciana (PROMETEO/2018/002) project.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Drachsler, H.; Verbert, K.; Santos, O.C.; Manouselis, N. Panorama of recommender systems to support learning.
In Recommender Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 421–451.

2. Tucker, B. The flipped classroom. Educ. Next, 2012, 12, 82–83.
3. Zapalska, A.; Brozik, D. Learning styles and online education. Campus-Wide Inf. Syst. 2006, 23, 325–335.

[CrossRef]

http://dx.doi.org/10.1108/10650740610714080


Appl. Sci. 2020, 10, 3341 17 of 18

4. Rodríguez, P.; Heras, S.; Palanca, J.; Poveda, J.M.; Duque, N.; Julián, V. An educational recommender system
based on argumentation theory. AI Commun. 2017, 30, 19–36. [CrossRef]

5. Rodríguez, P.A.; Ovalle, D.A.; Duque, N.D. A student-centered hybrid recommender system to provide
relevant learning objects from repositories. In Proceedings of the International Conference on Learning and
Collaboration Technologies, Los Angeles, CA, USA, 2–7 August 2015; pp. 291–300.

6. Bridge, D.G. Towards Conversational Recommender Systems: A Dialogue Grammar Approach.
In Proceedings of the ECCBR Workshops, Aberdeen, UK, 4–7 September 2002; pp. 9–22.

7. Christakopoulou, K.; Radlinski, F.; Hofmann, K. Towards conversational recommender systems. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, 13–17 August 2016; pp. 815–824.

8. Zhao, X.; Zhang, W.; Wang, J. Interactive collaborative filtering. In Proceedings of the 22nd ACM
International Conference on Conference on Information & Knowledge Management, San Francisco, CA, USA,
27 October–1 November 2013; pp. 1411–1420.

9. Rubens, N.; Elahi, M.; Sugiyama, M.; Kaplan, D. Active learning in recommender systems. In Recommender
Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 809–846.

10. Chen, L.; Pu, P. Critiquing-based recommenders: Survey and emerging trends. User Model. User-Adapt.
Interact. 2012, 22, 125–150. [CrossRef]

11. Felfernig, A.; Friedrich, G.; Jannach, D.; Zanker, M. Constraint-based recommender systems. In Recommender
Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 161–190.

12. Mahmood, T.; Ricci, F. Improving recommender systems with adaptive conversational strategies.
In Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, Orino, Italy, 29 June–1 July
2009; pp. 73–82.

13. He, C.; Parra, D.; Verbert, K. Interactive recommender systems: A survey of the state of the art and future
research challenges and opportunities. Expert Syst. Appl. 2016, 56, 9–27. [CrossRef]

14. Vig, J.; Sen, S.; Riedl, J. Tagsplanations: Explaining Recommendations Using Tags. In Proceedings of the
14th International Conference on Intelligent User Interfaces, Sanibel Island, FL, USA, 8–11 February 2009;
pp. 47–56. [CrossRef]

15. Symeonidis, P.; Nanopoulos, A.; Manolopoulos, Y. MoviExplain: A Recommender System with
Explanations. In Proceedings of the Third ACM Conference on Recommender Systems, New York, NY, USA,
23–25 October 2009; pp. 317–320. [CrossRef]

16. Tintarev, N.; Masthoff, J. Designing and evaluating explanations for recommender systems. In Recommender
Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2011; pp. 479–510.

17. Tintarev, N.; Masthoff, J. Explaining recommendations: Design and evaluation. In Recommender Systems
Handbook; Springer US: New York, NY, USA, 2015; pp. 353–382.

18. Fogg, B. Persuasive technology: using computers to change what we think and do. Ubiquity 2002, 2002, 5.
[CrossRef]

19. Yoo, K.H.; Gretzel, U.; Zanker, M. Source Factors in Recommender System Credibility Evaluation.
In Recommender Systems Handbook; Springer: Berlin/Heidelberg, Germany, 2015; pp. 689–714.

