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Abstract

Motivation: Molecular docking methods are extensively used to predict the interaction between protein–ligand sys-
tems in terms of structure and binding affinity, through the optimization of a physics-based scoring function.
However, the computational requirements of these simulations grow exponentially with: (i) the global optimization
procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical
complexity of the scoring function.

Results: In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates
several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole pro-
tein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of meta-
heuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing
units. Two representative scoring functions implemented in METADOCK 2 are extensively evaluated in terms of
computational performance and accuracy using several benchmarks (such as the well-known DUD) against
AutoDock 4.2 and AutoDock Vina. Results place METADOCK 2 as an efficient and accurate docking methodology
able to deal with complex systems where computational demands are staggering and which outperforms both
AutoDock Vina and AutoDock 4.

Availability and implementation: https://Baldoimbernon@bitbucket.org/Baldoimbernon/metadock_2.git.

Contact: bimbernon@ucam.edu or hperez@ucam.edu or jmcecilia@ucam.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of computational drug discovery (CDD) methods has
democratized and accelerated the discovery of new drugs by devel-
oping tools, such as molecular docking to simulate the interaction
between small molecules with potential inhibitory capacity and pro-
tein targets (Sliwoski et al., 2014). This process is mandatory due to
the effects of globalization, where emerging diseases may provoke
pandemics worldwide and health institutions must provide treat-
ments quickly. Some recent examples of this include Zika (Yuan
et al., 2017) and Ebola virus (Sakurai et al., 2015).

The success of CDD methods is limited by the computational
requirements they demand. The fastest docking methods are not
able to process the largest biological databases in a reasonable time-
frame, which actually limits their practical application in medical re-
search. The use of high performance computing to speed-up CDD
methods is therefore necessary to fulfill pharmaceutical industry

expectations. The molecular docking methods available in the litera-
ture, such as Autodock (Morris et al., 1998), Glide (Friesner et al.,
2004) or DOCK (Ewing et al., 2001) are mainly designed to be exe-
cuted in large homogeneous clusters of CPUs using Message Passing
Interface with multithreading programing techniques at the node
level to use the multiple cores of current CPUs. However, we are
currently witnessing a steady transition to heterogeneous computing
systems (http://www.top500.org/), with heterogeneity representing
systems where nodes combine traditional multicore architectures
(CPUs) with accelerators, such as graphics processing units (GPUs).
Indeed, some molecular docking methods are being recently devel-
oped to fully leverage heterogeneous systems, such as BUDE
(McIntosh-Smith et al., 2015), BINDSURF (Sánchez-Linares et al.,
2012) or METADOCK (Imbernón et al., 2017). The performance of
these GPU-based methods places them as very competitive molecu-
lar docking tools. Moreover, certain efforts have been made in the
World Community Grid on many thousands of desktop machines

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

Bioinformatics, 2020, 1–6

doi: 10.1093/bioinformatics/btz958

Advance Access Publication Date: 21 January 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btz958/5711286 by U

niversitat Politecnica de Valencia user on 11 M
ay 2021

http://orcid.org/0000-0003-1734-6852
https://Baldoimbernon.org/Baldoimbernon/metadock_2.git
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz958#supplementary-data
http://www.top500.org/
https://academic.oup.com/


with AutoDock Vina but which have no GPU implementation avail-
able to speed it up. This has actually been a promising area of re-
search for many years now which is also indicative of the enormous
demand that there is for ligand screening and the CPU time as a
bottleneck (Guerrero et al., 2014).

