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Resumen
La cuantificación de la incertidumbre está compuesta por una serie de métodos
y técnicas computacionales cuyo objetivo principal es describir la aleatoriedad
presente en problemas de diversa índole. Estos métodos son de utilidad en la
modelización de procesos biológicos, físicos, naturales o sociales, ya que en ellos
aparecen ciertos aspectos que no pueden ser determinados de manera exacta. Por
ejemplo, la tasa de contagio de una enfermedad epidemiológica o el factor de
crecimiento de un volumen tumoral dependen de factores genéticos, ambientales
o conductuales. Estos no siempre pueden definirse en su totalidad y por tanto
conllevan una aleatoriedad intrínseca que afecta en el desarrollo final. El objetivo
principal de esta tesis es extender técnicas para cuantificar la incertidumbre en
dos áreas de las matemáticas: el cálculo de ecuaciones diferenciales fraccionarias y
la modelización matemática.

Las derivadas de orden fraccionario permiten modelizar comportamientos que
las derivadas clásicas no pueden, como por ejemplo los efectos de memoria o la
viscoelasticidad en algunos materiales. En esta tesis, desde un punto de vista
teórico, se extenderá el cálculo fraccionario a un ambiente de incertidumbre,
concretamente en el sentido de la media cuadrática. Se presentarán problemas de
valores iniciales fraccionarios aleatorios. El cálculo de la solución, la obtención de
las aproximaciones de la media y varianza de la solución y la aproximación de la
primera función de densidad de probabilidad de la solución son conceptos que se
abordarán en los próximos capítulos. Sin embargo, no siempre es sencillo obtener
la solución exacta de un problema de valores iniciales fraccionario aleatorio. Por
ello en esta tesis también se dedicará un capítulo para describir un procedimiento
numérico que aproxime su solución.

Por otro lado, desde un punto de vista más aplicado, se desarrollan técnicas
computacionales para cuantificar la incertidumbre en modelos matemáticos. Com-
binando estas técnicas junto con modelos matemáticos apropiados, se estudiarán
problemas de dinámica biológica. En primer lugar, se determinará la cantidad
de portadores de meningococo en España con un modelo de competencia de
Lotka-Volterra fraccionario aleatorio. A continuación, el volumen de un tumor ma-
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mario se modelizará mediante un modelo logístico con incertidumbre. Finalmente
ayudándonos de un modelo matemático que describe el nivel de glucosa en sangre
de un paciente diabético, se pretende dar una recomendación de carbohidratos e
insulina que se debe de ingerir para que el nivel de glucosa del paciente esté dentro
de una banda de confianza saludable. Es importante subrayar que para poder
realizar estos estudios se requieren datos reales, los cuales pueden estar alterados
debido a los errores de medición o proceso que se han cometido para obtenerlos.
Por este motivo, modelizar correctamente el problema junto con la incertidumbre
en los datos es de vital importancia.
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Resum
La quantificació de la incertesa està composada per una sèrie de mètodes i tècniques
computacionals, l’objectiu principal de les quals és descriure l’aleatorietat present
en problemes de diversa índole. Aquests mètodes són d’utilitat en la modelització
de processos biològics, físics, naturals o socials, ja que en ells apareixen certs
aspectes que no poden ser determinats de manera exacta. Per exemple, la taxa
de contagi d’una malaltia epidemiològica o el factor de creixement d’un volum
tumoral depenen de factors genètics, ambientals o conductuals. Aquests no sempre
poden definir-se íntegrament i per tant, comporten una aleatorietat intrínseca que
afecta en el desenvolupament final. L’objectiu principal d’aquesta tesi doctoral és
estendre tècniques per a quantificar la incertesa en dues àrees de les matemàtiques:
el càlcul d’equacions diferencials fraccionàries i la modelització matemàtica.

Les derivades d’ordre fraccionari permeten modelitzar comportaments que les
derivades clàssiques no poden, com per exemple, els efectes de memòria o la
viscoelasticitat en alguns materials. En aquesta tesi, des d’un punt de vista teòric,
s’estendrà el càlcul fraccionari a un ambient d’incertesa, concretament en el sentit
de la mitjana quadràtica. Es presentaran problemes de valors inicials fraccionaris
aleatoris. El càlcul de la solució, l’obtenció de les aproximacions de la mitjana
i, la variància de la solució i l’aproximació de la primera funció de densitat de
probabilitat de la solució són conceptes que s’abordaran en els pròxims capítols.
No obstant això, no sempre és senzill obtindre la solució exacta d’un problema de
valors inicials fraccionari aleatori. Per això en aquesta tesi també es dedicarà un
capítol per a descriure un procediment numèric que aproxime la seua solució.

D’altra banda, des d’un punt de vista més aplicat, es desenvolupen tècniques
computacionals per a quantificar la incertesa en models matemàtics. Combinant
aquestes tècniques juntament amb models matemàtics apropiats, s’estudiaran
problemes de dinàmica biològica. En primer lloc, es determinarà la quantitat de
portadors de meningococ a Espanya amb un model de competència de Lotka-
Volterra fraccionari aleatori. A continuació, el volum d’un tumor mamari es
modelitzará mitjançant un model logístic amb incertesa. Finalment ajudant-nos
d’un model matemàtic que descriu el nivell de glucosa en sang d’un pacient diabètic,
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es pretén donar una recomanació de carbohidrats i insulina que s’ha d’ingerir perquè
el nivell de glucosa del pacient estiga dins d’una banda de confiança saludable.
És important subratllar que per a poder realitzar aquests estudis es requereixen
dades reals, els quals poden estar alterats a causa dels errors de mesurament o
per la forma en que s’han obtés. Per aquest motiu, modelitzar correctament el
problema juntament amb la incertesa en les dades és de vital importància.
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Abstract
Uncertainty quantification collects different methods and computational techniques
aimed at describing the randomness in real phenomena. These methods are useful
in the modelling of different processes as biological, physical, natural or social,
since they present some aspects that can not be determined exactly. For example,
the contagious rate of a epidemiological disease or the growth factor of a tumour
volume depend on genetic, environmental or behavioural factors. They may not
always be fully described and therefore involve uncertainties that affects on the final
result. The main objective of this PhD thesis is to extend techniques to quantify
the uncertainty in two mathematical areas: fractional calculus and mathematical
modelling.

Fractional derivatives allow us to model some behaviours that classical derivatives
cannot, such as memory effects or the viscoelasticity of some materials. In this
PhD thesis, from a theoretical point of view, fractional calculus is extended into
the random framework, concretely in the mean square sense. Initial value problems
will be studied. The calculus of the analytic solution, approximations for the mean
and for the variance and the computation of the first probability density function
are concepts we deal with them thought the following chapters. Nevertheless, it
is not always possible to obtain the analytic solution of an initial value problem.
Therefore, in this dissertation a chapter is addressed to describe a numerical
procedure to approximate the solution for an initial value problem.

On the other hand, from a modelling point of view, computational techniques to
quantify the uncertainty in mathematical models are developed. Merging these
techniques with appropriate mathematical models, problems of biological dynamics
are studied. Firstly, the carriers of meningococcus in Spain are determined using a
competition Lotka-Volterra random fractional model. Then, the volume of breast
tumours is modelled by a random logistic model. Finally, taking advantage of
a mathematical model which describes the glucose level of a diabetic patient,
a recommendation of insulin shots and carbohydrate intakes is proposed to a
patient in order to maintain her/his glucose level in a healthy confidence range. An
important observation is that to carry out these studies real data is required and
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they may include uncertainties contained in the measurements on the process to
perform the corresponding study. This it is the reason why it is crucial to properly
model the problem taking also into account the randomness of the data.
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Chapter 1
General Introduction

Uncertainty quantification is an emerging area in mathematics whose main goal is
determining information about the uncertainty in the outputs of a mathematical
system (usually formulated via dynamical systems), from the available information
about the randomness in the inputs. In the setting of mathematical modelling,
uncertainty quantification seeks for better explaining the model answer taking
into account the variability often met in natural and physical phenomena, [47, 66,
23, 44].

This PhD thesis focusses on developing new uncertainty quantification techniques
in two mathematical areas, fractional calculus and mathematical modelling. On
the one hand, in Chapters 2, 3, 4, 5, 6 and 7, some foundations of random fractional
calculus are extended using the mean square (m.s.) calculus for random variables
and stochastic processes. On the other and, in Chapters 8, 9, 10, new computational
techniques to deal with uncertainty quantification are developed in the setting of
three models describing specific biological dynamics.

The ubiquity of differential equations to model successfully real problems in different
areas as Biology, Physics, Economics, Epidemiology, etc., is well-known. When
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Chapter 1. General Introduction

they are applied to describe the dynamics of physical phenomena on the basis
of sampled data, the parameters in the model formulation (coefficients, forcing
term, initial/boundary conditions) need to be established. This is usually done by
assigning a nominal or averaged value (deterministic) to each model parameter.

Nowadays, it is widely accepted that the behaviour of many physical phenomena
is governed by chance. Thus, it is not appropriate to describe them assigning
deterministic values for the model parameters, but also considering the randomness
into their physical formulations. In this regard, it is well-known that the trajectory
of a rocket is determined by the randomness of the initial speed; the electric power
exhibits visible changes that behave irregularly; the value of assets in financial
markets is often very volatile; these are just few examples where it is reasonable
to consider uncertainty. From this point of view, it is natural to take advantage
of the powerful effectiveness of deterministic differential equations for describing
physical phenomena and interpreting the parameters of the model as random
variables (RVs) or stochastic processes (SPs) rather than constants and functions,
respectively.

Two classes of differential equations where uncertainties are involved in their
formulation are often distinguished, namely, Stochastic Differential Equations
(SDEs) and Random Differential Equations (RDEs). In dealing with SDEs, the
uncertainty is forced by a SP whose sample behaviour is quite irregular, such as
the Wiener process, whose trajectories are nowhere differentiable. In this case, the
underlying probabilistic pattern is Gaussian. The analytic and numerical treatment
of SDEs requires the so-called Itô-Doob Calculus [101, 97, 83]. Some interesting
applications based on this approach are reported in [49, 92, 126], for instance.

RDEs appear as natural generalizations of their deterministic counterpart, namely
deterministic differential equations, since they are just formulated by randomizing
their parameters. This is advantageous on both theoretical and practical levels.
Some recent contributions about RDEs are [53, 122, 69]. It is important to point
out that there are different approaches to deal with RDEs, but in these pages
we will follow the so-called mean square (m.s.) approach [109]. This approach is
based upon a strong stochastic type-convergence, termed m.s. convergence, whose
main advantage is that the results established in m.s. sense are also valid in other
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important types of stochastic convergences, namely, convergence in probability
and convergence in distribution. From a theoretical point of view, solving RDEs
following the m.s. approach, takes advantage of powerful classical Newton-Leibniz
Calculus. Indeed, in this context the probabilistic concepts of m.s. continuity,
differentiability, integrability of a SP can be characterized in terms of classical
continuity, differentiability, integrability to its associated correlation function,
which is a two-dimensional deterministic function [109, 119, 95]. Additionally, the
m.s. convergence possesses a distinctive property, which will be used along this
PhD thesis (see Proposition 2.10), that makes it especially suitable to construct
reliable approximations of the mean and variance of the solution SP of RDEs.
Some recent papers where RDEs are studied using the m.s. calculus are [59, 96,
81], for instance.

Apart from considering uncertainty in differential equations, mathematical mod-
elling may be improved when non-integer order derivatives are also introduced.
This kind of derivatives are commonly named as fractional derivatives. Over the
last few decades, deterministic fractional differential equations are having an im-
portant impact on both the theory and applications of mathematics. Despite the
physical meaning of the fractional derivative is still under discussion, fractional
differential equations are gaining influence in mathematical modelling because
their success in describing phenomena having a microscopic complex behaviour
whose macroscopic dynamics can not be properly modelled using the classical
deterministic derivative [82, 58].

Some areas where deterministic fractional differential equations have demonstrated
to be useful tools include Viscoelasticity Materials, Fluid Flows, Solute Transport,
etc., [82]. Many authors attribute the success of fractional differential equations to
the fact that many of the physical processes related to complex systems possess
non-local dynamics involving long-memory in time, and the fractional integral and
fractional derivative operators do have some of these characteristics [82, 58]. So it
is reasonable to introduce fractional derivatives in the random model formulation.
Moreover, fractional derivatives allow more flexibility when fitting the solution of
a random fractional differential equation (RFDE) to sample data [82, 79, 77].
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This leads to the emergent and attractive combination of fractional calculus
and SDEs or RDEs, where two powerful tools, namely Fractional Calculus and
Itô Stochastic/m.s. Random Calculus, are merged. Some recent contributions
dealing with interesting problems related to fractional SDEs and fractional RDEs
include [49, 92, 65, 9] and [89, 88], respectively. In [89, 88] interesting existence
and uniqueness results, based on the so-called sample path and Lp-approaches, for
initial value problems formulated through fractional RDEs have been presented.
While a number of contributions have dealt with fractional SDEs, see for example
[65, 9], to the best of our knowledge there is a gap in the study regarding fractional
RDEs. Along this PhD thesis we will focus on Random Fractional Differential
Equations (RFDEs) in m.s. sense only. Chapters 2, 5, 4, 3, 6 and 7 are mainly
based on solving some types of RFDEs.

From the modelling point of view, the combination of computational techniques
to quantify the uncertainty with mathematical models formulated by fractional
differential or difference equations, allow us to have a reliable description of the real
problem under study, since fractional derivatives can describe physical processes
related to complex systems involving memory effects and non-local dynamics
that classical derivatives cannot. To show this applicability, in this dissertation
we also focus on study new computational techniques to quantify uncertainty in
mathematical models formulated via fractional derivatives (Chapter 8).

To develop new computational strategies to quantify the uncertainty, it is necessary
to test them in mathematical models. However, computing the fractional derivatives
included in these mathematical formulations requires computational resources
and sometimes this fact limits the proper evaluation of the algorithm. Thus, it
is always recommended to test previously the new techniques in models where
classical derivatives (non-fractional) are involved. That is the reason why in the
two last Chapters in this PhD thesis we focus on developing techniques to quantify
the uncertainty in models defined by non-fractional derivatives (Chapters 9 and
10). In future works, we aim at extending these techniques to fractional models
with randomness.

Thesis outline
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This PhD thesis is structured in ten chapters. To follow the connecting thread
along this dissertation, we write a motivation at the beginning of each chapter.

Firstly, Chapter 2 is devoted to extend the main deterministic fractional operators in
the random framework, concretely the Riemann-Liouville integral and the Caputo
derivative. Moreover, a random linear fractional differential equation, where the
order of the derivative, α, lies in [0, 1[, is solved. The solution is expressed by a
random generalized power series. Conditions on the random input parameters
to guarantee the convergence in the m.s. sense of the power series solution are
established. Also, closed expressions for the mean and for the variance for the
solution SP are obtained. In Chapter 3, we study the same random linear differential
equation, but in this case the order of the derivative α lies in [0, 2[. More general
conditions to guarantee the convergence in m.s. sense are given. Addressing
the same random linear fractional differential equation, in Chapter 4 the first
probability density function of the solution SP where α lies in [0, 1[ is computed and
conditions to guarantee the convergence are established. The computation of the
first probability density function is advantageous. From this function we can obtain
a complete description of the solution SP, since for it one can straightforwardly
compute one-dimensional moments, in particular, the mean and the variance, as
well as to determine the probability that the solution lies in an interval of specific
interest.

Chapters 5 and 6 are devoted to study a random non-autonomous linear fractional
differential equation where the order of the derivative, α, lies in [0, 1[ and [0,+∞[,
respectively. Solutions given by random generalized power series are obtained
and mild conditions to guarantee the convergence in m.s. sense are established.
Moreover expressions for the mean and for the variance of the solution SP are
computed. An approximation of the first probability density function of the solution
SP is also addressed in Chapter 6 using Principle of Maximum Entropy.

In all the mentioned chapters, so far, the exact solution for random fractional
differential equations have been obtained, however it is not always possible. Thus,
like in the deterministic setting, numerical methods to compute approximate
solutions are required. Chapter 7 is devoted to extend the classical fractional Euler
forward-like method into the random framework, concretely in m.s. sense.
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To illustrate the applicability of random fractional calculus in mathematical mod-
elling, Chapter 8 is devoted to study probabilistically the outbreaks of meningococ-
cus W-135 infections in Spain combining a discrete Susceptible-Carrier-Susceptible
epidemiological model and a fractional Lotka-Volterra competition model. A con-
fidence interval is constructed to predict the carriers of meningococcus W-135
among the Spanish population and the probability to achieve a 5% of the carriers
is also computed, since, according with the physicians, exceeding this percentage
may be concerning.

Nevertheless, obtaining a confidence interval is not always enough if we want to
have a complete probabilistic description of the phenomena under study. In Chapter
9, we focus on developing a computational approach to obtain the first probability
density function for a randomized non-fractional logistic model to describe the
breast tumour growth by combining the so called Random Variable Transformation
method and the Principle of Maximum Entropy. In future contributions we plan
to extend this technique to the fractional framework.

Finally, Chapter 10, focusses on describing a computational approach to quan-
tify the uncertainty in real data and in the corresponding model that aims at
describing it. Specifically, in this chapter we will apply this technique to diabetes.
A recommendation of insulin shots and carbohydrates intakes to a patient is given
in order to maintain her/his glucose level in a healthy range.
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Chapter 2
Extending the deterministic

Riemann-Liouville and Caputo operators to
the random framework: a mean square

approach with applications to solve a random
linear fractional differential equation

This chapter extends both the deterministic fractional Riemann-Liouville integral
and the Caputo fractional derivative to the random framework using the mean

square random calculus. Characterizations and sufficient conditions to guarantee
the existence of both fractional random operators are given. Assuming mild

conditions on the random input parameters, the solution of the general random
fractional linear differential equation, whose fractional order of the derivative is

α ∈]0, 1], is constructed. The approach is based on a mean square chain rule
together with the random Frobenius method. Closed form expressions to construct

reliable approximations for the mean and for the variance of the solution
stochastic process are also given. Several examples illustrating the theoretical

results are included.
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Chapter 2. Riemann-Liouville and Caputo operators in mean square sense: solving a random
linear fractional differential equation

2.1 Introduction

As indicated in Chapter 1, the extension of fractional calculus into the random
framework generates a suitable tool in mathematical modelling. On the one hand,
the concept of fractional derivative improves the modelling of some physical
phenomena, as material viscoelasticity or memory effects. On the other hand, the
uncertainty presented in some measurements is required in the modelling process
to get exhaustive results. In the first chapters of this PhD thesis we will focus
on generalizing some concepts of fractional calculus into the random framework,
specifically in the m.s. sense.

The goal of this chapter is twofold. Firstly, to extend some important concepts
and results that belong to the deterministic fractional calculus to the random
framework using the so-called m.s. approach. Secondly, to show some applications
of the m.s. random fractional calculus to solve fractional differential equations
with uncertainties.

This chapter is organized as follows. Section 2.2 contains the main results related
to the so-called L2-random calculus, also termed m.s. calculus that will be required
throughout this chapter. In Section 2.3, we extend the concept of the fractional
Riemann-Liouville integral and fractional Caputo derivative to the m.s. random
calculus. Characterizations of these two important random fractional operators, in
terms of the correlation function of the involved second-order stochastic process,
are explicitly given. Section 2.4 is addressed to show how the random Frobenius
power series method can be applied to successfully solve the complete random
linear fractional differential equation under very general hypotheses and assuming
randomness in all its input parameters (initial condition, forcing term and diffusion
coefficient). General explicit formulas for computing accurate approximations of
the mean, variance and covariance functions of the solution stochastic process to
the complete random linear fractional differential equation are given in Section
2.5. Section 2.6 is devoted to exhibit several illustrative examples. Conclusions are
drawn in Section 2.7.
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2.2 Preliminaries about mean square random calculus

For the sake of completeness, henceforth we will summarize the main definitions
and results that will be used throughout this chapter. A comprehensive survey of
them can be found in [7, Chapter 1], [109, Chapter 4] and [119]. A complex random
variable (RV), X : Ω → C, defined on a complete probability space (Ω,F,P) is
said to be of order p ≥ 1 (p-RV, for short), if E [|X|p] < +∞, where E [·] denotes
the expectation operator. The space Lp(Ω) of all p-RVs endowed with the norm

‖X‖p = (E [|X|p])1/p
, (2.1)

is a Banach space [7, page 9]. The convergence in Lp(Ω), usually called convergence
in p-th mean, it is naturally inferred by the p-norm (2.1), i.e., a sequence of RVs
{Xn : n ≥ 0} in Lp(Ω) is said to be p-th mean convergent to X ∈ Lp(Ω) if, and
only if, ‖Xn −X‖p −−−−−→

n→+∞
0.

Given ∅ 6= U ⊂ R, a family of RVs indexed by u ∈ U , X(u) ≡ {X(u) : u ∈ U} is
called a stochastic process (SP). Throughout this document, we will take U =
[0,+∞[. If E [|X(u)|p] < +∞ for each u ∈ U , then X(u) is said to be a p-stochastic
process (p-SP, for short). The definitions of p-continuity, p-differentiability and
p-integrability of p-SPs in Lp(Ω)-spaces are the usual ones derived from the p-norm
(2.1) in Banach spaces.

A significant case corresponds to p = 2. In fact, it can be seen that (L2(Ω), ‖·‖2)
is a Hilbert space defined by

L2(Ω) =
{
X : Ω −→ R :

(
E
[
X2])1/2 < +∞

}
, ‖X‖2 =

(
E
[
X2])1/2 , (2.2)

with the inner product 〈X,Y 〉 = E [X Y ], X,Y ∈ L2(Ω).

The convergence associated to 2-norm is usually referred to as m.s. convergence.
Hereinafter, Xn

m.s.−−−−−→
n→+∞

X will denote a sequence, {Xn : n ≥ 0}, of RVs in L2(Ω)
such that is m.s. convergent to X as n→ +∞.

9



Chapter 2. Riemann-Liouville and Caputo operators in mean square sense: solving a random
linear fractional differential equation

As it shall see later, the Schwarz’s inequality

E [|XY |] ≤ ‖X‖2 ‖Y ‖2 , X, Y ∈ L2(Ω), (2.3)

will be used extensively throughout the chapter. Another important inequality
that will be subsequently applied is the Jensen’s inequality. If f : R −→ R is a
convex mapping and X is a RV, then

f (E [X]) ≤ E [f(X)] , (2.4)

provided all the above involved moments exist.

Although m.s. convergence is an important type of stochastic convergence, some
basic operational rules do not fulfil unless additional hypotheses are assumed. Now,
we prove a result in this respect that will be required later.

Proposition 2.1 Let X be a bounded RV in L2(Ω), i.e., there exist constants
x1 and x2 such that x1 ≤ X(ω) ≤ x2, for all ω ∈ Ω, and let us assume that Zn
converges in the m.s. sense to Z. Then, XZn m.s.−−−−→

n→∞
XZ.

Proof. Let x̂ = max{|x1|, |x2|} < +∞, and observe that

0 ≤ (‖XZn −XZ‖2)2 = E
[
|X|2|Zn − Z|2

]
≤ |x̂|2E

[
|Zn − Z|2

]
= |x̂|2 (‖Zn − Z‖2)2 [n→+∞]−→ 0,

since {Zn} converges in the m.s. sense to Z as n→ +∞. Then, the result is proved.
�

2-RVs are met in the most of physical problems including randomness where usually
the variability (variance) is finite. Moreover, the particular concept of 2-stochastic
process (2-SP) is also required when RDE are involved. Recall that given U ⊂ R,
then X(t) is called a 2-SP if X(t) ≡ {X(t) : t ∈ U} is a 2-RV for every t ∈ T .

As we shall see below, the concept of m.s. differentiability of a 2-SP will be required
for introducing the random m.s. fractional Caputo derivative. We recall that a
2-SP X(t) is m.s. differentiable at t0 ∈ U , with m.s. derivative X ′(t0), if

10



2.2 Preliminaries about mean square random calculus

lim
h→0

∥∥∥∥X(t0 + h)−X(t0)
h

−X ′(t0)
∥∥∥∥

2
= 0 t0, t0 + h ∈ U .

If X ′(t) exists for t ∈ U , it is also a 2-SP. Higher order m.s. derivatives, denoted
by dnX(u)

dun ≡ X(n)(u), n ≥ 1, are defined analogously. The next result provides
information of the m.s. derivative of the product of a deterministic function with
a SP.

Theorem 2.1 [109] If f(t) is a deterministic differentiable function at t0 and
the 2-SP X(t) is m.s. differentiable at t0, then the 2-SP X(t) = f(t)X(t) is
m.s. differentiable at t0 and its m.s. derivative is given by U ′(t) = f(t0)X ′(t0) +
f ′(t0)X(t0).

When two o more RVs are involved, statistical dependence is an important matter.
The following property will be used through this chapter.

Proposition 2.2 [63, page 92] Let f, g : R −→ R be measurable mappings and
X,Y : Ω −→ R independent RVs. Then, f(X) and g(Y ) are independent RVs and
E [f(X)g(Y )] = E [f(X)]E [g(Y )] , provided the above expectations exist.

Furthermore, to deal with statistical dependence it is convenient to introduce the
definition of correlation function. If X(u) is a 2-SP, then for each u1, u2 > 0, the
two-dimensional deterministic function ΓX(u1, u2) = E [X(u1)X(u2)] is called the
correlation function associated to X(u). The correlation function ΓX(u1, u2) of a
2-SP X(u) always exists since

|ΓX(u1, u2)| = |E [X(u1)X(u2)]| ≤ E [|X(u1)X(u2)|] ≤ ‖X(u1)‖2 ‖X(u2)‖2 < +∞.
(2.5)

Notice that in the latter expression, we have applied first the Jensen inequality
(2.4) with f(x) = |x|, which is a convex function, and secondly, the Schwarz’s
inequality (2.3). Finally, since X(u1), X(u2) ∈ L2(Ω), hence the norms ‖X(u1)‖2
and ‖X(u2)‖2 are finite.
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We point out that many m.s. properties, such as ‖·‖2-continuity, ‖·‖2-differentiability
and ‖·‖2-integrability of a 2-SP, say X(u), can be directly characterized through
its correlation function ΓX(u1, u2) [109, Chapter 4].

Apart from the correlation function, other important functions that will be used
in the subsequent sections to study the statistical dependence of the involved RVs
are the covariance function, CX(u1, u2) of 2-SP X(u), and the cross-covariance
function, CX,Y (u1, u2), of two second-order SPs X(u) and Y (u). These functions
are defined by

CX(u1, u2) = ΓX(u1, u2)− E[X(u1)]E[X(u2)],
CX,Y (u1, u2) = E[X(u1)Y (u2)]− E[X(u1)]E[Y (u2)],

(2.6)

respectively.

We have seen that the m.s. derivative of a 2-SP, say X(u), and its higher order
ones, if they exist are also 2-SPs. It can be shown that their correlation functions
are determined simply in terms of the correlation function of X(u) [109, page 97].
Specifically, if X(u) is n-times m.s. differentiable, then

ΓX(n)(u1, u2) = ∂2nΓX(u1, u2)
∂un1 ∂u

n
2

. (2.7)

The following result gives a characterization of the existence of the m.s. Riemann
integral of a 2-SP, in terms of the existence of a two-dimensional integral involving
the correlation function of the 2-SP.

Proposition 2.3 ([109, Theorem 4.5.1]) Let g(u,w) be a deterministic Riemann
integrable function on the real interval u ∈ [c, d], for every w ∈ W ⊂ R, and let
X(u) be a 2-SP. Then, the 2-SP defined by

Y (w) =
∫ d

c
g(u,w)X(u) du, w ∈ W,

12



2.2 Preliminaries about mean square random calculus

exists if and only if, the deterministic double Riemann integral∫ d

c

∫ d

c
g(u1, w)g(u2, w)ΓX(u1, u2) du1du2,

exists and is finite.

The following consequence of the previous proposition will be used later.

Remark 2.1 In the particular case that w = d ∈ W ⊂ R in Proposition 2.3, the
RV

Y ≡ Y (d) =
∫ d

c
g(u, d)X(u)du

is well-defined as a 2-RV, if and only if, the deterministic double Riemann integral∫ d

c

∫ d

c
g(u1, d)g(u2, d)ΓX(u1, u2) du1du2,

exists and is finite.

A key result, that will be used in this chapter to construct a random generalized
power series solution to the random fractional linear differential equation with
a random initial condition, is the following chain rule [46]. This rule allows us
to compute the m.s. derivative of a 2-SP resulting from the composition of a
differentiable deterministic function and a m.s. differentiable 2-SP.

Theorem 2.2 Let g be a deterministic continuous function on [a1, a2] such that
g′(t) exists and is finite at some point t ∈ [a1, a2]. If {X(v) : v ∈ V} is a 2-SP
such that

i) The interval V contains the range of g, g([a1, a2]) ⊂ V.

ii) X(v) is m.s. differentiable at the point g(t).

iii) The m.s. derivative of X(v), dX(v)
dv , is m.s. continuous on V.

13
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Then, the 2-SP, X(g(t)), is m.s. differentiable at t and the m.s. derivative is given
by

dX(g(t))
dt = dX(v)

dv

∣∣∣
v=g(t)

g′(t).

Also connected with the previous result and, as it shall be seen later, we will
require to apply the m.s. derivative of a random power series in order to formally
construct the solution of the random fractional linear differential equation with a
random initial condition. For this purpose we will use the following result:

Proposition 2.4 [45, page 1260] Let V ⊂ R be an interval, m ≥ m0 ≥ 0 a
non-negative integer and {Um(v) : v ∈ V, m ≥ m0} be a sequence of 2-SPs such
that

i) Um(v) is m.s. differentiable on V.

ii) The m.s. derivative, U ′m(v), is m.s. continuous on V.

iii) U(v) =
∑
m≥m0

Um(v) is m.s. convergent on V.

iv)
∑
m≥m0

U ′m(v) is m.s. uniformly convergent on V.

Then, the 2-SP, U(v), is m.s. differentiable at every v ∈ V and

U ′(v) =
∑
m≥m0

U ′m(v).

Apart of the key results described above with the differentiability in m.s. sense of
2-SP, special deterministic functions as Euler gamma and beta functions will be
required in the following chapters. They are defined as

Γ(α) :=
∫ ∞

0+
e−v vα−1 dv, α > 0, (2.8)

B(α1, α2) :=
∫ 1

0
vα1−1(1− v)α2−1 dv, α1, α2 > 0, (2.9)

14



2.3 Mean square random fractional differential and integral operators

respectively. They are related by the following well-known relationship

B(α1, α2) = Γ(α1)Γ(α2)
Γ(α1 + α2) , α1, α2 > 0. (2.10)

The so-called duplication formula of the deterministic gamma function

Γ(α+ 1) = αΓ(α), α > 0, (2.11)

will also be required later. Although these functions and relationships can be
extended for α, α1 and α2 lying in the whole complex plane except the negative
integers, here they will only be applied when α > 0, α1 > 0 and α2 > 0. Also, the
following asymptotic approximation to the gamma function will be need later [60,
page 227]

Γ(x+ 1) ≈ xx e−x
√

2πx, x→ +∞. (2.12)

Notice that this approximation is just a generalization of the celebrated Stirling’s
formula.

We conclude this section by stating a technical result related to the convergence
of double series that will be applied to develop the numerical examples exhibited
in Section 2.6.

