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VALÈNCIA, SPAIN.

EMAILS: MAMUAR1@UPV.ES; APERIS@MAT.UPV.ES

Abstract. We characterize for the first time the chaotic behavior of nonlocal operators that come

from a broad class of time stepping schemes of approximation for fractional differential operators.
For that purpose, we use criteria for chaos of Toeplitz operators in Lebesgue spaces of sequences.

Surprisingly, this characterization is proved to be - in some cases - dependent of the fractional order

of the operator and the step size of the scheme.

The study of discrete nonlocal operators, having fractional order operators as a pro-
totype, is a fashionable area of study nowadays. As it has been recently demonstrated,
systems with this property can be used to develop data encryption algorithms. The
basis for such property is the chaotic behavior of the systems under consideration. With
this motivation, we investigate necessary and sufficient conditions for chaos, uniquely
based on the available data of nonlocal operators arising in numerical analysis, namely,
the fractional order and the step size. We have success in our investigation and having
our new findings somewhat surprising: We find that for the dual of the operator that
defines the second order backward fractional difference scheme chaos is dependent on
the step size but not on the fractional order and, by contrast, in case of the fractional
Crank-Nicholson scheme chaos is dependent on the step size and the fractional order.
Consequently, our new findings have ultimate importante in the development of algo-
rithms based on the mentioned schemes of approximation, among others, which are also
analyzed in the present research.

1. Introduction

In the last two decades, due to the introduction of fractional (or non-local) operators in the field of
mathematical modeling of problems that arise in various areas of knowledge, many researchers have
experienced a great interest in deeply understanding the behavior of these operators from different
perspectives [15, 16, 17, 19, 22]. One of the main efforts has been made to connect these operators
with the modeling of partial differential equations, as a new method to understand the processes that
are closely related to having “memory” in their nature. On the other hand, it is well known that
complex partial differential equations modeling needs an in-depth analysis of linear evolution systems.

Linear evolution equations described by non-local operators have been studied intensively in the last
decade [6, 20, 21, 26]. One of the most challenging problems in this context is trying to find the most
appropriate discretization of the fractional operator in each case. This choice is determined by the
nature of the evolution equation and the geometry of the model. These studies have led researchers to
adapt various classical numerical methods to the context of non-local operators in order to discretize
them in time and/or space.
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Recently, a very interesting approach has been proposed by Jin, Li and Zhou in [25] to deal in a
unified way with a large number of time discrete non-local operators that arise in the numerical analysis
of fractional order differential operators. This method can synthesize by means of finite convolution
several numerical methods, such as Euler’s backward and implicit schemes and the Crank-Nicholson
scheme among others.

Although the numerical treatment has been carried out in [25], a qualitative analysis of these
non-local discrete operators has not been performed yet. This is a difficult challenge because, due
to the nature of the subject, it needs the interaction between different areas of mathematics such as:
functional, complex and numerical analysis and operator theory among others.

From an analytical perspective, the study of the chaotic behavior is an important first step that
began recently to be studied by Edelman [13, 12, 14] and Wu et.al. [34, 35]. The reason is that, by
their very nature, non-local operators seem naturally linked to a complex evolution. On the other
hand, due to the high sensitivity of chaotic systems to parameters and initial conditions, chaos based
algorithms are developed and studied as the core of encryption algorithms [32, 33]. For instance,
many substitution encryption algorithms have been introduced based on discrete chaotic maps such
as the conventional logistic and tent maps. This motivates the following questions: Is there any
kind of chaotic behavior associated with the time approximation schemes for non-local (fractional)
differential operators? If the answer is positive, is there any dependence on the chaos with respect to
the fractional order and / or the size of the scheme step?

In this article we answer in the positive the aforementioned questions by studying a broad class of
nonlocal operators that include those given in the form of a finite convolution operator, as motivated
by the reference [25]. To achieve this goal, we extend a result due to Baranov and Lishanskii [8], which
provides a first criterion of chaos for Toeplitz operators to deal with symbols associated to numerical
methods that have a singular behavior at zero, but no more than a simple pole. The dynamics of such
operators have been also considered in [10, 30, 31]. We also obtain a new spectral characterization of
the chaotic behavior for the dual convolution operator defined in Lebesgue sequence spaces.