However, the implementation of docking methods in GPUs is
not straightforward. GPUs are massively parallel by definition
(http://developer.nvidia.com) and they require the redefining and
even rethinking of the underlying algorithm to fully leverage their
horsepower (Dakkak et al., 2018). Most of the docking methods
were based on optimization procedures, such as Monte Carlo and
simulated annealing, which were implemented in a sequential fash-
ion. In our previous work, we designed METADOCK
(METADOCK 1.0) (Imbernón et al., 2017), a molecular docking
methodology based on a parameterized metaheuristics schema. The
underlying scoring function of METADOCK was only based on the
Lennard-Jones term but, instead of having a particular optimization
algorithm, METADOCK provided a framework to choose the opti-
mization procedure at runtime by choosing a set of input parame-
ters. All the optimization procedures chosen were within the
umbrella of population-based metaheuristics (Blum and Roli, 2003),
such as genetic algorithms, which generate initial populations of
individuals (or candidate solutions) that are iteratively improved in
parallel. Population-based metaheuristics are inherently parallel by
definition and therefore are well-suited for massive parallelization in
the current landscape of computation (Cecilia et al., 2018).

In this work, we introduce METADOCK 2, an improved version
of our previous work METADOCK (Imbernón et al., 2017). The
earlier version was designed from scratch and powered by the cur-
rent landscape of computation where the convergence between high
performance computing and AI is pushing forward the frontiers of
computation. The main new features included in METADOCK 2
and thus the contributions of this paper can be summarized as
follows:

1. METADOCK 2 improves the scoring function of its predecessor

by implementing two different versions that are deeply analyzed.

The former was based on Autodock 4.2 and chosen as such to

enable direct comparison with its prediction accuracy and also

because it is one of the most widely used pieces of docking soft-

ware, while the latter is based on the scoring function included

in BINDSURF (Sánchez-Linares et al., 2012).

2. The internal flexibility of the ligand is implemented in terms of

rotatable bonds.

3. METADOCK 2 includes new features in the metaheuristic

schema so as to be able to generate a larger number of metaheur-

istics and hybridizations than the previous version.

4. The predictive accuracy of this method is evaluated by redocking

all protein–ligand crystal complexes in the DUD dataset

(Mysinger et al., 2012) and also performing blind docking (BD)

on difficult systems (either too many rotatable bonds or very

large proteins), such as protein–peptide (flexible) complexes

from the LEADS-PEP dataset (Hauser and Windshügel, 2016)

and protein systems with 100 000 atoms.

5. METADOCK 2 is compared in terms of performance and pre-

dictive accuracy with two state-of-the-art docking methods,

namely, AutoDock Vina and AutoDock 4.2. Our results con-

clude that METADOCK 2 is a convincing alternative for dealing

with complex systems where computation is a limiting factor.

The rest of the paper is structured as follows. Section 2 shows
the insights of METADOCK 2 divided into two main categories: the
search method based on a metaheuristic schema and the scoring
function developed in the application. Next, the main results are dis-
cussed in Section 3 before we summarize the conclusions and pro-
vide some directions for future work.

2 Materials and methods

METADOCK 2 aims to predict the binding-conformation and affin-
ity estimation of small ligand molecules (ligand) to potential protein
targets. The computational representation of these molecular sys-
tems is based on the description of their atoms and it includes the
following information: Cartesian coordinates for translation (x, y,
z), ligand orientation through quaternions and a characterization of
ligand torsions. Once this information is loaded into memory, the
simulation is performed through an iterative process that aims to
minimize a particular scoring function to obtain a set of candidate
binding modes (poses)—i.e. the ‘best’ positions of the ligand when
bound to the protein target. Moreover, METADOCK 2 performs a
BD—i.e. it processes the whole protein surface in order to identify
new allosteric binding, while most docking methods focus only on a
user-specified part of the protein target.

2.1 The parameterized optimization procedure
The optimization procedure of METADOCK 2 is based on a para-
meterized metaheuristic scheme (Imbernón et al., 2017).
Metaheuristics are widely used to solve challenging optimization
problems (a.k.a. NP-hard problems) (Rozenberg et al., 2011) since
they can provide a good solution in a minimal amount of time when
there is not enough information or the computation is limited
(Bianchi et al., 2009). To do so, they only focus on the most promis-
ing solution candidates instead of exploring all possible solutions.
This means they cannot guarantee finding the optimal solution al-
beit something close to it. There are many metaheuristics in the lit-
erature (Sörensen, 2015), such as Distributed metaheuristics (e.g.
Scatter Search, Genetic Algorithms Ant Colony Optimization and
Particle Swarm Optimization) and Neighborhood metaheuristics
(e.g. Tabu Search, Hill Climbing, Simulated Annealing, etc.) (Llanes
et al., 2016). Finding out the ‘best’ metaheuristic to solve a particu-
lar task is not straightforward. Indeed, it is an optimization problem
itself that requires, first of all, the most appropriate metaheuristic to
be found for the targeted problem and also to tune the configuration
parameters of the selected metaheuristic, which may increase the
computational cost.