Proposition 2.5 [93, Lemma 9.1, Chapter 9] A double series
∑
m≥m0

∑
n≥n0

amn

is absolutely convergent if and only if the following conditions hold

(i) There are (m0, n0) ∈ N × N and α0 > 0 such that
∑M
m=m0

∑N
n=n0

|amn| ≤
α0 for all M ≥ m0, N ≥ n0.

(ii) Each row-series and each column-series are absolutely convergent.

2.3 Mean square random fractional differential and integral opera-
tors

This section is addressed to introduce the random Riemann-Liouville fractional
integral and the random Caputo fractional derivative in the m.s. sense. As it shall
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see later, both random fractional operators extend their deterministic counterparts.
Their definitions are based on the random m.s. calculus. Firstly, we give the
definition of the m.s. random Riemann-Liouville fractional integral.

Definition 2.1 Let D = [a, b], −∞ < a < b < +∞, be a finite interval of the
real line, R. Let {X(t) : t ∈ D} be a 2-SP. The random mean square (left-sided)
Riemann-Liouville fractional integral of X(t), Jαa+X, of order α > 0 is defined by

(
Jαa+X

)
(t) := 1

Γ(α)

∫ t

a
(t− u)α−1X(u) du, t ∈ D = [a, b] , (2.13)

where Γ(α) denotes the deterministic gamma function given in (2.8).

Notice that the integral that appears in the right-hand side of (2.13) is understood
in the m.s. Riemann integral sense introduced in Section 2.2.

Remark 2.2 Analogously to Definition 2.1, we can define the random m.s. (right-
sided) Riemann-Liouville fractional integral of a 2-SP, X(t), as

(
Jαb−X

)
(t) := 1

Γ(α)

∫ b

t
(u− t)α−1X(u) du.

Throughout this chapter, the random m.s. (left-sided) Riemann-Liouville fractional
integral will be used only.

Keeping the notation of Definition 2.1, and applying Remark 2.1 with the fol-
lowing identification d = t ∈ D an arbitrary but fixed number and g(u, d) =
(d − u)α−1/Γ(α), one deduces the following characterization of the existence
of the random m.s. (left-sided) Riemann-Liouville fractional integral of a 2-SP
{X(t) : t ∈ D}.

Proposition 2.6 Let {X(t) : t ∈ D} be a 2-SP with correlation function ΓX(·, ·).
Then, its random m.s. (left-sided) Riemann-Liouville fractional integral, denoted by
(Jαa+X)(t), α > 0, exists in the m.s. sense if, and only if the following deterministic
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double Riemann integral∫ t

a

∫ t

a
(t− u1)α−1(t− u2)α−1ΓX(u1, u2) du1du2 (2.14)

exists and is finite for each t ∈ D.

Now we give a sufficient condition in order to guarantee the existence of random
m.s. (left-sided) Riemann-Liouville fractional integral,

(
Jαa+X

)
(t).

Proposition 2.7 Let α > 0 and {X(t) : t ∈ D} be a 2-SP such as∫ t

a
(t− u)α−1 ‖X(u)‖2 du < +∞. (2.15)

Then, the random m.s. (left-sided) Riemann-Liouville fractional integral (Jαa+X)(t)
exists.

Proof. By Proposition 2.6, it is enough showing that the double deterministic
integral (2.14) is absolutely convergent. This follows by applying inequality (2.5)
and Fubini’s theorem∫ t

a

∫ t

a

∣∣(t− u1)α−1(t− u2)α−1ΓX(u1, u2)
∣∣ du1du2

≤
∫ t

a

∫ t

a
(t− u1)α−1(t− u2)α−1 ‖X(u1)‖2 ‖X(u2)‖2 du1du2

=
(∫ t

a
(t− u1)α−1 ‖X(u1)‖2 ds

)(∫ t

a
(t− u2)α−1 ‖X(u2)‖2 du2

)
=
(∫ t

a
(t− u)α−1 ‖X(u)‖2 du

)2

< +∞.

Notice that in the last step we have used hypothesis (2.15). �

Apart from the fractional Riemann-Liouville integral, in the deterministic scenario
it is also useful the concept of fractional derivative. In the subsequent development
we introduce the definition of the random (left-sided) fractional Caputo derivative,
in the m.s. sense. Thus, we firstly give a characterization of its existence, and
secondly, a sufficient condition in order to guarantee its existence, in the m.s. sense.
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Definition 2.2 Let D = [a, b], −∞ < a < b <∞, be a finite interval of the real
line R. Let {X(t) : t ∈ D} be a 2-SP. The random mean square (left-sided) Caputo
fractional derivative of X(t), (CDα

a+X)(t), of order α > 0 is defined by

(
CDα

a+X
)

(t) :=
(

Jn−αa+ X(n)
)

(t) = 1
Γ(n− α)

∫ t

a
(t− u)n−α−1X(n)(u) du,

(2.16)
where n = −[−α], being [·] the integer part function and, X(n)(t) denotes the n-th
m.s. derivative of the 2-SP X(t).

Naturally, the integral that appears in the right-hand side of (2.16) is a m.s.
Riemann integral.

Remark 2.3 Analogously to Definition 2.2, the random m.s. (right-sided) Caputo
fractional derivative of a 2-SP {X(t) : t ∈ D = [a, b]}, −∞ < a < b <∞, is defined
as (

CDα
b−X

)
(t) :=

(
Jn−αb− X(n)

)
(t) = 1

Γ(n− α)

∫ b

t
(u− t)n−α−1X(n)(u) du.

Applying Proposition 2.6 to the 2-SP X(n)(t) and using the relationship (2.7),
one straightforwardly gets the following characterization on the existence of the
random m.s. Caputo fractional derivative of a 2-SP, X(t), that is n-times m.s.
differentiable.

Proposition 2.8 Let {X(t) : t ∈ D}, −∞ < a < b < ∞, be a 2-SP n-times
differentiable with correlation function ΓX(·, ·). Then, its (left-sided) Caputo frac-
tional derivative,

(
CDα

a+X
)

(t), α > 0, exists in the m.s. sense if, and only if, the
following deterministic double Riemann integral∫ t

a

∫ t

a
(t− u1)n−α−1(t− u2)n−α−1 ∂

2nΓX(u1, u2)
∂un1 ∂u

n
2

du1du2

exists and is finite.
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On the one hand, if we assume that the 2-SP {X(t) : t ∈ D} is n-times m.s.
differentiable, then applying (2.5) to its n-th m.s. derivative, X(n)(t), which is also
a 2-SP, one gets

ΓX(n)(u1, u2) ≤
∥∥∥X(n)(u1)

∥∥∥
2

∥∥∥X(n)(u2)
∥∥∥

2
.

On the other hand, using an analogous reasoning that was exhibited in the proof
of Proposition 2.7 yields∫ t

a

∫ t

a

∣∣(t− u1)n−α−1(t− u2)n−α−1ΓX(n)(u1, u2)
∣∣ du1du2

≤
∫ t

a

∫ t

a
(t− u1)n−α−1(t− u2)n−α−1

∥∥∥X(n)(u1)
∥∥∥

2

∥∥∥X(n)(u2)
∥∥∥

2
du1du2

=
(∫ t

a
(t− u)n−α−1

∥∥∥X(n)(u)
∥∥∥

2
du
)2

.

Then, the following result has been established:

Proposition 2.9 Let α > 0 and {X(t) : t ∈ D} be a 2-SP n-times m.s. differen-
tiable such that ∫ t

a
(t− u)n−α−1

∥∥∥X(n)(u)
∥∥∥

2
du < +∞.

Then, the random (left-sided) Caputo fractional derivative,
(
CDα

a+X
)

(t), exists.

Example 2.1 Let X(t) = Atαm, t ∈ [0, T ], T > 0, 0 < α < 1, m > 0, and
assume that A is a bounded RV (hence A ∈ L2(Ω)). Then, X(t) is a 2-SP

(‖X(t)‖2)2 = E
[
A2t2αm

]
= t2αmE

[
A2] < +∞,

since E
[
A2] = (‖A‖2)2

< +∞. Moreover, X(t) is m.s. differentiable and its m.s.
derivative is given by X ′(t) = αmAtαm−1,

(∥∥∥∥X(t+ h)−X(t)
h

−X ′(t)
∥∥∥∥

2

)2
= E

[(
A(t+ h)αm −Atαm

h
− αmAtαm−1

)2]

= E
[
A2] ((t+ h)αm − tαm

h
− αmtαm−1

)
h→0−−−→ 0,

19



Chapter 2. Riemann-Liouville and Caputo operators in mean square sense: solving a random
linear fractional differential equation

since E
[
A2] < +∞ and g(t) = tαm is a deterministic differentiable function whose

derivative is αmtαm−1. Finally, according to Proposition 2.9 with n = 1, a = 0,
we need to check the following deterministic integral∫ t

0
(t− u)−α

∥∥αmAuαm−1∥∥
2 du = αm ‖A‖2

∫ t

0
(t− u)−αuαm−1 du

is convergent. Since ‖A‖2 < +∞, it is enough to show that the last integral is finite.
To this end, let us make the change of variable: u = vt, then using the definition
of the beta function (see (2.9)) and its relationship with the gamma function (see
(2.10)), one gets

∫ t

0
(t− u)−αuαm−1 du = tα(m−1)

∫ 1

0
vαm−1(1− v)−αdv

= tα(m−1)B(αm, 1− α) = tα(m−1) Γ(αm)Γ(1− α)
Γ(α(m− 1) + 1) < +∞.

(2.17)

Moreover the value of the random m.s. Caputo fractional derivative of X(t) = Atαm

is given by

(
CDα

0+X
)

(t) = 1
Γ(1− α)

∫ t

0
(t− u)−ααmAuαm−1 du

= αmA

Γ(1− α)

∫ t

0
(t− u)−αuαm−1 du.

(2.18)

Observe that the commutation between the m.s. integral and the RV A that we have
done in the last step is legitimated because A is a bounded RV (see Proposition 2.1).
Finally, substituting expression (2.17) into (2.18) and using property (2.11), one
gets the following closed expression for the random (left-sided) Caputo fractional
derivative of X(t)

(
CDα

0+X
)

(t) = αmA

Γ(1− α) t
α(m−1)

∫ 1

0
vαm−1(1− v)−αdv

= A
Γ(αm+ 1)

Γ(α(m− 1) + 1) t
α(m−1).

(2.19)
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2.4 Solving the random linear fractional differential equation by
the mean square generalized Frobenius method

This section is devoted to construct a solution SP to the following random fractional
linear differential initial value problem (IVP){ (

CDα
0+Y

)
(t)− λY (t) = γ, t > 0, 0 < α ≤ 1,

Y (0) = β0,
(2.20)

where β0, λ and γ are RVs defined in a common complete probability space (Ω,F ,P)
satisfying certain conditions to be specified later (see hypotheses H1–H2). The
solution SP will be constructed by extending the Frobenius method to RFDEs
using the random Caputo fractional derivative, that we have previously introduced.
The aforementioned extension will be done using the m.s. random calculus.

We will seek a solution SP to the random IVP (2.20) of the form

Y (t) =
∑
m≥0

Xmt
αm, 0 ≤ t ≤ T, T > 0, (2.21)

imposing that it satisfies the RFDE. Notice that coefficients of series Y (t) have
been denoted by Xm instead of Ym. This fact will be apparent later. As expression
(2.21) is a generalized random power series, in order to take advantage of the m.s.
random calculus for standard random power series

X(v) =
∑
m≥0

Xmv
m, 0 ≤ v ≤ Tα, T > 0, (2.22)

let us consider the following expression for the random fractional derivative of the
generalized random power series (2.21), in terms of the standard random power
series (2.22), (

CDα
0+Y

)
(t) =

(
CDα

0+X
)

(tα) =
(

J1−α
0+ Z

)
(t), (2.23)

where Z ≡ Z(t) = (X(tα))′ denotes the m.s. derivative of the SP X(t) compounded
with the deterministic function tα. Observe that in agreement with (2.16), the
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notation
(

J1−α
0+ Z

)
(t) in (2.23) stands for the the Caputo fractional derivative of

Z(t) with a = 0 and n = 1.

Let us assume that for t fixed in [0, T ] the following conditions C1–C2 fulfill:

C1 : X(v), given by (2.22), is a m.s. differentiable at v = tα. Moreover,

X ′(tα) =
∑
m≥1

mXmt
α(m−1). (2.24)

C2 : dX(v)
dv is m.s. continuous on v ∈ [0, Tα].

As 0 < α ≤ 1, it follows that V = [0, Tα] contains the range of g(t) = tα, i.e.,
g([a1, a2]) = g([0, T ]) = [0, Tα] ⊆ [0, Tα]. Then, by Theorem 2.2 X(g(t)) is m.s.
differentiable at t and its mean square derivative is given by

Z(t) := Y ′(t) = (X(tα))′ = αtα−1X ′(tα). (2.25)

Therefore, substituting (2.25) into (2.23) and taking into account (2.16), one gets

(
CDα

0+Y
)

(t) =
(

J1−α
0+ Z

)
(t) = 1

Γ(1− α)

∫ t

0+
(t− u)−α

(
αuα−1X ′(uα)

)
du

= 1
Γ(1− α)

∫ t

0+
(t− u)−α

αuα−1
∑
m≥1

mXmu
α(m−1)

 du

= 1
Γ(1− α)

∫ t

0+
(t− u)−α

∑
m≥1

αmXmu
αm−1

du.

(2.26)

We will further assume that the following condition is satisfied

C3 : The random generalized power series
∑
m≥1mXmt

αm−1 is m.s. uniformly
convergent on the domain 0 ≤ t ≤ T .
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Then, the integral and the infinite sum that appear in (2.26) can be commuted,
and applying the results shown in Example 2.1, expression (2.26) can be written
as (

CDα
0+Y

)
(t) = 1

Γ(1− α)
∑
m≥1

(
αmXm

∫ t

0+
(t− u)−αuαm−1du

)

=
∑
m≥1

(
Xm

Γ(αm+ 1)
Γ(α(m− 1) + 1) t

α(m−1)
)

=
∑
m≥0

(
Xm+1

Γ(α(m+ 1) + 1)
Γ(αm+ 1) tαm

)
.

(2.27)

It is important to point out that conditions C1-C3 will be checked once the RVs
Xm, that define the random power series (2.22), are determined for the random
IVP (2.20). With this goal and using the Frobenius method, we impose that the
random generalized power series solution (2.21) satisfies the RFDE given in (2.20).
Substituting formally expressions (2.21) and (2.27) into (2.20), one gets

X1Γ(α+ 1)− λX0 − γ +
∑
m≥1

(
Xm+1

Γ(α(m+ 1) + 1)
Γ(αm+ 1) − λXm

)
tαm = 0.

Therefore, a candidate solution SP of the form (2.21) to the random IVP (2.20) can
be constructed if the coefficients Xm are chosen so that they satisfy the following
recurrence

X1 = λβ0 + γ

Γ(α+ 1) , Xm+1 = λΓ(αm+ 1)
Γ(α(m+ 1) + 1)Xm, m ≥ 1,

where, we have used that the initial condition is Y (0) = X0 = β0. The recursive
application of this relationship yields

Xm = λmβ0 + λm−1γ

Γ(αm+ 1) , m ≥ 1, X0 = β0.
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Summarizing, a candidate random generalized power series solution to the IVP
(2.20) is given by

Y (t) = X(tα), X(v) =
∑
m≥0

Xm,1v
m +

∑
m≥1

Xm,2v
m, (2.28)

where 
Xm,1 = λmβ0

Γ(αm+ 1) ,

Xm,2 = λm−1γ

Γ(αm+ 1) ,

that is,

Y (t) =
∑
m≥0

λmβ0

Γ(αm+ 1) t
αm +

∑
m≥1

λm−1γ

Γ(αm+ 1) t
αm. (2.29)

Remark 2.4 The so-called Mittag-Leffler function

Eα,ν(z) =
∑
m≥0

zm

Γ(αm+ ν) , z ∈ R, α, ν ≥ 0, (2.30)

plays a key role in the investigation of deterministic fractional differential equa-
tions. Looking at the expression (2.29), which is a random generalized power
series, it is suggested a strong connection with the Mittag-Leffler function and
the solution found using the random generalized Frobenius technique, namely,
Y (t) = β0Eα,1(λtα) + γtαEα,α+1(λtα). Notice that the study previously performed
provides sufficient conditions on the RV λ in order to extend the Mittag-Leffler
function to the random framework since it is well-defined in the Banach space
(L2(Ω), ‖·‖2) introduced in (2.2).

So far, we have formally constructed a random generalized power series solution to
the random IVP (2.20), which is given by (2.29). Henceforth, we will prove that it
is really a rigorous solution by checking that conditions C1–C3 hold. This will be
done for a rich enough class of RVs, denoted by C, that contains significant RVs
and that enables us to construct accurate approximations for another important
RVs that do not belong to the class C. These issues will be discussed later.
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Definition 2.3 A RV, X, is said to belong to the class C if, and only if, there
exist positive constants L > 0 and H > 0 such that

E [|X|m] ≤ LHm < +∞, ∀m ≥ 0. (2.31)

The inequality (2.31) is derived from the condition that the absolute moments
with respect to to the origin of the X growths exponentially.

Remark 2.5 Notice that condition (2.31) is equivalent to

E [|X|m] = O(Hm), H > 0,m ≥ 0, (2.32)

where O(·) stands for the Landau symbol. Observe that every RV of class C is a
2-RV.

Remark 2.6 It is important to point out that this class of RVs has already been
used successfully to deal with the analysis of some classical (non-fractional) RDEs
[42, 31]. As it is shown in [42], bounded RVs belong to the class C. Hence, relevant
RVs such as binomial, hypergeometric, uniform, trapezoidal, beta, λ-distributed [30],
etc., are of class C. While important unbounded RVs like Poisson, Exponential,
Gaussian, etc. can be approximated by truncating appropriately their domain, that
is, using bounded RVs.

Now, we are going to legitimate the conditions C1–C3 we have imposed to formally
construct the random generalized power solution (2.29). Hereinafter, we will assume
the following hypotheses:

H1 : The input data β0, γ and λ are independent 2-RVs.

H2 : λ belongs to the class C introduced in Definition 2.3.

Observe that hypothesis H2 entails that

‖β0‖2 < +∞, ‖γ‖2 < +∞, ‖λm‖2 <
√
LHm < +∞, ∀m ≥ 0,
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being L and H the positive constants introduced in Definition 2.3. The above
bound for λm follows from the definition of the ‖·‖2-norm given in (2.2) and (2.32)

‖λm‖2 =
√
E [|λ|2m] ≤

√
LH2m =

√
LHm < +∞, ∀m ≥ 0. (2.33)

To check condition C1 we will apply Proposition 2.4 to the two series defined in
(2.28). Specifically, for the first series in (2.28) we apply Proposition 2.4 with the
following identification: m0 = 0, Um(v) = Xm,1v

m. Firstly, we prove that, for each
m ≥ 0 fixed, Xm,1(v) := Xm,1v

m = (λmβ0)/(Γ(αm+ 1))vm is m.s. differentiable
at v = tα, being X ′m,1(tα) = mλmβ0v

α(m−1)/Γ(αm + 1) its is m.s. derivative.
Indeed, observe that for every v such that 0 < v ≤ T , T > 0, one gets

0 <
∥∥∥∥Xm,1(tα + h)−Xm,1(tα)

h
−X ′m,1(tα)

∥∥∥∥
2

(I)= ‖λm‖2 ‖β0‖2
1

Γ(αm+ 1)

∣∣∣∣(tα + h)m − tαm
h

−mtα(m−1)
∣∣∣∣

(II)
≤
√
LHm ‖β0‖2

1
Γ(αm+ 1)

∣∣∣∣(tα + h)m − tαm
h

−mtα(m−1)
∣∣∣∣ −−−→h→0

0,

(2.34)

where in the step (I) we have applied the hypothesis H1 of statistical independence
of RVs β0 and λ together with Proposition 2.2 using the definition of the ‖·‖2-norm
in terms of the expectation operator; in step (II) we have directly used (2.33) and,
finally for the last limit we have used that the deterministic function h(v) = vm is
differentiable at v = tα and that β0 is a 2-RV, hence ‖β0‖2 < +∞.

Secondly, we need to prove that for eachm ≥ 1 fixed,X ′m,1(v) = mλmβ0v
m−1/Γ(αm+

1) is m.s. continuous at v = tα. This can be checked by following an analogous
reasoning to the one exhibited in (2.34).

0 <
∥∥X ′m,1(tα + h)−X ′m,1(tα)

∥∥
2

= ‖λm‖2 ‖β0‖2
m

Γ(αm+ 1)

∣∣∣(tα + h)m−1 − tα(m−1)
∣∣∣

≤
√
LHm ‖β0‖2

αm

Γ(αm+ 1)

∣∣∣(tα + h)m−1 − tα(m−1)
∣∣∣ −−−→
h→0

0, t ≤ T, T > 0,
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where in the last step we have applied that the deterministic function vm−1 is contin-
uous at tα. Thirdly, we shall check that the random power series

∑
m≥0Xm,1(v) =∑

m≥0Xm,1v
m is m.s. convergent for every v : 0 < v ≤ Tα. To do that we will

majorize the deterministic series
∑
m≥0 ‖Xm,1(v)‖2 =

∑
m≥0 ‖Xm,1‖2 v

m by a
convergent series. With this goal, let us observe that

‖Xm,1‖2 v
m =

∥∥∥∥ λmβ0

Γ(αm+ 1)

∥∥∥∥
2
vm

≤
√
LHm ‖β0‖2

vm

Γ(αm+ 1) := δm(v), 0 < v ≤ Tα, T > 0.
(2.35)

Then, using the test ratio for numerical series together with the asymptotic
approximation of the gamma function given in (2.12), one gets

lim
m→+∞

δm+1(v)
δm(v) = H

(
lim

m→+∞

Γ(αm+ 1)
Γ(α(m+ 1) + 1)

)
v

= H

(
lim

m→+∞

(αm)αm e−αm
√

2παm
(α(m+ 1))α(m+1) e−α(m+1)

√
2πα(m+ 1)

)
v

= H

(
lim

m→+∞

(
m

m+ 1

)αm 1
(α(m+ 1))α

√
m

m+ 1

)
eα v

= H

(
lim

m→+∞

1
(α(m+ 1))α

√
m

m+ 1

)
v = 0,

(2.36)

where we have used that

lim
m→+∞

(
m

m+ 1

)αm
= lim
m→+∞

(
1

1 + 1
m

)αm
= lim
m→+∞

(
1 + 1

m

)−αm
= e−α .

This proves the m.s. convergence of the random power series
∑
m≥0Xm,1v

m defined
in (2.28) for every v in 0 < v ≤ Tα. Fourthly, we shall prove the m.s. uniform
convergence of the random power series

∑
m≥0X

′
m,1(v) =

∑
m≥1mXm,1v

m−1,
being Xm,1 = λmβ0/Γ(αm + 1) on the domain 0 < v ≤ Tα, T > 0. As the
reasoning is analogous to the one exhibited in (2.35)–(2.36), we just show it
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directly

‖mXm,1‖2 v
m−1 = m

∥∥∥∥ λmβ0

Γ(αm+ 1)

∥∥∥∥
2
vm−1 ≤ m

√
LHm ‖β0‖2

Tm−1

Γ(αm+ 1) := δ̂m,

and

lim
m→+∞

δ̂m+1

δ̂m
= H

(
lim

m→+∞

1
(α(m+ 1))α

√
m+ 1
m

)
T = 0.

All this justifies that the random power series
∑
m≥0Xm,1v

m is m.s. differentiable
at v = tα. By using similar arguments, one can prove that the second power
series

∑
m≥1Xm,2t

m in (2.28) is m.s. differentiable at v = tα. Both conclusions
allows us to affirm that the random power series X(v), defined in (2.28), satisfies
condition C1. As a consequence, by applying Proposition 2.4 the m.s. derivative
(2.24) assumed in C1 is legitimated. Based upon similar arguments, it can be
shown that X(v) also satisfies conditions C2 and C3.

Summarizing, the following result has been proved.

Theorem 2.3 Let us consider the random fractional linear differential IVP{ (
CDα

0+Y
)

(t)− λY (t) = γ, t > 0, 0 < α ≤ 1,
Y (0) = β0,

where the input data satisfy the following hypotheses:

H1 : The input data β0, γ and λ are independent RVs.

H2 : The input data β0, γ and λ are 2-RVs, and there exist positive constants
L > 0 and H > 0 such that

E [|λ|m] ≤ LHm < +∞, ∀m ≥ 0.

Then,

Y (t) =
∑
m≥0

λmβ0

Γ(αm+ 1) t
αm +

∑
m≥1

λm−1γ

Γ(αm+ 1) t
αm,

is a m.s. solution to the IVP that converges for all t > 0.
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2.5 Computing approximations of the mean, the variance, the covariance and the
cross-covariance functions of the solution stochastic process

2.5 Computing approximations of the mean, the variance, the co-
variance and the cross-covariance functions of the solution
stochastic process

So far we have provided sufficient conditions in order to guarantee the m.s. con-
vergence of the solution SP defined by the random generalized power series (2.29).
However, from a practical point of view this infinite series needs to be truncated
to keep computationally feasible. This motivates the consideration of following
finite sum (see (2.28)–(2.29))

YM (t) =
M∑
m=0

Xm,1t
αm+

M∑
m=1

Xm,2t
αm =

M∑
m=0

λmβ0

Γ(αm+ 1) t
αm+

M∑
m=1

λm−1γ

Γ(αm+ 1) t
αm.

(2.37)
From this expression we will compute approximations of both the mean and
variance/standard deviation functions of the solution SP given in (2.29). The
following property of the m.s. convergence will play a key role to legitimate the
computation of approximations.

Proposition 2.10 [109, Th 4.4.3] Let {XM : M ≥ 0} and {ZN : N ≥ 0} be two
sequences of 2-RVs such that XM

[M→+∞]
m.s. −→X and ZN

[N→+∞]
m.s. −→Z.

E [XMZN ] −−−−−−−→
M,N→+∞

E [XZ] ,

Cov [XM , ZN ] −−−−−−−→
M,N→+∞

Cov [X,Z] .

Firstly, let us observe that taking t ∈ R arbitrary but fixed, and using the following
identification XM ≡ YM (t) for all M ≥ 0, being YM (t) the partial sum defined in
(2.37) and ZN ≡ 1 for all N ≥ 0 in Proposition 2.10, then one deduces

E[YM (t)] [M→+∞]−→ E[Y (t)], (2.38)

since we have proved the m.s. convergence of YM (t) for every t ∈ R. Likewise,
applying Proposition 2.10 with M ≡ N and XM = ZN ≡ YM (t) for all M,N ≥ 0,
being YM (t) the partial sum defined in (2.37), and taking into account that
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V[YM (t)] = E[(YM (t))2]− (E[YM (t)])2 together with (2.38), one gets

V[YM (t)] [M→+∞]−→ V[Y (t)]. (2.39)

Expressions (2.38) and (2.39) legitimize that the approximations E[YM (t)] and
V[YM (t)] of the mean and the variance, respectively, constructed by YM (t) given
in (2.37) will converge to the corresponding exact values. At this point, we want
to emphasize that this distinctive property of m.s. convergence is what has really
justified the use of this strong type of convergence in our study against alternative
stochastic convergences like almost surely convergence, convergence in probability
and convergence in distribution, which do not have such key property. Below, we
shall provide expressions for E[YM (t)] and V[YM (t)]. With this goal, let us take the
expectation operator and using its linearity property together with the hypothesis
H1 of independence for the input RVs β0, γ and λ and Proposition 2.2, one gets:

E[YM (t)] = E[β0]
M∑
m=0

E[λm]
Γ(αm+ 1) t

αm + E[γ]
M∑
m=1

E[λm−1]
Γ(αm+ 1) t

αm. (2.40)

As V[YM (t)] = E[(YM (t))2] − (E[YM (t)])2
, in order to compute the variance of

(2.37) it is enough to determine an expression of E[(YM (t))2] in terms of the
statistical moments of the input RVs β0, γ and λ. To achieve this goal, let us
consider the following development

E
[
(YM (t))2] = E

( M∑
m=0

λmβ0

Γ(αm+ 1) t
αm +

M∑
m=1

λm−1γ

Γ(αm+ 1) t
αm

)2
= E

[
(β0)2]( M∑

m=0

E
[
λ2m]

Γ2(αm+ 1) t
2αm + 2

M∑
m=1

m−1∑
n=0

E [λm+n]
Γ(αm+ 1)Γ(αn+ 1) t

α(m+n)

)

+ E
[
γ2] M∑

m=1

E
[
λ2(m−1)

]
Γ2(αm+ 1) t

2αm + 2
M∑
m=2

m−1∑
n=1

E
[
λm+n−2]

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n)


+ 2E[β0]E[γ]

M∑
m=0

M∑
n=1

E
[
λm+n−1]

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n),

(2.41)
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where the hypothesis H1 has been applied.

If we choose the input RVs β0, γ and λ satisfying the hypotheses H1–H2, then
since we have proved the unconditional m.s. convergence over the whole real
line of the random generalized power series SP (2.29), it is guaranteed that the
approximations of the mean and the variance of the solution SP, Y (t), to the
random IVP (2.20), given by (2.40)–(2.41), will converge to the corresponding
exact values for every t ∈ R.

We finish this section by giving further probabilistic properties of the solution SP,
Y (t). These properties will also be constructed from the truncated series (2.37).
First, we will calculate an approximation of the cross-covariance function of the
solution SP. With this aim let us consider M,N ≥ 1, t, s ∈ R and the following
development based on the properties of the cross-covariance operator together
with the expression (2.37)

CYM ,YN (t, s) =
M∑
m=0

N∑
n=0

Cov [Xm,1, Xn,1] tαmsαn

+
M∑
m=0

N∑
n=1

Cov [Xm,1, Xn,2] tαmsαn

+
M∑
m=1

N∑
n=0

Cov [Xm,2, Xn,1] tαmsαn

+
M∑
m=1

N∑
n=1

Cov [Xm,2, Xn,2] tαmsαn,

where each one of the four covariances that appear in the last double sum can be
computed in terms of the input data. For example, taking into account (2.28), the
hypothesis H1 of independence of RVs β0, γ, and λ, one gets

Cov [Xm,1, Xn,1] = E [λm+n]E
[
(β0)2]− E [λm]E [λn] (E [β0])2

Γ(αm+ 1)Γ(αn+ 1) .

In an analogous manner, it can be seen that

Cov [Xm,1, Xn,2] =
(
E
[
λm+n−1]− E [λm]E

[
λn−1])E [β0]E [γ]

Γ(αm+ 1)Γ(αn+ 1) ,
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Cov [Xm,2, Xn,1] =
(
E
[
λm+n−1]− E

[
λm−1]E [λn]

)
E [β0]E [γ]

Γ(αm+ 1)Γ(αn+ 1) ,

and

Cov [Xm,2, Xn,2] = E
[
λm+n−2]E [γ2]− E

[
λm−1]E [λn−1] (E [γ])2

Γ(αm+ 1)Γ(αn+ 1) .

Particularizing the expression CYM ,YN (t, s) when

• s = t, one obtains the covariance of the random approximations of order M
and N at the time instant t of the solution SP.

• M = N , one obtains the covariance of the random approximation of order
M at the two time instants t and s of the solution SP.

