
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/166370

Larriba-Flor, AM.; Sempere Luna, JM.; López Rodríguez, D. (2020). A two authorities
electronic vote scheme. Computers & Security. 97:1-12.
https://doi.org/10.1016/j.cose.2020.101940

https://doi.org/10.1016/j.cose.2020.101940

Elsevier



A two authorities electronic vote scheme

Antonio M. Larriba1, José M. Sempere2, and Damián López2

1 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

anlarflo@dsic.upv.es
2 VRAIN - Valencian Research Institute for Artificial Intelligence

Universitat Politècnica de València
{jsempere,dlopez}@dsic.upv.es

June 24, 2020

Abstract

In this paper we propose a new electronic multi-authority voting
system based on blind signatures. We focus on the open problem of the
efficiency of electronic voting systems. Most of the proposed systems
rely on complex architectures or expensive proofs, in this work we aim
to reduce the time-complexity of the voting process, both for the voter
and the authorities involved. Our system is focused on simplicity and
it is based on the assumption of two unrelated entities. This simplicity
makes our approach scalable and flexible to multiple kinds of elections.
We propose a method that limits the number of authorities to only 2
of them; we reduce the overall number of modular operations; and,
propose a method which cut downs the interactions needed to cast a
vote. The result is a voting protocol whose complexity scales linearly
with the number of votes.

Keywords: Electronic vote; Homomorphic cryptography; Multi-authority
system; Blind signatures; RSA.

1 Introduction

The design of electronic voting schemes is an extensive area of research and
has received attention given its importance on the democratic society we
live in. Both theoretical [28, 36] and more applied results [1, 17, 38, 42]
have been proposed. The motivation for new developments, not limited by
this enumeration, include the time efficiency in the corporations’ decision
making process, the reduction of the economic costs of general elections
or referendum, the search for an increase in the elections’ participation, or

1



the participation of the people in the political agenda. All these factors
are relevant and will have a role in the eventual generalization of electronic
voting. Nevertheless, it is out of the scope of this paper the analysis of these
factors and their relevance in future practical implementation of electronic
voting.

Here, we present a verifiable voting scheme that, under some conditions,
guarantees that the desired properties of an electronic voting system are
hold. Explicitly: that it is not possible to relate a vote with the elector who
cast it (privacy); that it is unfeasible for any party in the system to modify a
ballot without detecting the forgery (integrity); that the final tally considers
only verified and correct ballots (correctness) and any elector in the census
can check that her vote was accounted as intended (verifiability).

The system we present, the Two-Authorities Voting Scheme (TAVS), can
be seen as an adaptation of Chaum [12] blind signature scheme to electronic
voting. TAVS is based on two unrelated authorities: an Identification Au-
thority (IA) that checks the membership of a potential elector in the census;
and, a Remote Polling Station (RPS) where the electors cast their votes.
Individual validation can be achieved without the need of implement time
expensive zero-knowledge procedures [5].

Our goal is to introduce a more efficient and simpler voting scheme,
where simpler regards to the number of partners implied in the election, as
well as to the number and complexity of the steps to carry out. The out-
come of this improvements imply a reduction of the global computational
complexity. The simplicity of our approach also allows a better understand-
ing on how the system works. The advantage of this is two-fold: academics
can review and discuss the protocol with ease, and voters can get a betters
grasp of the scheme despite not being experts on the field. TAVS allows
the elector to (anonymously) check that her vote has been included into the
count. The final tally can be later anonymously audited in order to verify
the correction in the count. In all the processes privacy is guaranteed.

In order to allow the anonymous certification of the elector’s vote we
make use of an operation with homomorphic property. In the cryptogra-
phy framework, homomorphic operations allow to operate over ciphertexts
equivalently as it would do on plain text without revealing the encrypted
content. Blind signature schemes take advantage from homomorphic proper-
ties to permit the disguised signature of a message. For the sake of simplicity,
we present the scheme taking into account the RSA signature method [33]
because of the homomorphic properties of the modular exponentiation. Nev-
ertheless, the scheme here proposed can be modified to consider any other
process with homomorphic properties.

As mentioned above, it is assumed that the two authorities implied are
not related in any way. Also, unlike Chaum’s original proposal, no com-
munication is established in order to share elector’s information. It is not
assumed the authorities are honest and provide methods to detect mali-

2



cious behavior of the authorities. Apart from this consideration, we do not
consider many aspects that can be solved using general and well-known pro-
cedures in the literature, which can be considered as out of the scope of this
paper. Thus, from now on:

• In order to be the more general the better, this paper does not ad-
dress the way to code the votes. In the description of the scheme,
we only consider the number that comes out from the binary repre-
sentation of the vote, regardless how it is obtained. Thus, the voting
scheme proposed here is described regardless the coding of the vote,
and, therefore, any voting protocol is suitable to be implemented (plu-
rality, approval, ranked, Borda systems, Condorcet systems, and single
or multiple races as well, see [8] or [34]).

• It is assumed that all the auxiliary methods and procedures work prop-
erly and no weakness of the scheme can be derived from them (i.e.,
signature and hash functions are considered secure).

• It is assumed that the organization supporting the elections provides
a private identification to every elector in the census. Taking into
account particular features of the census and its geographical distri-
bution, this identification can be implemented either physically or elec-
tronically, and distributed in many ways before the elections date. Of
course, any existing suitable identifier, can be considered as well.

• The communication channels are considered to be secure. We note
that the distributed identification would permit to implement secure
channels to communicate the electors and the implied authorities in
the voting scheme during the elections.

The rest of the paper is organized as follows: in Section 2 we review
relevant papers that propose state-of-the art electronic voting systems; in
Section 3 we introduce and describe in detail our proposal; in Section 4
we analyze the properties of our voting scheme and in Section 5 we show
the asymptotic time-complexity of our approach. Finally, in Section 6 we
present the final conclusions of this work and appraise the contributions.

2 Related work

Blinds signatures were proposed by David Chaum [12, 13] as a mechanism
to allow signing a disguised message that cannot be linked to un-blinded
content. The original works were based on RSA, but some signing protocols
based on the discrete logarithm problem appeared later [9]. Blind signatures
were defined with the following three functions in the original work:

3



• A signing function s private to the signer. Its corresponding public
inverse s−1 such that s−1(s(x)) = x and s−1 gives no clue about s.

• A computing function c and its inverse c−1, known only to the provider,
such that c−1(s(c(x))) = s(x) and c(x) and s give no clue about x.

• A redundancy checking predicate r, that checks for sufficient redun-
dancy to make search for valid signatures impractical.

Blind signatures were originally presented as a way to produce untrace-
able electronic payments. Given the similarities between double spending
and double voting, these signatures were also applied to voting systems. In-
deed, the original proposal mentions this application. We adapt the results
of this work to propose a complete voting protocol that takes into account
new issues as identification and re-blocking. In this section we review the
most relevant literature regarding voting systems: some of them related
with blind signatures, some with multi-authority systems and some because
of their relevance in the evolution of voting protocols. Recently, voting pro-
tocols have shifted to more recent approaches such as ring signatures (e.g:
[43, 44]) or Blockchain-based methods (e.g: [45, 46]).

The first electronic voting scheme proposed was based on mix-nets in
an anonymous channel in the context of mail services [10, 11]. This scheme
does not require a universally trusted authority and if at least one of the
authorities is honest through the cascade of mixes, the system remains pri-
vate.

Cohen et al. introduced in [14] a robust and verifiable system based on
the r − th residue problem [4, 31]. They introduced an interactive proof
which only required one partner to actively participate. The electors and
the convening organization interact through a public bulletin board, all in-
teractions are time-stamped by a global clock. An on-request beacon [32]
is introduced to add a source of randomness. The main drawback of the
system is that the organization has the ability to read any vote. The system
works for ’Yes/No’ polls and can be extended for multi-way elections, nev-
ertheless, for a m-multi-way elections, it implies r to be the product of m
large prime values, which lead to more expensive modular exponentiations.