As a consequence, we are able to show the chaotic behavior of the classical fractional difference
operator ∇αa defined by Atici and Eloe [2, 3, 4, 5] and Gray and Zhang [23], but our more surprising
finding is the chaotic dependence of some non-local operators, either in the fractional order or in the
size of the scheme’s time step. For example, in the case of the fractional explicit Euler scheme (for
fractional order 0 < α ≤ 1), the subjacent non-local operator defines a chaotic Toeplitz operator on
`2(N0). In the situation of the fractional implicit Euler scheme, we find that the fractional order Weil
difference operator is chaotic on `2(N0) if and only if the step size τ of the scheme belongs to the interval
0 < τ < 2. In contrast, given 0 < α < 1, the non-local (and dual) operator associated to the fractional

Crank-Nicholson scheme with step size τ, is chaotic on `2(N0) if and only if 0 < τ <
2

(1− α)1/α
.

The paper is organized as follows: Section 2 is devoted to recall some preliminaries related to chaotic
operators (in the sense of Devaney) and a useful criterion for hypercyclicity of Toeplitz operators.
Section 3 deals with the proof of a new and important transference principle that allows to transfer
results from the particular case of the operator ∆α ≡ ∇α0 to the general case by means of conjugation
by translation. This new technique has been recently proved to be very useful in the treatment
of qualitative properties for fractional difference operators [22]. Section 4 contains an extension of
existing criteria for chaos of Toeplitz operators, that we will later need to prove the chaotic behavior
of nonlocal operators. Section 5 characterizes, in Lebesgue spaces of sequences, the chaotic behavior
of nonlocal fractional discrete operators coming from approximation schemes in terms of the scheme
step size and fractional order.

2. Preliminaries

We recall that an operator T on a topological vector space X is called hypercyclic if there is a
vector x in X such that its orbit Orb(x, T ) = {x, Tx, T 2x, . . . } is dense in X.

According to [11] an operator T on a topological vector space X is Devaney chaotic if it is hy-
percyclic, the set of periodic points Per(T ) is dense in X, and it is sensitive (i.e., there exists ε > 0
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such that for each x ∈ X and each δ > 0 there are y ∈ X and n ∈ N with d(x, y) < δ and
d(Tn(x), Tn(y)) > ε). It is well-known that if we have the first two conditions for any continuous map
T on a metric space X without isolated points then sensitivity is granted [7]. Given two operators T
and S defined on topological vector spaces X and Y , respectively, we say T is quasi-conjugate to S
if there exists a continuous map Φ : Y → X with dense range such that T ◦ Φ = Φ ◦ S. The recent
books [9] and [24] contain the theory and most of the recent advances on hypercyclicity and linear
dynamics.

In what follows we denote by D the closed unit disk and put D̂ = C\D. We recall that a Toeplitz
operator TΦ : H2(D)→ H2(D) with symbol Φ ∈ L∞(T) is defined by TΦ(f) = P (MΦ(f)), f ∈ H2(D),
where MΦ is the multiplication operator by Φ and P : L2(T)→ H2(D) is the Riesz projection. If we
write

Φ(z) =
∑
n∈Z

anz
n ∈ L∞(T),

given f(z) =
∑∞
n=0 bnz

n ∈ H2(D), we can write (TΦf)(z) =
∑∞
n=0 cnz

n ∈ H2(D), where the sequence
c = (cn)n is obtained as the convolution of a = (an)n with b = (bn)n, i.e. c = a ∗ b, defined as

cn = (a ∗ b)n =

n∑
j=−∞

ajbn−j , n ∈ N0.

That is, the Toeplitz operator is then considered as an (infinite matrix) operator TΦ : `2(N0)→ `2(N0)
as the above convolution. In case that Φ(z) =

∑
n∈Z anz

n is so that a = (an)n ∈ `1(Z), then TΦ is a

well defined bounded operator on `2(N0).
Let Φ(D, N) := {ω ∈ C : the equation Φ(z) = ω has N solutions in D}. In [8] the authors

provide sufficient and necessary conditions that ensure hypercyclicity of the Toeplitz operator TΦ in
the case Φ(z) = p( 1

z ) +ϕ(z) where p is a polynomial and ϕ ∈ H∞. They pay special attention to the
case p(z) = γz and prove the following interesting result.