• M = N and s = t, one obtains the variance of the random approximation of
orderM at the time instant t of the solution SP. This expression is equivalent
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to the one determined by (2.40)–(2.41). Specifically,

V [YM (t)] = E
[
(β0)2] M∑

m=0

M∑
n=0

E [λm+n]
Γ(αm+ 1)Γ(αn+ 1) t

α(m+n)

− (E [β0])2
(

M∑
m=0

E [λm]
Γ(αm+ 1) t

αm

)(
M∑
n=0

E [λn]
Γ(αn+ 1) t

αn

)

+ E [β0]E [γ]
M∑
m=0

M∑
n=1

(
E
[
λm+n−1])

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n)

− E [β0]E [γ]
(

M∑
m=0

E [λm]
Γ(αm+ 1) t

αm

)(
M∑
n=1

E
[
λn−1]

Γ(αn+ 1) t
αn

)

+ E [β0]E [γ]
M∑
m=1

M∑
n=0

E
[
λm+n−1]

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n)

− E [β0]E [γ]
(

M∑
m=1

E
[
λm−1]

Γ(αm+ 1) t
αm

)(
M∑
n=0

E [λn]
Γ(αn+ 1) t

αn

)

+ E
[
γ2] M∑

m=1

M∑
n=1

E
[
λm+n−2]

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n)

− (E [γ])2
(

M∑
m=1

E
[
λm−1]

Γ(αm+ 1) t
αm

)(
M∑
n=1

E
[
λn−1]

Γ(αn+ 1)tn t
αn

)
.

(2.42)

2.6 Numerical examples

This section is devoted to show two examples in order to illustrate all the theoretical
results previously established. In particular, through the subsequent examples
we want to highlight two key features of our study. Firstly, the method works
successfully when λ is a RV that belongs to the class C introduced in Definition
2.3. Specifically, in the first example (Example 2.2) we will consider that λ is
a bounded RV, thus it belongs to the class C (see Remark 2.6). Secondly, the
technique can also be applied to obtain reliable approximations when λ is an
unbounded RV and it is approximated by an appropriate truncated (thus bounded)
RV. This approach is very useful from a practical standpoint since explicit closed
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expressions for the statistical absolute moments of many RVs are not available. In
such cases, checking condition (2.31) is either very difficult or simply impossible.
This issue will be illustrated in the second example (Example 2.3). Additionally,
in the Example 2.2 we will further check that the convergence of the mean and
the variance (equivalently, the standard deviation) take place over the whole real
line, i.e., for every t ∈ R. Although this fact is already known from the theoretical
results previously established, we think that the analysis is very instructive.

Example 2.2 Let us consider the random fractional IVP (2.20) where β0 and γ
are 2-RVs such that

E[β0] = E[γ] = 1
2 , V[β0] = V[γ] = 1

2 . (2.43)

Observe that, for the sake of generality instead of fixing specific probability dis-
tributions for the RVs β0 and γ, we have only specified values of their mean and
variance. Hence, bounded and unbounded RVs like a uniform RV on the interval[

1−
√

6
2 , 1+

√
6

2

]
; a gamma RV of parameters (r1; r2) = (1/2; 1), and a Gaussian

RV of parameters (µ;σ2) = (1/2; 1/2), are allowed to play the role of both RVs,
for example. Furthermore, we will assume that λ has a beta distribution of pa-
rameters (b1; b2) = (3/4; 1), i.e., λ ∼ Be(3/4; 1), hence λ is a bounded RV on
the interval [0, 1] and, as a consequence, it belongs to the class C introduced in
Definition 2.3 (see Remark 2.6). We will assume that all the input data β0, γ and
λ are statistically independent RVs. Therefore, hypotheses H1–H2 hold and it
is then guaranteed that the approximation YM (t), defined in (2.37) via a random
generalized power series, will converge in the m.s. sense to the exact solution SP,
Y (t). Accordingly, both the mean and the variance (or equivalently, the standard
deviation) of the solution SP, Y (t), to the random IVP (2.20) can be approximated
using the expressions given in (2.40)–(2.41).

In Figure 2.1, we have plotted the approximations of the mean and the standard
deviation of the solution SP to the random IVP (2.20) with α = 0.7 using different
orders of truncations M ∈ {6, 7, 8, 9, 10, 12, 15, 17, 20}. For the sake of clarity in
the graphical representation, we have shown the results over two different time
intervals [0, 5] and [0, 10]. From these plots, we observe that in order to get better
approximations over larger intervals the order of truncation M must be higher.
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It is known from our previous theoretical development (see Section 2.5) that these
approximations of order M for the mean and the standard deviation will converge
all over the whole real line as M → +∞. Nevertheless, it is instructive to check
this general result in the context of this example. With this aim, below we shall
check this fact. Firstly, let us recall that the explicit value of higher moments of
the beta distribution of parameters (b1; b2)

E [λm] =
m−1∏
n=0

b1 + n

b1 + b2 + n
, λ ∼ Be(b1; b2),

satisfies the following first-order recurrence relationship

E
[
λm+1] = b1 +m

b1 + b2 +m
E [λm] . (2.44)

Let us denote by
e1
m(t) := E[λm]

Γ(αm+ 1) t
αm (2.45)

the general term of the first deterministic series that defines the approximation of
order M for the expectation of the solution SP (see (2.40)). Then, applying the
ratio test for numerical series and using (2.44) and (2.36), one gets

lim
m→+∞

e1
m+1(t)
e1
m(t) = lim

m→+∞

E[λm+1]
E[λm]

Γ(αm+ 1)
Γ(α(m+ 1) + 1) t

α

= lim
m→+∞

(
b1 +m

b1 + b2 +m

)
lim

m→+∞

( 1
(α(m+ 1))α

√
m

m+ 1

)
tα = 0,

(2.46)

for every t ∈ R arbitrary but fixed. Following an analogous calculation, it can be
seen the second sum in (2.40) converges over the whole real line as M → +∞.
Observe that the above reasoning proves the convergence of the approximation for
the mean given in (2.40) not only for the particular choice λ ∼ Be(3/4; 1) but for
any values b1 and b2 of the parameters to the beta distribution.

In order to check the convergence of the approximation of the variance over the
whole real line in the context of this example, we will use the representation given
in (2.42). Therefore, we must justify the convergence, of the several series that
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Figure 2.1: Approximations of the mean (top) and the standard deviation (bottom) of the
solution SP to the random IVP (2.20) with α = 0.7 using different orders of truncations M
over the time intervals [0, 5] and [0, 10] in the context of Example 2.2.
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appear in (2.42), for all t ∈ R. However, essentially there are two different types
of such series, namely, single and double series. We shall prove the convergence of
the double series by applying Proposition 2.5. Let us define the general term

amn = E [λm+n]
Γ(αm+ 1)Γ(αn+ 1) t

α(m+n), m ≥ 0 = m0, n ≥ 0 = n0, t ∈ R fixed.

Since λ has a beta distribution, observe that E [λm+n] =
∫ 1
0 λ

m+nfλ(λ) dλ ≤∫ 1
0 fλ(λ) dλ = 1, being fλ(λ) the PDF of λ. Then, for t ∈ R fixed one gets

M∑
m=0

N∑
n=0
|amn| =

M∑
m=0

N∑
n=0

E [λm+n]
Γ(αm+ 1)Γ(αn+ 1) |t|

α(m+n)

≤
M∑
m=0

N∑
n=0

|t|αm

Γ(αm+ 1)
|t|αn

Γ(αn+ 1)

=
(

M∑
m=0

|t|αm

Γ(αm+ 1)

)(
N∑
n=0

|t|αn

Γ(αn+ 1)

)

≤

∑
m≥0

|t|αm

Γ(αm+ 1)

∑
n≥0

|t|αn

Γ(αn+ 1)


= (Eα,1(|t|α))2 := α0 > 0, ∀M ≥ m0 = 0, ∀n ≥ n0 = 0,

where in the last step we have used (2.30). Therefore, condition (i) of Proposition
2.5 holds. For the symmetry of the general term amn, it is sufficient to check
condition (ii) of Proposition 2.5 for the rows, for instance. Let us take n = n̂ ≥ 0
arbitrary but fixed, and let us consider the infinite series

∑
m≥0

âm(t), âm(t) := E
[
λm+n̂]

Γ(αm+ 1)Γ(αn̂+ 1) |t|
α(m+n̂).

Since

lim
m→+∞

âm+1(t)
âm(t) = lim

m→+∞

E
[
λm+n̂+1]

E [λm+n̂]
Γ(αm+ 1)Γ(αn̂+ 1)

Γ(αm+ α+ 1)Γ(αn̂+ 1)
|t|α(m+n̂+1)

|t|α(m+n̂)

=
(

lim
m→+∞

b1 +m+ n̂

b1 + b2 +m+ n̂

)(
lim

m→+∞

1
(α(m+ 1))α

√
m

m+ 1

)
|t|α = 0, ∀t ∈ R,
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where we have used (2.36) and (2.44). The convergence of the second kind of
infinite series, which are of the following type

∑
m≥0(E[λm])/(Γ(αm + 1))tαm,

follows using the same argument showed in (2.45)–(2.46).

In order to complete the probabilistic description of the solution SP to the fractional
IVP (2.20), in Figure 2.2 we have represented the correlation coefficient function
of the approximation of order M

ρYM (t, s) = CYM ,YM (t, s)√
V [YM (t)] ×

√
V [YM (s)]

.

s
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32
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Figure 2.2: Correlation coefficient function ρYM (t, s) of the approximation YM (t) of order
M = 20 of the solution SP Y (t) to the random IVP (2.20) with α = 0.7 over the time domain
(t, s) ∈ [0, 5]× [0, 5] in the context of Example 2.2.

In Figure 2.3, we have represented the approximations of the mean and standard
deviation of the solution SP for different values of the differentiation parameters
α = {0.1, 0.2, . . . , 0.9, 1} taking as order of truncation M = 20 over the time
interval [0, 5]. The plot of the mean provides a nice picture of the manner the
solution SP varies as the fractional differentiation parameter changes from 0.1 to
1. It is interesting to observe that the value of α = 1 corresponds to the classical
first derivative. Thus, in that case the plot shows the mean of solution SP to the
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classical random IVP associated to (2.20), i.e.,{
Y ′(t)− λY (t) = γ, t > 0,

Y (0) = β0.
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Figure 2.3: Approximations of the mean (top) and the standard deviation (bottom) of
the solution SP to the random IVP (2.20) varying the fractional differentiation parameter
α = {0.1, 0.2, . . . , 0.9, 1} taking as order of truncation M = 20 over the time interval [0, 5] in
the context of Example 2.2.

We finish this example exhibiting a critical analysis about the computation of the
order of truncation M required so that, given an admissible error ε > 0, the finite
numerical series approximation of the mean, given in (2.38), is uniformly bounded
by ε in a bounded domain. Our next critical reflection can also be extended to the
standard deviation. Let b0 = |E[β0]| and c = |E[γ]| and assume that

∃ q ∈ (0, 1) : H|t|α < q, (2.47)
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being H the positive constant associated to the RV λ, that is assumed to satisfy
condition (2.31). Observe that applying (2.38), (2.31) and (2.47), one gets

|E[Y (t)]− E[YM (t)]| =
∣∣∣∣∣E[β0]

∞∑
m=M+1

E[λm]
Γ(αm+ 1) t

αm + E[γ]
∞∑

m=M+1

E[λm−1]
Γ(αm+ 1) t

αm

∣∣∣∣∣
≤

∞∑
m=M+1

b0 E[|λ|m] + cE[|λ|m−1]
Γ(αm+ 1) |t|αm

≤
∞∑

m=M+1

b0 LH
m + cLHm−1

Γ(αm+ 1) |t|αm

=
(
b0 + c

H

)
L

∞∑
m=M+1

(H|t|α)m
Γ(αm+ 1)

≤
(
b0 + c

H

)
L

∞∑
m=M+1

qm

Γ(αm+ 1)

=
(
b0 + c

H

)
L

∞∑
m=M+1

qm =
(
b0 + c

H

)
L
qM+1

1− q .

(2.48)

Therefore, given an admissible error ε > 0, if we take the order of truncation so
that

M ≥
[
(ln(q))−1 ln

(
ε(1− q)H

(b0H + c)L

)
− 1
]

+ 1, (2.49)

where [·] stands for the ceiling function, then it is guaranteed that |E[Y (t)]− E[YM (t)]| <
ε, ∀ |t| < (q/H)1/α. In Table 2.1, we show the theoretical values for the order of
truncation M computed by (2.49) taking the same numerical data used to construct
the approximations of the mean that we have plotted in Figure 2.1, i.e., α = 0.7,
b0 = c = 1/2. Besides, observe that the values L = H = 1 and H satisfy condition
(2.31). Indeed, they can be easily deduced since for the beta RV λ, E[|λ|m] ≤ 1 for
all m ≥ 0. The figures collected in Table 2.1 have been determined over the domain
(2.47) with q = 0.9, i.e.,

0 < |t| <
(0.9

1

)1/0.7
= 0.8602648, (2.50)
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for different admissible errors ε > 0. In Table 2.1 we also compare the theoretical
values of M with those, denoted by M̂ , obtained from directed computations. Specif-
ically, M̂ has been computed as the first value so that

∣∣∣E[YM̂ (t)]− E[YM̂−1(t)]
∣∣∣ <

ε, ∀ 0 < |t| < 0.8602648, for a given value of ε > 0. We can observe that the values
of M are very conservative estimates. The determination of the order of truncation
M given in (2.49) has been based on majorizing the error by a geometric series (see
(2.48)). This restricts the analysis to the domain (2.47) (or equivalently to (2.50)),
which is contained within the unit interval (0, 1). Using appropriate bounds for
the remainder of Mittag-Lefller type-series (see (2.30)),

∑
m≥M+1 z

m/Γ(αm+ ν),
the above analysis can be carried out for the complementary domain of (2.47).
Such appropriate bounds can be found from the results shown in [60, Chapter 4].
Although, interesting from a theoretical standpoint, these results have a limited
value in practice, as it has already been pointed out.

ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

M 87 109 131 152 174
M̂ 8 10 11 12 14

Table 2.1: Theoretical values for the order of truncation M using different values of the
admissible error ε > in the context of Example 2.2. These theoretical values are compared
with those, denoted by M̂ , obtained directly from our numerical computations.

Example 2.3 In Remark 2.6 it has been pointed out that the truncation method
is a useful technique to approximate unbounded RVs [87, Chapter 5]. In practice,
this approach is preferable that checking condition (2.31) for particular probability
distributions assigned to the RV λ. Indeed, this latter idea could be even unaffordable
since there are RVs, such as binomial RVs, for which a closed expression for all
their statistical moments are not available. Motivated by fact, this example has
been devised to illustrate the capability of the proposed method to compute reliable
approximations of the mean and the standard deviations of the solution SP to the
random IVP (2.20), in the case that the RV λ is unbounded but it is approximated
by means of appropriate truncation. With this aim, let us assume that λ is an
exponential RV of mean 1/λ0, i.e., λ ∼ Exp(λ0) and let us consider its probabilistic
approximation using the truncation method. We thus approximate the exponential
RV λ by means of another exponential RV, say λ̂ ∼ Exp(λ̂0), defined on the finite
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interval [0, a], a > 0, so that both RVs, λ and λ̂, have the same mean

1
λ0

= E[λ] = E[λ̂]. (2.51)

The PDF of RV λ̂ is

fλ̂(λ̂) = λ̂0 exp(−λ̂0λ̂)∫ a
0 λ̂0 exp(−λ̂0λ̂) dλ̂

, 0 ≤ λ̂ ≤ a. (2.52)

Now, we determine the value of the parameter λ̂0 satisfying condition (2.51)

1
λ0

=
∫ a
0 λ̂λ̂0 exp(−λ̂0λ̂) dλ̂∫ a
0 λ̂0 exp(−λ̂0λ̂) dλ̂

. (2.53)

In our numerical experiments we have taken a = 10 and λ0 = 2. Thus, according
to (2.53) λ0 is the root of the following nonlinear equation

1− exp(−10λ̂0) =
(

1− exp(−10λ̂0)(1 + 10λ̂0)
)
λ̂0. (2.54)

Using a numerical iterative method it can be checked that λ̂0 = 1.9999999175537901
is the solution of (2.54). In order to demonstrate the reliability of the approx-
imations obtained for the mean and the standard deviation using the approach
previously described, we have computed the relative error for the mean, RE(Mean),
and for the standard deviation, RE(SD). These relative errors have been calculated
using the following expressions

RE(Mean) = RE(Mean)(t;M) =

∣∣∣E[ŶM (t)]− E[Y (t)]
∣∣∣

E[Y (t)] , (2.55)

RE(SD) = RE(SD)(t;M) =

∣∣∣∣√V[ŶM (t)]−
√
V[Y (t)]

∣∣∣∣√
V[Y (t)]

(2.56)

where E[ŶM (t)] and V[ŶM (t)] are the approximation of the mean and the variance,
respectively, of the solution SP Y (t) at the time point t using the expression (2.40)
and (2.42), respectively, with α = 0.7, E[β0] = E[γ] = 0.5, as in the Example
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2.1 (see (2.43)), and using the bounded RV, λ̂ ∼ Exp(λ̂0 = 1.9999999175537901
defined on the finite interval [0, 6]. Therefore, the higher moments of λ̂, that appear
in (2.40), have been computed by E[λ̂m] =

∫ 6
0 λ̂

mfλ̂(λ̂) dλ̂, being fλ̂(λ̂) defined in
(2.52). While the exact mean and variance of Y (t) in (2.55) and (2.56), denoted
by E[Y (t)] and V[Y (t)], respectively, have been computed using (2.40) and (2.42)
by taking λ ∼ Exp(λ̂ = 2) and M = 20, for which the numerical stabilization of
approximations has been checked to be exact up to the nine first decimals digits.

In Tables 2.2 and 2.3 we show the numerical results for both relative errors. From
the figures collected in these tables we can see that the approximations for the
mean and standard deviations obtained using the proposed truncated method are
very accurate. As it is expected, these approximations improve as M increases for
t fixed, while the accuracy decreases as t departs from the origin for M fixed.

RE(Mean)(t;M) t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
M=5 2.7235 · 10−5 2.9732 · 10−3 3.6638 · 10−2 3.1118 · 10−1 8.4798 · 10−1

M=7 1.3773 · 10−6 7.4927 · 10−4 2.0926 · 10−2 2.7211 · 10−1 8.2723 · 10−1

M=10 1.6241 · 10−8 1.2648 · 10−4 1.077 · 10−2 2.2707 · 10−1 7.8983 · 10−1

M=12 3.6711 · 10−9 4.4072 · 10−5 7.2343 · 10−3 1.9819 · 10−1 7.5255 · 10−1

M=15 5.1902 · 10−9 9.9181 · 10−6 3.7974 · 10−3 1.4757 · 10−1 6.4953 · 10−1

Table 2.2: Relative error for the mean RE(Mean)(t;M) computed by (2.55) for different
values of t and M in the context of Example 2.3.

RE(SD)(t;M) t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 0.9
M=5 8.2462 · 10−5 4.3389 · 10−1 9.9813 · 10−1 9.9960 · 10−1 9.9999 · 10−1

M=7 6.4702 · 10−6 3.9683 · 10−1 9.9741 · 10−1 9.9991 · 10−1 9.9999 · 10−1

M=10 1.8467 · 10−7 6.3619 · 10−1 9.9424 · 10−1 9.9953 · 10−1 9.9992 · 10−1

M=12 1.4535 · 10−8 3.8055 · 10−1 9.8742 · 10−1 9.9826 · 10−1 9.9959 · 10−1

M=15 6.0470 · 10−9 3.3668 · 10−1 9.4612 · 10−1 9.8411 · 10−1 9.9352 · 10−1

Table 2.3: Relative error for the standard deviation RE(SD)(t;M) computed by (2.56) for
different values of t and M in the context of Example 2.3.

Finally, in the context of this example it is worthy to point out that there is an
alternative way to truncate the r.v. λ ∼ Exp(λ0). Namely, instead of imposing that
the expectations of λ and of its approximation λ̂ match, an alternative manner
to truncate λ is to take an exponential r.v. defined on a bounded interval, say I,
but keeping both r.v.’s λ and λ̂ the same parameter λ0, so that the length of I be
large enough to guarantee the probability on I be close to 1 (the total probability).

43



Chapter 2. Riemann-Liouville and Caputo operators in mean square sense: solving a random
linear fractional differential equation

This approach has been used in example 13 of [42]. Although this is an alternative
manner to truncate the r.v. λ ∼ Exp(λ0), in the context of our example we have
checked that both approaches lead to similar numerical results.

2.7 Conclusions

In the first part of this chapter we have extended to the random framework the
deterministic Riemann-Liouville integral and Caputo derivative. This extension
has been done in the Banach space (L2(Ω), ‖·‖2) of the RVs and SPs of second-
order, i.e., having finite variance. This condition is often met for the majority of
physical phenomena. An important advantage of the aforementioned extension is
that it remains valid for other Banach spaces (Lp(Ω), ‖·‖p), p ≥ 2. Furthermore,
an additional benefit of our approach is that our results have been established
using a strong stochastic convergence, namely the m.s. convergence. Therefore, our
results are also valid when using another type of weaker stochastic convergences,
such that the convergence in probability and in distribution, which are used
in many contexts. In the second part of the chapter, we have taken advantage
of the results established in the first part together with a m.s. chain rule for
differentiating second-order SPs, to construct a solution SP of the general random
linear fractional differential equation assuming mild conditions of the random
inputs (initial condition, forcing term and diffusion coefficient). Furthermore, we
have given general explicit expressions for constructing reliable approximations of
the mean, variance and covariance of the solution SP. Finally, we have illustrated
our main theoretical findings and the potentiality of our approach through two
examples.

Chapter published

The results of this chapter have been published in [24]. With regard to this paper,
the PhD candidate has contributed by working in its complete development with
more emphasis on the theoretical results (definition of random fractional operators,
construction of a convergent solution) and preparing the numerical examples.
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Chapter 3
Solving high order random mean square
fractional linear differential equations by

generalized power series: analysis and
computing

This chapter extends, in two directions, the results presented in the previous
chapter. In Chapter 2, a mean square random generalized power series solution

has been constructed in the case that the order of the Caputo derivative lies on the
interval ]0, 1] and assuming that the diffusion coefficient belongs to a class, C.

However, significant families of unbounded random variables, such as Gaussian
and Exponential, for example, do not fall into class C. Now, in this contribution
we first enlarge the class of random variables to which the diffusion coefficient

belongs and we prove that the constructed random generalized power series
solution is mean square convergent too. Secondly, we construct a mean square

random generalized power series solution in the case that α parameter lies on the
larger interval ]0, 2]. It is particularly enlightening, the numerical study of the

convergence of the approximations to the mean and the standard deviation of the
solution stochastic process in terms of α parameter and on the type of the

probability distribution chosen for the diffusion coefficient.
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3.1 Introduccion

In this chapter we deal with the following random fractional initial value problem
(IVP) { (

CDα
0+Y

)
(t)− λY (t) = γ, t > 0, 0 < α ≤ 2,

Y (j)(0) = βj , 0 ≤ j ≤ −[−α]− 1, j ∈ N,
(3.1)

where N and [·] denote the set of positive integers and the integer part function,
respectively and

(
CDα

0+Y
)

(t) denotes the fractional Caputo derivative of order
α described in (2.16). Observe that IVP (3.1) refers to two different IVPs by a
compact notation. If α ∈]0, 1], the IVP (3.1) just has got the initial condition
Y (0) = β0 and it corresponds to the same IVP (2.20). If α ∈]1, 2], the IVP (3.1)
has got two initial conditions, Y (0) = β0 and Y ′(0) = β1. Henceforth, we will
assume that input data γ and λ are independent real 2-RVs.

In the previous Chapter, we have constructed a m.s. convergent random generalized
power series solution to the random IVP (3.1) in the case that the order of the
fractional derivative lies in 0 < α ≤ 1 (IVP (2.20)). Taking advantage of the
key results described in equations (2.38) and (2.39) related to m.s. convergence,
approximations of the mean, E [Y (t)], and of the variance, V [Y (t)], of the solution
SP Y (t) are also computed. These results were established assuming the conditions
H1 and H2 described in Chapter 2 (page 25). The set of RVs satisfying H2 are
said to make up the class C described in Definition 2.3.

As it is indicated in Remark 2.6 of Chapter 2, hypothesisH2 is fulfilled for bounded
RVs. Hence, the results established in Chapter 2 are applicable when the role of
random input λ is played by RVs such as, Binomial, Hypergeometric, Uniform,
Trapezoidal, Beta, etc. Unfortunately, important unbounded RVs, such as Poisson,
Exponential, or Gaussian RVs fail to satisfy hypothesis H2. To overcome this
drawback, in Chapter 2 one proposes to use the so-called truncation technique
[87, Chapter 5]. This approach permits to approximate unbounded RVs, say X,
by bounded RVs, X̂, resulting from the truncation of X. In this manner, RV X̂

is bounded and thereby hypothesis H2 is met. Nevertheless, if in the random
fractional IVP (3.1) λ input is an unbounded RV, say a mean-zero Gaussian RV
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with arbitrary variance σ2 > 0, then under the approach proposed in Remark 2.6,
the original problem is not really addressed but approximating. As a consequence,
approximation errors coming from the truncation procedure are introduced. Moti-
vated by the previous exposition, in this chapter we improve the results established
in Chapter 2. First, we will study the random general linear fractional differential
equation in the case that the order of the fractional derivative α lies on the larger
interval ]0, 2] instead of assuming that α ∈]0, 1]. We point out that if α lies on an
interval of the form 1 < α ≤ 2, then two initial conditions must be handled and
the construction of the random generalized power series requires a more intricate
process. Secondly, we will propose an alternative condition to hypothesis H2 (page
25), which involves the λ random input. As it shall be seen later, this new condition
permits the consideration of important unbounded RVs, such that Gaussian and
Exponential, avoiding the introduction of errors coming from the application of
truncation technique. Furthermore, it shall be demonstrated that the random
generalized power series (3.15) is still m.s. convergent under our new hypotheses.
Then according to equations (2.38) and (2.39), expressions (2.40) and (2.42) can be
applied to compute reliable approximations for both the mean and the variance of
the solution SP Y (t) to the random fractional IVP (3.1) with α0 = 1. Additionally,
it is important to stress that the new condition is also satisfied by bounded RVs,
thus the results established in Chapter 2 are fully retained in this Chapter.

The chapter is organized as follows. In Section 3.2 we introduce a class of RVs that
will play the role of diffusion coefficient λ in the random IVP (3.1). By means of
different examples, we show that this class contains all bounded RVs and significant
unbounded RVs as well. The solution SP to random IVP (3.1) is constructed by
a random generalized power series whose m.s. convergence is studied in Section
3.3. This analysis is divided in two cases depending of the order of the fractional
derivative α: Case I corresponds to α ∈]0, 1] while Case II deals with α ∈]1, 2].
In Section 3.4 we show several examples where our main theoretical findings are
illustrated. Conclusions are drawn in Section 3.5.
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3.2 Introducing a key class of random variables

In the next section, we shall construct a random generalized power series solution
to IVP (3.1). This section is devoted to introduce a class of RVs that will allow
us to enlarge, with respect to the previous Chapter 2, the family of input data
playing the role of the diffusion coefficient λ in the IVP (3.1) for which the random
generalized power series solution is m.s. convergent.

Hereinafter we will assume that λ is a second-order RV such that

∃ η,H > 0, p ≥ 0 : ‖λm‖2 ≤ ηH
m−1((m− 1)!)p, ∀m ≥ m0 ≥ 1, m,m0 ∈ Z+.

(3.2)
The class of all RVs satisfying condition (3.2) will be denoted by Ĉ. Observe that
the latter condition contains as a particular case condition H2 of Chapter 2, since
it is obtained by taking p = 0 and η = L/H > 0 in (3.2), i.e., C ⊂ Ĉ. As a
consequence, the results that will be presented in this chapter generalize the ones
given in Chapter 2.

As it will be seen later, condition (3.2) is very useful to prove the m.s. convergence
of the random generalized power series to be constructed, however it may not
be easy to check whether it is satisfied by specific families of RVs. This is the
reason why we now introduce the following condition (3.3) that, in practice, is
easier to check than (3.2) and, as it will be shown below, it entails condition (3.2).
Motivated by this fact, let us assume that λ is a second-order RV such that

∃ p ≥ 0 :
∥∥λm+1∥∥

2
‖λm‖2

= O(mp), ∀m : m ≥ m0 ≥ 1, m,m0 integers, (3.3)

where O(·) denotes the Landau’s symbol. By definition of O(·), condition (3.3)
means

∃H, p ≥ 0 :
∥∥λm+1∥∥

2 ≤ Hm
p ‖λm‖2 , ∀m : m ≥ m0 ≥ 1, m,m0 integers.

(3.4)
Observe that it is sufficient this inequality to be fulfilled for m0 large enough. As
λ ∈ L2(Ω), ‖λ‖2 < +∞ and let η be a finite positive number so that η ≥ ‖λ‖2.
Without loss of generality, hereinafter let us assume that m0 = 1. Then, using a
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3.2 Introducing a key class of random variables

recursive argument in (3.4) one gets∥∥λm+1∥∥
2 ≤ Hmp ‖λm‖2
≤ H2(m(m− 1))p

∥∥λm−1∥∥
2

≤ H3(m(m− 1)(m− 2))p
∥∥λm−2∥∥

2
...
≤ ηHm(m!)p, ∀m ≥ 1 integer.

Summarizing, condition (3.3) (or equivalently, (3.4)) entails

Ĥ2: The moments of RV λ satisfy

∃ η,H > 0, p ≥ 0 : ‖λm‖2 ≤ ηH
m−1((m− 1)!)p, ∀m ≥ 1 integer, (3.5)

being η ≥ ‖λ‖2 finite. Now, we introduce important families of RVs satisfying
condition (3.3) (or equivalently (3.4)) and hence condition (3.5) too.

Example 3.1 Let λ be a bounded RV. Then there exist real constants l1 and l2
with l1 < l2 such that P [{ω ∈ Ω : l1(ω) < λ(ω) ≤ l2(ω)}] = 1. Observe that clearly
λ is a second-order RV, i.e. λ ∈ L2(Ω). Let us assume, without loss of generality,
that λ is an absolutely continuous RV being fλ(λ) its probability density function.
If l̂ = max{1, |l1|, |l2|} ≥ 1, then

‖λm‖2 =
(
E
[
λ2m])1/2 =

(∫ l2

l1

λ2mfλ(λ) dλ
)1/2

≤ l̂m
(∫ l2

l1

fλ(λ) dλ
)1/2

= l̂m,

(3.6)
where in the last step we have applied that

∫ l2
l1
fλ(λ) dλ = 1 since fλ(λ) is a

probability density function. Therefore, (3.5) is satisfied for η = l̂, H = l̂m−1 and
p = 0. If l̂ = max{|l1|, |l2|} ≤ 1 instead, it is clear that ‖λm‖2 ≤ 1 and taking
η = H = 1 and p = 0, condition (3.5) also holds. The previous reasoning is also
valid if λ is a discrete RV. As a consequence, any truncated RV as well as important
bounded RVs such as Binomial, Hypergeometric, Uniform, Beta, Triangular, etc.,
satisfy condition (3.5).
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Chapter 3. Solving high order random mean square fractional linear differential equations

It is important to point out that any bounded RV satisfies (3.5), so in practice, any
unbounded RV can be adequately truncated so that the truncated (hence bounded)
RV behaves approximately as the original unbounded RV, that is, approximately
preserving its main probabilistic information like mean, variance, etc. A way to do
that, which is supported by Markov-Chebyshev type inequalities, is to consider an
interval with centre the mean and radius a multiple, say k > 0, of the standard
deviation of the unbounded RV [87, Chapter 5]. Taking k large enough, most of
the probability mass is captured and the mean and standard deviation of the
original unbounded RV are then approximated. Alternatively, one can construct
a truncated parametric distribution preserving a number of statistical moments
(mean, variance, etc.) so that the new (bounded) distribution approximates quite
well the original unbounded distribution, this approach is based upon the matching
moment method [87, Chapter 5]. However, approximation errors coming from the
truncation procedure can be introduced.