In [16], Cramer et al. proposed a multi-authority voting system based
on proofs of knowledge and the homomorphic properties of the ElGamal
cryptosystem [19]. This approach uses a threshold scheme [18] to share
the decryption private key among the n authorities. In this scenario, each
authority commits to publicly share its secret in order to avoid malicious
changes. The decryption needs at least half plus one of the n authorities to
recover the secret key. The cost is linear with respect to the number of elec-
tors in the case of ’Yes/No’ elections. However, a multi-way election would
imply the increase of the number of zero-knowledge proofs, and, therefore,
the increment of the cost of the scheme.

4



Juang et al. propose in [22] a robust and verifiable multi-authority sys-
tem that allows abstention after the registration phase as well as opening
objections to the tally without compromising the privacy of the voter. This
scheme uses distributed blind signatures [9, 13] in order to disperse the
power of a single authority. The authors present a quite complex architec-
ture involving seven phases and multiple partners: electors, administrators,
scrutineers and the counter, where voters, firstly, encrypt their votes and ap-
ply blind threshold signature techniques to, secondly, get their vote signed
by administrators. In the voting phase, voters can craft their real encrypted
votes from the blind encrypted ones. Once the vote is crafted they can send
it to the counter through an untraceable electronic mail system. Votes are
published, if no objections appear the scrutineers send their pieces of the se-
cret key to the counter. Votes are decrypted and results are published. The
system preserves the electors’ privacy from the rest of entities of the system.
The time complexity of the system is determined by the complexity of the
blind threshold signature scheme and the preparation phase where author-
ities must cooperate between them. In this system, the number of modulo
operations scales linearly with respect to the number of administrators for
each voter and for each administrator.

A multi-candidate and multi-authority voting system was proposed in [3]
which shares homomorphic properties, zero-knowledge proofs and a thresh-
old system similar to the scheme presented in [16]. In their paper, the
authors state that their scheme provides receipt-freeness (see, for instance,
[6]), which guarantees that no elector could craft a receipt revealing how she
voted even if she wanted to do so. The scheme in [3] is based on the Pail-
lier cryptosystem [27] and is oriented to a large group of electors in which
authorities are organized hierarchically. The votes move up in the hierarchy
until its final decryption. It is relevant to note that, in this system the vote
size depends on the number of zero-knowledge proofs, the size of hashed
commitments and the size of the modulus used in the Paillier system.

Cramer et al. proposed in [15] a multi-authority voting system. Electors
cast, encrypt and distribute shares of their votes and then post them on
the bulletin board. Instead of relying on expensive zero-knowledge proofs,
Cramer et al., propose a non-interactive proof of validity, reducing the cost of
the zero-knowledge proof from quadratic to linear. Each vote on the bulletin
is accompanied by one of this proofs. To alleviate the fact that a single
authority could decrypt the vote, they use multiple authorities in a threshold
system, similar to [16]. The system works for ’Yes/No’ elections and it is
compatible with plurality voting with minimal overhead. However, for other
kinds of vote, the number of proofs could increase. The computational time
cost of distributing the commitments and checking the shares is linear for
each partner implied in the elections: voters require a linear effort with
respect to the number of authorities and the size of the security parameter,
and authorities require a linear effort with respect the number of voters and

5



the size of the security parameter.
In [24], Li et al. presented a multi-authority voting system based on

blind signatures. To the best of our knowledge, it is the most similar pro-
tocol to our proposal. Electors cast their vote and blind it to get it signed
from multiple authorities. Authorities are supposed to be conformed from
multiple parties in the political spectrum to ensure a correct and honest
functioning. The scheme of Li et al. implies four voting phases, four au-
thorities, three pairs of keys for the authorities and two pairs for each vote.
A consequence of the number of authorities and the processing of each vote
is the high number of modular exponentiations needed. Some aspects of the
public key infrastructure and the blind signature functions are not fully de-
tailed. On the other hand, since the identification process depends partially
on the authorities, they provide coercion resistance.

Porkodi et al. presented in [30] a scheme that operates in a similar way
other voting schemes do: the elector encrypts her vote and post it on a
public bulletin board; due to the homomorphic properties of the encryption,
an encrypted tally can be anonymously computed from the bulletin board,
which implicitly hidden the direction of the votes in the board; and, finally,
decrypting the tally in the final stage. The decryption secret key is shared
between the authorities in a threshold scheme. Each authority has to prove
that he posted a commitment to its private share and each elector has to
prove she encrypted a valid vote. After this, the final tally is computed
and published. On the one hand, the system uses common operations on
elliptic curves [26] that allow the use of smaller key sizes with the same
level of security as other approaches. On the other hand, each vote must be
accompanied by an expensive proof of knowledge, and each authority must
proof the validity of their commitment.

Taking into account ElGamal cryptosystem and its homomorphic fea-
tures, Philip, Simon and Oluremi propose their receipt-free multi-authority
system in [29]. The system takes into account n authorities structured in a
threshold scheme and a Trusted Center (TC). Before the elections, the TC
receives the identification of the electors and provide a username and a pass
code for those eligible electors. The information provided by the TC is used
by the electors to get validated and register their vote. After each elector
has encrypted and signed her vote and crafted its proof of correctness, the
authorities use the distributed secret key to compute the final tally. Votes
are re-encrypted through the voting process to provide receipt-freeness. A
single vote must be encrypted, signed and accompanied by a proof of va-
lidity. Later, it needs to be re-encrypted. While the authors provide a
functional system with receipt-freness, this comes at the cost of increasing
the computational cost of the system.

Cobra [20] is a proof-of-concept election scheme that offers concurrent
ballot authorization. The goal of this approach is to provide an immedi-
ate and efficient tally. Cobra allows each elector to generate fake ballots

6



in order to prevent elector coercion. Previous to the elections, credentials
are distributed to the electors. Later, electors can claim fake credentials
to cast fake ballots that can be later separated from real ballots without
revealing the particular submissions [35]. They reduce ballot authorization
to the membership problem. The discrimination function is implemented as
a Bloom filter [7] in which querying and inserting operations are performed
homomorphically to preserve privacy. The concurrent ballot authorization
is the most expensive part of the system because the number of modular
exponentiations it implies (which is quadratic with the number of submit-
ted ballots). The honesty of all implied authorities is assumed. Despite the
authors provide a small experimentation, due to the high cost of the system,
it does not scale appropriately.

Thao and Khanh introduced in [37] an election scheme based on blind
signatures and dynamic ballots. The elector needs to register herself using
blind signatures through a chain of authorities, similarly as in [24]. To
protect the privacy of votes from coercion, they employ dynamic ballots
that change for each elector. A Ballot Center is responsible of providing a
random permutation of the candidates to each voter. In the tallying phase,
Plain-text-equivalence (PET) [21] is used to remove invalid and duplicated
ballots. They provided a solid protocol that fixed most of the flaws previous
voting systems had. However, the scheme employs 5 authorities, 2 bulletin
boards, two types of encryption and a PET test for each identifier. All these
factors result in an expensive system difficult to scale.

Yang et al. present in [40, 41] propose a ranked voting system where
each ballot is coded as a square matrix and each element of the matrix is
independently encrypted using ElGamal cryptosystem. In order to prove
correctness of the ballot, the elector has to provide a proof of partial knowl-
edge for every encrypted cell of the matrix and a zero-knowledge proof for
the whole ballot. Homomorphic properties allow to combine the ballots’
rows in order to compute the final tally for each candidate. Decryption pro-
cess needs the cooperation of all authorities. An improvement of the initial
version implies to encode in binary the ranks of each candidate in the ballot.
As a consequence of this, the size of the matrix representing the ballot is re-
duced and therefore the time complexity is reduced. Nevertheless, the time
complexity still remains the main drawback of this approach because the
huge number of zero-knowledge and partial-knowledge proofs and modular
exponentiations needed.