Theorem 2.1 ([8]). Let γ ∈ C, let ϕ ∈ H∞ and let Φ(z) = γ
z + ϕ(z).

(a) If TΦ is hypercyclic then
(i) the function Φ is univalent in D\{0};
(ii) D ∩ (C\Φ(D)) 6= ∅ and D̂ ∩ (C\Φ(D)) 6= ∅.

(b) If ϕ ∈ A(D) and
(i) the function Φ is univalent in D\{0};
(ii) D ∩ (C\Φ(D)) 6= ∅ and D̂ ∩ (C\Φ(D)) 6= ∅.

then TΦ is hypercyclic.

Concerning the spectrum of the hypercyclic operator, they show the next proposition.

Proposition 2.2 ([8]). Assume that Φ is N -valent in D. Then

σ(TΦ) = C\Φ(D, N), C\Φ(D) ⊂ σ(TΦ).

If λ ∈ C\Φ(D) then the corresponding eigenspace has dimension N and the eigenvectors are given by

fλ(z) =
q(z)

zNΦ(z)− λzN

where q is an arbitrary polynomial of degree at most N − 1.

In particular, for univalent Φ, we get that

fλ(z) =
1

zΦ(z)− λz

is a λ-eigenvector of TΦ for any λ ∈ C\Φ(D).
Let B be denote the backward shift operator on `2(N0), and observe that ‖B‖ = 1. Let a ∈ `1(N0)

be a complex valued sequence. Hence, if ϕ(z) =
∑∞
n=0 anz

n is holomorphic on some neighborhood of
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D then

(1) ϕ(B) =

∞∑
n=0

anB
n

defines a bounded operator on `2(N0). Denote by T the unit circle. The following characterization
will be very useful in our analysis.

Theorem 2.3. [24, Theorem 4.43] Let X be one of the complex sequence spaces `2(N0). Furthermore,
let ϕ be a nonconstant holomorphic function on a neighborhood of D. Then the following assertions
are equivalent.

(i) ϕ(B) is chaotic;
(ii) ϕ(D) ∩ T 6= ∅.

For further use, we also recall a useful criterion that ensures univalence for meromorphic functions
[18].

Theorem 2.4. Let Mn denote the class of functions of the form f(z) = 1
z +

∑∞
n=0 anz

n which are
regular in 0 < |z| < 1 and satisfy

<
(
Dn+1f(z)

Dnf(z)
− 2

)
< − n

n+ 1
, for |z| < 1

where Dnf(z) = 1
z (zn+1 f(z)

n! )(n), n ∈ N0. Then Mn+1 ⊂ Mn for all n ∈ N0 and all functions in Mn

are univalent.

3. A transference principle between nonlocal operators

For a real number a, we denote Na := {a, a + 1, a + 2, ...}. and we write N1 ≡ N. We denote by
s(Na) the vectorial space consisting of all complex-valued sequences f : Na → C. We recall that the
forward Euler operator ∆a : s(Na)→ s(Na) is defined by

∆af(t) := f(t+ 1)− f(t), t ∈ Na.

For m ∈ N2, we define recursively ∆m
a : s(Na)→ s(Na) by ∆m

a := ∆m−1
a ◦∆a, and is called the m-th

order forward difference operator. For instance, for any f ∈ s(N0), we have

(2) ∆mf(n) =

m∑
j=0

(
m

j

)
(−1)m−jf(n+ j), n ∈ N0.

where ∆ ≡ ∆0 and ∆0
a ≡ Ia, with Ia : s(Na)→ s(Na) the identity operator. We define the translation

(by a ∈ R) operator τa : s(Na) → s(N0) by τag(n) := g(a + n), n ∈ N0. Note that τ−1
a = τ−a and

τa+b = τa ◦ τb = τb ◦ τa. Moreover, ∆m
a ◦ τ−1

a = τ−1
a ◦∆m. In particular, we have

(3) ∆m
a f(a+ n) =

m∑
j=0

(
m

j

)
(−1)m−jf(a+ n+ j), n ∈ N0.