Example 3.2 Let λ be a Gaussian RV with zero mean, µ = 0, and arbitrary
finite variance, σ2 > 0, i.e. λ ∼ N(0;σ2). Hence, λ ∈ L2(Ω). It is known that (see
[99], for instance)

E [λn] =


n!

2n2
(
n
2
)
!
σn if n is even,

0 if n is odd,
(3.7)

then, by the definition of the 2-norm (see (2.2)) one gets

∥∥λm+1∥∥
2

‖λm‖2
=

(
E
[
λ2(m+1)

])1/2

(E [λ2m])1/2 = σ

√
(2m+ 2)(2m+ 1)

2(m+ 1) = O(m1/2). (3.8)

Therefore, condition (3.3) is satisfied for p = 1/2. Following the reasoning exhibited
to deduce condition (3.5), it is straightforward to derive that this condition is fulfilled
for H = σ

√
2, p = 1/2 and η = σ > 0.
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3.2 Introducing a key class of random variables

Example 3.3 Let λ be an Exponential RV of parameter, ν > 0, i.e. λ ∼ Exp(ν).
Hence, λ ∈ L2(Ω). It is known that (see [99], for instance)

E [λm] = m!
νm

, m ≥ 0, (3.9)

then

∥∥λm+1∥∥
2

‖λm‖2
=

(
E
[
λ2(m+1)

])1/2

(E [λ2m])1/2 = 1
ν

√
(2m+ 2)(2m+ 1) = O(m). (3.10)

Therefore, condition (3.3) is satisfied for p = 1. Moreover, condition (3.5) holds
for H = 2/ν, p = 1 and η =

√
2/ν > 0.

Example 3.4 Let λ be a Weibull RV of parameters a > 0 and b > 0, i.e. λ ∼
We(a; b). It is known that (see [99], for instance)

E[λm] = amΓ
(

1 + m

b

)
, m ≥ 0, (3.11)

being Γ(·) the classical gamma function. Using the definition of the 2-norm and
(3.11), one gets

∥∥λm+1∥∥
2

‖λm‖2
=

(
E
[
λ2(m+1)

])1/2

(E [λ2m])1/2 = a

√
Γ
(
1 + 2m+2

b

)
Γ
(
1 + 2m

b

) . (3.12)

As condition (3.3) must be satisfied for m ≥ m0 ≥ 1 integer, then taking m0 large
enough and using Stirling’s formula

Γ(x+ 1) ≈ xx e−x
√

2πx, x→ +∞, (3.13)
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Chapter 3. Solving high order random mean square fractional linear differential equations

one obtains the following asymptotic relationship

Γ
(

1 + 2(m+1)
b

)
Γ
(
1 + 2m

b

) ≈

(
2(m+1)

b

) 2(m+1)
b e−

2(m+1)
b

√
2π 2(m+1)

b(2m
b

) 2m
b e− 2m

b

√
2π 2m

b

≈
(
m+ 1
m

) 2m
b
(2(m+ 1)

b

) 2
b

e−
2
b

√
m+ 1
m

≈
(2m
b

) 2
b

,

(3.14)

where in the last step we have used that
(
m+1
m

) 2m
b m→+∞−→ e 2

b . Then, substituting
(3.14) in (3.12) one deduces

∥∥λm+1∥∥
2

‖λm‖2
≈ a

√(2m
b

)2/b
= O

(
m

1
b

)
.

As a consequence, λ ∼We(a; b) satisfies condition (3.3) for p = 1/b > 0 and also,
condition (3.5) and (3.4) are satisfied taking H = a(2/b)1/b and η = a

√
Γ (1 + 2/b).

In Table 3.1, we collect the families of RVs that satisfy the inequality (3.5) described
in Examples 3.1, 3.2, 3.3 and 3.4 indicating the value of involved parameters p, H
and η.

Table 3.1: Some important families of RVs that satisfy inequality (3.5).

Distribution p H η

Bounded 0 1 1
Gaussian ∼ N(0;σ2) 1/2 σ

√
2 σ

Exponential ∼ Exp(λ) 1 2/λ
√

2/λ
Weibull ∼We(a; b) 1/b a(2/b)1/b a

√
Γ(1 + 2/b)
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3.3 Mean square convergence of the random generalized power series solution

3.3 Mean square convergence of the random generalized power
series solution

This section is devoted to construct a random generalized power series solution
to the IVP (3.1) and then proving its m.s. convergence. Finally, we will give
closed-form expressions for the approximations of the mean, the variance and the
covariance functions of the solution SP.

The analysis will be split in two cases: Case I corresponding to 0 < α ≤ 1 and
Case II corresponding to 1 < α ≤ 2. The former is strongly related to the results
established in Chapter 2, hence it will be discussed taking advantage of such
previous findings. In particular, as the representation of the solution SP is just the
one shown in Chapter 2, here we will focus on the analysis of the m.s. convergence
assuming that the diffusion coefficient λ satisfies condition Ĥ2 (see expression
(3.2)) instead of H2, described in Chapter 2 (page 25). As Case II involves the
two RVs β0 and β1 through initial conditions, it will be assumed the following
hypothesis:

Ĥ1: Inputs β0, β1, γ and λ are (mutually) independent second-order RVs,

instead of H1. As it shall be seen later, the study of Case II will require further
analysis.

3.3.1 Case I: 0 < α ≤ 1

In accordance with Chapter 2, it is known that the solution SP to the random
fractional IVP (3.1) 0 < α ≤ 1 is given by

Y (t) =
+∞∑
m=0

λmβ0

Γ(αm+ 1) t
αm +

+∞∑
m=1

λm−1γ

Γ(αm+ 1) t
αm. (3.15)

In this section we will establish sufficient conditions in order to guarantee the m.s.
convergence of this random generalized power series assuming that input data β0,
γ and λ satisfy hypotheses H1 and Ĥ2. This will be done just for the first series
in (3.15), since the proof for the second series can be done analogously.
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Chapter 3. Solving high order random mean square fractional linear differential equations

Let us observe that for 0 < α ≤ 1 and t > 0 one gets∥∥∥∥ λmβ0

Γ(αm+ 1) t
αm

∥∥∥∥
2

= ‖λ
m‖2 ‖β0‖2

Γ(αm+ 1) tαm ≤
ηHm−1((m− 1)!)p ‖β0‖2

Γ(αm+ 1) tαm =: δm(t),

where probabilistic independence between RVs λm and β0 (justified by hypothesis
H1 and Proposition 2.2, see also [63, page 92]) and hypothesis Ĥ2 have been applied.
Down below, we obtain sufficient conditions for the m.s. absolute convergence of
first series in (3.15) using the D’Alembert or ratio test

lim
m→+∞

δm+1(t)
δm(t) = H tα lim

m→+∞

(
mp Γ(αm+ 1)

Γ(α(m+ 1) + 1)

)
= H

(
t

α

)α
lim

m→+∞

mp

(m+ 1)α

=

 0 if 0 ≤ p < α, ∀t > 0,

H
(
t

α

)α
if 0 ≤ p = α, ∀t > 0.

Observe that in the second earlier step we have used the Stirling’s formula (3.13)
to conclude

lim
m→+∞

Γ(αm+ 1)
Γ(α(m+ 1) + 1) = lim

m→+∞

(αm)αm e−αm
√

2παm
(α(m+ 1))α(m+1) e−α(m+1)

√
2πα(m+ 1)

= 1
αα

lim
m→+∞

1
(m+ 1)α .

As a consequence of the previous development together with equations (2.38) and
(2.39), the following result has been established

Theorem 3.1 Let us consider the random fractional IVP (3.1) with 0 < α ≤ 1
and assume that the inputs data β0, γ and λ are RVs satisfying hypotheses H1
and Ĥ2. If p ≥ 0 and α ∈]0, 1] are so that p < α, then the random generalized
power series Y (t) given by (3.15) is a m.s. solution to the IVP (3.1) for all t ≥ 0.
While, if p = α, then Y (t) is a m.s. solution to the IVP (3.1) over the domain
t : 0 ≤ t < α/H 1

α . Furthermore, the approximations of the mean and the variance
(or standard deviation) given by (2.40) and (2.42) will also converge at least over
the domains previously specified for the m.s. convergence.
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3.3 Mean square convergence of the random generalized power series solution

Remark 3.1 The rigorous construction of solution SP (3.15) would require to
check some technical hypotheses. This analysis has been omitted here because it
follows an analogous development to one exhibited in Chapter 2, but using the new
hypothesis Ĥ2 for λ instead of H2.

Remark 3.2 The above result provides sufficient conditions to guarantee the m.s.
convergence of the random generalized power series solution (3.15) to the random
fractional IVP (3.1) assuming mild hypotheses that include a wide range of RVs,
namely all bounded RVs and significant unbounded RVs such as Gaussian and
Weibull, for instance. It is interesting to observe that our m.s. convergence analysis
depends on parameter p associated to the diffusion RV λ (see expression (3.5))
and on the order of the fractional derivative α ∈]0, 1]. In Theorem 3.1 we have
shown that the random generalized power series (3.15) is m.s. unconditionally
convergent for all t ≥ 0 provided p < α, while the domain of m.s. convergence
becomes smaller when p = α, specifically t : 0 ≤ t < α/H 1

α . Thus, in this latter
case the domain depends on both the constant H associated to hypothesis Ĥ2 (see
expression (3.5)) and on the order of the fractional derivative α ∈]0, 1]. This issue
will be analyzed deeper throughout the examples exhibited in the next section.

3.3.2 Case II: 1 < α ≤ 2

This section is devoted to construct a solution SP to random IVP (3.1) when
1 < α ≤ 2. This solution is then constructed by means of a random generalized
power series. We will prove the m.s. convergence of this series under mild conditions.
Finally, we will provide approximations of the mean, the variance, the covariance
and the cross-covariance function of the solution SP.

The solution SP will be sought by combining the random Frobenius method and
a m.s. chain rule for differentiating second-order SPes, that has been established
in [46]. As our subsequent development follows in broad outline that of ideas
exhibited in Chapter 2, it will be presented in a direct manner. The solution SP
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Y (t) will be constructed in the following form

Y (t) = Y1(t) + Y2(t),


Y1(t) =

∑
m≥0

Xmt
αm,

Y2(t) =
∑
m≥0

Ymt
αm+1.

(3.16)

In order to apply Frobenius method, first we need to obtain the m.s. Caputo
derivative of order α to Y1(t) and Y2(t). To this end, we define Ŷ1(t) =

∑
m≥0Xmt

m,
hence Y1(t) = Ŷ1(tα). According to Chapter 2, the random m.s. Caputo derivative
is given by(

CDα
0+Y1

)
(t) =

(
CDα

0+ Ŷ1

)
(tα) =

(
J2−α

0+ Z
)

(t), 1 < α ≤ 2,

where Z(t) = (Ŷ1(tα))′′ . To compute Z(t), we will apply twice the m.s. chain rule
[46, Theorem 2.1.] with the following identification: Y (t) ≡ Ŷ1(t) and g(t) = tα.
To legitimate this step, we need to assume that taking the second-order SPs Ŷ1(t)
and Ŷ ′1 (t) satisfy the following conditions D1-D4 (observe that g(t) satisfies the
hypotheses of [46, Theorem 2.1.]):

D1: Ŷ1(t) is m.s. differentiable at v = tα. Moreover,

Ŷ ′1(tα) =
∑
m≥1

mXmt
α(m−1). (3.17)

D2: Ŷ ′1(t) is a m.s. differentiable at v = tα. Moreover,

Ŷ ′′1 (tα) =
∑
m≥2

m(m− 1)Xmt
α(m−2). (3.18)

D3: dŶ1(v)
dv is m.s. continuous on v ∈]0,+∞[.

D4: d2Ŷ1(v)
d2v is m.s. continuous on v ∈]0,+∞[.
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In that case

Z(t) =
[(
Ŷ1(tα)

)′]′
=
[
αtα−1Ŷ

′

1 (v)
∣∣∣
v=tα

]′
=α(α− 1)tα−2Ŷ

′

1 (v)
∣∣∣
v=tα

+αtα−1αtα−1Ŷ
′′

1 (v)
∣∣∣
v=tα

=α(α− 1)tα−2Ŷ
′

1 (v)
∣∣∣
v=tα

+α2t2α−2Ŷ
′′

1 (v)
∣∣∣
v=tα

=α(α− 1)
∑
m≥0

(m+ 1)Xm+1t
α(m+1)−2

+ α2
∑
m≥0

(m+ 2)(m+ 1)Xm+2t
α(m+2)−2.

Observe that, we have applied Property (4.126) of [109, page 96] to compute
the m.s. derivative of the product of the deterministic function αtα−1 and the
second-order SP Ŷ

′

1 (tα).

In order to legitimate the computation of the m.s. Caputo derivative
(
CDα

0+Y1
)

(t),
we further assume that conditions D5 and D6 described below hold.

D5: The random generalized power series
∑
m≥0(m+ 1)Xm+1t

α(m+1)−2 is m.s.
uniformly convergent on t > 0,

D6: The random generalized power series
∑
m≥0(m+ 2)(m+ 1)Xm+2t

α(m+2)−2

is m.s. uniformly convergent on t > 0,

Then,(
CDα

0+Y1

)
(t) =

(
J2−α

0+ Z
)

(t)

= J2−α
0+

α(α− 1)
∑
m≥0

(m+ 1)Xm+1t
α(m+1)−2

+α2
∑
m≥0

(m+ 2)(m+ 1)Xm+2t
α(m+2)−2


= α(α− 1)

∑
m≥0

(m+ 1)Xm+1 J
2−α
0+

(
tα(m+1)−2

)
(3.19)
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+ α2
∑
m≥0

(m+ 2)(m+ 1)Xm+2 J
2−α
0+

(
tα(m+2)−2

)
= α(α− 1)

∑
m≥0

(m+ 1)Xm+1

( 1
Γ(2− α)

∫ t

0
(t− u)1−αuα(m+1)−2du

)

+ α2
∑
m≥0

(m+ 2)(m+ 1)Xm+2

( 1
Γ(2− α)

∫ t

0
(t− u)1−αuα(m+2)−2du

)

= α(α− 1)
∑
m≥0

(m+ 1) Γ (α(m+ 1)− 1)
Γ (αm+ 1) Xm+1t

αm

+ α2
∑
m≥0

(m+ 2)(m+ 1) Γ(α(m+ 2)− 1)
Γ(α(m+ 1) + 1)Xm+2t

α(m+1)

= α(α− 1)Γ(α− 1)X1 +
∑
m≥1

α(α− 1)(m+ 1) Γ (α(m+ 1)− 1)
Γ (αm+ 1) Xm+1t

αm

+ α2
∑
m≥0

(m+ 2)(m+ 1) Γ(α(m+ 2)− 1)
Γ(α(m+ 1) + 1)Xm+2t

α(m+1)

= Γ(α+ 1)X1 +
∑
m≥0

α(α− 1)(m+ 2) Γ (α(m+ 2)− 1)
Γ (α(m+ 1) + 1)Xm+2t

α(m+1)

+
∑
m≥0

α2(m+ 2)(m+ 1) Γ(α(m+ 2)− 1)
Γ(α(m+ 1) + 1)Xm+2t

α(m+1)

= Γ(α+ 1)X1 +
∑
m≥0

(
α− 1 + α(m+ 1)

)
α(m+ 2) Γ (α(m+ 2)− 1)

Γ (α(m+ 1) + 1)Xm+2t
α(m+1)

= Γ(α+ 1)X1 +
∑
m≥0

(
α(m+ 2)− 1

)
α(m+ 2) Γ (α(m+ 2)− 1)

Γ (α(m+ 1) + 1)Xm+2t
α(m+1)

= Γ(α+ 1)X1 +
∑
m≥0

y
Γ (α(m+ 2) + 1)
Γ (α(m+ 1) + 1)Xm+2t

α(m+1)

= Γ(α+ 1)X1 +
∑
m≥1

Γ (α(m+ 1) + 1)
Γ (αm+ 1) Xm+1t

αm

=
∑
m≥0

Γ(α(m+ 1) + 1)
Γ(αm+ 1) Xm+1t

αm, (3.19)

where we have used the reproductive property of gamma function, Γ(γ+1) = γ Γ(γ),
γ > 0.
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Now, we compute the random m.s. Caputo derivative of Y2(t). Note that by the
definition of m.s. Caputo derivative (see Chapter 2) one gets(

CDα
0+Y2

)
(t) =

(
J2−α

0+ Y ′′2
)

(t) =
(
J2−α

0+ (Y ′2)′
)

(t) =
(
CDα−1

0+ Y ′2

)
(t).

As 1 < α ≤ 2, and Y ′2(t) =
∑
m≥0(αm+ 1)Ymtαm, we can recast α̂ = α− 1 ∈]0, 1],

Ŷm = (αm+ 1)Ym and compute the random m.s. Caputo derivative of order α̂ of∑
m≥0 Ŷmt

αm. Using the same argument shown in (2.25) one obtains

(
CDα

0+Y2

)
(t) =

∑
m≥0

Ym+1
Γ(α(m+ 1) + 2)

Γ(αm+ 2) tαm+1. (3.20)

Once we have obtained the m.s. Caputo derivative of both series given in (3.16), we
need to compute their coefficients Xm and Ym. This can be done by substituting
the expressions of the Caputo derivative of Y1(t) and Y2(t), given by (3.19) and
(3.20), respectively, in random IVP (3.1) taking into account that

(
CDα

0+Y
)

(t) =(
CDα

0+Y1
)

(t) +
(
CDα

0+Y2
)

(t). This yields

∑
m≥0

Γ(α(m+ 1) + 1)
Γ(αm+ 1) Xm+1t

αm − λ
∑
m≥0

Xmt
αm

+
∑
m≥0

Γ(α(m+ 1) + 2)
Γ(αm+ 2) Ym+1t

αm+1 − λ
∑
m≥0

Ymt
αm+1 = γ,

(3.21)

thus

Γ(α+ 1)X1 − λX0 +
∑
m≥1

(Γ(α(m+ 1) + 1)
Γ(αm+ 1) Xm+1 − λXm

)
tαm

+
∑
m≥0

(Γ(α(m+ 1) + 2)
Γ(αm+ 2) Ym+1 − λYm

)
tαm+1 = γ.

(3.22)

If the following recurrences for coefficients Xm

X1 = λX0 + γ

Γ(α+ 1) , Xm+1 = λΓ(αm+ 1)
Γ(α(m+ 1) + 1)Xm, m ≥ 1, (3.23)
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and Ym
Ym+1 = λΓ(αm+ 2)

Γ(α(m+ 1) + 2)Ym, m ≥ 0 (3.24)

are satisfied, then it is guaranteed that the relationship (3.22) hold. Taking into
account the initial conditions Y (0) = X0 = β0 and Y ′(0) = Y0 = β1, and using
recurrences (3.23) and (3.24) one gets

Xm = λmβ0 + λm−1γ

Γ(αm+ 1) , Ym = λmβ1

Γ(αm+ 2) , m ≥ 1.

Therefore, a candidate solution SP to the random IVP (3.1) with 1 < α ≤ 2 is
given by

Y (t) =
∑
m≥0

Xm,1t
αm +

∑
m≥1

Xm,2t
αm +

∑
m≥0

Ymt
αm+1, (3.25)

where

Xm,1 = λmβ0

Γ(αm+ 1) , Xm,2 = λm−1γ

Γ(αm+ 1) , Ym = λmβ1

Γ(αm+ 2) . (3.26)

Observe that for convenience, the general term of series Xmt
αm has been split in

two pieces. So far, we have constructed a formal solution SP to random IVP (3.1)
and now, assuming that input RVs satisfy hypotheses Ĥ1 and Ĥ2, we need to
check that conditions D1–D6 hold. As this can be done by taking the same steps
shown in detail in [24], they will be skipped here. The analysis of m.s. convergence
of (3.25)–(3.26) can be carried out as shown in Case I since the involved series
are identical and/or very similar, hence we omit this discussion.

To compute approximations for the mean of the solution SP Y (t), we first consider
the truncation of order, say M , of the infinite series (3.25)–(3.26), i.e.,

YM (t) =
M∑
m=0

Xm,1t
αm +

M∑
m=1

Xm,2t
αm +

M∑
m=0

Ymt
αm+1, (3.27)
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3.3 Mean square convergence of the random generalized power series solution

and then, we take the expectation operator. Using independence of β0, β1, γ and
λ (see Ĥ1), one obtains

E[YM (t)] = E[β0]
M∑
m=0

E[λm]
Γ(αm+ 1) t

αm + E[γ]
M∑
m=1

E[λm−1]
Γ(αm+ 1) t

αm

+ E[β1]
M∑
m=0

E[λm]
Γ(αm+ 2) t

αm+1.

(3.28)

Instead of providing approximations for the variance (or standard deviation)
function of Y (t), we will give more general approximations. Indeed, our first step
will obtain approximations of the cross-covariance function of Y (t), CYM ,YN (t, s),
by considering two different truncations YM (t) and YN (s) at the points t and s,
respectively,

CYM ,YN (t, s) =
M∑
m=0

N∑
n=0

Cov [Xm,1, Xn,1] tαmsαn

+
M∑
m=0

N∑
n=1

Cov [Xm,1, Xn,2] tαmsαn

+
M∑
m=0

N∑
n=0

Cov [Xm,1, Yn] tαmsαn+1

+
M∑
m=1

N∑
n=0

Cov [Xm,2, Xn,1] tαmsαn

+
M∑
m=1

N∑
n=1

Cov [Xm,2, Xn,2] tαmsαn

+
M∑
m=1

N∑
n=0

Cov [Xm,2, Yn] tαmsαn+1

+
M∑
m=0

N∑
n=0

Cov [Ym, Yn] tαm+1sαn+1

+
M∑
m=0

N∑
n=1

Cov [Ym, Xn,2] tαm+1sαn (3.29)
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+
M∑
m=0

N∑
n=1

Cov [Ym, Yn] tαm+1sαn+1, (3.29)

where Cov [·, ·] denotes the covariance operator. Applying hypothesis Ĥ1, each
covariance can be expressed in terms of data as follows

Cov [Xm,1, Xn,1] = E [λm+n]E
[
(β0)2]− E [λm]E [λn] (E [β0])2

Γ(αm+ 1)Γ(αn+ 1) ,

Cov [Xm,1, Xn,2] =
(
E
[
λm+n−1]− E [λm]E

[
λn−1])E [β0]E [γ]

Γ(αm+ 1)Γ(αn+ 1) ,

Cov [Xm,1, Yn] = (E [λm+n]− E [λm]E [λn])E [β0]E [β1]
Γ(αm+ 1)Γ(αn+ 2) ,

Cov [Xm,2, Xn,1] =
(
E
[
λm+n−1]− E

[
λm−1]E [λn]

)
E [β0]E [γ]

Γ(αm+ 1)Γ(αn+ 1) ,

Cov [Xm,2, Xn,2] = E
[
λm+n−2]E [γ2]− E

[
λm−1]E [λn−1] (E [γ])2

Γ(αm+ 1)Γ(αn+ 1) ,

Cov [Xm,2, Yn] =
(
E
[
λm+n−1]− E

[
λm−1]E [λn]

)
E [γ]E [β1]

Γ(αm+ 1)Γ(αn+ 2) ,

Cov [Ym, Xn,1] = (E [λm+n]− E [λm]E [λn])E [β0]E [β1]
Γ(αm+ 2)Γ(αn+ 1) ,

Cov [Ym, Xn,2] =
(
E
[
λm+n−1]− E [λm]E

[
λn−1])E [γ]E [β1]

Γ(αm+ 2)Γ(αn+ 1) ,

Cov [Ym, Yn] = E [λm+n]E
[
β2

1
]
− E [λm]E [λn] (E [β1])2

Γ(αm+ 2)Γ(αn+ 1) . (3.30)

If we take M = N in (3.29), we then obtain the covariance function, CYM (t, s), of
the approximation YM (t), while its variance function is derived taking t = s in
the covariance function, i.e.,

CYM (t, s) = CYM ,YM (t, s), V[YM (t)] = CYM (t, t). (3.31)

Summarizing the following result has been established
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Theorem 3.2 Let us consider the random fractional IVP (3.1) with 1 < α ≤ 2
and assume that the inputs data β0, β1, γ and λ are RVs satisfying hypotheses Ĥ1
and Ĥ2. If p ≥ 0 and α ∈]1, 2] are so that p < α, then the random generalized power
series Y (t) given by (3.25)–(3.26) is a m.s. solution to the IVP (3.1) for all t ≥ 0.
While, if p = α, then Y (t) is a m.s. solution to the IVP (3.1) over the domain
t : 0 ≤ t < α/H 1

α . Furthermore, the approximations of the mean and the variance
(or standard deviation) given by (3.28) and (3.29)–(3.31), respectively, will also
converge at least over the domains previously specified for the m.s. convergence.

Similar comments to the ones contained in Remark 3.2 can now be made with
respect to the intervals of convergence to the mean and the variance determined
in Theorem 3.2.

3.4 Numerical examples

This section is devoted to illustrate, through a variety of examples, the results
established in Theorems 3.1 and 3.2. Particularly we investigate, through examples,
if the domain of convergence of the mean of the solution SP to the random
fractional IVP (3.1) can be enlarger with respect the one inferred from the m.s.
convergence. This issue will be discussed through the approximations for statistical
moments given in Section 3.3. The examples have been devised to take into
consideration both bounded and unbounded RVs for the diffusion coefficient λ.
In the examples, the accuracy of the approximations of the mean and standard
deviation will be measured using the following relative errors (RE) between
consecutive approximations of order M and M + 1, using different values of M
and different time instants t,

RE(Mean)(t;M) =
∣∣∣∣E[YM+1(t)]− E[YM (t)]

E[YM (t)]

∣∣∣∣ , (3.32)

RE(Sd)(t;M) =
∣∣∣∣∣
√
V[YM+1(t)]−

√
V[YM (t)]√

V[YM (t)]

∣∣∣∣∣ . (3.33)

Here, E[YM (t)] and V[YM (t)] are given by expressions (2.40) and (2.42), in Case I,
and by (3.29)–(3.31), in Case II, respectively.
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Chapter 3. Solving high order random mean square fractional linear differential equations

Example 3.5 This example illustrates Case I, corresponding to α ∈]0, 1], when
diffusion coefficient λ is a bounded RV. Let us consider the random fractional IVP
(3.1), where

• β0 is an Exponential RV of mean 1/5 and variance 1/25, i.e., β0 ∼ Exp(5).

• γ is a Gaussian RV with zero mean and unit standard deviation, γ ∼ N(0; 1).

• λ is a Beta RV of mean 2/5 and variance 1/25, λ ∼ Be(2; 3).

We will also assume that β0, γ and λ are independent RVs. Since λ is a bounded RV
(it lies on the interval ]0, 1[), by Example 3.1 we know that λ satisfies hypothesis
Ĥ2. Also, clearly all these input data are second-order RVs because they have
finite variance. As a consequence, hypothesis Ĥ1 also holds and Theorem3.1 can be
applied. Observe that the parameter p associated to λ is p = 0 (see Example 3.1).
According to Theorem 3.1 the solution Y (t), given by (3.15), is m.s. convergent
for all t ≥ 0. Therefore, the expectation and the variance (or equivalently, the
standard deviation) of Y (t), which are given by (2.40) and (2.42), respectively, will
also converge for all t ≥ 0, independently of the order α ∈]0, 1] of the fractional
derivative. This conclusion is illustrated in Figure 3.1 (α = 0.3) and in Figure
3.2 (α = 0.7) over the time intervals 0 ≤ t ≤ 5 and 0 ≤ t ≤ 8, respectively, using
different orders of truncation M . Observe that both values of α ∈]0, 1], hence they
correspond to Case I. From both graphical representations we observe that the
approximations of the mean and the standard deviation converge over the whole
interval. Moreover, these approximations improve as M increases.

In Tables 3.2 and 3.3 we have collected the figures of relative errors of the ap-
proximations of the mean and standard deviation defined in (3.32) and (3.33),
respectively. Both tables correspond to α = 0.3. We observe that for t fixed both
errors decrease as M increases, while for a fixed truncation order M these errors
increase as t departs from the origin t = 0. An analogous analysis corresponding
to α = 0.7 is shown in Tables 3.4 and 3.5. In these tables, the numerical results
are only shown in several points placed near the right-end of the interval 0 ≤ t ≤ 8
in order to better observe how evolves that error and to account for its maximum
value. Specifically, we have listed the relative errors for t = 4, 5, 6, 7, 8, just to be
clearer.

64



3.4 Numerical examples

0 1 2 3 4 5

t

0.2

0.4

0.6

0.8

1

1.2

1.4

M=10
M=15
M=20
M=25
M=30

0 1 2 3 4 5

t

0

2

4

6

8

10

12

14

16

18

20

M=10
M=15
M=20
M=25
M=30

Figure 3.1: Approximations of the mean (left) and the standard deviation (right) of the
solution SP to the random fractional IVP (3.1) with α = 0.3 (Case I) taking different orders
of truncation M over the time interval [0, 5] in the context of Example 3.5.

RE (Mean)(t;M) t = 1 t = 2 t = 3 t = 4 t = 5
M = 15 4.079521e-05 6.947839e-04 3.297477e-03 9.189631e-03 1.905735e-02
M = 20 1.419749e-06 6.827955e-05 5.907660e-04 2.484655e-03 6.938988e-03
M = 25 4.034508e-08 5.487145e-06 8.709276e-05 5.606024e-04 2.154161e-03
M = 40 3.261758e-13 1.003650e-09 9.874694e-08 2.315692e-06 2.412006e-05
M = 50 0.000000e-32 1.570471e-12 5.214614e-10 2.898630e-08 5.896433e-07

Table 3.2: Numerical values of the relative error (3.32) corresponding to the approximations
of the mean of the solution SP to the random IVP (3.1) with α = 0.3 (Case I) at different
values of t and M in the context of Example 3.5.

RE(Sd)(t;M) t = 1 t = 2 t = 3 t = 4 t = 5
M = 15 9.638948e-05 1.757966e-03 8.611555e-03 2.338490e-02 4.545151e-02
M = 20 3.514650e-06 1.914465e-04 1.802353e-03 7.588380e-03 1.970048e-02
M = 25 1.032923e-07 1.650448e-05 2.962502e-04 1.971703e-03 7.119996e-03
M = 40 8.883801e-13 3.424193e-09 4.063098e-07 1.050714e-05 1.086227e-04
M = 50 0.000000e-32 5.631090e-12 2.312461e-09 1.452893e-07 3.004525e-06

Table 3.3: Numerical values of the relative error (3.33) corresponding to the standard
deviation of the solution SP to the random IVP (3.1) with α = 0.3 (Case I) at different values
of t and M in the context of Example 3.5.
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Figure 3.2: Approximations of the mean (left) and the standard deviation (right) of the
solution SP to the random fractional IVP (3.1) with α = 0.7 (Case I) taking different orders
of truncation M over the time interval [0, 8] in the context of Example 3.5.