To our knowledge, Aziz presents in [2] the most recent electronic voting
system based on blind signatures. In his work, he presents a multi-authority
and coercion resistant scheme. To provide coercion resistance, he employs
fake credentials [23] to provide the elector with an exit mechanism if it gets
coerced. After registration, the elector anonymously requests a token to a
token authority. This token contains the parameters needed to construct the
ballot. This way, the ballot crafting is detached from the elector, making

7



impossible to craft a receipt. Then, blind signatures are employed to get
the ballot signed from a registrar. The signed ballot is casted through a
mix-net. After the election, a set of trustees cooperate to decrypt the votes
and compute the final tally. Ballots are shuffled and separated in such way
that there is no relation between the direction of the vote and the proof
of validity. This prevents the elector from knowing if her vote was tallied
as it was casted, but provides coercion resistance. Multiple authorities are
involved in the process, but mainly there are a registrar assumed honest
and a set of trustees that employ a distributed key generation protocol to
disseminate the trust. Regarding the time complexity, the scheme requires
to compute a token per elector (although this can be pre-computed to reduce
the computational cost) and a unique pair of RSA keys per elector. These
requirements: the multiple authorities and the use of mix-nets to cast a
vote, elevate the final computational cost to vote.

3 Description of our proposal

Here we describe our voting protocol, TAVS, based on multiple authorities
and blind signatures. Unlike most of the systems described in the previous
section, we reduce the number of authorities to only 2. Thus, we simplify the
voting procedure to just three steps and reduce the overall computational
cost. Opposed to other approaches, the corruption of a single authority
does not compromise the security of the voting protocol and the elector is
able to check the honesty of the authorities. As mentioned in Section 1,
we employ RSA in order to implement blind signatures; we fully disclose
each computation involved on the signing scheme. We utilize the blinding
scheme to address the identification of the elector. We contemplate re-
blocking issues as well as disagreements with the authorities. Afterwards,
after some minor remarks about the notation, TAVS is disclosed.

As mentioned before, in this paper TAVS is described regardless the
coding of the vote. Therefore, any protocol implementing the proposed
scheme should state clearly the way the vote is coded.

Once the elector has decided the direction of her vote, in order to ob-
tain the ballot, the (coded) vote is combined with other numbers using two
operations:

• The modular product of numbers modulus n (denoted with a·b mod n).
Usual and self-explained operation.

• The concatenation of numbers (denoted with a‖b), that returns the
number obtained by concatenation of the binary representation of the
input numbers.

• The multiplicative inverse of a number x modulus some given integer
n (denoted with x−1 mod n).

8



TAVS consists on three sequential steps and is fully described in the fol-
lowing sections. Briefly speaking, the first step consists on the generation
of the pre-ballot. This process is carried out by the elector with no need of
interaction with any authority. The output of this process is an uncertified
masked ballot (the pre-ballot) which cannot be disclosed without the elec-
tor participation. The second step implies the submission of the elector’s
identification and the (masked) pre-ballot to the IA in order to certificate
the pre-ballot using an electronic signature procedure. This certification
is carried out whenever the identification corresponds to an elector in the
census who has not previously ask for another vote to certificate. The certi-
fication process ends when the elector acknowledges safe and correct receipt.
In the last step, the elector anonymously submits the certified ballot and
the information needed to unmask the vote to the RPS. The generation of
the pre-ballot is such that it is unfeasible the manipulation of the certified
version of the ballot in order of obtain more than one valid votes.

In order to maintain privacy and provide democracy and verification,
two public bulletin boards are used, the Revoked Board and the elections’
Public Bulletin Board. The use of the Revoked Board prevent malicious
electors from using certified ballots before the end of the certification process.
The elections’ Public Bulletin Board allows the electors to confirm that
their ballot has been counted in the final tally.

TAVS uses a generic hash function of TH bits, and a signature scheme
with homomorphic properties. As mentioned above, we present our proposal
taking into account the Chaum’s RSA blind signature procedure. Obviously,
the scheme could be modified to consider any other signature procedure in
the literature holding homomorphic properties.

Although the details will be provided in Section 3.1, we denote with TS

the size of the signature key (number of bits in the binary representation of
the modulus n), which will be important in the following because of their
role in the coding of the vote. Let us anticipate that, whichever format the
vote could have, it is coded using TS − TH − 1 bits. This will guarantee
correct operation in every case. Thus, the only consideration to be made
here is that the values TS and TH must be big enough to suitably code the
vote.

3.1 Pre-ballot generation

Before the voting process, it is necessary to agree the methods that will be
used for hashing as well as an electronic signature procedure. Thus, before
the start of the elections, the IA must generate an electronic public signature
key and broadcast the public component of this key in order to allow to
every member in the census to check the correct validation of the ballot. The
RSA key generated by the IA (namely the private —signature— component
SIA =< s > and the public —verification— component VIA =< n, v >) will

9



allow to certificate the ballots and to check their correctness in the counting
process.

Algorithm 3.1 Pre-ballot generation.

Input: The IA public component of the RSA signature key VIA =< n, v >
Input: A hash function h of TH bits.
Output: A pre-ballot ready to be (blindly) signed by the IA

1: Method
2: Let TS be the number of bits needed to encode n.
3: Let choice be the TS − TH − 1 bits coding of the candidate/choice

4: Let 1 < mask < n be a (private) randomly-generated value such that
gcd(mask, n) = 1

5: Compute mask−1 mod n
6: Let hash = h(choice‖mask)
7: preballot = (choice‖hash) · (maskv mod n) mod n
8: return < preballot, mask >
9: End Method.

Once the public component of the IA signature key has been distributed,
the elector can generate a pre-ballot with her vote. This procedure is run by
the elector independently and isolated from the other two authorities implied
in the process. The procedure to generate the pre-ballot (ballot generated
but not yet validated) is depicted in Algorithm 3.1 and it is designed to hold
the following conditions:

• The pre-ballot must be concealed in such a way that no-one but the
elector is able of finding out the direction of the vote (she is the only
one that knows the mask).

• In order to prevent double vote, the mask must be linked to the vote so
that it would be unfeasible the manipulation of the pre-ballot, which
would allow a malicious elector to double vote.

First, the procedure codifies the direction of the elector’s vote (line 3
in Algorithm 3.1), and selects a random generated mask that will be kept
secret until the ballot is submitted to the RPS.

In order to prevent forgeries, the concatenation of the elector’s choice
and the mask is hashed. These three elements (the elector’s choice, the
randomly generated mask and the hash) are combined to obtain the pre-
ballot (line 7). In order to avoid reblocking errors in the certification due to
a pre-ballot greater than n value, the size of the elector’s choice codification
is such that the concatenation of the choice and the computed hash results
in a number lower than n. The structure of the pre-ballot is depicted in
Figure 1.

10



v

choice hash mask·

Elector

choice

hash = h(choice�mask)

mask

IA
Gets public key v

Elector crafts the pre-ballot

Figure 1: Pre-ballot structure. Each box represents a string. The dashed box
graphically shows a modular exponentiation. The concatenation of boxes
represents the concatenations of strings. The image represents the crafting
and structure of the pre-ballot the elector sends to the IA (the result of
applying Algorithm 3.1).

We note that the computed hash is not explicitly included in the output
of Algorithm 3.1 but that it is present in an implicit way. The secrecy of the
mask is important in order the system to hold the desired security properties
of an electronic vote system. Once obtained the pre-ballot and the mask,
the elector interacts with the IA to certificate her ballot.