For any α ∈ R \ {0}, we set

kα(n) =


α(α+ 1)...(α+ n− 1)

n!
n ∈ N0,

0 otherwise.

In case α = 0 we define k0(n) = e0(n) where ei(j) is the Kronecker delta. Note that if α ∈ R \
{−1,−2, ..}, we have kα(n) = Γ(α+n)

Γ(α)Γ(n+1) , n ∈ N0 where Γ is the Euler gamma function. From [28],

or directly from the definition, we have the generation formula

(4)

∞∑
j=0

kβ(j)zj =
1

(1− z)β
, β ∈ R, |z| < 1,
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see [36, p.42 formulae (1) and (8)]. The sequence kα(n) will be very important in our analysis. Several
properties are collected in the recent paper [22]. We recall the definition of α-th fractional sum on
the set N0.

Definition 3.1. For each α > 0 and f ∈ s(N0), we define

∆−αf(n) :=

n∑
j=0

kα(n− j)f(j), n ∈ N0,

Recall that the finite convolution ∗ of two sequences f and g is defined by

(f ∗ g)(n) :=

n∑
j=0

f(n− j)g(j), n ∈ N0.

Therefore, by definition, we have ∆−αf(n) = (kα ∗ f)(n), n ∈ N0, where the convolution operator ∗
enjoys algebraic properties like commutativity and associativity, which will be very useful to simplify
and better understand the proof of some results. The above concept comes from a more general
definition, which is the most commonly used in the literature of fractional difference equations.

Definition 3.2. [5] Let α > 0. For any given positive real number a, the α-th fractional sum of a
function f is

∇−αa f(t) =
1

Γ(α)

t∑
s=a

(t− s+ 1)α−1f(s),

where t ∈ Na and tα :=
Γ(t+ α)

Γ(t)
.

We next recall the definition of fractional difference operator, which was introduced in [27].

Definition 3.3. The fractional difference operator ∆α : s(N0)→ s(N0) of order α > 0 (in the sense
of Riemann-Liouville) is defined by

(5) ∆αf(n) := ∆m ◦∆−(m−α)f(n), n ∈ N0,

where m− 1 < α < m, m := dαe, the least integer that is greater than or equal to α.

For instance, for 0 < α < 1 we obtain

∆αf(n) =

n+1∑
j=0

k−α(j)f(n− j) =

n+1∑
j=0

(−1)j
(
−α
j

)
f(n− j),

which corresponds to the Grünwald-Letnikov scheme of approximation (with step size h = 1) for the
one dimensional Caputo fractional derivative. Complementarily we recall the following definition.

Definition 3.4. The nabla fractional difference operator ∇α : s(Na) → s(Na) of order α > 0 is
defined by

∇αaf(t) = ∆m
a ◦ ∇−(m−α)

a f(t), t ∈ Na
where m− 1 < α < m, m = dαe.

In the next result we show an important relationship between the two above defined fractional
difference operators, known as transference principle, because allows to transfer qualitative properties
from one operator to another via translation. This kind of theorem was first proved in the article [22]
where its usefulness in order to transfer geometric properties has been established.

Theorem 3.5. Let α > 0 and a ∈ R be given. Then we have

τa ◦ ∇αa = ∆α ◦ τa.
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Proof. By Definition 3.2, for f ∈ s(Na) we have

τa ◦ ∇−αa f(n) = ∇−αa f(n+ a) =
1

Γ(α)

n∑
j=0

(n− j + 1)α−1f(a+ j)

=

n∑
j=0

Γ(α+ n− j)
Γ(α)Γ(n− j + 1)

f(a+ j) =

n∑
j=0

kα(n− j)f(a+ j) = ∆−α ◦ τaf(n),(6)

for all n ∈ N0. Let f ∈ s(Na) be given. Then by Definition 3.4, identities (2), (3), (5) and (6), we
obtain

τa ◦ ∇αaf(n) = τa ◦ (∆m
a ◦ ∇−(m−α)

a )f(n) = (∆m
a ◦ ∇−(m−α)

a )f(n+ a)

=

m∑
j=0

(
m

j

)
(−1)m−j∇−(m−α)

a f(n+ a+ j)