RE(Mean)(t;M) t = 4 t = 5 t = 6 t = 7 t = 8
M = 11 2.834329e-03 9.606890e-03 2.328737e-02 4.504716e-02 7.455311e-02
M = 12 1.349031e-03 5.309681e-03 1.442739e-02 3.044101e-02 5.379721e-02
M = 13 6.168547e-04 2.827171e-03 8.649223e-03 2.001286e-02 3.797259e-02
M = 14 2.714154e-04 1.451050e-03 5.014414e-03 1.278055e-02 2.616524e-02
M = 20 9.626787e-07 1.310833e-05 9.664635e-05 4.614136e-04 1.592402e-03

Table 3.4: Numerical values of the relative error (3.32) corresponding to the mean of the
solution SP to the random IVP (3.1) with α = 0.7 (Case I) at different values of t and M in
the context of Example 3.5.

RE(Sd)(t;M) t = 4 t = 5 t = 6 t = 7 t = 8
M = 11 4.974931e-03 1.682744e-02 3.957739e-02 7.319679e-02 1.155156e-01
M = 12 2.444194e-03 9.685880e-03 2.561774e-02 5.156699e-02 8.645137e-02
M = 13 1.149708e-03 5.353075e-03 1.601557e-02 3.533860e-02 6.335321e-02
M = 14 5.188710e-04 2.842382e-03 9.660322e-03 2.350868e-02 4.535487e-02
M = 20 2.058083e-06 2.984451e-05 2.239663e-04 1.045773e-03 3.432793e-03

Table 3.5: Numerical values of the relative error (3.33) corresponding to the standard
deviation of the solution SP to the random IVP (3.1) with α = 0.7 (Case I) at different values
of t and M in the context of Example 3.5.
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Example 3.6 This example illustrates Case I, corresponding to α ∈]0, 1], when
diffusion coefficient λ is an unbounded RV. Let us consider the random fractional
IVP (3.1), where

• β0 is a Gamma RV of mean 1/5 and variance 1/25, i.e. β0 ∼ Ga(1; 1/5).

• γ is a Beta RV of mean 1/4 and variance 1/50,
λ ∼ Be(67/32; 201/32).

• λ is a Gaussian RV with zero mean and standard deviation 1/10, γ ∼
N(0; (1/10)2).

We will also assume that β0, γ and λ are independent RVs. Observe that in this
example λ is an unbounded RV and, according to Example 3.2, it satisfies hypothesis
Ĥ2 with p = 1/2, H =

√
2/10 and η = 1/10. Hypothesis H1 also fulfils because all

input data are assumed to be independent and they have finite variance. Therefore,
according to Theorem 3.1, the random generalized power series solution Y (t), given
by (3.15), is m.s. convergent in a domain that depends on the relationship between
p = 1/2 and α. In this example, we will only consider the Case I, thus α ∈]0, 1].
Specifically, for α ∈]1/2, 1], that is, when p < α, Y (t) is m.s. convergent for all
t ≥ 0, and, as a consequence, the approximations (2.40) and (2.42) for the mean
and the variance (or standard deviation), respectively, will also converge for all
t ≥ 0. While if α = p = 1/2, Y (t) is m.s. convergent over the domain 0 ≤ t < 25.
Notice that the right-end value of this interval corresponds to α/H1/α. In this case,
it is guaranteed that the approximations of both the mean and the variance will
converge, at least, in this same interval 0 ≤ t < 25, although this domain could be
larger. This question will be further discussed later.

Firstly, we illustrate the former finding in Figure 3.3 where we have taken α = 0.6
(Case I) as the fractional order of the derivative. In this graphical representation,
we have plotted approximations of the mean and the standard deviation over the
time interval 0 ≤ t ≤ 30 using different orders of truncation M . In Tables 3.6 and
3.7 the numerical values of relative errors, defined in (3.32) and (3.33), at some
selected values are shown. From these figures we can conclude the proposed method
gives good and reliable approximations.
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RE(mean)(t;M) t = 6 t = 7 t = 8 t = 9 t = 10
M = 15 1.787302e-06 6.526650e-06 1.986069e-05 5.253359e-05 1.242889e-04
M = 20 3.228105e-08 1.871873e-07 8.502444e-07 3.201927e-06 1.038967e-05
M = 25 3.122633e-10 2.875344e-09 1.949542e-08 1.045336e-07 4.652778e-07
M = 40 8.693692e-16 3.250538e-14 7.327634e-13 1.134049e-11 1.302890e-10
M = 50 0.000000e-32 0.000000e-32 3.626644e-16 1.478768e-14 3.211297e-13

Table 3.6: Numerical values of the relative error (3.32) corresponding to the mean of the SP
to the random IVP (3.1) with α = 0.6 (Case I) in different values of t and M in the context
of Example 3.6.

RE(Sd)(t;M) t = 6 t = 7 t = 8 t = 9 t = 10
M = 15 5.637725e-05 2.633044e-04 9.870608e-04 3.057817e-03 7.947836e-03
M = 20 1.702671e-06 1.447403e-05 9.378429e-05 4.811486e-04 1.975614e-03
M = 25 4.642409e-08 7.069181e-07 7.818432e-06 6.610486e-05 4.333418e-04
M = 40 5.354437e-13 4.653621e-11 2.484909e-09 9.011051e-08 2.327453e-06
M = 50 0.000000e-32 5.305710e-14 8.013567e-12 7.473559e-10 4.663530e-08

Table 3.7: Numerical values of the relative error (3.33) corresponding to the standard
deviation of the SP to the random IVP (3.1) with α = 0.6 (Case I) in different values of t
and M in the context of Example 3.6.
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Figure 3.3: Approximations of the mean (left) and the standard deviation (right) of the
solution SP to the random fractional IVP (3.1) with α = 0.6 (Case I) taking different orders
of truncation M over the time interval [0, 30] in the context of Example 3.6.
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Secondly, we show and analyze the results obtained in the case that p = α = 1/2.
On the left-side of Figure 3.4 we have plotted the approximations of the mean over
the time interval 0 ≤ t ≤ 60 for different values of M , while the approximations
of the standard deviation have been represented over a shorter interval, namely
0 ≤ t ≤ 30 (see right-side of Figure 3.4). This is an important point in our analysis
regarding the case where m.s. convergence takes place in a bounded interval, i.e.
when p = α = 1/2 (see Theorem 3.1). Observe that, according to this theorem, the
approximations of the mean and the variance (standard deviation) of the solution
have the same domain of convergence. This domain is inferred from the one where
m.s. convergence takes place. If we revise the proof of Theorem 3.1, we can realize
that it provides a sufficient condition for m.s. convergence which relies upon the
construction of a convergent majorizing series. Although the result is fair general,
it does not guarantee the domain of m.s. convergence of the solution SP Y (t) (and
hence of the approximations of its mean and variance), could be larger. In order
to illustrate this issue, now we will show, with input data of our example, that the
approximation of the mean converges over the larger time interval 0 ≤ t < 50, while
the approximation of the variance converges over the time interval 0 ≤ t < 25.
Therefore, this is in fully agreement with the numerical results exhibited in Figure
3.4. Additionally, we have computed and plotted the relatives errors (3.32) and
(3.33) of approximations for the mean and the standard deviation. The graphical
representation of these errors are shown in Figure 3.5 using different orders
of truncation M = 50, 60, 70, 80, 90. For the sake of clarity in this plot we have
included a zoom of around the critical points t = 50 (for the mean) and t = 25
(for the standard deviation). From this plot, we clearly observe that divergence
of approximations of the mean and the standard deviation occur after the critical
points t = 50 and t = 25, respectively.

As expected, the interval of convergence of the standard deviation matches the one
inferred from the analysis of the m.s. convergence. While the interval of convergence
to the mean is larger. Now, we justify this latter numerical result using analytic
arguments. This fact is intuitive since m.s. convergence involves information of
the second order moment (which is related to the variance/standard deviation)
rather than first order moment (related to the mean). To completely support this
intuition, we now prove that the interval of convergence of the deterministic series
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Figure 3.4: Approximations of the mean (left) and the standard deviation (right) of the
solution SP to the random fractional IVP (3.1) with α = 0.5 (Case I) using different orders of
truncation M over the time intervals [0, 60] and [0, 30], respectively in the context of Example
3.6.
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Figure 3.5: Relative errors, given in (3.32) and (3.33), of the approximations of the mean
(left) and the standard deviation (right) of the solution SP to the random fractional IVP (3.1)
with α = 0.5 (Case I) using different orders of truncation M over the time intervals [0, 60]
and [0, 30], respectively, in the context of Example 3.6. For the sake of clarity, in both plots,
we present a zoom around of the end-points t = 50 and t = 25 of the convergence regions for
the approximations of the mean and standard deviation, respectively.
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that provides approximations for the mean, given by (2.40) with M → +∞, is
exactly 0 ≤ t < 50. To this end, its sufficient to study the first series defined
in (2.40), since the analysis of the second series is similar. Taking into account
expression (3.7) for the statistical moments of RV λ, it is clear that series is made
up only of non-negative terms for all m ≥ 0, and it has the following form

∑
m≥0

δ̂m(t), δ̂m(t) := E[λ2m]
Γ(2αm+ 1) t

2αm, (3.34)

Using the Stirling’s approximation (3.13) and applying the ratio test, observe that

lim
m→+∞

δ̂m+1(t)
δ̂m(t)

= lim
m→+∞

(2m+ 2)(2m+ 1)σ2

2(m+ 1)
Γ(2αm+ 1)

Γ(2α(m+ 1) + 1) t
2α

= σ2t2α

2 lim
m→+∞

((2m+ 2)(2m+ 1)
m+ 1

)
·
(

lim
m→+∞

Γ(2αm+ 1)
Γ(2α(m+ 1) + 1)

)
= σ2t2α

2 lim
m→+∞

((2m+ 2)(2m+ 1)
m+ 1

)
·
(

lim
m→+∞

(2αm)2αm e−2αm√2π(2αm)
(2α(m+ 1))2α(m+1) e−2α(m+1)

√
2π(2α(m+ 1))

)

= σ2t2α

2 lim
m→+∞

((2m+ 2)(2m+ 1)
m+ 1

)(
lim

m→+∞

1
(2α(m+ 1))2α

)
= σ2t2α

2(2α)2α lim
m→+∞

((2m+ 2)(2m+ 1)
(m+ 1)2α+1

)

=


0 if α > 1/2,

+∞ if α < 1/2,
2σ2t if α = 1/2.

(3.35)

Therefore, according to the ratio test, if α < 1/2 the domain of convergence of
the first series of (2.40) (and hence of the full series (2.40)) is t > 0; if α > 1/2
there is no convergence for all t > 0, and if α = 1/2 the domain of convergence is
0 < t < 1/(2σ2). Thus, in this latter case if σ = 1/10, such as it has been chosen
in our numerical experiments, the domain of convergence of the series (2.40) (with
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M → +∞), defining the approximations of the mean is 0 ≤ t < 50. This fully
agrees with the results shown in Figure 3.4 and Figure 3.5.

Example 3.7 This example illustrates Case II, corresponding to α = 1.2 ∈]1, 2],
when diffusion coefficient λ is an unbounded RV. Let us consider the random
fractional IVP (3.1), where

• β0 and β1 are Gamma RVs of mean 1/2 and variance 1/2, i.e. β0 ∼
Ga(1/2; 1).

• γ is a Gaussian RV of mean 1/2 and variance 1/2, λ ∼ N(1/2; (
√

2/2)2).

• λ is an Exponential RV with mean 1/6 and variance 1/36, λ ∼ Exp(6).

We assume that all input data β0, β1, γ and λ are mutually independent RVs.
Hence, hypothesis Ĥ1 is fulfilled. Since λ is an Exponential RV, it is an unbounded
and, by Example 3.3, it satisfies hypothesis Ĥ2 with p = 1, H = 1/3 and η =

√
2/6.

Therefore, as p = 1 < 1.2 = α by Theorem 3.2, it is known that the random
generalized power series solution Y (t), given by (3.25), is m.s. convergent for
all t ≥ 0. As a consequence, the approximations for that for the mean and the
variance (or standard deviation), given by (3.29)–(3.31), respectively, will converge
for all t ≥ 0. Approximations for these statistical moments are shown in Figure
3.6 using the following orders of truncation M = 5, 7, 10, 12, 15. We observe the
convergence over the whole intervals. In Figure 3.7, we show an approximation to
the correlation coefficient function associated to the solution SP. This surface has
been built taking M = 20 in the following expression

ρYM (t, s) = CYM ,YM (t, s)√
V [YM (t)] ×

√
V [YM (s)]

.

This function measures the lineal statistical dependence between the approximations
YM (s) and YM (t) in two different time instants s and t. From Figure 3.7, we can
observe that linear statistical interdependence is stronger in points located about
the diagonal (t, t). For M fixed, this means that RV YM (s) can be approximated
by a linear function of YM (t) when s and t are close.

72



3.4 Numerical examples

0 2 4 6 8

t

0

20

40

60

80

100

120

140

M=5
M=7
M=10
M=12
M=15

0 1 2 3 4 5

t

0

50

100

150

M=5
M=7
M=10
M=12
M=15

Figure 3.6: Approximations of the mean (left) and the standard deviation (right) of the
solution SP to the random fractional IVP (3.1) with α = 1.2 (Case II) using different orders
of truncation M over the time intervals [0, 8] and [0, 5], respectively in the context of Example
3.7.
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3.5 Conclusions

In this chapter we have extended some results recently obtained for the random
linear fractional differential equation using the m.s. calculus and the random
Caputo derivative. We have constructed a solution SP for that class of equations
by means of a random generalized power series. Furthermore, we have given mild
conditions in order to guarantee its m.s. convergence. Afterwards, we have provided
closed-form expressions for approximations of its main statistical functions (mean,
variance, covariance and cross-covariance). The analysis permits to enlarge the
family of RVs playing the role of diffusion coefficient for that class of fractional
differential equation. Specifically, significant unbounded RVs such as Gaussian and
Exponential are included in our hypotheses.

Chapter published

The results of this chapter have been published in [27]. With regard to this
paper, the PhD candidate has contributed by working in its complete development
with more emphasis on the construction of the solution, proving its mean square
convergence, computing the main statistical moments and preparing numerical
examples.
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Chapter 4
A full probabilistic solution of the random

linear fractional differential equation via the
Random Variable Transformation technique

This chapter is devoted to obtain the first probability density function of the
randomized fractional linear non-homogeneous differential equation studied in the
previous Chapters with α ∈]0, 1]. To conduct our analysis, we take advantage of
the Random Variable Transformation technique to construct approximations of the
first probability density function of the solution stochastic process from a suitable
infinite series representation. Then, we prove these approximations do converge to
the exact density function assuming mild conditions on random input parameters.

Our theoretical findings are illustrated through two numerical examples.
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Chapter 4. A full probabilistic solution of the random linear fractional differential equation

4.1 Introduction

The probability density function (PDF) of a RV is, as its name suggests, a mathe-
matical function which defines entirely this RV and, consequently, all its statistical
information. Generalizing this concept through the SPs, if y(t, ω) is a SP, its
associated 1-PDF, which is the PDF of y(t, ω) for a fixed t, allows us to obtain a
full probabilistic description of y(t, ω). Even more, if y(t, ω) is a SP that describes
a real phenomena, its associated 1-PDF provides a complete statistical description
of the process.

For instance, from 1-PDF, one can compute all one-dimensional statistical moments
at every time instant t,

E
[
(y(t, ω))k

]
=
∫ ∞
−∞

(y(t))kf1(y, t)dy, k = 1, 2, . . . , ω ∈ Ω. (4.1)

In particular, the mean µy(t) = E[y(t, ω)] and the variance σ2
y(t) = V[y(t, ω)] =

E[(y(t, ω))2]− (µy(t))2. Furthermore, the 1-PDF allows us to calculate the proba-
bility that the solution lies in a particular interval of interest at each time instant
t̂ fixed, i.e.,

P
[
a ≤ y(t̂, ω) ≤ b

]
=
∫ b

a
f1(y, t̂)dy. (4.2)

In this chapter the 1-PDF of the solution SP of the randomized fractional linear
differential equation obtained in Chapter 2 is computed. Mild conditions of the
random input parameters will be consider in order to guarantee the convergence of
the 1-PDF. Although the computation of the 1-PDF of different classes of RDEs
has been dealt in the extant literature (see [53, 69, 33, 35] and references therein),
to the best of our knowledge, this interesting problem is not been addressed yet.

First of all, let us remind the IVP studied in Chapter 2(
CDα

0 y
)

(t, ω)− λ(ω)y(t, ω) = γ(ω), 0 < α ≤ 1, t > 0,
y(0, ω) = β0(ω),

}
(4.3)
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In (4.3), the initial condition β0(ω), the forcing term γ(ω) and the diffusion
coefficient λ(ω) are assumed to be absolutely continuous RVs defined on a common
complete probability space (Ω,F ,P). For sake of clarity, hereinafter we will denote
by DX the domain of any random vector, say X(ω), in particular, D(β0,γ,λ) will
stand for the domain of input random vector X(ω) = (β0(ω), γ(ω), λ(ω)) and
fβ0,γ,λ(β0, γ, λ) will denote its joint PDF.

According to Chapter 2 equation (2.29), the solution SP of random fractional IVP
(4.3) can be represented by

y(t, ω) = β0(ω)S1(t, α;λ(ω)) + γ(ω)S2(t, α;λ(ω)), (4.4)

being

S1(t, α;λ(ω)) =
∞∑
m=0

(λ(ω))m
Γ(αm+ 1) t

αm,

S2(t, α;λ(ω)) =
∞∑
m=0

(λ(ω))m
Γ(α(m+ 1) + 1) t

α(m+1).

(4.5)

Remark 4.1 As it can be observed in (4.4) (4.5), S1(t, α;λ(ω)) and S2(t, α;λ(ω)),
and thus the solution y(t, ω), can be represented as a random series in both param-
eters λ(ω), ω ∈ Ω, and t. Taking into account the uniqueness of the solution of
random IVP (4.3), both series expansions match (as powers of t and as powers
of λ(ω), ω ∈ Ω). In addition, it can be proved by applying the ratio test together
with Stirling’s formula that both series converge in R for all ω ∈ Ω, see (2.36).
Therefore, there is uniform convergence in every closed set contained in R.

As the solution y(t, ω) of random IVP (4.3) is given by a linear combination of
infinite series (4.4)–(4.5), to compute its 1-PDF, f1(y, t), from a computational
point of view it is convenient to consider its approximation via the truncation of
both series

yM (t, ω) = β0(ω)SM1 (t, α;λ(ω)) + γ(ω)SM2 (t, α;λ(ω)), (4.6)
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where

SM1 (t, α;λ(ω)) =
M∑
m=0

(λ(ω))m
Γ(αm+ 1) t

αm,

SM2 (t, α;λ(ω)) =
M∑
m=0

(λ(ω))m
Γ(α(m+ 1) + 1) t

α(m+1).

(4.7)

Then, we will first obtain the 1-PDF, fM1 (y, t), of the truncated solution yM (t, ω),
and second, we will prove that fM1 (y, t) converges to f1(y, t) as M increases, under
certain conditions on the input random vector (β0(ω), γ(ω), λ(ω)) that will be
specified later.

To compute fM1 (y, t), Random Variable Transformation method (RVT) will be
applied. This technique allows us to obtain the PDF of a random vector that
results from mapping of another random vector whose PDF is known. For the
sake of completeness in the presentation and notation, down below we state a
multidimensional version of RVT method.

Theorem 4.1 (Random Variable Transformation method) [109, page 25].
Let us consider X = (X1, . . . , Xn) and Z = (Z1, . . . , Zn) two n-dimensional abso-
lutely continuous random vectors defined on a common probability space (Ω,F ,P).
Let r : Rn → Rn be a one-to-one deterministic transformation of X into Z, i.e.,
Z = r(X). Assume that r is continuous in X and has continuous partial derivatives
with respect to each Xi, 1 ≤ i ≤ n. Then, if fX(x) denotes the joint probability den-
sity function of random vector X, and s = r−1 = (s1(z1, . . . , zn), . . . , sn(z1, . . . , zn))
represents the inverse mapping of r = (r1(x1, . . . , xn), . . . , rn(x1, . . . , xn)), the joint
probability density function of random vector Z is given by

fZ(z) = fX (s(z)) |J | , (4.8)

where |J |, which is assumed to be different from zero, is the absolute value of the
Jacobian defined by the determinant

J = det
(
∂sT

∂z

)
= det


∂s1(z1,...,zn)

∂z1
· · · ∂sn(z1,...,zn)

∂z1... . . . ...
∂s1(z1,...,zn)

∂zn
· · · ∂sn(z1,...,zn)

∂zn

 . (4.9)
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The following technical remark will be useful later to legitimate the application of
RVT technique in an appropriate neighbourhood where the 1-PDF of the solution
SP will be computed.

Remark 4.2 Let α ∈]0, 1], taking into account expression (4.7) it is clear that
SM1 (0, α;λ(ω)) = 1 6= 0, ∀ω ∈ Ω, ∀M ≥ 0 integer. From Remark 4.1 S1(t, α;λ(ω))
can be represented via a power series in t and λ(ω), ∀ω ∈ Ω. Since SM1 (t, α;λ(ω))
is a polynomial in both variables t and λ(ω), then is a continuous function in these
variables. Therefore, there exists a neighbourhood, N (0, 0(ω)) of (t = 0, λ(ω) =
0(ω)) such that

0 < mS1 < |SM1 (t, α;λ(ω))|, ∀(t, λ(ω)) ∈ N (0, 0(ω)), ∀ω ∈ Ω, ∀M ∈ Z+.

(4.10)

On the other hand, by Remark 4.1 both series Si(t, α;λ(ω)), i = 1, 2, converge
uniformly in every closed set of R. Then, we can take, without loss of generality,
the closure of neighbourhood N (0, 0(ω)), N ∗(0, 0(ω)). This guarantees the existence
of positive constants MSi , i = 1, 2, such that

|SMi (t, α;λ(ω))| < MSi , (4.11)

for all (t, λ(ω)) ∈ N ∗(0, 0(ω)) ⊂ N (0, 0(ω)), ω ∈ Ω and M ∈ Z+. Notice that in
Remark 4.2, we have taken the neighbourhood of point (t, λ(ω)) = (0, 0(ω)). This
choice is motivated by the expression of S1(t, α;λ(ω)) given in (4.5), where, as
it has been previously pointed, one can observe that is a power series in λ(ω),
∀ω ∈ Ω. Then, it is centred in λ(ω) = 0(ω), ∀ω ∈ Ω.

This chapter is organized as follows. In Section 4.2 the 1-PDF of the truncated
solution SP given by (4.6) is constructed by applying the RVT technique stated
in Theorem 4.1. Then, we prove the convergence of this function to the 1-PDF of
the exact solution of RFDE (4.3) under suitable hypotheses on random inputs.
Section 4.3 is devoted to show several examples that illustrate our theoretical
findings. Finally, in Section 4.4 our main conclusions are drawn.
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4.2 Main result: Computing approximations of the 1-PDF of the
solution stochastic process

In this section, we will first compute the 1-PDF fM1 (y, t) by taking advantage of
RVT technique. With this goal, let α ∈]0, 1], t > 0, ω ∈ Ω fixed, such that (t, λ(ω))
belongs to the neighbourhood N ∗(0, 0(ω)) introduced in Remark 4.2 and let us
apply Theorem 4.1 with the following identification: X(ω) = (β0(ω), γ(ω), λ(ω)),
Z(ω) = (Z1(ω), Z2(ω), Z3(ω)) and the mapping r : R3 −→ R3 whose components
(r1, r2, r3) are defined as

z1 = r1(β0, γ, λ) = β0S
M
1 (t, α;λ) + γSM2 (t, α;λ),

z2 = r2(β0, γ, λ) = γ,

z3 = r3(β0, γ, λ) = λ.

The inverse mapping s of r is given by

β0 = s1(z1, z2, z3) = z1 − z2S
M
2 (t, α; z3)

SM1 (t, α; z3) ,

γ = s2(z1, z2, z3) = z2,

λ = s3(z1, z2, z3) = z3,

From (4.10), it is known that
∣∣SM1 (t, α;λ(ω))

∣∣ 6= 0, ∀(t, λ(ω)) ∈ N ∗(0, 0(ω)), and
thus the absolute value of the Jacobian of inverse mapping s is well-defined and
non-zero

|J | =
∣∣∣∣∂s1

∂z1

∣∣∣∣ =
∣∣∣∣ 1
SM1 (t, α; z3)

∣∣∣∣ 6= 0.

As a consequence, by applying Theorem 4.1, the PDF of random vector Z(ω) is
given by

fZ1,Z2,Z3(z1, z2, z3) = fβ0,γ,λ

(
z1 − z2S

M
2 (t, α; z3)

SM1 (t, α; z3) , z2, z3

) ∣∣∣∣ 1
SM1 (t, α; z3)

∣∣∣∣ .
Finally, marginalizing with respect to Z2(ω) = γ(ω) and Z3(ω) = λ(ω) and taking
t > 0 arbitrary, the 1-PDF of the truncated solution SP, yM (t, ω), of random
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fractional IVP (4.3) is obtained

fM1 (y, t) =
∫
D(γ,λ)

fβ0,γ,λ

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ) , γ, λ

) ∣∣∣∣ 1
SM1 (t, α;λ)

∣∣∣∣ dλdγ. (4.12)

Now, we address the proof of the convergence of the 1-PDF, fM1 (y, t), given in
(4.12), to the 1-PDF of the exact solution, f1(y, t), given by

f1(y, t) =
∫
D(γ,λ)

fβ0,γ,λ

(
y − γS2(t, α;λ)
S1(t, α;λ) , γ, λ

) ∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣ dλdγ, (4.13)

where S1(t, α;λ) and S2(t, α;λ) are defined in (4.5), for each (y, t) ∈ R × [0,∞[
fixed, as M → ∞, i.e., limM→∞ f

M
1 (y, t) = f1(y, t) for each (y, t) ∈ R × [0,∞[

fixed with t such that (t, λ(ω)) ∈ N ∗(0, 0(ω)). To this end, henceforth the following
hypotheses will be assumed

J1: Inputs parameters β0(ω), γ(ω) and λ(ω) of random IVP (4.3) are independent
RVs defined in a common complete probability space (Ω,F ,P).

J2: The expectation of the absolute value of RV defining the non-homogeneous
term of random IVP (4.3) is finite, i.e., E [|γ(ω)|] = C <∞.

J3: The PDF of the random initial condition fβ0(β0) is Lipschitz continuous in
R, i.e.,

∃L0 > 0 : |fβ0(β0,1)− fβ0(β0,2)| ≤ L0|β0,1 − β0,2|, ∀β0,1, β0,2 ∈ R.

Now, we comment about the generality of above assumptions from a practical point
of view. Hypothesis J1 is just imposed to simplify the subsequent development.
In particular, it allows us to apply the following factorization fβ0,γ,λ(β0, γ, λ) =
fβ0(β0)fγ(γ)fλ(λ). As a consequence, expression (4.12) can be written as follows

fM1 (y, t) =
∫
D(γ)

∫
D(λ)

fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

)
fγ(γ)fλ(λ)

∣∣∣∣ 1
SM1 (t, α;λ)

∣∣∣∣ dλdγ.
(4.14)
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Independence among random inputs is a usual assumption in the analysis of
RFDEs (see [24, 21] for instance), moreover it is also natural from an applied
standpoint since random inputs usually have not direct relationship. Hypothesis J2
is equivalent to assume that γ ∈ L1(Ω), being L1(Ω) the biggest of Lp(Ω)-Banach
spaces [87], so this is a very general assumption since to this space belong the
majority of important RVs (Gaussian, Gamma, Beta, etc.). Finally, it is worth
mentioning that J3 only affects the random initial condition β0 and, again it is
fulfilled for most of relevant RVs (Gaussian, Gamma, Beta, etc.,) since it is easy to
check that the first derivative of the PDF of RVs is bounded, hence it is Lipschitz.

Let ε > 0 arbitrary and let us consider the following development addressed to prove
the convergence of fM1 (y, t) to f1(y, t) as M increases for every (y, t) ∈ R× [0,∞[
fixed, where t > 0 is such that (t, λ(ω)) ∈ N ∗(0, 0(ω)) being N ∗(0, 0(ω)) the
neighbourhood whose existence is guaranteed by Remark 4.2.∣∣∣fM1 (y, t)− f1(y, t)

∣∣∣
=
∣∣∣∣∣
∫
D(γ)

∫
D(λ)

fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

)
fγ(γ)fλ(λ)

∣∣∣∣ 1
SM1 (t, α;λ)

∣∣∣∣ dλdγ
−
∫
D(γ)

∫
D(λ)

fβ0

(
y − γS2(t, α;λ)
S1(t, α;λ)

)
fγ(γ)fλ(λ)

∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣ dλdγ
∣∣∣∣∣

≤
∫
D(γ)

∫
D(λ)

∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

) ∣∣∣∣ 1
SM1 (t, α;λ)

∣∣∣∣
− fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

) ∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣
+ fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

) ∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣
−fβ0

(
y − γS2(t, α;λ)
S1(t, α;λ)

) ∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣∣∣∣∣ fγ(γ)fλ(λ)dλdγ (4.15)

≤
∫
D(γ)

∫
D(λ)

fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

)
︸ ︷︷ ︸

(I)

∣∣∣∣∣∣∣∣ 1
SM1 (t, α;λ)

∣∣∣∣− ∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
(II)
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+
∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

)
− fβ0

(
y − γS2(t, α;λ)
S1(t, α;λ)

)∣∣∣∣︸ ︷︷ ︸
(III)

∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣︸ ︷︷ ︸
(IV)


· fγ(γ)fλ(λ)dλdγ.

Now, we will obtain some adequate bounds for the terms (I)–(IV) of (4.15), that
will be used later. Let us start with bound (I). According to Remark 4.2, hypothesis
J3, and denoting F0 = fβ0(0) without loss of generality, one obtains

fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

)
≤

∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

)
− fβ0(0)

∣∣∣∣+ F0

≤ L0

∣∣∣∣y − γSM2 (t, α;λ)
SM1 (t, α;λ)

∣∣∣∣+ F0

≤ L0
|y|+ |γ|

∣∣SM2 (t, α;λ)
∣∣∣∣SM1 (t, α, λ)

∣∣ + F0

≤ L0

mS1

(|y|+ |γ|MS2) + F0.

(4.16)

Let us obtain a suitable bound for the term (II). On the one hand, by expression
(4.10) of Remark 4.2, we know that 0 < mS1 ≤ |S1(t, α;λ)| for all for all (t, λ) ∈
N ∗(0, 0(ω)) and α ∈]0, 1]. On the other hand, let us recall that in agreement with
Remark 4.1 it is known that SMi (t, α;λ), converges uniformly to Si(t, α;λ) for
all (t, λ) ∈ N ∗(0, 0(ω)) and α ∈]0, 1], i = 1, 2, i.e., for all εi > 0, there exists M0,
which may depends on εi, such that∣∣∣Si(t, α;λ)− SMi (t, α;λ)

∣∣∣ < εi, i = 1, 2, ∀M ≥M0. (4.17)

Therefore, applying (4.17) for i = 1, one gets∣∣∣∣∣∣∣∣ 1
SM1 (t, α;λ)

∣∣∣∣− ∣∣∣∣ 1
S1(t, α;λ)

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣ 1
SM1 (t, α;λ) −

1
S1(t, α;λ)

∣∣∣∣
=
∣∣S1(t, α;λ)− SM1 (t, α;λ)

∣∣∣∣SM1 (t, α;λ)
∣∣ |S1(t, α;λ)|

≤ ε1

(mS1)2 .