3.2 Elector identification and pre-ballot certification

The second step of our system aims to the blind certification of the pre-ballot
by the IA. To do so, the elector sends the (masked) pre-ballot together with
her identification to the IA. The process is described in Algorithm 3.2.

We note that the IA cannot disclose the direction of the elector’s vote as
long the mask remains secret. This implies that the elector has total control
of her vote, that if she wanted, it could even be blank or null. Once the IA
has checked that the elector has not previously requested another ballot for
certificate, the IA records the elector’s identifier and certifies the pre-ballot
signing it by using the RSA signature key publicly shared (line 8).

11



Algorithm 3.2 Pre-ballot certification

Input: A pre-ballot pb generated by an elector
Input: The elector identification
Input: The public VIA =< n, v >, and private SIA =< s > components of

IA’s RSA signature key
Output: A validated ballot (pre-ballot signed by the IA) or

Forgery attempt
1: Method
2: if the elector’s identifier is already stored in the IA records then
3: return Forgery attempt
4: end if
5: Store the elector’s identifier in the records
6: endCertification = False
7: while not endCertification do
8: Compute b = pbs mod n //the certified ballot
9: Store b in the Revocation Board

10: Send b to the elector and ask for validation
11: if the elector’s validates b then
12: Remove b from the Revocation Board
13: endCertification = True
14: end if
15: end while

16: End Method.

We note the effect of the certification process on the mask. We denote
with pb the pre-ballot built by the elector. Because of the homomorphic
properties of the modular exponentiation it follows that:

pbs mod n = ((choice‖hash) ·maskv)s mod n =
= (choice‖hash)s · (maskv)s mod n =
= (choice‖hash)s ·mask mod n

The process asks the elector to acknowledge the correct certification of
the ballot, that, because of the structure of the pre-ballot, only needs the
elector to compute the inverse of the mask modulus n to unmask the ballot,
indeed:

((choice‖hash)s ·mask mod n) ·mask−1 mod n =
= ((choice‖hash)s ·mask ·mask−1 mod n =
= (choice‖hash)s mod n

afterwards, it is possible to use the public component of the IA signature
key to verify that the certification considered the pre-ballot previously sent

12



s
v

vote hash mask·

vote hash mask·
s

≡

Figure 2: Certified ballot structure. The same considerations detailed in
Figure 1 apply. The image graphically represents the signature process ap-
plied in Algorithm 3.2. Once validated, the IA signs the pre-ballot using its
secret key. Both structures are equivalent due to the homomorphic proper-
ties of the modular exponentiation.

by the elector:

((choice‖hash)s)v mod n = choice‖hash.

If the elector acknowledges safe receipt of her ballot the certification pro-
cess ends. In order to avoid a malicious elector to later claim the ballot was
non-correct, which would allow double-voting, the IA stores the certified
ballot in a board of revoked ballots (line 9). The ballot is removed from
this board once the elector acknowledge safe and correct receipt. The certi-
fication process and the structure of the certified ballot is shown in Figure
2.

3.3 Submission and publication of the ballot

The third and last step in the voting scheme implies the submission of the
certified vote to the RPS. The procedure is summarized in Algorithm 3.3.

Briefly speaking, for any valid ballot (correctly certified), an identical
procedure to the one that allows the elector to verify the certification of
her ballot allows the RPS to access to the masked vote (lines 5 and 6
in Algorithm 3.3). The RPS can then obtain the vote itself (line 7) and
the hash that relates the vote and the mask (line 8). The computation of
h(vote‖mask) allows the RPS to check the integrity of the ballot (line 9).
The process is depicted in Figure 3.

The assumptions we consider in the description of TAVS prevent the
communication between both authorities. Nevertheless, the IA would be
able to recover the direction of the vote of any elector if the public bulletin
board includes some information he could link to an elector identifier. This
is not possible because the hash is not available to the IA, and, therefore,
its publication does not allow anyone to link the elector and her vote.

13



s
v

vote hash

vote hash mask·s mask−1,

≡

vote hash

{ }
≡

mask·
s

· mask−1vote hash

s

vote hash

Elector RPS

1. Remove mask wrapper

2. Decrypt the ballot

3. Check integrity

Figure 3: The image shows the submission of the ballot to the RPS. Once
the RPS receives the ballot and the inverse of the mask, the Algorithm
3.3 is applied to recover the elector’s vote and the hash to publish on the
bulletin board.

14



Elector IARPS

Private: s

Public: v, n

Decide vote choice
Select Mask

hash = h(choice�mask)
((choice� hash) ·maskv, id)

PBB

Check Id on the census

Condition

[User in the census]

[Not in the census] Return error

Condition

Check previous validated

votes with the same Id

[Already voted]
Return error

(choice� hash)s ·mask

Loop if answer is not correct

Cast certified ballot
((choice� hash)s ·mask,mask−1)

Condition

Check if the vote was revoked

[Vote revoked]

Return error

Remove mask

Decrypt vote

Check h(hash�mask) == hash

Condition[Hashes do not match]Return error

Count vote

Public hash on the PBB

Initially revoke vote

Confirm vote

Loop [While Disagreement]

Unrevoke the vote

Send pre-ballot

Compute certified ballot (b)
(choice� hash)s ·mask

P
re-b

allot
P

re-b
allot

certifi
cation

B
allot

castin
g

gen
eration

P
re-election

setu
p

Generate elections’ parameters
Distribute public key

Figure 4: Timing and partners’ interaction of the proposed voting scheme.
The image shows the whole process an elector must complete to cast a vote.
It shows the computations and the interactions needed as a time-interaction
diagram.

15



Algorithm 3.3 Ballot casting.

Input: A certified ballot b
Input: The mask used in the generation of the pre-ballot mask
Input: The IA public component of the RSA signature key
Input: The agreed hash function h

1: Method
2: if b is in the Revocation Board then
3: return Forgery − attempt
4: end if
5: Compute pkg = b ·mask−1 mod n
6: Compute pkg = pkgv mod n
7: Set vote equal to the first TS − TH − 1 bits of pkg
8: Set hash equal to the last TH bits of pkg
9: if hash == h(vote‖mask) then

10: Store the casted vote
11: Publish hash in the elections’ Public Bulletin Board
12: return Correct
13: else
14: return Forgery attempt
15: end if

16: End Method.

Figure 4 depicts the whole voting process: the interactions between the
partners; the timing in the voting scheme; and, the conditions that trigger
different consequences as well. As it can be seen, the process is initiated by
the IA by making public the parameters and the public key components.
Then, the elector carries out Algorithm 3.1 and sends the pre-ballot to the
IA. Assuming the elector is on the census and did not vote before, the
IA responds the elector with a certified ballot which is considered invalid
until the elector confirms the vote. The elector can independently check
the validity of the received certified ballot and contest the IA if it does not
match her initial ballot. After the certification phase, the elector send her
ballot to the RPS. There, it is checked if the vote was revoked by the IA.
If the vote is valid, RPS follows Algorithm 3.3 to check the vote is correctly
crafted. If the algorithm outputs true, the vote is counted and its hash is
posted on the public bulletin.

4 Properties of the voting scheme

In this section we analyze the security of the proposed approach, and, in
order to do so, we first note the reliability of RSA as well as of the many
hash functions in the literature that are suitable to be used in the scheme.

16



We also note that most of the properties rely on the safety of blind signatures
as well the fact the authorities purely perceive partial information.

We now analyze whether or not the proposed scheme holds the properties
that every voting scheme should fulfill.