METADOCK 2 is based on a metaheuristic schema, which is
able to generate a wide branch of metaheuristics. Algorithm 1 shows
the sequential baseline of METADOCK 2. It is composed of several
functions that are shared by many metaheuristics in the literature
(Rozenberg et al., 2011). These functions accept several input
parameters (see Supplementary Table S1) to configure their internal
procedure and to provide different functionality. Once the input
parameters are established, METADOCK 2 applies the optimization
procedure to obtain a subset of poses that minimize the scoring
function.

Algorithm 1 shows that the optimization method starts by gener-
ating an initial population (S) of conformations on each surface re-
gion (see line 1) of the protein target. We can consider either just the
enzyme active site (classical focused docking) or the exploration of
the whole protein surface [BD (Sánchez-Linares et al., 2012)]. Each
initial population S is composed of a set of randomly generated
poses (or individuals) with internal flexibility. At the initialization
stage, METADOCK 2 can make improvements to some (or all) indi-
viduals. In addition, it is able to select which individuals are eventu-
ally included in the initial set to avoid elitist solutions. All of these
features are established depending on the input parameters for this
function (see ParamIni in Supplementary Table S1).

Next, the iterative procedure starts and proceeds until the end
condition is met (lines 1–8). The End_condition(S, ParamEnd) func-
tion determines the stop criteria of METADOCK 2. Two different
criteria are established, expressly, the maximum number of itera-
tions and the number of iterations without improvement. The
Select(S, Ssel, ParamSel) function chooses a percentage of conforma-
tions of the initial population (S) that will continue throughout the
rest of the phases of the scheme. This function tries to maintain di-
versity by determining a set of the best and worst conformations.
This selection is made based on the values of the scoring function
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for each individual. The Combine(Ssel, Scom, ParamCom) function
mixes the selected conformations within the same region in pairs by
combining (i) the best individuals among them, (ii) the worst indi-
viduals among them and finally (iii) the best individuals with the
worst. Each pair of conformations will generate two new individuals
with different orientations, but between both parents. The
Mutation(Scom, ParamMut) is a new function added to
METADOCK 2, whose main goal is to maintain the diversity of the
combined set. Thus, METADOCK 2 is able to generate genetic-like
algorithms by performing minor changes to the individuals previous-
ly combined. These changes include modifications to the spatial
coordinates of the conformation, its orientation, or one of the rotat-
able links. The parameters associated with this function establish
the percentage of conformations to be mutated and the intensity of
this mutation. The Improve(Scom, ParamImp) function applies a
local search within the neighborhood of the combined population.
Finally, the METADOCK 2 procedure ends by including a subset of
the conformations previously generated [Include(Scom, S,
ParamInc)] in the next population to be considered.

2.2 The scoring functions under study
METADOCK 2 implements two different scoring functions. Both of
them are based on traditional force field models and they take into
account interaction in terms of dispersion–repulsion, hydrogen-
bonds, electrostatics (ES) and desolvation, but their mathematical
models introduce some particularities to their implementation. Two
are the SF implementations and are of particular interest to us. First,
we consider the SF of BINDSURF (Sánchez-Linares et al., 2012)
since it was one of the first GPU-based docking methods in the lit-
erature. Second, the implementation from AutoDock 4 is also
chosen (Morris et al., 1998) because it is one of the most widely
used docking packages. From now on, we will refer to SF1 as the
scoring function based on BINDSURF and SF2 as the scoring func-
tion used in AutoDock 4. Additionally, all terms used in SF1 and
SF2 are explained below.