20. Benbasat, I.; Wang, W. Trust in and adoption of online recommendation agents. J. Assoc. Inf. Syst. 2005, 6, 4.
[CrossRef]

21. Sinha, R.; Swearingen, K. The role of transparency in recommender systems. In Proceedings of the
Conference on Human Factors in Computing Systems, Minneapolis, MN, USA, 20–25 April 2002; pp. 830–831.

22. Zapata, A.; Menendez, V.; Prieto, M.; Romero, C. A hybrid recommender method for learning objects.
IJCA Proc. Des. Eval. Digit. Content Educ. (DEDCE) 2011, 1, 1–7.

23. Sikka, R.; Dhankhar, A.; Rana, C. A Survey Paper on E-Learning Recommender Systems. Int. J. Comput. Appl.
2012, 47, 27–30. [CrossRef]

24. Salehi, M.; Pourzaferani, M.; Razavi, S. Hybrid attribute-based recommender system for learning material
using genetic algorithm and a multidimensional information model. Egypt. Inform. J. 2013, 14, 67–78.
[CrossRef]

25. Dwivedi, P.; Bharadwaj, K. e-Learning recommender system for a group of learners based on the unified
learner profile approach. Expert Syst. 2015, 32, 264–276. [CrossRef]

26. Tarus, J.K.; Niu, Z.; Mustafa, G. Knowledge-based recommendation: a review of ontology-based
recommender systems for e-learning. Artif. Intell. Rev. 2018, 50, 21–48. [CrossRef]

http://dx.doi.org/10.3233/AIC-170724
http://dx.doi.org/10.1007/s11257-011-9108-6
http://dx.doi.org/10.1016/j.eswa.2016.02.013
http://dx.doi.org/10.1145/1502650.1502661
http://dx.doi.org/10.1145/1639714.1639777
http://dx.doi.org/10.1145/764008.763957
http://dx.doi.org/10.17705/1jais.00065
http://dx.doi.org/10.5120/7218-0024
http://dx.doi.org/10.1016/j.eij.2012.12.001
http://dx.doi.org/10.1111/exsy.12061
http://dx.doi.org/10.1007/s10462-017-9539-5


Appl. Sci. 2020, 10, 3341 18 of 18

27. Walton, D. Argumentation Schemes and Their Application to Argument Mining. Stud. Crit. Think. Ed. Blair
Windsor Stud. Argum. 2019, 8, 177–211.

28. Briguez, C.; Budán, M.; Deagustini, C.; Maguitman, A.; Capobianco, M.; Simari, G. Towards an
Argument-based Music Recommender System. COMMA 2012, 245, 83–90.

29. Briguez, C.; Capobianco, M.; Maguitman, A. A theoretical framework for trust-based news recommender
systems and its implementation using defeasible argumentation. Int. J. Artif. Intell. Tools 2013, 22. [CrossRef]

30. Recio-García, J.; Quijano, L.; Díaz-Agudo, B. Including social factors in an argumentative model for Group
Decision Support Systems. Decis. Support Syst. 2013, 56, 48–55. [CrossRef]

31. Chesñevar, C.; Maguitman, A.; González, M. Empowering recommendation technologies through
argumentation. In Argumentation in Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 403–422.

32. Briguez, C.; Budán, M.; Deagustini, C.; Maguitman, A.; Capobianco, M.; Simari, G. Argument-based mixed
recommenders and their application to movie suggestion. Expert Syst. Appl. 2014, 41, 6467–6482. [CrossRef]

33. Naveed, S.; Donkers, T.; Ziegler, J. Argumentation-Based Explanations in Recommender Systems: Conceptual
Framework and Empirical Results. In Proceedings of the Adjunct Publication of the 26th Conference on
User Modeling, Adaptation and Personalization, Singapore, 8–11 July 2018; pp. 293–298.
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