Democracy/Eligibility (only those included in the census can be consid-
ered as valid electors). Actually, the scheme here proposed does not prevent
malicious electors to access the RPS. Nevertheless, on the one hand, we
note that it is not feasible for adversaries to construct a certified ballot unless
they could gain access to the IA signature private key. On the other hand,
in order to impersonate an elector it is necessary to know the identification
of the elector, which is assumed to be private.

Uniqueness (the electors can only vote once; double voting is not al-
lowed). Indeed, only one ballot per elector can be certified by the IA. We
now prove that it is not feasible to tamper with a certified ballot, nor to
design a pre-ballot in order to achieve double voting.

Let us recall that once a ballot is certified by the IA it is of the form
(vote‖hash)s ·mask, where hash = h(vote‖mask). Obtaining another valid
ballot from it implies:

• That (vote‖hash)s can be considered as a mask of a (tampered) vote′

coded into mask.

Indeed, it is feasible that there will exist the inverse of (vote‖hash)s

modulus n and therefore a valid mask for vote′. Nevertheless, taking
into account the construction described in Algorithm 3.1, to tamper
with the ballot it would also be necessary that mask were such that:

mask = vote′‖hash′,

where hash′ = h(vote′‖(vote‖hash)s). This is highly unfeasible taking
into account that the certification (by signature) can only be carried
out by the IA and the result is unknown for any elector before the cer-
tification process. The hash acts like a redundancy parameter, making
the search for manipulated masks unfeasible. This is related with the
third property needed for blind signatures stated by Chaum (described
in Section 2). This proves the search for valid blind signatures, through
tampered masks, to be impracticable.

• That the construction of the ballot considers a mask that can be
modified after the certification of the ballot in order to obtain a new
(tampered) vote.

Taking into account again the construction of the ballot, the compu-
tation of hash = h(vote‖mask), implies that any modification of the
mask results in a different hash and, therefore in a different ballot.
Therefore, such process is highly unfeasible.

17



Taking into account the two points we just described, it is proved that
the uniqueness of the voting is granted. No double voting or tampering is
feasible.

Privacy (it is not possible to relate a vote with the elector who casted
it). The proposed scheme forces the elector to interact with two different
authorities. Nevertheless, the IA has access to the elector identifier but he
cannot unmask the vote (it is necessary to know the mask to do it), and the
RPS has access to the direction of the vote but the elector identifier is not
sent to him. Therefore, it is impossible to relate an elector with the direction
of her vote unless both authorities share information, which contradicts an
assumption of the scheme.

Integrity (it is unfeasible for any partner in the system to modify a
ballot without detecting the forgery). We recall previous comments on the
uniqueness of the vote that takes into account the construction of the ballot
described in Algorithm 3.1. A similar reasoning allows to state that it is
unfeasible for any partner to modify a previously certified vote.

Correctness (the final tally considers only verified and correct ballots).
Indeed, TAVS guarantees that no invalid votes are counted. We also note
that the RPS has enough information to be audited. Again, without access
to the IA’s signature (private) key, it is unlikely to design a method able to
substitute a set of valid certified votes by another set of forged ones.

Elector verifiability (any elector in the census can verify that her vote
has been taken into account in the way it was cast) and Auditability. As it
is proposed here, TAVS scheme provides the elector evidence that her vote
was included in the final tally. The participation of an Audit Authority
would provide the electors the confidence their votes have been counted
in the direction they were cast. We note that, because the unfeasibility of
tampering with the ballots, the Audit Authority is able verify the tally using
only the information stored in the RPS.

Coercion resistance (an elector cannot prove how she voted or can lie
about the direction of her vote). The problem of voter coercion was intro-
duced by Juels in [23, 39] and it describes a situation where the elector might
be intimidated to vote in certain way. Coercion resistance and the problem
of vote selling are also closely related to the concept of receipt-freeness. Fur-
thermore, there is a trade-off between coercion resistance and performance,
because of the systems that provide receipt-freeness tend to be more com-
plicated and sacrifice some efficiency. In this work, we do not focus on this
dichotomy. We provide a system where the elector has mechanisms to be
certain that her vote was considered, as well as enough information for an
independent Audit Authority to anonymously check the correctness of the
tally.

Similarly as Cobra system [20] does, it is interesting to explore how to
give the elector the ability for generating fake ballots as a tool to mock the
coercer’s desires. This would imply the modification of the vote authoriza-

18



tion process to: first, allow the certification of more than one ballot; second,
to allow the tracking of the set of (potentially more than one) duplicated
valid votes that must be processed in order to select the one to be include in
the tally; and, third, to guarantee that fake votes are detected and removed
from the tally.

5 Time complexity analysis

We devote this section to analyze the time complexity of TAVS. We prove
that our system scales linearly with the number of votes. Generally, the
papers in the literature use operations modulo n (addition, multiplication,
exponentiation) as the unit of computational cost, concatenation is not con-
sidered. Nevertheless, we are going to analyze the time-complexity in terms
of bit operations, analyzing in detail the complexity of different operations.
In the following, n denotes the number in the operations and log n denote
its number of bits. It is well known that modular addition and subtraction
have time complexity of O(log n) bit operations, multiplication and inverse
have a complexity of O(log2 n) and modular integer exponentiation is the
most expensive operation with O(log3 n) time complexity. We make use of
a hash function, which we recommend it to be a recognized and established
one1. Here, we assume the complexity of applying the hash function is linear
with respect to the input.

5.1 Pre-ballot generation

Once the parameters of the election have been decided, the elector must
follow Algorithm 3.1:

1. The elector must select a random mask in line 5 of Algorithm 3.1, the
mask must be invertible. Since we require gcd(mask, n) = 1 the inverse
exists. To find the inverse we suggest extended Euclid’s algorithm [25]
which has a complexity of O(log2 n) bit operations.

2. Applying the hash function of line 6 requires linear effort with respect
the input. In this case, the input is the concatenation of the choice and
the mask. This results in a complexity of O(log n− TH − 1 + log n) =
O(log n) bit operations.

3. To craft the pre-ballot in line 7 of the algorithm, a multiplication and
a modular exponentiation are needed.

The time complexity of Algorithm 3.1 can be expressed as:

O(log2 n) +O(log n) +O(log2 n) +O(log3 n) = O(log3 n)

1Hash functions as the SHA family or even a modification of DES will work. We leave
this decision to the reader since standards may change.

19



Observe that modular integer exponentiation determines the time com-
plexity of the algorithm.

5.2 Pre-ballot certification

For Algorithm 3.2 we assume the best case: IA is benign, the channel is
secure and the elector will validate the ballot. Computing the certified
ballot requires:

1. One modular multiplication and one modular exponentiation are re-
quired in line 8 to sign the ballot.

2. To check if the received certified ballot is correct, the elector needs
to perform one multiplication and one modular exponentiation in line
11. It is not explicitly shown on Algorithm 3.2 but it can be seen on
Figure 4.

The time complexity of Algorithm 3.2 isO(log2 n)+O(log3 n) = O(log3 n)
bit operations for the elector and O(log2 n) +O(log3 n) = O(log3 n) bit op-
erations, per ballot, for the IA. Again, modular exponentiation determines
the time complexity of the algorithm.

5.3 Ballot Casting

Once the elector sends the ballot to the RPS she does not need to perform
more computations. The RPS takes part on Algorithm 3.3 and performs
the following to decrypt the vote:

1. A multiplication is used in line 5 to remove the mask wrapper from
the ballot.

2. A modular exponentiation is needed in line 6 to recover the vote.

3. To check the integrity of the ballot the hash function must be applied
in line 9 with O(log n− TH − 1 + log n) = O(log n) bit operations.

The time complexity of Algorithm 3.3 isO(log2 n)+O(log3 n)+O(log n) =
O(log3 n) bit operations per processed ballot. As in the previous algorithms,
the complexity is determined by the modular exponentiation operation.