2.2.1 ES interactions

A molecule is composed of a set of atoms that form bonds with each
other, implying a set of ES interactions between them. Equations (1)
and (2) describe the mathematical models on which the ES interac-
tions used in the SF1 and SF2 functions are based on, respectively.
In those equations, n and m refer to the number of atoms of the lig-
and and the protein

Xn

i¼0

Xm
j¼0

k
qi qj

rij

� �
(1)
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If the atoms are i (ligand) and j (receptor), the values qi and qj

are the charges of the atoms i and j, rij is the atomic distance

between both and k is the permittivity of a vacuum. Equation (2)
shows the ES potential of AutoDock 4, whose main peculiarity is
that it adds a new term to the denominator that multiplies the atom-

ic distance. This term ð�ri;j
Þ can be interpreted as the dielectric con-

stant of the medium, and it is mathematically approximated by the

Mehler–Solmajer model (Mehler and Solmajer, 1991).

2.2.2 Van der Waals interactions
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This term combines the forces of attraction and repulsion between
non-bonded atoms. Attractive forces are brought about by the distri-
bution of charges and repulsive or short-range forces are created by

Pauli’s repulsion. SF1 implements Equation (3), where the depth of
the potential is represented by �ij and rij determines the equilibrium
distance between the two atoms. The indexes n and m are the num-

ber of atoms of the ligand and the protein, respectively, and rij the
atomic distance between atom i from the ligand and atom j from the

receptor. Equation (4) shows the mathematical model of the imple-
mentation in SF2. The main difference between them is the way that
coefficients Aij and Bij are calculated.

2.2.3 Hydrogen bond interactions

A hydrogen bond is a strong type of dipole–dipole directional ES

interaction (Desiraju and Steiner, 1999). Equation (5) shows the
mathematical model used by SF1 for this term

Xn

i¼0

Xm
j¼0

coshij
Cij

r12
ij

�Dij

r10
ij

 !
þ

sin hij 4�ij
rij

rij

� �12
� rij

rij

� �6
� � (5)

where rij is the atomic distance and hij is the angle that forms the
atoms i and j.

Equation (6) shows the mathematical model implemented in SF2
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The term EðtÞ can be approximated to cos hij and the term Ehbond

to sin hij.

2.2.4 Desolvation potential

This term is only implemented in SF2, and it is based on the work of

Wesson and Eisenberg (Eisenberg and McLachlan, 1986). This cal-
culation is based on the absolute value of individual atomic charge,
the type of atom, its volume and its associated solvation parameter.

Equation (7) shows the term Si ¼ ai þ k jqij, where ai is the solv-
ation parameter for atom i, qi is its partial charge and k is a
Gaussian constant. Sj is similar to Si for atom j

Xn

i¼0

Xm
j¼0

ðSiVj þ SjViÞe�rij=2r2

: (7)

2.2.5 Ligand flexibility

The internal degrees of freedom of the ligand in terms of rotatable
bonds are also considered in both scoring functions. The rotatable
bonds are obtained by using OpenBabel (O’Boyle et al., 2011).

Algorithm 1 METADOCK 2 sequential baseline for the

generation of diverse metaheuristics.

1: Initialize(S, ParamIni)

2: while not End_condition(S, ParamEnd) do

3: Select(S, Ssel, ParamSel)

4: Combine(Ssel, Scom, ParamCom)

5: Mutation(Scom, ParamMut)

6: Improve(Scom, ParamImp)

7: Include(Scom, S, ParamInc)

8: end while

mv2 3
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2.3 Environmental setup
2.3.1 Testbed

Experiments were carried out on a heterogeneous computing system

based on a multicore processor and a GPU. Specifically, the system
has 12 Intel Xeon E5-2603 processors running at 1.7 GHz and

plugged into a quad-channel motherboard endowed with 128 GB of
DDR3 memory. It has a GPU NVIDIA Tesla Kepler K40c with 2880
CUDA cores (15 streaming multiprocessors and 192 GPU cores per

multiprocessor) running at a boost clock of 0.88 GHz, giving a raw
processing power of up to 5068 GFLOPS. The memory size is

12 GB of GDDR5. For compilation on the CPU, we used gcc 5.4.0
with the -O3 flag, and the CUDA toolkit version 8.0 was used for
compilation on the GPU.