(4.18)
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As it shall be seen later on, the term (IV) we will be bounded by

|1/S1(t, α;λ)| < 1/mS1 , (4.19)

which is straightforwardly derived from expression (4.10) in Remark 4.2. Finally,
we will obtain a proper bound to be used for the term (III). To this end, we will
apply Remark 4.2, hypothesis J3 and the convergence of both series Si(t, α;λ),

i = 1, 2 (taking ε2 = (mS1)3

L0MS1

ε

2 > 0 in (4.17)). This yields

∣∣∣∣fβ0

(
y − γSM2 (t, α;λ)
SM1 (t, α;λ)

)
− fβ0

(
y − γS2(t, α;λ)
S1(t, α;λ)

)∣∣∣∣
≤L0

∣∣∣∣y − γSM2 (t, α;λ)
SM1 (t, α;λ) − y − γS2(t, α;λ)

S1(t, α;λ)

∣∣∣∣
=L0

∣∣yS1(t, α;λ)− γSM2 (t, α;λ)S1(t, α;λ)− ySM1 (t, α;λ) + γS2(t, α;λ)SM1 (t, α;λ)
∣∣

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣
= L0

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣ ∣∣∣yS1(t, α;λ)− γSM2 (t, α;λ)S1(t, α;λ)

− ySM1 (t, α;λ) + γS2(t, α;λ)SM1 (t, α;λ)
∣∣∣

≤ L0

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣ [|y| ∣∣∣S1(t, α;λ)− SM1 (t, α;λ)
∣∣∣

+ |γ|
∣∣∣S2(t, α;λ)SM1 (t, α;λ)− SM2 (t, α;λ)S1(t, α;λ)

∣∣∣]
≤ L0

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣ [|y| ε1 + |γ|
∣∣∣S2(t, α;λ)SM1 (t, α;λ)

− S2(t, α;λ)S1(t, α;λ) + S2(t, α;λ)S1(t, α;λ)

−SM2 (t, α;λ)S1(t, α;λ)
∣∣∣]

≤ L0

|S1(t, α;λ)|
∣∣SM1 (t, α;λ)

∣∣ [|y| ε1 + |γ| |S2(t, α;λ)|
∣∣∣SM1 (t, α;λ)− S1(t, α;λ)

∣∣∣
+ |S1(t, α;λ)|

∣∣∣S2(t, α;λ)− SM2 (t, α;λ)
∣∣∣]

≤ L0

(mS1)2 [|y| ε1 + |γ|MS2ε1 +MS1ε2] = L0

(mS1)2 (|y|+ |γ|MS2)ε1 + mS1ε

2 .

(4.20)
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4.2 Main result: Computing approximations of the 1-PDF of the solution stochastic process

Now, we firstly substitute bounds (4.16), (4.18)–(4.20) in (4.15), secondly we apply
that

∫
D(λ) fλ(λ)dλ = 1 and the expression of expectation operator via an integral

as well. This leads

∣∣fM1 (y, t)− f1(y, t)
∣∣ ≤ ∫

D(γ)

∫
D(λ)

[(
L0

mS1

(|y|+ |γ|MS2) + F0

)
ε1

(mS1)2

+
(

L0

(mS1)2 (|y|+ |γ|MS2)ε1 + mS1ε

2

) 1
mS1

]
fγ(γ)fλ(λ)dλdγ

=
∫
D(γ)

[( 2L0

(mS1)3 (|y|+ |γ|MS2) + F0

(mS1)2

)
ε1 + ε

2

]
fγ(γ)dγ

= E
[( 2L0

(mS1)3 (|y|+ |γ|MS2) + F0

(mS1)2

)
ε1 + ε

2

]
=
( 2L0

(mS1)3 (|y|+ E [|γ|]MS2) + F0

(mS1)2

)
ε1 + ε

2 .

Finally, taking ε1 = (mS1 )3

2L0(|y|+CMS2 )+F0mS1

ε
2 and applying hypothesis J2 in the

latter expression, one concludes∣∣∣fM1 (y, t)− f1(y, t)
∣∣∣ ≤ ( 2L0

(mS1)3 (|y|+ CMS2) + F0

(mS1)2

)
ε1 + ε

2 = ε

2 + ε

2 = ε.

Summarizing the following result has been established:

Theorem 4.2 Let us consider random IVP (4.3) and assume that

J1: β0(ω), γ(ω) and λ(ω) are independent RVs defined in a common complete
probability space (Ω,F ,P).

J2: E [|γ(ω)|] = C <∞.

J3: The PDF fβ0(β0) of β0(ω) is Lipschitz continuous in R.

Let SM1 (t, α;λ) and SM2 (t, α;λ) denote the random finite sums given by (4.7). Then,
fM1 (y, t) defined by (4.14) is the first probability density function of the approximate
solution SP (4.6) of random IVP (4.3). Furthermore, for each (y, t) ∈ R×]0,∞[
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fixed, fM1 (y, t) converges to the first probability density function f1(y, t), given by
(4.13), of the exact solution y(t, ω) defined by (4.4)–(4.5).

4.3 Numerical examples

In this section we will show two numerical examples addressed to illustrate our
previous theoretical findings. In each example, a variety of probability distributions
for input parameters of random fractional IVP (4.3) will be considered.

Example 4.1 Let us assume that the fractional order of Caputo derivative is
α = 0.3, the diffusion coefficient λ(ω) has a Beta distribution with parameters 30
and 40, i.e., λ(ω) ∼ Be(30; 40), the non-homogeneous term γ(ω) is a Gaussian RV
with mean 0 and standard deviation 0.1, γ(ω) ∼ N(0; 0.1) and the initial condition
β0(ω) has an Exponential distribution with mean 1, β0(ω) ∼ Exp(1). In agreement
with hypothesis J1, we will assume that λ(ω), γ(ω) and β0(ω) are independent.
A direct computation shows that E [|γ|] = 1

5
√

2π < ∞, thus hypothesis J2 holds.
Also the PDF of β0(ω) is fβ0(β0) = e−β0 , β0 > 0 (and null otherwise), it first
derivative satisfies |f ′β0

(β0)| = e−β0 < 1 for all β0 > 0, i.e., fβ0 is bounded and
hence is Lipschitz. As a result, hypothesis J3 fulfils too.

In Figure 4.1 the approximate 1-PDF, fM1 (y, t), given by (4.14) has been plotted
for different values of the truncation order M and the time instants t̂ = {0.1, 1, 5}.
From it, one can observe that rapid convergence of approximations. As a measure
of the error of these approximations, we have define

eM (t̂) =
∫ ∞
−∞
|fM1 (y, t̂)− fM+1

1 (y, t̂)|dy, M ≥ 1 integer. (4.21)

In Table 4.1, we have collected these errors for time instants t̂ = {0.1, 1, 5} taking
as stopping criterion that eM (t̂) ≤ 10−2.

In Figure 4.2, we show the mean, µyM (t), and the variance, σ2
yM (t), for different

values of truncation order M on the time interval t ∈ [0, 5]. In these plots, the
convergence of both statistical moments is clearly observed. To account for the
quality of approximations of the mean and the variance, we consider the following

86



4.3 Numerical examples

0 10 20 30

0

0.1

0.2

0.3

0.4

0.5

0.6

M=1

M=2

M=3

-10 0 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

M=1

M=2

M=3

M=4

M=5

-10 0 10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

M=1

M=3

M=5

M=7

M=9

Figure 4.1: Plots of the 1-PDF, fM
1 (y, t), given by (4.14), for different truncations M at

the time instants t̂ = 0.1 (left), t̂ = 1 (center) and t̂ = 5 (right) in Example 4.1.

eM (t̂) M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8
t̂ = 0.1 0.031 0.006 - - - - - -
t̂ = 1 0.094 0.040 0.019 0.009 - - - -
t̂ = 5 0.190 0.105 0.064 0.041 0.027 0.018 0.013 0.009

Table 4.1: Values of error eM (t̂) defined in (4.21) at the time instants t̂ = {0.1, 1, 5} in
Example 4.1. The truncation order M has been computed so that eM (t̂) ≤ 10−2.

global error over the whole time interval [0, 5]

eµM =
∫ 5

0
|µyM (t)−µyM+1(t)|dt, eσ

2

M =
∫ 5

0
|σ2
yM (t)−σ2

yM+1(t)|dt, M ≥ 1 integer.
(4.22)

In agreement with (4.1), the above term µyM (t) is computed as

µyM (t) = E
[
yM (t, ω)

]
=
∫ ∞
−∞

yM (t)fM1 (y, t)dy, ω ∈ Ω, (4.23)

where yM (t, ω) and fM1 (y, t) are given by, (4.6)–(4.7) and (4.14), respectively.
Analogously,

σ2
yM (t) = E

[
(yM (t, ω))2

]
−
(
E
[
yM (t, ω)

])2
=
∫ ∞
−∞

(yM (t))2fM1 (y, t)dy−(µyM (t))2,

(4.24)
where ω ∈ Ω. In Table 4.2, we show the values of errors defined in (4.22). These
figures have been computed taking values of the truncation order M so that error is
less or equal than 10−2. Notice that greater values of M are required to accomplish
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Figure 4.2: Plots of approximations µyM (t) (left) and σ2
yM (t) (right), given by (4.23) and

(4.24), respectively, to the exact mean and variance of the solution SP to random fractional
IVP (4.3), respectively, for different values of the truncation orderM in the context of Example
4.1.

for the stopping criterion of the error of the variance as expected. From this table
we observe that both errors, eµM and eσ2

M , decrease as M increases.

Example 4.2 This second example aims to complete our numerical experiments
by taking different probability distributions for random inputs and the order of
fractional derivative from the ones chosen in Example 4.1. In this spirit, our
subsequent presentation will be more concise since it follows in broad outline
a similar structure as in Example 4.1. Let us consider the random fractional

M=1 M=2 M=3 M=4 M=5 M=6 M=7
eµM 1.746 0.987 0.547 0.298 0.160 0.085 0.045
eσ

2

M 6.877 4.871 3.164 1.949 1.157 0.668 0.378
M=8 M=9 M=10 M=11 M=12 M=13

eµM 0.023 0.012 0.006 - - -
eσ

2

M 0.210 0.115 0.062 0.0335 0.0178 0.0094

Table 4.2: Values of errors defined in (4.22) to quantify the quality of approximations µyM (t)
and σ2

yM (t), given by (4.23) and (4.24), respectively, to the exact mean and variance of the
solution SP to random fractional IVP (4.3), respectively, for different values of the truncation
order M in the context of Example 4.1. The truncation order M has been computed so that
eM (t̂) ≤ 10−2.
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Figure 4.3: Plots of the 1-PDF, fM
1 (y, t), given by (4.14), for different truncations M at

the time instants t̂ = 0.05 (left), t̂ = 0.2 (centre) and t̂ = 1 (right) in Example 4.2.

eM (t̂) M=1 M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10
t̂ = 0.05 0.009 - - - - - - - - -
t̂ = 0.2 0.338 0.159 0.077 0.038 0.018 0.009 - - - -
t̂ = 1 0.817 0.516 0.337 0.223 0.148 0.099 0.066 0.043 0.029 0.010

Table 4.3: Values of error eM (t̂) defined in (4.21) at the time instants t̂ = {0.05, 0.2, 1} in
Example 4.2. The truncation order M has been computed so that eM (t̂) ≤ 10−2.

IVP (4.3) where α = 0.7, λ(ω) is a Gaussian RV with mean 1 and standard
deviation 0.1, λ(ω) ∼ N(1; 0.1), γ(ω) has a Uniform distribution on interval [2, 3],
γ(ω) ∼ Un(2, 3) and β0(ω) has a Gamma distribution with parameters 1 and 2,
β0 ∼ Ga(1; 2). Hereinafter, we assume that λ(ω), γ(ω) and β0(ω) are independent,
this ensures hypothesis J1 is fulfilled. Furthermore, it is clear that E [|γ|] = 5/2
and |f ′β0

(β0)| = |(1/2 e−β0/2)′| ≤ 1/4 for all β0 > 0. As a consequence, hypotheses
J2 and J3 hold.

In Figure 4.3, we have plotted the 1-PDF, fM1 (y, t) given in (4.14), for different
orders of truncation M and time instants t̂ = {0.05, 0.2, 1}. From these graphical
representations, we can observe the convergence of approximations even using few
terms. As a measure of the accuracy of these approximations, in Table 4.3 we
show the values of error defined in (4.21) time instants t̂ = {0.05, 0.2, 1} taking as
stopping criterion for the order of truncation M that eM (t̂) ≤ 10−2.

Finally, in Figure 4.4 the mean, µyM (t) and the variance σ2
yM (t) for different

truncation order M are plotted to t from 0 to 1. As in the case of the 1-PDF we
can observe the convergence. In Table 4.4 the following error for the mean and the
variance is calculated as in Example 4.2.
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Figure 4.4: Plots of approximations µyM (t) (left) and σ2
yM (t) (right), given by (4.23) and

(4.24), respectively, to the exact mean and variance of the solution SP to random fractional
IVP (4.3), respectively, for different values of the truncation orderM in the context of Example
4.2.

M=1 M=2 M=3 M=4 M=5 M=6
eµM 1.062 0.454 0.173 0.060 0.019 0.006
eσ

2

M 0.712 0.331 0.136 0.050 0.017 0.005

Table 4.4: Values of errors defined in (4.22) to quantify the quality of approximations µyM (t)
and σ2

yM (t), given by (4.23) and (4.24), respectively, to the exact mean and variance of the
solution SP to random fractional IVP (4.3), respectively, for different values of the truncation
order M in the context of Example 4.2. The truncation order M has been computed so that
eM (t̂) ≤ 10−2.
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4.4 Conclusions

4.4 Conclusions

In this chapter, we have computed approximations to the first probability density
function of random fractional linear differential equations using the so-called
Random Variable Transformation method. Under mild conditions on random data,
we have proved the convergence of approximations to the exact probability density
function of the solution SP. The generality of our findings relies upon the facts
that uncertainty has been considered in all inputs (initial condition, forcing term
and diffusion coefficient) and a wide variety of probability distributions can be
assigned to each one of them. To the best of our knowledge, this is the first time
this analysis has been conducted for RFDEs.

Chapter published

The results of this chapter have been published in [20]. With regard to this paper,
the PhD candidate has contributed by working in its complete development with
more emphasis on preparing the numerical examples and writing the results
submitted to a scientific journal.
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Chapter 5
Solving a random mean square

non-autonomous linear fractional differential
equations by means of a generalized mean

square convergent power series

In the previous chapters a random linear fractional differential equation has been
studied. A convergent series solution and its first probability density function have

been obtained. In this chapter, a random non-autonomous linear fractional
differential equation of order α ∈]0, 1] is solved. A mean square series solution is
constructed using a random Frobenius approach. Its mean square convergence is
guaranteed assuming mild conditions on its random inputs. In addition, explicit

expressions to approximate the mean, the variance and the covariance of the
random series solution are given. Two full illustrative examples are shown. In the
second of them, the applicability of random fractional calculus in mathematical
modelling is shown describing the growth dynamics of a bacteria over the time

using real data.
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Chapter 5. Solving a random non-autonomous linear fractional differential equation

5.1 Introduction

This chapter is devoted to solve, the following random non-autonomous fractional
IVP using a generalized version of Frobenius method (see Section 2.4).{ (

CDα
0+Y

)
(t)−B tβY (t) = 0, t > 0, 0 < α ≤ 1, β > 0,
Y (0) = A,

(5.1)

where
(
CDα

0+Y
)

(t), is the random m.s. Caputo fractional derivative defined in
(2.16). The input data A and B are assumed to be independent 2-RVs.

The aim of the chapter is to find general conditions on 2-RVs A,B so that for the
random IVP (5.1) we can construct a m.s. solution of the form

Y (t) =
∞∑
m=0

Xmt
(α+β)m, (5.2)

where {Xm : m ≥ 0} is a sequence of 2-RVs to be determined. The study will be
conducted by using the random m.s. calculus, see Section 2.2 and [109].

This chapter is organized as follows. Section 5.2, is devoted to construct a m.s.
convergent solution of IVP (5.1) and to establish mild conditions into the random
inputs to guarantee the convergence of the generalized power series solution.
Furthermore, the main statistical properties, mean, variance and covariance of the
solution SP are obtained. In Section 5.3 two numerical examples are described to
illustrate the theoretical findings.

5.2 Constructing a mean square convergent random generalized
power series solution and approximating its main statistical
properties

First, we shall justify that the first m.s. derivative of the 2-SP Y (u) defined in
(5.2) at t = u > 0 is given by

Y ′(u) =
∞∑
m=0

Xm(α+ β)mu(α+β)m−1. (5.3)
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5.2 Constructing a mean square convergent random generalized power series solution and
approximating its main statistical properties

To this end, we apply Theorem 2.1 and Proposition 2.4. Let u0 > 0 be fixed
and define Vm(u) = Xmu

(α+β)m. Let us assume that Xm is a 2-RV. By applying
Theorem. 2.1, with f(u) = u(α+β)m and Z(u) = Xm, it follows that for each
m, Vm(u) is m.s differentiable at u = u0 and its m.s. derivative is given by
V ′m(u0) = Xm(α+β)mu(α+β)m−1

0 . It is easy to check that Vm(u) is m.s. continuous
at u0. Once coefficients Xm are determined, we will find conditions on RVs A,B in
order to hypotheses ii) and iii) of Proposition 2.4 are met. For now on, assume that
I ⊂ [0,∞). If V (u) =

∑
n≥m0

Vn(u) is m.s. convergent on I and
∑
n≥m0

V ′m(u)
is m.s. uniformly (m.s.u.) convergent in a neighbourhood of each u ∈ I, then
Proposition 2.4 implies (5.3) and

(
CDα

0+Y
)

(t) = 1
Γ(1− α)

∫ t

0
(t− u)−αY ′(u) du

= 1
Γ(1− α)

∫ t

0
(t− u)−α

∞∑
m=0

Xm(α+ β)mu(α+β)m−1 du

=
∞∑
m=0

Xm(α+ β)m 1
Γ(1− α)

∫ t

0
(t− u)−αu(α+β)m−1 du.

(5.4)

The commutation of the series in the last step is legitimated because it is m.s.u.
convergent. Now, using the substitution u = vt on the above integral and the
relationship (2.10) one gets

1
Γ(1− α)

∫ t

0
(t− u)−αu(α+β)m−1 du = tm(β+α)−α

Γ(1− α)

∫ 1

0
(1− v)−αvm(α+β)−1 dv

= Γ(m(α+ β))
Γ(m(α+ β)− α+ 1) t

m(β+α)−α.

(5.5)
Therefore,

(
CDα

0+Y
)

(t) =
∞∑
m=0

Xm(α+ β)m Γ(m(α+ β))
Γ(m(α+ β)− α+ 1) t

m(β+α)−α

=
∞∑
m=0

Xm+1
Γ((m+ 1)(α+ β) + 1)

Γ((m+ 1)(α+ β)− α+ 1) t
(m+1)(β+α)−α,

(5.6)
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in the last step we have used the gamma duplication formula, xΓ(x) = Γ(x+ 1),
x > 0 with x = (m+ 1)(α+ β) > 0. Substituting (5.6) into (5.1) yields(

CDα
0+Y

)
(t)−BtβY (t)

=
∞∑
m=0

[
Xm+1

Γ((m+ 1)(α+ β) + 1)
Γ((m+ 1)(α+ β)− α+ 1) −BXm

]
t(m+1)(β+α)−α = 0.

(5.7)

If Xm+1
Γ((m+1)(α+β)+1)

Γ((m+1)(α+β)−α+1) = BXm, m = 0, 1, 2, .... As Y (0) = A = X0, it follows
from last equation that Xm = BmA

∏m
n=1

Γ((n−1)α+βn+1)
Γ(n(α+β)+1) for m ≥ 1. As a result,

Y (t) = A+
∞∑
m=1

BmA
m∏
n=1

Γ((n− 1)α+ βn+ 1)
Γ(n(α+ β) + 1) t(α+β)m (5.8)

is a m.s. solution of random IVP (5.1) on I provided that Y (t) is m.s. convergent
on I and Y ′(t) =

∑∞
m=1B

mA(α + β)m
∏m
n=1

Γ((n−1)α+βn+1)
Γ(n(α+β)+1) t(α+β)m−1 is m.s.u.

convergent on I. Let us first show that Y (t) is m.s. convergent on I. To this end,
we will assume the following hypotheses

M1: For m,m0 integers

∃ η,H > 0, p ≥ 0 : ‖Bm‖2 ≤ ηH
m−1((m− 1)!)p, ∀m : m ≥ m0 ≥ 1.

This condition have been previously described in Chapter 3, hypothesis Ĥ2,
(page 49), but considering the RV λ instead B.

M2: A and B are independent RVs.

Now,

96



5.2 Constructing a mean square convergent random generalized power series solution and
approximating its main statistical properties

∥∥∥∥∥BmA
m∏
n=1

Γ((n− 1)α+ βn+ 1)
Γ(n(α+ β) + 1) t(α+β)m

∥∥∥∥∥
2

≤ηHm−1((m− 1)!)p‖A‖2

·
m∏
n=1

Γ((n− 1)α+ βn+ 1)
Γ(n(α+ β) + 1) t(α+β)m

:= δm(t).
(5.9)

The analysis of the convergence of the series
∑∞
m=0 δm(t) will be performed by

using the ratio or D’Alembert test. Indeed, we compute the limm→∞
δm+1(t)
δm(t) with

the aid of Stirling’s formula, (2.12):

lim
m→∞

δm+1(t)
δm(t) = lim

m→∞
HmpΓ(mα+ (m+ 1)β + 1)

Γ((m+ 1)(α+ β) + 1) t
α+β

= lim
m→∞

Hmp(mα+ (m+ 1)β)mα+(m+1)βe−(mα+(m+1)β)√2π(mα+ (m+ 1)β)
[(m+ 1)(α+ β)](m+1)(α+β)

e−(m+1)(α+β)
√

2π(m+ 1)(α+ β)
tα+β

= lim
m→∞

Hmp

[
mα+ (m+ 1)β

(m+ 1)β + (m+ 1)α

]m(α+β) [
mα+ (m+ 1)β

(m+ 1)β + (m+ 1)α

]β
×
( 1
β + α

)α ( 1
m+ 1

)α
eα

√
mα+ (m+ 1)β

(m+ 1)β + (m+ 1)αt
α+β .

(5.10)

As limm→+∞

[
mα+(m+1)β

(m+1)β+(m+1)α

]m
= e−

α
α+β , limm→+∞

mα+(m+1)β
(m+1)β+(m+1)α = 1, for 0 ≤

p ≤ α and t ≥ 0 it follows

lim
m→+∞

δm+1(t)
δm(t) = tα+β H

(α+ β)α lim
m→+∞

mp

(m+ 1)α

= Htβ
(

t

α+ β

)α
lim

m→+∞

mp

(m+ 1)α

=

 0 if 0 ≤ p < α,

Htβ
(

t

α+ β

)α
if p = α.

(5.11)
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Chapter 5. Solving a random non-autonomous linear fractional differential equation

Therefore, the series
∑∞
m=0 δm(t) is convergent for all t in D, where

D =

 [0,∞[ if 0 ≤ p < α,[
0, (α+β)

α
α+β

H
1

α+β

[
if p = α,

(5.12)

which implies that Y (t) is m.s. convergent for every t in D. Following a similar
analysis, it can be shown that Y ′(t) is m.s. convergent for every t in D. We conclude
that for any closed interval I in D, Y (t) is m.s convergent on I and Y ′(t) m.s.u.
convergent on I. As a consequence, hypotheses i) and ii) of Proposition 2.4 hold.
Hence, we have established the following result:

Theorem 5.1 If the RVs A,B satisfy conditions M1 and M2, then the 2-SP
Y (t) defined by (5.8) is a m.s. solution of the random IVP (5.1) on any closed
interval I ⊂ D, where D is defined in (5.12).

As the m.s. solution Y (t) of random IVP (5.1) is a 2-SP represented through an
infinite series (see expression (5.8)), in practice, must be truncated at a positive
integer M ,

YM (t) = A+
M∑
m=1

BmAGmt
(α+β)m, Gm :=

m∏
n=1

Γ((n− 1)α+ βn+ 1)
Γ(n(α+ β) + 1) . (5.13)

The main statistical information of Y (t) is given by the mean, the variance and
the covariance functions. As Y (t) is convergent in the m.s. sense, Proposition 2.10
legitimates the mean, variance and covariance of Y (t) can be computed obtaining
the main statistical moments of YM (t).Considering that A and B are independent
RVs, the mean of YM (t) can be written as

E [YM (t)] = E [A] +
M∑
m=1

E [Bm]E [A]Gmt(α+β)m. (5.14)

The covariance of two any RVs Ã and B̃ is defined by Cov[Ã, B̃] = E[ÃB̃] −
E[Ã]E[B̃], and in particular, Cov[Ã, Ã] = E[Ã2] − (E[Ã])2 = V[Ã], where V[Ã]
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5.3 Numerical examples

denotes the variance of Ã, the covariance of YM (t) and YN (s) with M,N positive
integers and t, s in I ⊂ R is given by

Cov [YM (t), YN (s)] = Cov
[
A+

M∑
m=1

BmAGmt
(α+β)m , A+

N∑
n=1

BnAGns
(α+β)n

]

+
N∑
n=1

M∑
m=1

Cov [BmA,BnA]GmGnt(α+β)ms(α+β)n

= V[A]
(

1 +
N∑
n=1

E [Bn]Gnt(α+β)m +
M∑
m=1

E [Bm]Gmt(α+β)m

)

+
N∑
n=1

M∑
m=1

(
E
[
A2]E [Bm+n]− (E [A])2 E [Bm]E [Bn]

)
·GmGnt(α+β)ms(α+β)n.

(5.15)

Since V [YM (t)] = Cov [YM (t), YM (t)], setting M = N and t = s in (5.15), one also
obtains the variance of YM (t)

V [YM (t)] = V[A]
(

1 + 2
M∑
m=1

E [Bm]Gmt(α+β)m

)

+
M∑
n=1

M∑
m=1

(
E
[
A2]E [Bm+n]− (E [A])2 E [Bm]E [Bn]

)
·GmGnt(α+β)(m+n).

(5.16)

5.3 Numerical examples

Now, we first illustrate the theoretical results previously established through two
examples. The first one is a full numerical example while the second example
illustrates the potentiality of random fractional IVP (5.1) in a mathematical
modelling setting using real data.
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Chapter 5. Solving a random non-autonomous linear fractional differential equation

Example 5.1 This example has been devised to illustrate the different domains
of convergence for the mean and standard deviation depending upon the relation-
ship between parameters p and α (see Theorem 5.1 and expression (5.12)). Let
us consider the random fractional IVP (5.1) in two scenarios (Cases I and II)
depending on the order α ∈]0, 1] of the fractional derivative, the parameter β and
the probability distributions chosen for RVs B and A.

Case I (p < α) : α = 0.7, B is a Beta RV of parameters (50, 100), i.e., B ∼
Be(50; 100) (thus, according to Example 3.1, p = 0 because B
is a bounded RV); A is a Gaussian RV with mean µ = 0.1 and
variance σ2 = 1, i.e., A ∼ N(0.1; 1) and, β = 0.1. In Figure
5.1, we have plotted approximations of the mean and standard
deviation by expressions (5.14) and (5.16), respectively, using
different orders of truncations M over the interval t ∈ [0, 15].
Notice that these results are in agreement with our theoretical
findings. Indeed, as p = 0 < 0.7 = α, we can observe that both
statistical moments converge for every value of t.

Case II (p = α) : α = 0.5, B ∼ N(0; 0.1) (thus, p = 0.5), A ∼ N(0.1; 1) and,
β = 2. As p = α, according to Theorem 5.1 and expression (5.12),
the domain of convergence is D = [0, 2.626578[ since η = σ = 0.1
and H = σ

√
2 ≈ 0.141421 (see Example 3.2). In Figure 5.2 , we

have plotted approximations of the mean and standard deviation
using different orders of truncations M over the time intervals
t ∈ [0, 3.5] and t ∈ [0, 3], respectively. To delineate the region of
convergence we have plotted a vertical red line. For the sake of
clarity, a part of the region of convergence has been magnified for
both the mean and the standard deviation (right column of Case
II in Figure 5.2). The numerical results agree with theoretical
findings.

When p = α, as reported in (5.12), the domain of convergence [0, t1[ of the solution
SP may be small (it will depend on the fractional derivative order α, β model
parameter and the constant H that appears in hypothesis M1). This domain [0, t1[
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Figure 5.1: Approximations of the mean and the standard deviation of the solution SP to
the random IVP (5.1) using different orders of truncations M in Case I (p < α) described
in the context of Example 6.1. Notice that the approximations corresponding to M = 12
and M = 14, for the mean and the standard deviation, match on the whole time interval
t ∈ [0, 15], thus showing convergence.
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Figure 5.2: Approximations of the mean and the standard deviation of the solution SP to
the random IVP (5.1) using different orders of truncations M in Case II (p = α) described in
the context of Example 6.1. On the left side, we have delineated the domain of convergence
for the mean and the standard deviation plotting a vertical line. On the right side, we show
a zoom on a piece of the domain of convergence, for the sake of clarity. Observe that the
approximations corresponding to M = 4, 6, 8, 10 match for the mean, while this same fact
happens when M = 9, 10, in the case of the standard deviation.
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5.3 Numerical examples

with t1 = ((α + β)
α

α+β )/(H
1

α+β ), can be extended using the following strategy,
which has been successfully applied in another contributions, [73]. Once the solution
Y (t), given by (5.8), has been constructed in the interval [0, t1[, we seek a solution
SP, say Y1(t), of the form

Y1(t) =
∞∑
m=0

Xm,1(t− t1)(α+β)m, (5.17)

i.e., centered at t1, of the same RFDE given in (5.1), but whose random initial
condition matches the value of the solution, Y (t), constructed in the piece [0, t1[
at the ending time point, that is, Y1(t1) := Y (t1). Then, using a similar reasoning
we have exhibited in our development, one can determine the new coefficient RVs
Xm,1, m ≥ 0, and it can be proven that random series (5.17) is m.s. convergent
in the piece [t1, 2t1[. This procedure can be successively applied to extend the
solution on a desired interval, say [0, T ].

Example 5.2 Now, we illustrate an application of random fractional IVP (5.1)
to model the dynamics of growth bacteria over the time using real data. Differential
equation in (5.1) can be interpreted as a generalization of the classical exponential
(or Malthusian) model with time-dependent population growth rate, Btβ, for a
species whose initial population, A is known. Here, this generalization has been
made in two senses, namely, first introducing the Caputo fractional derivative,(
CDα

0+Y
)

(t) with 0 < α ≤ 1, instead of classical derivative, Y ′(t), and secondly,
by considering model parameter B and initial condition A as RVs rather than
deterministic values. On the one hand, the use of a fractional derivative can be
justified because the growth dynamics is determined by genetic, environmental
factors, etc., developed over previous periods, then it is expected these biological
features can be better modelled via Caputo fractional derivative, which is defined
in terms of an integral (thus with memory), instead of classical derivative that
just characterizes instantaneous changes. On the other hand, the consideration of
randomness in model inputs B and A can be justified because the complex nature
of population growth rate, which depends on uncertain biological factors, and, in
practice, the value of the initial condition is usually known on the basis of sampling,
respectively. In this spirit, here we consider the classical non-autonomous Malthus
model to a generalized one, in which ordinary derivative and model inputs are
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Chapter 5. Solving a random non-autonomous linear fractional differential equation

replaced by fractional derivatives and RVs, respectively. Our example is based on
measured population values of Rhodobacter Capsulatus anaerobic photosynthetic
bacteria {yi : 0 ≤ i ≤ 4} corresponding to days ti (Table 5.1). This information
has been obtained from source [110]. First, we have performed a classical (or
deterministic) fitting based upon minimizing the m.s. error between real data yi,
and the solution of the corresponding deterministic differential equation (Y ′(t) =
BtβY (t), Y (0) = A = 5.83× 105), which is given by

Y (t) = A exp
(

B

1 + β
+ Bt1+β

1 + β

)
.