5.4 TAVS complexity

Here we summarize the total complexity of the system. We differentiate
between the complexity for the elector to cast a vote and the complexity
for the system to undertake the whole election process. The elector must
perform a total of O(log3 n) bit operations to vote (Algorithms 3.1 and

20



3.2). TAVS system must carry out a total of O(log3 n) bit operations per
processed vote (Algorithms 3.2 and 3.3).

The computation of modular exponentiations determines time complex-
ity of our method. If this operation is considered as the atomic operation
in the analysis of the complexity, as many papers in the literature do, it
is clear that the elector computes a constant number of exponentiations to
vote. The same applies to the involved authorities: they compute a con-
stant number of exponentiations per ballot. Therefore, the complexity of
the system scales linearly with the number of votes to be processed. Since
the complexity of the system does not depend on the number of candidates,
the number of authorities involved, or the encoding of the vote, we can
state that TAVS can be easily extended and scaled to adapt more general
situations.

5.5 Comparison with other systems

We devote this section to compare the performance of our system with those
reviewed in Section 2. Let us here note that some of the papers in the
literature do not provide a detailed time complexity analysis of the system
they present, or do not fully detail it; some papers consider a centralized
authority and the decentralization is let as a future or theoretical exercise.
Here we present a comparison of the theoretical time complexity of previous
methods in the literature and TAVS.

In order to state the time complexity of the methods, we consider ex-
clusively the number of modular exponentiations (the most expensive oper-
ation). The complexity is then expressed as an asymptotic function on the
number of bit operations. When the methods do not specify the protocol
used (e.g: which kind of zero knowledge proof was used) we introduce a
new variable in the cost analysis. For the case of interactive zero/partial-
knowledge proofs, we will assume just the first iteration is carried out, al-
though usually the interaction needs to be repeated j times to reach certain
level of trust. If possible, we group the different number of authorities
involved as a single variable. Multi-candidate elections scenarios are consid-
ered. Table 1 shows the results of this comparison. Appendix A explains the
details of values shown in Table 1. We also differentiate between the costs
assumed by the elector and the costs associated to the system to process a
single vote. The work from Porkodi et al. [30] is not included since it is
based on elliptic curves.

21



Elector’s Cost System’s Cost per vote

Chaum [11] O(m log3 n) O(m log3 n)
Cohen et al. [14] O(log5 n) O(log5 n)
Crammer et al. [16] O(c log3 n) O(ac log3 n)
Juang et al. [22] O(m log3 n) O(a log3 n)
Baudron et al. [3] O(log3 n) O(a log3 n)
Crammer et al. [15] O(t log3 n)) O(a log3 n))
Li et al. [24] O(log3 n) O(log3 n)
Adewole et al. [29] O(log3 n) O(a log3 n)
Essex et al. [20] O(c log3 n) O(ac log3 n)
Thao et al. [37] O(log3 n) O(log3 n)
Yang et al. [40] O(c(logP ) log3 n) O(ac(logP ) log3 n)
Aziz [2] O(log3 n) O(log3 n)
TAVS O(log3 n) O(log3 n)

Table 1: Table representing the asymptotic cost of the work performed by
the elector and the system in number of bit operations. In the table: m
references the number of layers on a mix-net, a represents the number of
authorities, c represents the number of candidates in the election, t is the
number of different shares a vote is fragmented and P the number of points
awarded in a ranked voting system.

In Table 1, the methods presented by Li et al., Thao et al., and Aziz have
the same time-complexity as TAVS. However, there are important details to
take into account because directly affect to the performance of the methods
(as we mentioned on Section 5.4, modular exponentiations dominate the
time-complexity functions and hide other costs of the systems such as key
generation, random permutations, other modular operation etc.)

Li et al. present a method with a heavy public key infrastructure: they
generate an asymmetric key for each eligible elector and a second one for
each registered elector at runtime. The use of 4 authorities makes the cost
of processing a vote 7 times more expensive when compared to TAVS. Their
signature step is similar to our proposal, but in our case, the elector does
not depend on an authority to craft the ballot.

Aziz’s method needs to generate tokens for each eligible elector and keys
during the election process. This makes the cost to process a vote 7 times
higher than our approach. Aziz also shows that the voter must cast the vote
via an anonymous channel, such as a mix-net. The time complexity of the
vote casting is not measured since it is not specified on the original work,
but it should be taken into account.

Thao et al. also need to generate keys and dynamic ballots at runtime
for each elector. They rely on PET tests to check the elector’s identifiers
and need up to 5 authorities to operate the system. These factors almost

22



triple the cost to process a vote with respect to TAVS.
Summarizing, TAVS does not need to compute keys per user and reduces

the number authorities: TAVS is the most efficient of the presented voting
protocols. Also note that, contrary to other methods, the elector can inde-
pendently craft her own ballot, and only needs to interact with 2 authorities
along the voting process.

6 Conclusions

In this paper, we propose a two authorities voting system. Our proposal,
under the assumption that the authorities are unrelated entities, provides
the desired properties of any secure voting protocol. We proved our approach
is correct and efficient, not relying on expensive interactive zero-knowledge
proofs and being based on simple RSA primitives, which makes our method
scalable and suitable for real case scenarios. Section 5 proves that the work
for the elector and the complexity of the whole system is minimal. Our
approach provides significant improvements with respect to some of the
reviewed systems, since it not based on time-demanding interactive proofs
[14, 15, 16, 40], or complex architectures [3, 22]. The vote encoding is flexible
and minimal and allows multiple types of elections (yes-no polls, plurality,
multi-candidate, ranked elections) with no overhead. Traffic of messages can
be checked by the elector to ensure the integrity of the system and sensible
information is published through public bulletins that can be later audited
by a third party.

It will be interesting to study the possibility of implement the identifi-
cation of the electors by using an independent, public and scrutinable data
structure. This would allow to reduce the weight of the assumption of two
unrelated entities. It will be also interesting to include mechanisms to allow
the elector to certificate more than one ballot as a way to bypass coercers.
We will address the study of both in future works. In order to empirically
test our proposal with real data it is mandatory to grant a solid infrastruc-
ture which is, unfortunately, out of the reach of our group. Nevertheless, we
think this experimentation is very important and we consider to tackle it as
future work.

References

[1] Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the
17th USENIX Security Symposium, July 28-August 1, 2008, San Jose,
CA, USA, pages 335–348, 2008.

[2] Ahsan Aziz. Coercion-resistant e-voting scheme with blind signa-

23



tures. In Cybersecurity and Cyberforensics Conference, CCC 2019,
Melbourne, Australia, May 8-9, 2019, pages 143–151, 2019.

[3] Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques
Stern, and Guillaume Poupard. Practical multi-candidate election sys-
tem. In Proceedings of the Twentieth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2001, Newport, Rhode Island,
USA, August 26-29, 2001, pages 274–283, 2001.

[4] Michael Ben-Or. Probabilistic algorithms in finite fields. In 22nd
Annual Symposium on Foundations of Computer Science (sfcs 1981),
pages 394–398. IEEE, 1981.

[5] Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe
Kilian, Silvio Micali, and Phillip Rogaway. Everything provable is prov-
able in zero-knowledge. In Advances in Cryptology - CRYPTO ’88, 8th
Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 21-25, 1988, Proceedings, pages 37–56, 1988.

[6] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot
elections (extended abstract). In Proceedings of the Twenty-Sixth An-
nual ACM Symposium on Theory of Computing, 23-25 May 1994,
Montréal, Québec, Canada, pages 544–553, 1994.

[7] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[8] Steven Brams and Peter C Fishburn. Approval voting. Springer Science
& Business Media, 2007.