=

m∑
j=0

(
m

j

)
(−1)m−jτa ◦ ∇−(m−α)

a f(n+ j)

=

m∑
j=0

(
m

j

)
(−1)m−j∆−(m−α) ◦ τaf(n+ j)

= ∆m(∆−(m−α) ◦ τaf)(n) = ∆α ◦ τaf(n),

for all n ∈ N0. This proves the theorem. �

4. Chaotic Toeplitz operators

In this section we will show a new criterion in order to obtain (Devaney) chaos for the operators
considered here. We recall that, given an operator T : X → X on a complex Banach space X, then
a function E : A→ X for certain A ⊂ C is an eigenvector field if E(λ) ∈ ker(λI − T ) for any λ ∈ A,
and

span{E(λ) ; λ ∈ A} is dense in X.

Given a non-empty open set U ⊂ C, and a map G : U → X, we say that G is weakly holomorphic on
U if y ◦G : U → C is holomorphic for any y ∈ X∗.

The following result is essentially well-known. We will include its proof for the sake of completeness.

Theorem 4.1. Given an operator T : X → X on a complex Banach space X, if U ⊂ C is a
connected nonempty open set that intersects T, G : U → X is a weakly holomorphic map such that
G(λ) ∈ ker(λI − T ) for any λ ∈ U , and

span{G(λ) ; λ ∈ U} is dense in X,

then T is Devaney chaotic.

Proof. By the classic Godefroy-Shapiro criterion for chaos (see, e.g., [24, Theorem 3.1]), we need to
show that

Y1 := span{x ∈ X ; Tx = λx for some λ ∈ C with |λ| > 1};
Y2 := span{x ∈ X ; Tx = λx for some λ ∈ C with |λ| < 1};

Y3 := span{x ∈ X ; Tx = eαπix for some α ∈ Q};
are dense in X. To do this, we consider U1 := U ∩ (C\D), U2 := U ∩ D, and

A := U ∩ {eαπi ; α ∈ Q}.

It will suffice to show that, given j ∈ {1, 2, 3}, and for any y ∈ X∗, the equality < x, y >= 0 for every
x ∈ Yj implies y = 0. Actually, since the holomorphic map y ◦ G annihilates on U1, U2 or A, which
are sets with accumulating points in U , and U is connected, then y ◦G ≡ 0. The assumptions imply
that y = 0, and we conclude the result. �
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Now we are in conditions to recall the following theorem obtained in [8] that provides chaos for
the kind of Toeplitz operators that we are interested. In the original paper, the authors only showed
hypercyclicity for such operators but chaos can be easily reached.

Theorem 4.2. Let Φ(z) = γ
z + ϕ(z) with γ ∈ C and ϕ ∈ A(D) satisfying

(i) the function Φ is univalent in D\{0};
(ii) D ∩ (C\Φ(D)) 6= ∅ and D̂ ∩ (C\Φ(D)) 6= ∅.

Then the Toeplitz operator TΦ : `2(N0)→ `2(N0) is Devaney chaotic.

Proof. The fact that TΦ is a well-defined hypercyclic operator on `2(N0) was proved by Baranov and
Lishaskii [8, Theorem 1.1], and taking into account that they showed (see [8, Proposition 2.2]) that

fλ(z) =
1

zΦ(z)− λz
∈ A(D)

is a λ-eigenvector of TΦ for any λ ∈ C\Φ(D), we get that G(λ) := fλ is a weakly holomorphic map
on an open disc U that intersects T. Moreover, it satisfies the condition

span{G(λ) ; λ ∈ U} is dense in X,

as was shown in the proof of statement 2 of Theorem 1.1 in [8]. Thus TΦ is Devaney chaotic by
Theorem 4.1. �

5. Nonlocal operators are chaotic

Let 0 < α < 1. From the previous section, we recall the definition of the nonlocal operator ∆α

which read as follows

∆αu(n) = ∆(k1−α ∗ u)(n) =

n+1∑
j=0

k1−α(n+ 1− j)u(j)−
n∑
j=0

k1−α(n− j)u(j), n ∈ N0.