2.3.2 Schema configuration

METADOCK 2 has several input parameters that define the opti-

mization method to be applied in the optimization process. Four dif-
ferent configurations have been used in this work (referred to as M1,
M2, M3 and M4 in Supplementary Table S2). M1 is a hybrid-meta-

heuristic, which is close to a genetic algorithm. We set the initial
population of M1 at 2048 individuals for each spot. The best ele-

ments and half of the resulting elements are mutated before the com-
bination stage. This metaheuristic does not include a local search to
improve the conformations. The second (M2) and third (M3) meta-

heuristics are based on an evolutionary method based on a Scatter
Search algorithm with a population of 512 individuals. More specif-

ically, in the case of M3, all chosen elements after the initial gener-
ation are combined and a local search in the neighborhood of each
element is applied to obtain better solutions. The last metaheuristic

(M4) is a method of intensive search in the neighborhood with a
Monte Carlo technique. Once the search is done, a small percentage

of the individuals in the initial phase are submitted for combination,
mutation and improvement. Notice that we have used different
population sizes for the metaheuristics because we are interested in

studying the quality of prediction based on the variation of meta-
heuristic parameters. All individuals are considered for selection and
combination in the algorithm.

2.4 Benchmarks
2.4.1 DUD dataset

The DUD (Mysinger et al., 2012) is a publicly available dataset of

about 100 000 ligands distributed over 40 protein targets. It
includes structural information about active and decoy ligands for

each target. The decoys are chosen as such because they are physico-
chemically similar to the actives but topologically different. We be-
lieve that the DUD provides a suitable benchmark with which to

assess docking accuracy. In our work, we have performed redocking
of active ligands and measured root-mean-square deviation (RMSD)
and running times.

2.4.2 Flexible peptides

Peptide molecules are usually much bigger than small drug mole-
cules that follow Lipinski rules and the ones that have been
approved by FDA. Therefore, they represent a challenge for most
docking methods, especially when we consider them as being flex-
ible due to the high number of rotatable bonds. As a result, we have
selected peptides from the LEADS-PEP dataset (Hauser and
Windshügel, 2016), which was conveniently designed to this end.

2.4.3 Very large protein system

In order to test the BD approach implemented in METADOCK 2
against Autodock 4 and Autodock Vina, we looked for the largest
protein–ligand systems in the PDB database and we selected the
structure of yeast CP in complex with Belactosin C (PDB:3TDD),
which contains around 100 000 atoms.

3 Results and discussion

3.1 Virtual screening accuracy and performance results

from the docking methodologies for the DUD dataset
Docking simulations are performed on the 40 protein–ligand crys-
tals from the DUD database. Figures 1 and 2 show the RMSD values
and the execution times, respectively, for the M1, M2, M3 and M4
configurations of METADOCK 2 described in Section 2.3. These
configurations are executed by using the SF1 and SF2 scoring func-
tions (further details in Section 2.2).

Figure 1 shows that, on average, the lowest RMSD values are
obtained with the combination M4-SF2. This can be explained as
the M4 algorithm is based on an intensive neighborhood search
where a small percentage of individuals are chosen for combination,
mutation and improvement. Furthermore, the SF2 is the AutoDock
4-based scoring function which is more accurate than SF1. The rea-
son is that SF1 introduces a penalty of between 0.1 and 0.7 Å. The
differences between metaheuristics are even higher, reaching up to
RMSD values of 1.52 Å, which places the search algorithm as the
determining factor.

Regarding performance numbers, Figure 2 shows that M4-SF2,
which is the most accurate configuration, is the slowest configur-
ation in METADOCK 2. This implies a direct relationship between
quality and performance, which allows the users of METADOCK 2
to benefit from some flexibility governed by this relationship, de-
pending on the available hardware resources. It is also worth noting
the differences between M4-SF1 and M4-SF2 in both performance
and accuracy. The RMSD difference between them is 0.76 Å but the
execution time is increased by a factor of 2.24�.