[9] Jan Camenisch, Jean-Marc Piveteau, and Markus Stadler. Blind signa-
tures based on the discrete logarithm problem. In Advances in Cryptol-
ogy - EUROCRYPT ’94, Workshop on the Theory and Application of
Cryptographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings,
pages 428–432, 1994.

[10] Thomas E. Carroll and Daniel Grosu. A secure and anonymous voter-
controlled election scheme. J. Network and Computer Applications,
32(3):599–606, 2009.

[11] David Chaum. Untraceable electronic mail, return addresses, and dig-
ital pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

[12] David Chaum. Blind signatures for untraceable payments. In Advances
in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California,
USA, August 23-25, 1982, pages 199–203, 1982.

24



[13] David Chaum. Blind signature system. In Advances in Cryptology -
EUROCRYPT ’84, pages 153–153. Springer, 1984.

[14] Josh D. Cohen and Michael J. Fischer. A robust and verifiable crypto-
graphically secure election scheme (extended abstract). In 26th Annual
Symposium on Foundations of Computer Science, Portland, Oregon,
USA, 21-23 October 1985, pages 372–382, 1985.

[15] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti
Yung. Multi-autority secret-ballot elections with linear work. In Ad-
vances in Cryptology - EUROCRYPT ’96, International Conference on
the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, pages 72–83, 1996.

[16] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A se-
cure and optimally efficient multi-authority election scheme. European
Transactions on Telecommunications, 8(5):481–490, 1997.

[17] Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.
Electing a university president using open-audit voting: Analysis of
real-world use of helios. In 2009 Electronic Voting Technology Work-
shop / Workshop on Trustworthy Elections, EVT/WOTE ’09, Mon-
treal, Canada, August 10-11, 2009, 2009.

[18] Yvo Desmedt. Threshold cryptography. European Transactions on
Telecommunications, 5(4):449–458, 1994.

[19] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Trans. Information Theory,
31(4):469–472, 1985.

[20] Aleksander Essex, Jeremy Clark, and Urs Hengartner. Cobra: Toward
concurrent ballot authorization for internet voting. In 2012 Electronic
Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’12, Bellevue, WA, USA, August 6-7, 2012, 2012.

[21] Markus Jakobsson and Ari Juels. Mix and match: Secure function eval-
uation via ciphertexts. In Advances in Cryptology - ASIACRYPT 2000,
6th International Conference on the Theory and Application of Cryp-
tology and Information Security, Kyoto, Japan, December 3-7, 2000,
Proceedings, pages 162–177, 2000.

[22] Wen-Shenq Juang, Chin-Laung Lei, and Horng-Twu Liaw. A verifiable
multi-authority secret election allowing abstention from voting. Com-
put. J., 45(6):672–682, 2002.

25



[23] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant
electronic elections. In Towards Trustworthy Elections, New Directions
in Electronic Voting, pages 37–63, 2010.

[24] Chun-Ta Li, Min-Shiang Hwang, and Yan-Chi Lai. A verifiable elec-
tronic voting scheme over the internet. In Sixth International Confer-
ence on Information Technology: New Generations, ITNG 2009, Las
Vegas, Nevada, USA, 27-29 April 2009, pages 449–454, 2009.

[25] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.

[26] Victor S. Miller. Use of elliptic curves in cryptography. In Advances
in Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August
18-22, 1985, Proceedings, pages 417–426, 1985.

[27] Pascal Paillier. Public-key cryptosystem based on discrete logarithm
residues. EUROCRYPT 1999, 1999.

[28] Behrooz Parhami. Voting algorithms. IEEE transactions on reliability,
43(4):617–629, 1994.

[29] Adewole A Philip, Sodiya Adesina Simon, and Arowolo Oluremi. A
receipt-free multi-authority e-voting system. International Journal of
Computer Applications, 30(6):15–23, 2011.

[30] Chinniah Porkodi, Ramalingam Arumuganathan, and Krishnasamy
Vidya. Multi-authority electronic voting scheme based on elliptic
curves. I. J. Network Security, 12(2):84–91, 2011.

[31] Michael O Rabin. Probabilistic algorithms in finite fields. SIAM Journal
on computing, 9(2):273–280, 1980.

[32] Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst.
Sci., 27(2):256–267, 1983.

[33] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data
banks and privacy homomorphisms. Foundations of secure computa-
tion, 4(11):169–180, 1978.

[34] Donald G. Saari. Geometry of voting. Springer Science & Business
Media, 2012.

[35] Michael Schläpfer, Rolf Haenni, Reto E. Koenig, and Oliver Spy-
cher. Efficient vote authorization in coercion-resistant internet vot-
ing. In E-Voting and Identity - Third International Conference, VoteID
2011, Tallinn, Estonia, September 28-30, 2011, Revised Selected Pa-
pers, pages 71–88, 2011.

26



[36] Michael I Shamos. Electronic voting-evaluating the threat. In Third
Conference on Computers, Freedom and Privacy, CPSR, 1993.

[37] Ai Thao Nguyen Thi and Tran Khanh Dang. Enhanced security in in-
ternet voting protocol using blind signature and dynamic ballots. Elec-
tronic Commerce Research, 13(3):257–272, 2013.

[38] Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and
Panayiotis Tsanakas. From helios to zeus. In 2013 Electronic
Voting Technology Workshop / Workshop on Trustworthy Elections,
EVT/WOTE ’13, Washington, D.C., USA, August 12-13, 2013, 2013.

[39] Zhen Yu Wu, Ju-Chuan Wu, Sung-Chiang Lin, and Charlotte Wang.
An electronic voting mechanism for fighting bribery and coercion. J.
Network and Computer Applications, 40:139–150, 2014.

[40] Xuechao Yang, Xun Yi, Surya Nepal, Andrei Kelarev, and Fengling
Han. A secure verifiable ranked choice online voting system based on
homomorphic encryption. IEEE Access, 6:20506–20519, 2018.

[41] Xuechao Yang, Xun Yi, Caspar Ryan, Ron G. van Schyndel, Fengling
Han, Surya Nepal, and Andy Song. A verifiable ranked choice internet
voting system. In Web Information Systems Engineering - WISE 2017
- 18th International Conference, Puschino, Russia, October 7-11, 2017,
Proceedings, Part II, pages 490–501, 2017.

[42] Xun Yi and Eiji Okamoto. Practical internet voting system. J. Network
and Computer Applications, 36(1):378–387, 2013.

[43] José Luis Salazar, Joan Josep Piles, José Rúız-Mas, and José Maŕıa
Moreno-Jiménez. Security approaches in e-cognocracy. Computer Stan-
dards & Interfaces, 32(5-6):256–265, 2010.

[44] Guomin Chen, Chunhui Wu, Wei Han, Xiaofeng Chen, Hyunrok Lee,
and Kwangjo Kim. A new receipt-free voting scheme based on linkable
ring signature for designated verifiers. In 2008 International Conference
on Embedded Software and Systems Symposia, pages 18–23. IEEE, 2008.

[45] Ahmed Ben Ayed. A conceptual secure blockchain-based electronic
voting system. International Journal of Network Security & Its Appli-
cations, 9(3):01–09, 2017.

[46] Pavel Tarasov and Hitesh Tewari. Internet voting using zcash. IACR
Cryptology ePrint Archive, 2017:585, 2017.

27



A Time complexity analysis

In this appendix we present a more detailed analysis of the complexity of
the methods in the literature (results shown in Table 1). Unfortunately, not
all the revised papers report the same level of detail. This is our best effort
to analyze and compare their complexities. For a more complete description
of the algorithms we refer the interested reader to the original papers.

• Chaum [11]: An elector needs to encrypt, using RSA, the vote and
re-encrypt it as many times as layers m has the mix-net. The cost for
the voter depends on m, O(m(log3n). Each vote needs to be encrypted
m + 1 times, shuffled and latter on, decrypted m + 1 times. The cost
can be computed as 2 log3 n(m + 1) ≈ O(m log3 n).