Our first important observation is that the representation of ∆α in the canonical basis {el(j)}j,l∈N0

of `2(N0) is a Toeplitz matrix for 0 < α < 1 . In fact, we have

(7) ∆αel(n) =


−αk

1−α(n− l)
n− l + 1

if n ≥ l

1 if n = l − 1

0 if n < l − 1

Our next theorem shows that ∆α is a well-defined Toeplitz operator on `2(N0) and exhibits chaos
for any 0 < α < 1.

Theorem 5.1. For any 0 < α < 1, the operator ∆α defines a chaotic Toeplitz operator on `2(N0)

with symbol Φ(z) = (1−z)α
z .

Proof. Given u ∈ `2(N0), we have by [22, Proposition 2.9 (v)] that ∆αu = ∆(k1−α ∗ u) = ∆k1−α ∗
u+ τ1u where τ1 denotes the translation operator. Using Young’s convolution inequality, we get

‖∆αu‖2 ≤ ‖∆k1−α ∗ u‖2 + ‖u‖2 ≤ ‖∆k1−α‖1‖u‖2 + ‖u‖2,
where we have used [22, Proposition 3.1 (viii)] and the estimate

∆k1−α(n) ∼ C

nα+1
.

which follows from [22, Lemma 3.2 (i)]. This proves that the operator ∆α is bounded on `2(N0).

In view of (7) we have Φ(z) = 1
z +

∑∞
j=0

(−α)k1−α(j)zj

(j+1) . Let denote

ϕ(z) =

∞∑
j=0

(−α)k1−α(j)zj

(j + 1)
,
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then we get

zϕ(z) =

∞∑
j=0

(−α)k1−α(j)zj+1

(j + 1)

and then using (4) we have

[zϕ(z)]′ = −α
∞∑
j=0

k1−α(j)zj = −α(1− z)α−1.

After integrating once, we obtain

(8) zϕ(z) = (1− z)α + c.

Replacing z = 0 in (8) we get c = −1. As a consequence ϕ(z) = (1−z)α
z − 1

z . Finally, it follows that

Φ(z) = 1
z + ϕ(z) = (1−z)α

z is the symbol of the Toeplitz operator.
In order to prove chaos of the operator ∆α for 0 < α ≤ 1 we use Theorem 4.2. Let first check

condition (i), that is, Φ(z) = (1−z)α
z is univalent in D\{0}. Indeed, using Theorem 2.4 it suffices to

show that

(9) <
(
D1Φ(z)

Φ(z)
− 2

)
< 0, for |z| < 1,

where DnΦ(z) = 1
z (zn+1 Φ(z)

n! )(n), n ∈ N0. An easy computation shows that D1Φ(z) = (1−z)α
z −α(1−

z)α−1 and taking z = a+ ib with −1 < a < 1 it follows that

<
(
D1Φ(z)

Φ(z)
− 2

)
= <

(
−1− αz

1− z

)
=
−(1− a)2 + (α− 1)b2 − αa(1− a)

(1− a)2 + b2
.

It is clear that <
(
D1Φ(z)

Φ(z) − 2
)
< 0 if and only if −(1− a)2 + (α− 1)b2 − αa(1− a) < 0 and this last

assertion holds since 0 < α < 1 and −1 < a < 1. It only remains to show condition (ii) in Theorem
4.2. Actually, we will show that I := [−2α, 0] ⊂ C\Φ(D)). Indeed, if z ∈ D is so that Φ(z) = z′ ∈ I,
then arg(z′) = π. This implies arg((1− z)α) = θ + π, where θ = arg(z), a contradiction.

�

Remark 5.2. We observe that the symbol of the Toeplitz operator ∆α coincides with the symbol of the
explicit Euler approximation scheme for the Riemann-Liouville fractional differential operator [25].

A very interesting consequence of this theorem when combined with the transference principle
stated in section 3 is the following corollary.

Corollary 5.3. For any 0 < α ≤ 1 and a > 0, the nabla difference operator ∇αa is chaotic in `2(Na).

Proof. It is a direct consequence of Theorem 3.5 and [24, Proposition 2.24].
�

Let b ∈ `1(N0) be a summable sequence and define its Gelfand transform by

(10) δ(z) :=

∞∑
n=0

b(n)zn, z ∈ D.