Supplementary Table S5 shows a comparison in terms of the
RMSD and execution time in seconds among AutoDock 4,
AutoDock Vina and the best configuration of METADOCK 2 for
each DUD target. As for the METADOCK 2 numbers, we show the
lowest RMSD value for each compound and its corresponding exe-
cution time and vice versa. As can be seen, on average, the best
RMSD obtained by METADOCK 2 is also the best RMSD obtained

Fig. 1. Average RMSD values for redocking calculations (DUD dataset) using

METADOCK 2 with four different metaheuristic configurations (M1, M2, M3 and

M4) and two scoring functions (SF1 and SF2)

Fig. 2. Execution time in seconds for redocking calculations (DUD dataset) using

METADOCK 2 with four different metaheuristic configurations (M1, M2, M3 and

M4) and two scoring functions (SF1 and SF2)
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by all the docking methods under study. METADOCK 2 outper-
forms AutoDock 4 by a wide margin and slightly surpasses
AutoDock Vina. The average execution time to reach this optimal
value obtained by METADOCK 2 is a bit longer than the execution
time for the multi-threaded version of Vina (58.5 versus 109.2 s). At
this point, let us remind the reader that AutoDock Vina is executed
using the OpenMP library on a 12-core multicore system. For a fair
comparison, we decided to execute METADOCK 2 in its counter-
part GPU version (i.e. a GPU Tesla K40c). However, METADOCK
2 could be efficiently run on a cluster with multiple GPUs, showing
almost linear speed-up with the number of GPUs [we refer the read-
er to Imbernón et al. (2017) for more detailed information].

3.2 BD simulations on complex and large systems
Table 1 shows the accuracy prediction of performing BD simula-
tions with AutoDock 4, AutoDock Vina and METADOCK 2 using
SF1 and SF2. The second and third columns show the RMSD in
Autodock 4 and in Autodock Vina, and in columns 4 and 5 the
RMSD with the 2 METADOCK scoring functions (SF1 and SF2).
Finally, in the sixth column called OPTIMAL SF, the best RMSD
from the two METADOCK scoring functions is shown. Several
complex systems are randomly selected from the PDB, including
protein-flexible-peptide complexes, the LEADS-PEP dataset and
large systems, such as 4TDD. It can be observed that in some cases
AutoDock 4 and AutoDock Vina are not able to perform the BD
simulations, while METADOCK 2 does. This might be due to the
greater ability of METADOCK 2 to explore the optimization space
in more detail. In addition, the general trend is that METADOCK 2
can obtain lower RMSD values for the same scoring function (ex-
cept in the case of 1TW6), and that on average it obtains a much
lower RMSD value.

4 Conclusions

This article introduces a novel method of molecular docking called
METADOCK 2, which incorporates several features that make it a
good candidate for performing docking simulations, especially for
complex systems. Furthermore, it speeds up the whole simulation
process with improved accuracy. The computational horsepower
and algorithmics of METADOCK 2 allow the simulation of several

complex systems that are not accessible with other docking meth-
ods, such as AutoDock 4 and Vina. In addition, the predictive preci-
sion obtained with METADOCK 2 outperforms both AutoDock 4
and Vina, providing a framework in which the user can select be-
tween several metaheuristics depending on the computational
resources available.

METADOCK 2 is a framework that requires an initial configur-
ation by setting metaheuristics related parameters. This configur-
ation establishes the search method, which has been demonstrated
as a key factor for getting accurate predictions. The results shown
here are based solely on four fixed configurations that we have
selected according to our previous knowledge. But we believe that
other configurations may improve both performance and accuracy.
This opens up new research paths to design and develop machine-
learning-based expert systems that combine the latest advances in
deep learning with metaheuristics to determine which the best par-
ameter configuration is for each system. In addition, we are also
working on finding an alternative scoring function and then parame-
terizing it to increase the accuracy of predictions.
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