• Cohen et al. [14]: The authors report a 4 phase protocol. These
phases include several modular exponentiations and nested iterations.
The elector needs to carry out 2 of these phases while the authorities
have to complete the other two. The authors expose that the total
expected time required by both the authorities and the voter phases
is O(log5 n).

• Crammer et al. [16]: To cast a vote, the elector needs to perform
an encryption of the vote using ElGamal cryptosystem and a proof
of partial knowledge. This encryption requires 2 modular exponentia-
tions and the proof of validity, in an election wit c candidates, requires
4c exponentiations. The total cost for the voter, in bit operations, is
2 + 4c log3 n ≈ O(c log3 n). Each authority a involved needs to broad-
cast a proof of its private share, check the proofs of validity of the users
and cooperate between them to decrypt the final tally. The total cost
can be regarded as: a + ac4 log3 n ≈ O(ac log3 n).

• Juang et al. [22]: The encryption of the vote requires 1 modular
exponentiation. Later, each elector needs to send its encrypted vote
to each administrator and construct the signature from the responses
she got. This requires 6 modular exponentiations. To vote she sends
the vote through an untraceable e-mail system (mix-net) requiring m
more exponentiations. The final cost is (7 + m) log3 n ≈ O(m log3 n).
To carry out the blinding signature scheme each authority performs
4 modular exponentiations, an special authority called the counter,
performs 2 for each vote. Previous to this, an expensive preparation
setup is carried out, we do not count it since it can be performed
offline. The cost can be expressed as 4a log3 n+ 2 log3 n ≈ O(a log3 n)
bit operations.

• Baudron et al. [3]: This approach defines a hierarchical arrange-
ment of authorities, the original paper uses three levels and we denote

28



the number of levels as l. The elector needs to encrypt his vote for
an authority in each level, requiring l modular exponentiations. She
also needs to provide zero-knowledge proofs for every encryption, and
an extra proof to show all the encryptions contain he same vote. This
results in l + 1 zero-knowledge proofs, each requiring 6 modular expo-
nentiations. Assuming l is a small constant, the cost can be computed
as (l + 6(l + 1)) log3 n = (7l + 1) log3 n ≈ O(log3 n). Authorities need
to interact with the voter for the zero-knowledge proof, this requires
3 modular exponentiations. Each authority needs to compute its local
result and forward it to its immediate superior authority. Authorities
a in the same level must cooperate to partially decrypt the results,
they also must provide a partial proof of decryption. The whole sys-
tem cost can be expressed as 3a + aPp log3 n ≈ O(a log3 n), being Pp

the cost of the partial proof.

• Crammer et al. [15]: The elector needs to encrypt her vote, using
2 modular exponentiations and the proof of validity, which requires 4
exponentiations. The vote is split in t shares, the shares are sent to t
different authorities together with a commitment. Each commitment
requires 2 modular exponentiations. The cost for the voter is (2 + 4 +
2t) log3 n ≈ O(t log3 n). Each authority checks the proofs of validity
of the users, this requires of 4 modular exponentiations. Each tallying
authority checks the t shares posted by an authority employing a2t
modular exponentiations. The final cost can be computed as (4a1 +
a2t, being a1) log3 n the authorities and a2 the tallying authorities.
Since t depends on the number votes, and a1, a2 can be grouped in a
authorities the cost can be expressed as O(a log3 n).

• Li et al. [24]: The elector must interact multiple times with the
different authorities to get verified, get a blind signature and cast her
encrypted vote. This results in a total of 15 modular exponentiations
to cast a vote: 15 log3 n ≈ O(log3 n). Authorities must generate a
pair of public keys for each possible elector, but since this can be
pre-computed we will ignore it in the cost function. Authorities must
also generate another pair of keys for each registered voter, we will
count the cost of finding the inverse in the RSA2 which is O(log2 n)
as we saw when analyzing TAVS. Furthermore the authorities nedd
to perform 14 modular exponentiations to decrypt, verify, sign and
re-encrypt each ballot. The cost of the system can be expressed as
O(log2 n) + 14 log3 n ≈ O(log3 n).

• Adewole et al. [29]: Each voter needs to encrypt and sign her

2There are also other costs when computing RSA keys such as primality tests and the
totient function, however we prefer to keep it simple for the comparison. We refer to the
original work for more information about the voting protocol.

29



vote using ElGamal encryption. In addition to this, they also need to
craft a zero knowledge proof for the vote. These processes require 5
modular exponentiations, the total cost for the voter remains constant
5 log3 n ≈ O(log3 n). Each authority a needs to provide a commitment
of his share of the secret key, this uses 1 modular exponentiation.
Each re-encrypted vote needs to be decrypted, requiring 2 modular
exponentiations. The zero-knowledge proofs must be checked by each
authority. Finally, the authorities cooperate to decrypt the valid votes,
this process demands 2 modular exponentiations per vote. The total
cost can be expressed as (a + 2 + a + 2) log3 n) ≈ O(a log3 n)).

• Essex et al. [20]: They report an exhaustive analysis of their system.
We ignore the elevated number of modular exponentiations in the reg-
istration phase since it can be performed before the elections. To cast
a vote and submitting a ballot and its credential, the elector needs to
perform (8c + 4) log3 n ≈ O(c log3 n) bit operations. The number of
ballots b can be larger than the number of electors since they can gen-
erate fake ballots. The most expensive part of the system is the ballot
authorization process. The total cost, in number of bit operations, can
be expressed as ((4c + 4)b + (280a + 12ca + 19a + 2)b + 3ac) log3 n) ≈
O(ac log3 n). Being a the number of authorities and c the number of
candidates.

• Thao et al. [37]: The elector has to communicate multiple times
with the authorities to get identified and get her dynamic ballot.
These communications are encrypted using public key cryptography.
This results in 10 modular exponentiantions for the user, with a cost
of 10 log3 n ≈ O(log3 n) bit operations. The cost of the system is
defined by the checks and signatures of certificates (5 modular ex-
ponentiations) and the generation of keys for each registered elec-
tor. The total cost, in number of bit operations can be expressed
as 5 log3 n + 2 log2 n ≈ O(log3 n).

• Yang et al. [40]: In this ranked voting system, the elector assigns
P points between c candidates. The vote is constructed as a matrix
with c rows and logP columns. The elector must encrypt all the
cells in the matrix, requiring 3 modular exponentiations each encryp-
tion. She also needs to provide a partial-knowledge proof for each
cell, and an extra zero-knowledge ´proof for the whole ballot. Partial-
knowledge proofs require 8 modular exponentiations each and the zero-
knowledge proof requires 5 modular exponentiations. Finally, the bal-
lot must be signed, requiring 2 modular exponentiations. The work
done by the elector can be summed up as (8c(logP ) + 5 + 2) log3 n ≈
O(c(logP ) log3 n). The proofs posted by the voters must be checked.
The cost for partial-knowledge proofs is 6 modular exponentiations,

30



and 4 for zero-knowledge proofs. In addition, all authorities must
broadcast a commitment of their private key share, this requires 1
modular exponentiation. The performance of the whole system can be
expressed as (6c(logP ) + 4 + a) log3 n ≈ O(ac(logP ) log3 n).

• Aziz [2]: The elector has to request a token, check the signature of the
ballot and cast her vote. This results in 5 modular exponentiations
with a cost of 5 log3 n ≈ O(log3 n) bit operations. The authorities
must generate a token and generate a public/private key pair for each
elector, and perform the blind signature. The total cost of the system
can be expressed, in terms of bit operations, as 2 log2 n + 14 log3 n ≈
O(log3 n).

31