Using PSO (Particle Swarm Optimization method) with 1000 iterations [41],
we have obtained the following estimates for deterministic model parameters:
β = 2.2573 and B = 0.168764, being the RMSE (Root Mean Square Error) of this
fitting εdet. = 763 (observe that units are of magnitude 106. In Table 5.1 we show
the results, ydet.

i , provided by this approach. Secondly, we have assumed that B is
a Gamma RV of parameters (rB, sB) and the initial condition A is an Exponential
RV of parameter λA = 1/(5.83× 105). On the one hand, observe that the choice
made for the distribution of B is justified because real data yi have a positive
trend, hence B must be a positive RV and Gamma distribution holds this feature,
moreover it is a flexible distribution able to perform a good fitting since it depends
on two parameters (rB and sB). On the other hand, Exponential distribution
guarantees the positiveness of the initial condition, and we have imposed that its
mean E[A] = 1/λA matches the initial condition 5.83 × 105. Then, considering
this choice for the distributions of random inputs B and A, we have performed a
(random) fitting based upon minimizing the m.s. error between real data yi and
the mean of the solution SP of the random fractional IVP (5.1), i.e.,

min
rB,sB,β>0; 0<α≤1

Error(rB, sB, β, α) =
4∑
i=0

(yi − E[YM (ti; rB, sB, β, α)])2
,

where E[YM (ti; rB, sB, β, α)] is given by (5.13)–(5.14). We have again applied
PSO method with 1000 iterations to solve this minimization program taking as
truncation order M = 20 (for which the approximation of the exact expectation
is very accurate) and then we have obtained the following estimates for model
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5.4 Conclusions

parameters: β = 0.1975, rB = 14.64, sB = 75.32 and α = 0.89, being the RMSE
(Root Mean Square Error) of this fitting εrandom = 660. In Table 5.1 we show the
results, yrandom

i , provided by this approach. We have shown that εrandom < εdet.,
in order to complete better an adequate comparison between deterministic and
random fractional approaches, in Table 5.1 we give an important goodness-of-fit
measure, MAPE (Mean Absolute Percentage Error). Again, we can observe that
our proposed approach provides better results for this statistical measure.

ti (time in days) 0 2 4 7 9 MAPE
yi (population cells/mL) 5.830E + 05 6.350E + 05 1.08E + 06 3.20E + 06 5.23E + 06 —-

ydet.
i

(deterministic fitting) 6.667E + 05 9.189E + 05 1.435E + 06 3.141E + 06 5.589E + 06 0.20144

yrandom
i

(random fitting) 5.830E + 05 8.504E + 05 1.338E + 06 2.932E + 06 5.307E + 06 0.13533

Table 5.1: Cell counts yi of Rhodobacter Capsulatus anaerobic photosynthetic bacteria at
the time instants ti (data retrieved from [110]). Values of the deterministic fitting (ydet.

i )
and random fractional fitting yrandom

i . Goodness-of-fit measure for both approaches: MAPE
(Mean Absolute Percentage Error). Example 5.2.

5.4 Conclusions

In this chapter, we have studied a random non-autonomous linear fractional
differential equation, where the order of the derivative α ∈]0, 1]. A generalized
power series solution has been constructed using a randomized version of the
classical Frobenius method, and mild conditions have been imposed to guarantee
its m.s. convergence. Afterwards, we have computed approximations for the mean,
for the variance and for the covariance of the solution SP. To illustrate the
theoretical findings, two numerical examples have been shown. In particular, in
the second one, we can observe the applicability of random fractional calculus
in modelling of biological processes. We want to underline that this study seeks
to contribute to the emergent area of random fractional differential equations
(RFDEs), where fractional calculus and differential equations meet to provide a
rigorous treatment of randomness.
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Chapter 5. Solving a random non-autonomous linear fractional differential equation

Chapter published

The results of this chapter have been published in [21]. With regard to this paper,
the PhD candidate has contributed by working in its complete development with
more emphasis on constructing a mean square convergent solution, obtaining their
main statistical moments and developing numerical examples.
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Chapter 6
Solving high order random mean square

non-autonomous linear fractional differential
equations: A generalized version of Airy

random differential equation

In Chapter 5 a random non-autonomous linear fractional differential equation
where the order of Caputo derivative, α, lies in ]0, 1] has been studied. In this

chapter, we advance solving the same non-autonomous IVP, but considering an
arbitrary order of the fractional derivative. This IVP generalizes the Airy

differential equation, since when α = 2 and β = 1 it becomes the classical Airy
IVP. As it has been done in the previous chapters, under appropriate hypotheses
assumed upon the input data, we construct a convergent random generalized power

series solution of the problem. Afterwards, we provide reliable explicit
approximations for the main statistical information of the solution process (mean,

variance and covariance). Finally, we illustrate how to construct reliable
approximations of the probability density function of the solution stochastic process

combining the approximations of the mean and variance with the Principle of
Maximum Entropy. The theoretical findings are illustrated with numerical results.
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Chapter 6. Solving high order random non-autonomous linear fractional differential
equations: generalizing Airy differential equation

6.1 Introduction

Let us consider the following random non-autonomous linear fractional differential
equation that generalizes the classical Airy-type IVP.


(
CDα

0+Y
)

(t)−B tβY (t) = 0, t > 0, n− 1 < α ≤ n, n ∈ N, β > 0,

Y (j)(0) = Aj , j = 0, 1, . . . ., n− 1,
(6.1)

where
(
CDα

0+Y
)

(t) is the m.s. random Caputo fractional derivative defined in
(2.16). Notice that if α = 2 and β = 1, then (6.1) becomes the classical Airy
differential equation with initial conditions A0 and A1. The initial conditions Aj ,
j = 0, 1, ..., n− 1, and coefficient B are assumed to be independent real 2-RVs.

The Airy differential equations and its related functions [115] are applied in several
fields such as fluid mechanics, elasticity, quantum physics and so on. It has been
studied separately in the context of deterministic FDEs [3, 117, 6] and in the RDEs
[42], however to the best of our knowledge, its mathematical study combining
both fractional and random calculus, i.e., treating it as a RFDEs has not been
undertaken yet, which is the motivation of this scientific chapter.

The main goal of this chapter is to establish conditions on RVs Aj , j = 0, 1, ..., n−1,
and B in order to construct a m.s. solution to problem (6.1) in the following form

Y (t) =
n−1∑
j=0

Yj(t) with Yj(t) =
∞∑
m=0

Xm,jt
γm+j . (6.2)

In the above expression, Xm,j is a sequence of 2-RVs to be determined, and
γ := α + β. Observe that γ > n − 1 because n − 1 < α ≤ n and β > 0. As
the solution of random IVP (6.1) is a SP, an important target is to compute its
statistical properties as well. Specifically, as our study is based on m.s. random
calculus corresponding to L2(Ω), we will construct approximations for the two first
statistical moments (the mean and the variance) of the solution SP Y (t). At this
point it is worth pointing out that in this way we will give our results in the biggest
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6.2 Constructing the solution stochastic process

Lp(Ω)-type Lebesgue space, since it is known that Lq(Ω) ⊂ Lp(Ω), 1 ≤ p ≤ q ≤ ∞,
and taking p = 2 is guaranteed the existence of variance (or equivalently of
randomness). As an interesting application of obtaining approximations of the
mean and of the variance, we take advantage of Principle of Maximum Entropy to
construct the probability density function of the solution.

This chapter is organized as follows: In Section 6.2, first we construct a random
generalized power series solution of the form (6.2) to the random fractional IVP
(6.1) and then we provide sufficient conditions on the coefficient B and the initial
conditions Aj , 0 ≤ j ≤ n− 1, in order to guarantee the m.s. convergence of that
random series. Section 6.3 is addressed to compute the main statistical properties
of the solution SP, namely, the mean, the variance and the covariance. Section 6.5
is devoted to show a set of numerical examples where our theoretical results are
illustrated. Section 6.4 shows, by means of a detailed example, how to construct
reliable approximations of the probability density function of the solution SP to
the random fractional Airy differential equation by combining the knowledge of
the mean and of the variance together with the Principle of Maximum Entropy. In
this manner we are able to provide a full probabilistic description of the solution
SP at each time instant. Our conclusions are shown in Section 6.6.

6.2 Constructing the solution stochastic process

As it will be seen right now, we will obtain the solution to the random fractional
IVP (6.1) following a constructive reasoning. This process will require to legitimate
certain operational rules, in the m.s. sense. For the sake of clarity, we start this
section by rigorously proving these rules. To this purpose, we will apply [109,
Property (4.126), page 96] to calculate the m.s. derivative of the product of a
differentiable deterministic function and a m.s. differentiable SP, and Proposition
2.4 to differentiate a series of m.s. SPs.

Our first step will be to rigorously legitimate that the first m.s. derivative of the
SP Yj(t), defined in (6.2) for t > 0, is given by

d
dt [Yj(t)] =

∞∑
m=0

Xm,j
d
dt
[
tγm+j] , j = 0, 1, . . . , n− 1. (6.3)
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Indeed, take t0 > 0 fixed and for each j, let Um(t) = Xm,jt
γm+j being Xm,j ∈

L2(Ω). Then applying [109, property (4.126), page 96] to f(t) = tγm+j and
X(t) = Xm,j , one gets that Um(t) is m.s. differentiable at t0 being d

dt [Um(t)] |t=t0 =
Xm,j

d
dt
[
tmγ+j] |t=t0 its m.s. derivative for every m ≥ 0. Moreover, if Xm,j ∈ L2(Ω)

then clearly the sequence of SPs {Um(t) : m ≥ 0} is m.s. continuous at t0. Take
T an interval in R+ and define U(t) =

∑
m≥0 Um(t). If this latter sum is m.s.

convergent and
∑
n≥0 U

′
m(t) converges uniformly in the m.s. sense for each t ∈ T ,

then Proposition 2.4 it is guaranteed that (6.3) holds. At this point is important
to underline that we have implicitly assumed that Xm,j ∈ L2(Ω). Later we will
compute explicitly coefficients Xm,j in terms of Aj , j = 0, 1, ..., n − 1 and B,
and then assuming appropriate hypotheses on input data we will check that
Xm,j ∈ L2(Ω). Following an analogous reasoning, it can easily be shown that

dn
dtn [Yj(t)] =

∞∑
m=0

Xm,j
dn
dtn

[
tγm+j] , n ≥ 1, (6.4)

being n a fixed positive integer.

Using the fractional derivative of the power function tν given by [52, Example 3.1]

CDα
0+tν =


tν−α Γ(ν+1)

Γ(ν+1−α) if ν > n− 1,

0 if ν = 0, 1, ..., n− 1,
n = −b−αc, α > 0, (6.5)
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and (6.4), one derives

(
CDα

0+Y
)

(t) =

CDα
0+

n−1∑
j=0

Yj

 (t)

=
n−1∑
j=0

(
CDα

0+Yj
)

(t)

=
n−1∑
j=0

( 1
Γ(n− α)

∫ t

0
(t− u)n−α−1 dn

dun [Yj(u)] du
)

by (6.4) =
n−1∑
j=0

(
1

Γ(n− α)

∫ t

0
(t− u)n−α−1

∞∑
m=0

Xm,j
dn

dun
[
uγm+j] du

)

=
n−1∑
j=0

( ∞∑
m=0

Xm,j
1

Γ(n− α)

∫ t

0
(t− u)n−α−1 dn

dun
[
uγm+j]du

)

=
n−1∑
j=0

( ∞∑
m=0

Xm,j
CDα

0+ tγm+j

)

by (6.5) =
n−1∑
j=0

∞∑
m=1

Xm,j
Γ(γm+ j + 1)

Γ(γm+ j + 1− α) t
γm+j−α

=
∞∑
m=0

n−1∑
j=0

Xm+1,j
Γ(γ(m+ 1) + j + 1)

Γ(γ(m+ 1) + j + 1− α) t
γ(m+1)+j−α.

Notice that when applying (6.4), we have used that γ = α+ β > n− 1.

Hence, taking into account that γ = α+ β, one obtains

(
CDα

0+Y
)

(t)−BtβY (t) =
∞∑
m=0

n−1∑
j=0

Xm+1,j
Γ(γ(m+ 1) + j + 1)

Γ(γ(m+ 1) + j + 1− α) t
γ(m+1)+j−α

−Btβ
∞∑
m=0

n−1∑
j=0

Xm,jt
γm+j

=
∞∑
m=0

n−1∑
j=0

[
Xm+1,j

Γ(γ(m+ 1) + j + 1)
Γ(γ(m+ 1) + j + 1− α) −BXm,j

]
tγm+j+β .

(6.7)
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So, if we choose

Xm+1,j = BXm,j
Γ(γ(m+ 1) + j + 1− α)

Γ(γ(m+ 1) + j + 1) , m = 0, 1, . . .

in (6.7), it is guarantee that Y (t) defined by (6.2) will satisfy the RFDE
(
CDα

0+Y
)

(t)−
BtβY (t) = 0. Taking into account that Y (j)(0) = X0,j = Aj for j = 0, 1, ..., n− 1,
the recursion for the sequence of coefficients Xm,j gives

Xm,j = BmAjGm,j , Gm,j :=
m∏
k=1

Γ(kγ + j + 1− α)
Γ(kγ + j + 1) > 0, m ≥ 0,

where as usual we implicitly assume that
∏m
k=1 yk = 1 when m = 0. Therefore

Y (t) =
n−1∑
j=0

Yj(t) =
n−1∑
j=0

( ∞∑
m=0

BmAjGm,jt
γm+j

)

is a m.s. solution of (6.1), provided that, for each j, the SPs Yj(t) and diYj(t)
dti , i =

1, 2, ..., n are m.s. convergent and m.s. uniformly convergent on T , respectively. In
order to justify that these conditions fulfil, we will assume the following hypotheses
for the random inputs Aj , j = 0, 1, 2, . . . , n− 1 and B:

K1: There exist constants η,H > 0 and p ≥ 0 and m,m0 integers such that

‖Bm‖2 ≤ ηH
m−1((m− 1)!)p, ∀m : m ≥ m0 ≥ 1.

K2: For every j, j = 0, 1, ..., n− 1, Aj and B are independent RVs.

As a consequence of hypotheses K1 and K2, one gets∥∥BmAjGm,jtγm+j∥∥
2 ≤ ηH

m−1((m− 1)!)p‖Aj‖2Gm,jtγm+j := δm,j(t), (6.8)

for j = 0, 1, . . . , n− 1, m ≥ 1 integer and t > 0. For every j fixed, we study the
domain of convergence of the infinite sum

∑∞
m=0 δm,j(t) by applying the ratio test

and the Stirling formula (2.12).
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The approximation Γ(x + 1) ≈ xxe−x
√

2πx as x → ∞ will be used too. Recall
that γ = α+ β.

lim
m→∞

δm+1,j(t)
δm,j(t)

= lim
m→∞

HmpΓ((m+ 1)γ + j + 1− α)
Γ ((m+ 1)γ + j + 1) tγ

= lim
m→∞

Hmp

[(m+ 1)γ + j − α
(m+ 1)γ + j

](m+1)γ+j−α ( 1
(m+ 1)γ + j

)α
· eα

√
(m+ 1)γ + j − α

(m+ 1)γ + j
tα+β

= lim
m→∞

Hmp

[(m+ 1)γ + j − α
(m+ 1)γ + j

]mγ [(m+ 1)γ + j − α
(m+ 1)γ + j

]β+j ( 1
(m+ 1)γ + j

)α
· eα

√
(m+ 1)γ + j − α

(m+ 1)γ + j
tα+β .

Now taking into account that

lim
m→+∞

[(m+ 1)γ + j − α
(m+ 1)γ + j

]mγ
= e−α

and
lim

m→+∞

(m+ 1)γ + j − α
(m+ 1)γ + j

= 1, t ≥ 0,

one gets

lim
m→+∞

δm+1(t)
δm(t) = tα+βH lim

m→+∞

mp

((m+ 1)(α+ β) + j)α

=

 0 if 0 ≤ p < α,

Htβ
(

t

α+ β

)α
if p = α.

(6.10)
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So, we have proved that the majorizing series
∑∞
m=0 δm,j(t) converges for every t

in D, where

D =

 [0,∞) if 0 ≤ p < α,[
0, (α+β)

α
α+β

H
1

α+β

[
if p = α.

(6.11)

Summarizing, we have found sufficient conditions for the 2SP Y (t) to be a m.s.
solution of the IVP given in (6.1). The next result states our findings.

Theorem 6.1 If the RVs Aj , j = 0, 1, ..., n− 1, and B satisfy conditions K1 and
K2, then the SP

Y (t) =
n−1∑
j=0

( ∞∑
m=0

BmAjGm,jt
γm+j

)
, γ = α+ β, (6.12)

where
Gm,j =

m∏
k=1

Γ(kγ + j + 1− α)
Γ(kγ + j + 1) , m = 0, 1, 2, . . . , (6.13)

is a m.s. solution of problem (6.1) for t ∈ T = [t1, t2] ⊂ D ⊂ R, being D given in
(6.11).

Notice that the domain of convergence of Y (t) depends on the relation between
the order of the fractional derivative, α > 0, and the value of p, involved in the
hypothesis K1, which only affects the random coefficient B.

6.3 Probabilistic properties of the solution stochastic process

Once we have constructed a solution SP, Y (t), to the random fractional IVP (6.1),
an important issue is to compute its main statistical properties, such as the mean
(E [Y (t)]), variance (V [Y (t)]) and covariance (Cov [Y (t), Y (s)]) functions. Since
the solution SP, Y (t), has been constructed via the infinite series (6.12)–(6.13), it
must be truncated to keep feasible the computational burden. Thus, for a positive
integerM , hereinafter we will consider the truncated series, YM (t), of Y (t), defined
by

YM (t) =
n−1∑
j=0

(
M∑
m=0

BmAjGm,jt
γm+j

)
. (6.14)
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To this end, the Proposition 2.10 will play a key role and it also justifies why we have
made the decision to conduct our study of uncertainty in the random fractional
IVP (6.1) using the m.s. convergence instead of considering other stochastic
convergences like almost surely, in probability or in distribution. Notice that we
can take advantage of this result because m.s. convergence of the infinite series
defining Y (t) for t > 0 has been rigorously established in Theorem 6.1.

Taking the expectation operator in (6.14) and using its linearity and hypothesis
K2, it is clear that the mean of YM (t) is given by

E [YM (t)] =
n−1∑
j=0

(
M∑
m=0

E [Bm]E[Aj ]Gm,jtγm+j

)
. (6.15)

Notice that in order to compute approximations of the expectation to the solution
SP Y (t) of the random IVP (6.1) via YM (t), the expectation of the initial conditions,
Aj , 0 ≤ j ≤ n− 1, and the moments with respect to (w.r.t.) the origin up to order
M of the random coefficient B are just required.

Now, we are interested in computing an approximation of the variance of YM (t).
To this end, and for the sake of generality, we first calculate its cross-covariance
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CYM ,YN (t, s) : = Cov [YM (t), YN (s)]

=
n−1∑
j=0

n−1∑
k=0

Cov
[
M∑
r=0

BrAjGr,jt
γr+j ,

N∑
m=0

BmAkGm,ks
γm+k

]

=
n−1∑
j=0

n−1∑
k=0

M∑
r=0

N∑
m=0

Cov [BrAj , BmAk]Gr,jGm,ktγr+jsγm+k

=
n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

(
E[AjAkBm+r]− E [BrAj ]E [BmAk]

)
·Gr,jGm,ktγr+jsγm+k

=
n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

(
E[Aj ]E[Ak]E[Bm+r]− E[Aj ]E [Ak]E [Bm]E [Br]

)
·Gr,jGm,ktγr+jsγm+k

=
n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

E[Aj ]E[Ak]
(
E[Bm+r]− E [Bm]E [Br]

)
·Gr,jGm,ktγr+jsγm+k

=
n−1∑
j=0

n−1∑
k=0

N∑
r=0

M∑
m=0

E[Aj ]E[Ak]Cov[Bm, Br]Gr,jGm,ktγr+jsγm+k,

(6.16)
where we have used the bilinearity of the covariance, its definition and the (mu-
tually) independence of RVs A0, A1, . . . , B, assumed in hypothesis K2. In the
particular case that M = N and t = s in (6.16), one obtains the variance of the
YM (t),
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V [YM (t)] = Cov [YM (t), YM (t)]

=
n−1∑
j=0

n−1∑
k=0

M∑
r=0

M∑
m=0

E[Aj ]E[Ak]Cov[Bm, Br]Gr,jGm,ktγr+jsγm+k

=
n−1∑
j=0

n−1∑
k=0

M∑
r=0

M∑
m=0

E[Aj ]E[Ak]
(
E[Bm+r]− E [Bm]E [Br]

)
·Gr,jGm,ktγr+jsγm+k.

(6.17)

Notice that in order to compute approximations of the variance to the solution SP
Y (t) of the random IVP (6.1) via YM (t), the expectation of the initial conditions,
Aj , 0 ≤ j ≤ n− 1, as well as the moments w.r.t. the origin up to order 2M of the
random coefficient B are just required.

Remark 6.1 Now, we make a constructive comment related to hypothesis K2.
In Section 6.2, to prove m.s. convergence of the solution SP Y (t) given by (6.12),
hypothesis K2 could be relaxed assuming that Aj and B are independent RVs for
every j : 0 ≤ j ≤ n−1 instead (to see this, just check inequality (6.8) and apply [63,
Theorem 3, page 92]). However, to keep a common assumption throughout the whole
presentation of the dissertation we have embraced (mutually) independence among
all involved RVs in K2, which is used to give a handy expression for the covariance,
and thus for the variance too (see expressions (6.16) and (6.17), respectively).

Remark 6.2 In the proof of Theorem 6.1, the set D is the interval where the de-
terministic majorizing series,

∑∞
m=0 δm,j(t), for the solution Y (t) is convergent. As

a consequence, the solution Y (t) is m.s. convergent on D, since Y (t) was majorized
by
∑∞
m=0 δm,j(t) with the norm ‖·‖2. However, the interval of convergence of Y (t)

may be larger than D. As a result of Proposition 2.10, the above approximations
of the mean, E [YM (t)], and the variance, V [YM (t)], of Y (t) are also convergent
on D. As in the case that p = α, the interval D is bounded, D =

[
0, (α+β)

α
α+β

H
1

α+β

[
,

the approximations of the variance (and thus of the mean) may converge in larger
intervals. This issue will be illustrated later in Example 6.3.
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6.4 Approximating the probability density function via the Principle
of Maximum Entropy

So far, we have computed approximations for the mean and for the variance of
the solution SP, Y (t), given by (6.12). However, more probabilistic information is
occasionally required to get a complete statistical description of Y (t). As it has
been indicated in Section 4.1, the probability density function (PDF) allows us
to obtain a full probabilistic description of the solution SP Y (t). In this section,
we use information of the estimations for the mean and the variance ((6.15) and
(6.17), respectively) to construct approximations of the PDF of Y (t), denoted as
fY (t)(y, t).

To do it, we will approximate fY (t)(y, t) by calculating the PDF of the approxi-
mation YM (t), given by (6.14). Let us denote by fYM (t)(y, t) the 1-PDF of YM (t).
To achieve this goal, we will combine the Principle of Maximum Entropy (PME),
[91], with the approximations for the mean and for the variance obtained in (6.15)
and (6.17), respectively.

The mathematical concept of entropy is a measurement of uncertainty. It defines
the lack of knowledge of a RV, which has been built on the basis of limited
probabilistic information. The larger the uncertainty of the RV, the larger its
entropy [91, Section 2.2]. Here, we will apply the so-called differential entropy or
Shannon’s entropy, SR. Given a RV, say R, SR is defined by

SR = −
∫
D(R)

fR(r) log (fR(r)) dr, (6.18)

where D(R) denotes the domain of R and fR its PDF. In our setting, entropy will
be used to construct approximations of the PDF, fYM (t)(y, t), using the available
information of YM (t), in this case, the approximations for the mean, (6.15), and
for the variance, (6.17).

We first fix a time instant t = t̂ and an order of truncation M large enough to
guarantee that

E
[
YM (t̂)

]
≈ E

[
Y (t̂)

]
= m1(t̂) ≡ m1,

E[(YM (t̂))2] ≈ E[(Y (t̂))2] = m2(t̂) ≡ m2,
(6.19)
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i.e., that the approximations of the two first moments with respect to the origin
(also the variance) are close enough. Observe that this fact has been legitimated
in Section 6.3 because of Proposition 2.10. Also notice that for convenience, in
(6.19) we have hidden the time dependence in the notation for mi, i = 1, 2. Then,
we adapt the PME, that is typically applied within the context of RVs [100, 75,
62], to our setting.

Let YM (t̂) be the continuous RV that approximates Y (t̂). To facilitate the notation
YM (t) and fYM (t)(y, t) will be denoted as YM and fYM (y), respectively. The PME
consists of determining the function fYM (y) that corresponds to the maximal
randomness (maximal entropy) with the minimal information available. To do
that, assuming that fR(r) exhibited in (6.18) represents the PDF of YM , i.e.
fR(r) = fYM , PME seeks the function fYM that maximizes SYM (defined in (6.18)),
capturing the lowest knoledge of the RV YM . In our case, as fYM represents a PDF,
their integral over the domain of YM must be the unit and the two first theoretical
moments of Y (t), calculated via the PDF, also match the corresponding values of
m1 and m2 (obtained via the numerical approximations), i.e.

∫
D(YM )

fYM (y)dy = 1,∫
D(YM )

yfYM (y)dy = m1,∫
D(YM )

y2fYM (y)dy = m2,

where D(YM ) denotes the domain of the RV YM , which is unknown in practice.
To overcome this lack of information in the domain of integration, here we use
the Bienaymé-Chebysshev’s inequality [36, page 122] to approximate D(YM ).
According to this important result, we can assure that the interval [a1, a2], with
a1 = E [YM ] − 10

√
V [YM ] and a2 = E [YM ] + 10

√
V [YM ], will contain all the

outcomes of YM with a probability of 99.9%, regardless the distribution of YM .
So, in our subsequent numerical computations we will take D(YM ) ≈ [a1, a2]. The
PDF fYM (y) is calculated by maximizing Shannon entropy of the RV YM . To this
end, we apply the variational extension of classical Lagrange multiplier method
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[91]. Hence, for a fixed t = t̂ we search a function, fYM : [a1, a2] −→ R, such that

L(fYM , λ0, λ1, λ2) = −
∫ a2

a1

fYM (y) log (fYM (y)) dy + λ0

(
1−

∫ a2

a1

fYM (y) dy
)

+ λ1

(
E [YM ]−

∫ a2

a1

yfYM (y) dy
)

+ λ2

(
E[(YM )2]−

∫ a2

a1

y2fYM (y) dy
)

= −
∫ a2

a1

fYM (y)
(

log(fYM (y)) +
2∑
i=0

λiy
i

)
dy

+ +λ0 + λ1E [YM ] + λ2E[(YM )2],
(6.20)

where λi, i = 0, 1, 2, are the so-called Lagrange multipliers. Using variational
calculus, we impose the four conditions:

∂L(fYM , λ0, λ1, λ2)
∂fYM

= 0,

∂L(fYM , λ0, λ1, λ2)
∂λ0

= 0,

∂L(fYM , λ0, λ1, λ2)
∂λ1

= 0,

∂L(fYM , λ0, λ1, λ2)
∂λ2

= 0. (6.21)

The first condition yields

∂L(fYM , λ0, λ1, λ2)
∂fYM

= −
∫ a2

a1

(
1 + log(fYM (y))) +

2∑
i=0

λiy
i

)
dy = 0.

Obviously, this condition holds when 1+log(fYM (y)))+
∑2
i=0 λiy

i = 0. This yields

fYM (y) = 1[a1,a2]e−1−λ0−λ1y−λ2y
2
, (6.22)
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where 1[a1,a2] denotes the characteristic function on the interval [a1, a2] ≈ D(YM ),
given by

1[a1,a2](y) =
{

1, a1 ≤ y ≤ a2,

0, otherwise.
(6.23)

On the other hand, with the remaining conditions of (6.21), we can compute the
values of Lagrange multipliers λ0, λ1, λ2, solving the nonlinear system

∂L(fYM , λ0, λ1, λ2)
∂λ0

= 0 −→
∫ a2

a1

e−1−λ0−λ1y−λ2y
2
dy = 1,

∂L(fYM , λ0, λ1, λ2)
∂λ1

= 0 −→
∫ a2

a1

ye−1−λ0−λ1y−λ2y
2
dy = m1,

∂L(fYM , λ0, λ1, λ2)
∂λ2

= 0 −→
∫ a2

a1

y2e−1−λ0−λ1y−λ2y
2
dy = m2.

(6.24)

This is a non-linear system of equations involving the Gauss error function erf[·]
when the integrals are calculated. Therefore, in practice numerical methods, such
as Newton-Raphson, are required to determine its solution (λ0, λ1, λ2). Once these
values have been computed, fYM is easily obtained by expression (6.22).

6.5 Numerical examples

This section is addressed to present some numerical examples where our previ-
ous theoretical findings are illustrated. We will compute approximations to the
mean (E[YM (t)]) and the variance/standard deviation (V[YM (t)]/σ[YM (t)]) of the
solution SP at different time instants t by increasing the order of truncation M
using the expressions (6.15) and (6.17), respectively. Considering M enough to
guarantee that E[YM (t)] ≈ E[Y (t)] and V[YM (t)] ≈ V[Y (t)], in the first example,
approximations for the 1-PDF of YM (t) have been constructed by PME approach
described in Section 6.4. The results are presented via graphical representations
or numerical tables of these statistical moments. In some of the examples, we
have also calculated the relative error of consecutive approximations of these two
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statistical moments with respect to the order of truncation

RE(Mean)(t;M) =
∣∣∣∣E[YM+1(t)]− E[YM (t)]

E[YM (t)]

∣∣∣∣ , (6.25)

RE(Variance)(t;M) =
∣∣∣∣V[YM+1(t)]− V[YM (t)]

V[YM (t)]

∣∣∣∣ . (6.26)

The examples are devised to illustrate the two possible situations with respect
the domain of convergence established in Theorem 6.1. Observe that both cases
depend on the relationship between α (order of the fractional derivative) and p
(parameter involved in hypothesis K1 and related to the behaviour of moments
w.r.t. the origin of RV B). The case p < α is illustrated in the Example 6.2, while
the case p = α is analysed in the Example 6.3. As the IVP (6.1) corresponds
to the random classical Airy differential equation when α = 2 and β = 1, we
will begin with Example 6.1 where this equation is analysed taking values of
parameter α such that α→ 2−. Finally, we point out that in these three examples
we have considered a wide variety of probability distributions for the random
coefficient B and different numerical values for the moments of initial conditions
Aj , with the aim of showing the generality when applying the theoretical results
previously established. As required in hypothesis K2, in the following examples
we will assume that B and the involved initial conditions Aj are independent RVs.