In what follows, we will always assume that the radial limit δ(ξ) := limz→ξ δ(z) exists for all ξ ∈
T \ {±1}.

The next result in an important criterion for chaos of a specific operator that covers many nonlocal
difference operators as we will see later.

Theorem 5.4. Let b ∈ `1(N0) be given and Tb : `2(N0)→ `2(N0) given by

Tbu(n) =

∞∑
j=0

b(j)Bju(n), n ∈ N0,
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where B denotes the backward shift operator. Then Tb defines a bounded operator on `2(N0) and the
following assertions are equivalent

(i) Tb is chaotic;
(ii) δ(D) ∩ T 6= ∅.

Proof. We observe that ϕb(B) = Tb where

ϕb(z) :=

∞∑
j=0

b(j)zj = δ(z),

defines an holomorphic function on the disk D, because b ∈ `1(N0). Moreover, we have that ϕ(B)
defines a bounded operator on `2(N0) and, by Theorem 2.3, we deduce that Tb is chaotic if and only
if δ(D) ∩ T 6= ∅. This proves the theorem. �

In what follows we study chaos for relevant nonlocal difference operators arising in the study
of time-stepping schemes for fractional operators [25]. They are defined by a convolution operator
∂αb : `2(N0)→ `2(N0) given by

∂αb u(n) := (b ∗ u)(n), n ∈ N0,

where b ∈ `1(N0) is a real valued sequence, implicitly defined by the generating series

(11) δ(ξ) :=

∞∑
n=0

b(n)ξn, ξ ∈ T,

and where δ(ξ) represents the symbol of the scheme. An easy calculation shows that the dual operator
of ∂αb in `2(N0), is given by

(∂αb )∗u(n) = Tbu(n) =

∞∑
j=0

b(j)Bju(n), n ∈ N0.

Surprisingly, in some cases, the above operator is known. For instance, consider b(n) = k−α(n). Then
it perfectly coincides with the Weil fractional difference operator of order α > 0, denoted by Wα. See
[1, Definition 3.1 and Theorem 3.2].

As a first example, we consider δ(ξ) = 1 − ξ that represents the Backward Euler scheme [25]. A
simple inspection comparing with the series (11) shows that b(n) = e0(n)− e1(n). Therefore

∂αb u(n) = u(n)− u(n− 1), n = 1, 2, ...

and ∂αb u(0) = u(0). The associated matrix in the canonical basis, takes the form

(12) ∂αb el(n) =


1 if n = l

−1 if n = l + 1

0 otherwise

where n, l ∈ N0. We can easily verify that for b(n) given as before, we obtain

(∂αb )∗u(n) = u(n)− u(n+ 1) = −∆u(n), n ∈ N0.

Consequently, the associated matrix to the dual operator is represented, as predicted, by

(13) (∂αb )∗el(n) =


1 if n = l

−1 if n = l − 1

0 otherwise.

We observe that such operator is chaotic [24, Theorem 4.43]. For a given α > 0 we consider now the
fractional backward Euler scheme with symbol δ(ξ) = τ−α(1− ξ)α where τ > 0 denotes the step size
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of the scheme [25]. In such case, we obtain the sequence kernel bτ (n) = τ−αk−α(n), and then we can
consider the following nonlocal operator

∂αk u(n) =

n∑
j=0

τ−αk−α(n− j)u(j).

It is remarkable that (∂αk )∗ = Wα
τ corresponds to the Weil fractional difference operator or order

α > 0 recently studied in [1] (with step size τ = 1) and whose matrix is represented by

(14) Wα
τ el(n) =

 τ−αk−α(n− l) if n ≥ l

0 otherwise.

We prove the following interesting result that shows that chaos for Wα
τ depends on the step size τ

but not on the fractional order derivative, in contrast with the nonlocal operator ∆α.

Theorem 5.5. For any α > 0 the Weil difference operator Wα
τ is chaotic on `2(N0) if and only if

0 < τ < 2.

Proof. According to Theorem 5.4 it is enough to prove that δτ (D) ∩ T 6= ∅ if and only if 0 < τ < 2
where δτ (z) = τ−α(1− z)α. Indeed, we note that w ∈ δτ (D)∩T if and only if w = τ−α(1− z)α where
|w| = 1 and |z| < 1. Then, the identity |1− τw1/α| = |z| shows that the complex number τw1/α must
belong to the disk of center 1 and radius 1. Consequently, 0 < τ < 2 iff δτ (D) ∩ T 6= ∅. �

In what follows, we consider the fractional second order backward difference scheme given by the
symbol

(15) δ(ξ) = τ−α(
3

2
− 2ξ +

1

2
ξ2)α = τ−α(

3

2
)α(1− z)α(1− z

3
)α.

It was recently proved in [29] that for such time stepping scheme, the sequence b(n) is given by

b(n) =
3

2
e0(n)− 2e1(n) +

1

2
e2(n),

in case α = 1 and

b(n) = (
3

2
)α

n∑
j=0

k−α(n− j) 1

3j
k−α(j),

in case α 6= 1. We check that b ∈ `1(N0). Indeed, define c(n) := k−α(n)
3n . Then we have c(n) ∼ C

n1+α3n

because k−α(n) ∼ C
n1+α . Therefore, both sequences c and k−α belong to the Lebesgue space `1(N0).

This facts, together with Young’s inequality for the convolution, imply the assertion.
For such sequence b(n), we consider the following scheme

∂αb u(n) = τ−α(b ∗ u)(n)

where τ > 0 is the step size.
The next result shows, once again, the independence of chaos from the fractional order. See Figure

1.

Theorem 5.6. The operator Tb, which is the dual of the operator that defines the fractional second
order backward difference scheme with step size τ , is chaotic on `2(N0) if and only if 0 < τ < 4.

Proof. According to Theorem 5.4, it is enough to prove that δ(D)∩T 6= ∅ if and only 0 < τ < 4, where
δ(z) is given by the symbol (15), with z ∈ D. By the maximum principle, we have supz∈D |δ(z)| =
maxz∈T |δ(z)| which, by the identity (15), is attained at z = −1. Therefore, supz∈D |δ(z)| = 4ατ−α. It
shows that the set δ(D) intersects the unit circle if and only if 4ατ−α > 1 which proves the assertion
of the theorem. �
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Figure 1. δ(D) for the symbol of the fractional second order backward difference
scheme with α = 1

2 and τ = 4, and T.

Finally, we consider the fractional Crank- Nicholson stepping scheme, whose symbol is given by

δ(ξ) = τ−α
(1− ξ)α

1− α
2 + α

2 ξ
,

where 0 < α < 2. By [29, Example 4.4] we have that the sequence b(n) is given by

b(n) = τ−α
2

2− α

n∑
j=0

k−α(n− j)
( α

α− 2

)j
.

For the range 0 < α < 1 we define the sequence c(n) := ( α
α−2 )n. Since α < 1 we have c ∈ `1(N0) and

since

k−α(n) ∼ C

nα+1
.

which follows from [22, Lemma 3.2 (viii)] we deduce k−α ∈ `1(N0). Therefore, Young’s inequality for
the convolution implies that b ∈ `1(N0).

In the case 0 < α < 1 we arrive at the following result, which reveals a surprising connection of
chaos not only with the step size but also with the fractional order α.

Theorem 5.7. Let 0 < α < 1. The operator Tb, which is the dual of the operator that defines the
fractional Crank-Nicholson scheme with step size τ, is chaotic on `2(N0) if and only if 0 < τ <

2

(1− α)1/α
.

Proof. By Theorem 5.4 we have to prove that the property δ(D) ∩ T 6= ∅ is valid for the holomorphic

function δ(z) = τ−α
(1− z)α

1− α
2 + α

2 z
defined by the Crank-Nicholson scheme. Observe that δ(z) is a

conformal map satisfying δ(1) = 0 and δ(−1) = τ−α
2α

1− α
. Moreover, by the maximum principle, we

have that supz∈D |δ(z)| = maxz∈T |δ(z)|. Therefore, the maximum value of the set δ(D) is attained
at δ(−1). Hence, we have non empty intersection with the unit circle if and only if δ(−1) > 1 which

means 0 < τ <
2

(1− α)1/α
.

�
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