Example 6.1 In order to check that the our theoretical findings for the random
Airy fractional differential equation are consistent with the corresponding ones
established in the previous work [42] for the random Airy ordinary differential
equation, we consider the random fractional IVP (6.1) with β = 1, B ∼ Be(2, 3)
(Be(2, 3) stands for a Beta distribution with parameters 2 and 3) and the initial
conditions A0 and A1, that are RVs such that

E[A0] = 1, E[A2
0] = 2, E[A1] = 2, E[A2

1] = 5.

In Tables 6.1 and 6.2, we collect the values of the approximations of the mean
and variance of the solution SP computed via (6.15) and (6.17) with M = 10,
respectively. For ease of comparison, the values of the inputs as well as the time
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instants where the mean and the variance of the solution have been computed, are
the same as in Example 12 of [42]. In Tables 6.1 and 6.2 the values of α parameter
are taken numbers such as α→ 2−. We evince rapid convergence for both the mean
and the variance.

Mean α = 1.8 α = 1.85 α = 1.9 α = 1.95 α = 1.99 α = 1.999
t = 0.00 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000
t = 0.25 1.4978 1.4981 1.4983 1.4985 1.4987 1.4987
t = 0.50 1.9814 1.9831 1.9847 1.9862 1.9873 1.9875
t = 0.75 2.4325 2.4377 2.4425 2.4469 2.4503 2.451
t = 1.00 2.8289 2.8396 2.8498 2.8594 2.8668 2.8684
t = 1.25 3.1461 3.1643 3.1818 3.1987 3.2117 3.2146
t = 1.50 3.3603 3.3868 3.4128 3.4382 3.4582 3.4626
t = 1.75 3.4513 3.4853 3.5192 3.5530 3.5799 3.5859
t = 2.00 3.4064 3.4446 3.4835 3.5231 3.5553 3.5625

Table 6.1: Values of the expectation of the solution SP of the random fractional IVP (6.1)
computed by (6.15) with M = 10 in the context of Example 6.1.

Variance α = 1.8 α = 1.85 α = 1.9 α = 1.95 α = 1.99 α = 1.999
t = 0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
t = 0.25 1.0589 1.0593 1.0597 1.0601 1.0603 1.0603
t = 0.50 1.2227 1.2252 1.2274 1.2295 1.2311 1.2314
t = 0.75 1.4680 1.4748 1.4811 1.4870 1.4915 1.4925
t = 1.00 1.7639 1.7772 1.7900 1.8022 1.8116 1.8137
t = 1.25 2.0769 2.0980 2.1187 2.1389 2.1548 2.1583
t = 1.50 2.3820 2.4101 2.4381 2.4660 2.4882 2.4932
t = 1.75 2.6755 2.7074 2.7398 2.7725 2.7990 2.8049
t = 2.00 2.9803 3.0135 3.0470 3.0809 3.1084 3.1146

Table 6.2: Values of the variance of the solution SP to the random fractional IVP (6.1)
computed by (6.17) with M = 10 in the context of Example 6.1.

To complete our numerical experiment, in Figure 6.1 we have plotted the approxi-
mations of the mean (left) and the variance (right) for different order of truncations
M over the time interval 0 ≤ t ≤ 5. From both plots, we can visualize the con-
vergence of both statistical moments as M increases over the whole time domain
in agreement with our theoretical results. Notice that we have used greater values
of M for the variance (M = 7, 8, . . . , 11) than for the mean (M = 4, 5, . . . , 8) to
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get good approximations. This is an expected fact since the variance is a higher
statistical moment than the mean.
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Figure 6.1: Approximations of the mean (E[YM (t)]) and the variance (V[YM (t)]) of the
solution SP to the random IVP (6.1) using different orders of truncations M over the interval
t ∈ [0, 5] in the context of Example 6.1.

To demonstrate the validity of the approximations for larger time intervals, in
Figure 6.2 we have represented the approximations of both the mean and the
variance in the interval 0 ≤ t ≤ 9. Notice that to compute reliable approximations
on this larger time interval, greater values of the truncation order M have been
required. Specifically, for the mean, we have taken M = 18, 19, . . . , 22, and for the
variance, M = 21, 22, . . . , 25. In Tables 6.3 and 6.4 we show the relative errors for
the approximations of the mean and the variance, respectively, at the time instants
t = 1, . . . , 9. As expected, we can observe that for t fixed, these approximations
improve as M increases.
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RE(Mean)(t;M) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9
M = 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0385 2.0194 1.2306
M = 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0041 0.3200 1.2122
M = 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0004 0.0697 1.1899
M = 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0089 1.2018
M = 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0011 1.0551
M = 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 3.1418
M = 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2239
M = 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0410

Table 6.3: Relative error for the mean, given by (6.25), at different time instants for different
orders of truncation M in the context of Example 6.1.

RE(Variance)(t;M) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9
M = 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1519 0.9392
M = 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0002 0.9494
M = 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0007 0.9533
M = 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0001 0.8936
M = 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2753
M = 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0180
M = 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0006
M = 25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0002

Table 6.4: Relative error for the variance, given by (6.26), at different time instants for
different orders of truncation M in the context of Example 6.1.
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Figure 6.2: Approximations of the mean (E[YM (t)]) and the variance (V[YM (t)]) of the
solution SP to the random IVP (6.1) using different orders of truncations M over the interval
t ∈ [0, 9] in the context of Example 6.1.
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Once the approximations for the mean and for the variance have been obtained,
we proceed to compute the approximations for fYM (t)(y, t) that approximates the
1-PDF fY (t)(y, t) via PME described in Section 6.4. To this end, we have fixed
t ∈ [0, 9], M = 30 and α = 1.9. Using expressions (6.15) and (6.17), we have
computed the moments E [YM (t)] and E[(YM (t))2] = V[YM (t)] + (E [YM (t)])2.
As we have pointed out in Section 6.4, these values are good approximations of
m1(t) ≡ m1 and m2(t) ≡ m2, respectively, which are required to set the system
of non-linear equations (6.24). Although the values a1 and a2 of the support are
obviously different for each t, to simplify our exposition we must say that, according
to Bienaymé-Chebyshev’s inequality, is enough to take

[a1, a2] =
[

min
t∈[0,9]

E [YM (t)]− 10
√
V[YM (t)], max

t∈[0,9]
E [YM (t)] + 10

√
V[YM (t)]

]
,

for M fixed (remember that in our case we have taken M = 30). This leads
to the following support [a1, a2] = [−72, 110]. In order to calculate the PDF
fYM (t)(y, t) for t ∈ [0, 9], we have taken the time instants: t = tk = 0.090k,
k = 0, 1, . . . , 100, and we have numerically computed the solutions (λ0, λ1, λ2) of
the non-linear system of equations (6.24). In Table 6.5, we show the values of
λ0, λ1, λ2 as well as of the moments m1 and m2 for t = 0, 1, . . . , 9. To illustrate
the usefulness of knowing the approximations of PDF fYM (t)(y, t), in the last
column we have calculated the probability that the solution SP lies in the interval
[y1, y2] for t ∈ [0, 9], by applying (4.2) with y1 = E[YM (t)] −

√
V [YM (t)]] and

y2 = E[YM (t)] +
√
V [YM (t)]]. Finally, in Figure 6.3 we have represented the PDF

fYM (t)(y, t) in the time interval t ∈ [0, 9] forM = 30, and we have highlighted on the
its surface the curves of the PDF corresponding to the time instants t = 0, 1, . . . , 9.

Example 6.2 In this example we illustrate the case where p < α. To this end, we
assume that coefficient B in the random IVP (6.1) has an exponential distribution
with mean 4, i.e. B ∼ Exp(4), thus p = 1 (see Table 3.1) and α = 2.6. We will
take β = 1.7 and the two first statistical moments w.r.t. the origin of the three
random initial conditions are assumed to be

E[A0] = 1, E[A2
0] = 2, E[A1] = 2, E[A2

1] = 5, E[A2] = 4, E[A2
2] = 20.
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λ0 λ1 λ2 m1 = E[Y30(t)] m2 = E[(Y30(t))2] P[y1 ≤ Y (t) ≤ y2]
t = 0 2.4189 −1.0000 0.5000 1 2 0.686141
t = 1 4.5155 −1.5000 0.2500 3 11 0.684482
t = 2 5.2236 −1.0000 0.1000 5 30 0.684439
t = 3 5.5202 −0.7000 0.0500 7 59 0.683465
t = 4 5.7179 −0.5294 0.0290 9 98 0.683692
t = 5 5.8749 −0.4230 0.0190 11 147 0.681471
t = 6 6.0082 −0.3513 0.0135 13 206 0.683482
t = 7 6.1250 −0.3000 0.0100 15 275 0.681515
t = 8 6.2292 −0.2615 0.0076 17 354 0.679679
t = 9 6.3235 −0.2317 0.0060 19 443 0.682466

Table 6.5: Values of λ0, λ1, λ2 that solve the non-linear system of equations (6.24) (with
m1 and m2 given in the corresponding columns) and determine the PDF g(y) (and thus
fYM (t)(y, t)) given by (6.22) for M = 30 at different times instants t = 0, 1, 2, . . . , 9. This
function approximates the PDF fY (t)(y, t) of the solution SP to random fractional IVP
(6.1) for the order of the fractional derivative α = 1.9 in the context of Example 6.1. In
the last column we give the probability that the solution lies in the interval [y1, y2] being
y1 = E[YM (t)]−

√
V [YM (t)]] and y2 = E[YM (t)] +

√
V [YM (t)]].

Figure 6.3: Approximate PDF, fYM (t)(y, t), of the solution SP Y (t) to random fractional
IVP (6.1) with order of the fractional order α = 1.9 in the context of Example 6.1 using the
PME for the approximate solution SP YM (t) with M = 30 and 0 ≤ t ≤ 9.
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RE(Mean)(t;M) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
M = 2 0.0 0.0 0.0044 0.0781 0.4369 1.3189 2.9417
M = 3 0.0 0.0 0.0003 0.0155 0.1674 0.6796 1.7185
M = 4 0.0 0.0 0.0 0.0024 0.0569 0.3487 1.0506
M = 5 0.0 0.0 0.0 0.0003 0.0163 0.1698 0.6493
M = 6 0.0 0.0 0.0 0.0 0.0038 0.0756 0.3956
M = 7 0.0 0.0 0.0 0.0 0.0007 0.0299 0.2326
M = 8 0.0 0.0 0.0 0.0 0.0001 0.0103 0.1293
M = 9 0.0 0.0 0.0 0.0 0.0 0.0031 0.0667

Table 6.6: Relative error for the mean, given by (6.25), at different time instants for different
orders of truncation M in the context of Example 6.2.

RE(Variance)(t;M) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7
M = 2 0.0 0.0002 0.0427 0.6461 3.6097 14.6488 49.8305
M = 3 0.0 0.0 0.0037 0.1628 1.3583 6.1317 21.3876
M = 4 0.0 0.0 0.0002 0.035 0.5557 3.0331 11.0941
M = 5 0.0 0.0 0.0 0.0059 0.2195 1.6144 6.3768
M = 6 0.0 0.0 0.0 0.0008 0.0775 0.8774 3.8925
M = 7 0.0 0.0 0.0 0.0001 0.0232 0.4687 2.46
M = 8 0.0 0.0 0.0 0.0 0.0058 0.2379 1.5805
M = 9 0.0 0.0 0.0 0.0 0.0012 0.1113 1.0168

Table 6.7: Relative error for the variance, given by (6.26), at different time instants for
different orders of truncation M in the context of Example 6.2.
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In Figure 6.4, we show the approximations of the mean, E[YM (t)], and the standard
deviation, σ[YM (t)], for different orders of truncations M = 2, 3, . . . , 6 in the
interval t ∈ [0, 5]. We observe convergence being faster for the mean than for the
standard deviation, as expected. According to Theorem 6.1 and Proposition 2.10, in
this context convergence of the mean and the standard deviation (or equivalently,
the variance) takes place for every t. Naturally, to get better approximations the
order of truncation M needs to be increased as t departs from the origin, t = 0,
where the initial condition is set. To better assess the convergence, in Tables 6.6 and
6.7 we have collected the values for the relative errors of the mean and the variance.
We can see that figures are in fully agreement with the previous comments.

To complete the graphical analysis in this example, in Figure 6.5 we show the
surface of the correlation coefficient

ρYM (t, s) = CYM ,YM (t, s)
σYM (t)σYM (s) , (6.27)

for M = 6 (where numerical results are stabilized) over the domain (t, s) ∈
[0, 5] × [0, 5]. Observe that the coefficient of correlation takes its highest value,
namely 1, when t = s (on the diagonal of the domain) since in this case YM (t) and
YM (s) are completely and positively correlated since both match. From this graphical
representation and the statistical interpretation of the correlation coefficient, we
observe that the linear dependence between RVs YM (t) and YM (s) decreases to 0
(uncorrelated) when t→ 5 and s→ 0 or vice versa, t→ 0 and s→ 5.

Example 6.3 This example is devised to illustrate the case the m.s. convergence
of the solution stochastic process (6.12)–(6.13) (hence its mean and its variance
too) on a bounded interval, that is, when p = α (see Theorem 6.1 and Proposition
2.10). In such a case, the interval of convergence is given by D =

[
0, (α+β)

α
α+β

H
1

α+β

[
(see Theorem 6.1). To this end, we choose α = 4.2 and B is a Weibull RV of
parameters a = 0.001 and b = 1/α (see Table 3.1). So, according to Table 3.1,
H = a(2/b)1/b = 7.62. As a consequence D = [0, 2.56271[. For the rest of input
parameters of the random IVP (6.1), we take β = 1 and

E[A0] = 0, E[A2
0] = 2, E[A1] = 1, E[A2

1] = 5, E[A2] = 4, E[A2
2] = 17.
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Figure 6.4: Approximations of the mean (E[YM (t)]) and the standard deviation (σ[YM (t)])
of the solution SP to the random IVP (6.1) using different orders of truncations M in the
interval t ∈ [0, 5] in the context of Example 6.2.
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Figure 6.5: Surface of the correlation coefficient of the solution SP, defined in (6.27), with
M = 6 over the domain (t, s) ∈ [0, 5]× [0, 5] in the context of Example 6.2.
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RE(Mean)(t;M) t = 1 t = 2 t = 3 t = 2.4 t = 2.5 t = 2.6 t = 2.7
M = 2 0.0 0.00119 0.10665 0.01083 0.01704 0.02598 0.03844
M = 3 0.0 3e− 05 0.02084 0.00069 0.00134 0.00252 0.00452
M = 4 0.0 0.0 0.00372 4e− 05 9e− 05 0.00021 0.00046
M = 5 0.0 0.0 0.0006 0.0 1e− 05 2e− 05 4e− 05
M = 6 0.0 0.0 9e− 05 0.0 0.0 0.0 0.0
M = 7 0.0 0.0 1e− 05 0.0 0.0 0.0 0.0
M = 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M = 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.8: Relative error for the mean, given by (6.25), at different time instants for different
orders of truncation M in the context of Example 6.3.

RE(Variance)(t;M) t = 1 t = 2 t = 3 t = 2.4 t = 2.5 t = 2.6 t = 2.7
M = 2 0.00018 0.80822 37.35409 4.61293 6.73642 9.6965 13.78835
M = 3 0.0 0.27955 22.74314 2.45614 3.75086 5.57471 8.10991
M = 4 0.0 0.10046 17.53194 1.6142 2.6038 4.01809 6.00033
M = 5 0.0 0.03358 14.74921 1.15213 1.97189 3.16210 4.84565
M = 6 0.0 0.01006 12.90896 0.85548 1.55995 2.59958 4.08308
M = 7 0.0 0.0027 11.56632 0.64987 1.26903 2.19841 3.5352
M = 8 0.0 0.00065 10.54187 0.50095 1.05405 1.89955 3.12451
M = 9 0.0 0.00015 9.73999 0.38981 0.89008 1.67022 2.80801

Table 6.9: Relative error for the variance, given by (6.26), at different time instants for
different orders of truncation M in the context of Example 6.3.

E[A3] = 0.5, E[A2
3] = 0.26, E[A4] = 0.75, E[A2

4] = 0.57.

In order to check that convergence of the mean and the variance in the interval
D =

[
0, (α+β)

α
α+β

H
1

α+β

[
, in Tables 6.8 and 6.9, we have computed the relative errors of

consecutive approximations of both statistical moments (see expressions (6.25) and
(6.26)), respectively. From the figures shown in these tables we numerically evince
convergence as M increases for t ∈ D. To highlight the numerical behaviour of these
relative errors about the value upper of the convergence interval, i.e. t = 2.56271,
we have included in Table 6.8 and Table 6.9 the values corresponding to times
t = 2.4, 2.5, 2.6, 2.7. Observe that relative errors also decrease beyond t = 2.56271
illustrating the comments raised in Remark 6.2.
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6.6 Conclusions

In this chapter we have studied an important class of RFDEs, given by (6.1),
that include as particular case the random Airy differential equation. We have
constructed approximations of the solution SP by means of random generalized
power series and we have established sufficient conditions on random inputs (initial
conditions and the coefficient B) in order to guarantee that random series is m.s.
convergent. The use of m.s. convergence in our analysis is a key point since from its
properties the convergence of the mean and the variance of the approximations to
the corresponding exact ones are guaranteed. Furthermore, we have given explicit
expressions to construct reliable approximations to the mean, the variance and the
covariance functions of the solution. The study has relied heavily on the assumption
made about the growth of statistical moments of the input coefficient B. We have
shown that a wide range of important RVs satisfy such hypothesis. In future
research, we will investigate alternative assumptions to B in order to broaden
the family of unbounded RVs that can play the role of input B. Nevertheless, an
important issue of this chapter is that we can approximate accurately unbounded
RVs by truncating its domain so that the involved probabilistic error be as small
as desired to get good approximations taking advantage of the results established
here. Furthermore, we have taken advantage of the approximations of the mean
and the variance of the solution SP for the random fractional generalized Airy
differential equation to construct reliable approximations of the probability density
function of the solution. This is an important application of our approach since
from the density function one can obtain a more comprehensive description of the
solution via all its one-dimensional statistical moments and permits computing
the probability that the solution lies in intervals of interest. Finally, numerical
experiments have been developed in order to illustrate the theoretical findings.
They evince the proposed method provides good approximations for the mean and
the variance of the solution using a small order of truncation.
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Chapter published

The results of this chapter have been published in [22]. With regard to this paper,
the PhD candidate has contributed by working in its complete development with
more emphasis on obtaining a general convergent solution and its main statistical
moments, constructing approximations of the 1-PDF using PME, devising the
numerical examples and participating in writing the paper.
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Chapter 7
Mean square convergent numerical solutions

of random fractional differential equations:
Approximations of moments and density

In the previous chapters exact solutions for random fractional initial value
problems have been obtained. Nevertheless, it is not always possible and numerical

methods are required to obtain approximations for the solution of random
fractional initial value problems. In this chapter, a fractional forward Euler-like
method is developed to solve random fractional initial value problems via Caputo
derivative. The analysis is conducted by using the so-called random mean square
calculus. Under mild conditions on the input data, the mean square convergence of
the numerical scheme is proved. This type of stochastic convergence guarantees the
approximations of the mean and the variance of the solution stochastic process,

computed via the aforementioned numerical scheme, will converge to their
corresponding exact values. The theoretical analysis is illustrated by two examples

where approximations of the 1-PDF are also computed combining the
approximations for the two main statistical moments and the Principle of

Maximum Entropy described in Section 6.4.

137



Chapter 7. Mean square convergent numerical solutions of random fractional differential
equations

7.1 Introduccion

In this chapter, we deal with random fractional IVPs of the form{ (
CDα

a+X
)

(t) = f(X(t), t), t ∈ [a, b], 0 < α ≤ 1,
X (a) = X0,

(7.1)

where
(
CDα

a+X
)

(t) is the random m.s. Caputo fractional derivative defined in
(2.16). Throughout this chapter, the initial condition, X0 is assumed to be a 2-RV,
i.e., X0 ∈ L2(Ω). Additionally, we will assume that the function f defining the
right-hand side of fractional differential equation (7.1), i.e. f : S × [a, b]→ L2(Ω),
S ⊆ L2(Ω), satisfies the following conditions:

N1: f is m.s. Lipschitz, that is, there exists κ > 0 such that

‖f(X, t)− f(Y, t)‖2 ≤ κ ‖X − Y ‖2 , X, Y ∈ L2(Ω).

N2: Given a bounded RV S, f satisfies the m.s. modulus of continuity property,
i.e.,

lim
h→0

W (S, h) = 0 W (S, h) = sup
X∈S⊆L2(Ω)

sup
|t−t′|≤|h|

‖f(X, t)− f(X, t′)‖2 .

The chapter is organized as follows. Section 7.2 addresses the relation between
the IVP (7.1) and a random Volterra integral equation. Sections 7.3 and 7.4
are devoted to formulate the random fractional forward Euler-like numerical
scheme and to prove its m.s. convergence, respectively. In Section 7.5, we give
explicit approximations of the mean, the variance and the covariance obtained by
the random numerical scheme. Section 7.6 presents several illustrative examples.
Conclusions are drawn in last section.
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7.2 Relation between the random fractional differential and inte-
gral equations

As it has been previously pointed out, the aim of the chapter is to construct m.s.
approximations to the solution SP to the random fractional IVP given by (7.1).
To this end, we will first study the m.s. solution of the following random integral
equation

X(t) = X0 + 1
Γ(α)

∫ t

a
(t− s)α−1f(X(s), s) ds, t ∈ [a, b], 0 < α ≤ 1, (7.2)

and its connection with the solution of the random fractional IVP given by (7.1).
Let us remind that the random m.s. Riemann-Liouville fractional integral of X(t),
Jαa+ : L2(Ω)→ L2(Ω) defined in (2.13) is given as

Jαa+(X(t)) :=
{

1
Γ(α)

∫ t
a(t− s)α−1X(s)ds if 0 < α ≤ 1

X(t) if α = 0,
(7.3)

for each t ∈ [a, b]. From hypotheses N1 and N2, we know that f(X(t), t) is m.s.
continuous for t ∈ [a, b], hence f(X(t), t) is also m.s. uniformly continuous in
t ∈ [a, b], i.e, there exists M > 0 such that ‖f(X(t), t)‖2 ≤M , for t ∈ [a, b]. As a
consequence,

∥∥∥∫ ta(t− s)α−1f(X(s), s) ds
∥∥∥

2
≤ M

∫ t
a(t − s)α−1 ds = M(t − a)α/α

and hence, since X0 ∈ L2(Ω), using the triangular inequality in (7.2), we derive that
X(t) ∈ L2(Ω). Additionally, notice that from the fractional differential equation
with α = 1, since f(X(t), t) is m.s. continuous for t ∈ [a, b], we deduce that X ′(t)
is of class C1([a, b]) in the m.s. sense, thus X(t) is m.s. uniformly continuous in
t ∈ [a, b], which guarantees the integral operator Jαa+(X(t)) is well-defined. Using
this operator and defining Z(t) := f(X(t), t) ∈ L2(Ω) for each, t ∈ [a, b], the
integral equation in (7.2) reads as

X(t) = X0 + Jαa+(Z(t)), t ∈ [a, b], 0 < α ≤ 1. (7.4)
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The next result establishes a relationship between the solutions of the integral
equation given by (7.4) and the IVP given by (7.1). To prove it, first we need the
following auxiliary result.

Lemma 7.1 Let α, β ≥ 0. If Y (t) is m.s. continuous on [a, b], then for each
t ∈ [a, b],

Jαa+(Jβa+(Y (t))) = Jα+β
a+ (Y (t)).

Proof. If α or β are zero, the identity is evident by the definition of the operator
Jαa+ , (7.3). Now, we assume that α, β > 0. By definition of the operator Jβa+ , it
follows that Jβa+(Y (s)) := 1

Γ(β)
∫ s
a (s − r)β−1Y (r) dr, for each s ∈ [a, b]. Now, for

each t in [a, b],

Jαa+(Jβa+(Y (t))) = 1
Γ(α)

∫ t

a
(t− s)α−1Jβa+(Y (s)) ds

= 1
Γ(α)

∫ t

a
(t− s)α−1

( 1
Γ(β)

∫ s

a
(s− r)β−1Y (r) dr

)
ds

= 1
Γ(α)

1
Γ(β)

∫ t

a

(∫ s

a
(t− s)α−1(s− r)β−1Y (r) dr

)
ds.

As for each t ∈ [a, b] fixed, the triangle ∆ = {(s, r) : a ≤ s ≤ t, a ≤ r ≤ s} can
also be written as ∆ = {(s, r) : r ≤ s ≤ t, a ≤ r ≤ t}, the above double m.s.
integral over ∆ on the right-hand side of (7.5) is

1
Γ(α)

1
Γ(β)

∫ t

a

∫ t

r
(t− s)α−1(s− r)β−1Y (r) ds dr

= 1
Γ(α)

1
Γ(β)

∫ t

a
Y (r)

(∫ t

r
(t− s)α−1(s− r)β−1 ds

)
dr.

The substitution τ = t− s yields

Jαa+(Jβa+(Y (t))) = 1
Γ(α)

1
Γ(β)

∫ t

a
Y (r)

(∫ t−r

0
τα−1(t− τ − r)β−1 dτ

)
dr.
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A second substitution v = τ
t−r implies

Jαa+(Jβa+(Y (t))) = 1
Γ(α)

1
Γ(β)

∫ t

a

(∫ 1

0
vα−1(t− r)α+β−1(1− v)β−1dv

)
Y (r) dr.

Since
∫ 1
0 v

α−1(1− v)β−1dv = Γ(α)Γ(β)
Γ(α+β) one gets,

Jαa+(Jβa+(Y (t))) = 1
Γ(α+ β)

∫ t

a
(t− r)α+β−1Y (r) dr = Jα+β

a+ (Y (t)).

Theorem 7.1 Let X(t) be a m.s. solution of the integral equation given by (7.2),
where f(X(t), t) satisfies hypotheses N1 and N2. Then, X(t) is a m.s. solution
of the random fractional IVP (7.1).

Proof. As above, define Z(t) := f(X(t), t). Hence, from the integral equation in
terms of the operator Jαa+ , we derive

X(t)−X0 = Jαa+(Z(t)), t ∈ [a, b], 0 < α ≤ 1. (7.5)

As 0 < α ≤ 1, β := 1− α ≥ 0 . By applying the operator J1−α
a+ to both sides of

the equation (7.5) and using Lemma 7.1 we obtain

J1−α
a+ (X(t)−X0) = J1−α

a+ (Jαa+(Z(t))) = J1
a+ (Z(t)) . (7.6)

Notice that, in view of hypotheses, we have used that Z(t) is m.s. continuous on
[a, b]. Furthermore, by property (5) of m.s. integrals in [109, page 103], this also
entails that J1

a+ (Z(t)) is m.s. differentiable on (a, b). Hence, using (7.6) one gets

d
dt
(
J1−α
a+ (X(t)−X0)

)
= d

dt
(
J1−α
a+ (X(t))

)
− d

dt
(
J1−α
a+ (X0)

)
= d

dt
(
J1
a+ (Z(t))

)
.

(7.7)
Now, we compute the m.s. derivatives d

dt
(
J1−α
a+ (X0)

)
and d

dt
(
J1−α
a+ (X(t))

)
. First,

note that

J1−α
a+ (X0) = 1

Γ(1− α)

∫ t

a
(t− s)−αX0 ds = X0(t− a)1−α

(1− α)Γ(1− α) ,
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so
d
dt
(
J1−α
a+ (X0)

)
= X0(t− a)−α

Γ(1− α) . (7.8)

Next, J1−α
a+ (X(t)) = 1

Γ(1−α)
∫ t
a(t−s)−αX(s) ds. Now, since X(t) is m.s. integrable

and f(t, s) = (t − s)−α is almost everywhere continuous in (t, s) ∈ [a, b] × [a, b],
the m.s. Leibniz rule yields

d
dt
(
J1−α
a+ (X(t))

)
= 1

Γ(1− α)

∫ t

a
(−α)(t− s)−α−1X(s) ds.

By using the m.s. integration by parts formula, one gets

d
dt
(
J1−α
a+ (X(t))

)
= 1

Γ(1− α)

(
X(a)(t− a)−α +

∫ t

a
(t− s)−αX ′(s) ds

)
. (7.9)

By definition,
(
CDα

a+X
)

(t) = 1
Γ(1−α)

∫ t
a(t − s)−αX ′(s) ds. Taking into account

(7.8), (7.9) and the initial condition X(a) = X0 of IVP (7.1), we deduce

d
dt
(
J1−α
a+ (X(t))

)
= d

dt
(
J1−α
a+ (X0)

)
+
(
CDα

a+X
)

(t),

which implies

d
dt
(
J1−α
a+ (X(t))

)
− d

dt
(
J1−α
a+ (X0)

)
=
(
CDα

a+X
)

(t). (7.10)

On the other hand, by the right-hand side of equation (7.7) and applying of [109,
property (5), page 103], since Z(t) = f(X(t), t) is m.s. continuous, one gets

d
dt
(
J1
a+ (Z(t))

)
= d

dt

(∫ t

a
Z(s) ds

)
= Z(t) = f(X(t), t). (7.11)

Finally, d
dt
(
J1−α
a+ (X(t))

)
− d

dt
(
J1−α
a+ (X0)

)
= d

dt
(
J1
a+ (Z(t))

)
, from (7.10) and (7.11)

it follows that
(
CDα

a+X
)

(t) = f(X(t), t), which means that X(t) is a m.s. solution
of the random fractional IVP (7.1).
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7.3 Numerical approximations to the random fractional IVP

This section is devoted to construct reliable discrete approximations to the solution
SP of the random fractional IVP (7.1). Suppose that X(t) is a second-order SP
such that satisfies the random integral equation given by (7.2), hence, according
to Theorem 7.1, it also satisfies IVP (7.1). Define the mesh {tn : n ≥ 0} as t0 := a

and tn := t0 +nh, being h = (b− a)/M > 0, for a positive integer M that satisfies
that tM = b. Let n be any positive integer such that 0 ≤ n ≤M . Evaluating (7.2)
at tn, one gets

X(tn) = X0 + 1
Γ(α)

∫ tn

a
(tn − s)α−1f(X(s), s) ds

= X0 + 1
Γ(α)

n−1∑
j=0

∫ tj+1

tj

(tn − s)α−1f(X(s), s) ds, tn ∈ [a, b], 0 < α ≤ 1.

(7.12)

It would be natural to approximate each definite integral of the sum using the
forward Euler approximation. Nevertheless, this fact may lead to obtain not
accurate results. If we analyse the integral of the last sum considering a fine mesh
and α near 1, the term (tn− tn−1)α−1 may not be correctly computed numerically.
In this chapter, we propose an alternative by approximating only f(s,X(x)),
s ∈ [tj , tj+1] by f(tj , X(tj)), thus

∫ tj+1

tj

(tn − s)α−1f(X(s), s) ds ≈
∫ tj+1

tj

(tn − s)α−1f(X(tj), tj) ds

= hα

Γ(α+ 1)[(n− j)α − (n− j + 1)α]f(X(tj), tj).

(7.13)
Substituting (7.13) in (7.12), we obtain an approximation Xn to the second-order
RV X(tn), formally representing the true solution of the random fractional IVP
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(7.1) at the time t = tn ∈ [a, b], defined as

Xn = X0 + 1
Γ(α)

n−1∑
j=0

∫ tj+1

tj

(tn − s)α−1f(Xj , tj) ds

= X0 + hα

αΓ(α)

n−1∑
j=0

[(n− j)α − (n− (j + 1))α] f(Xj , tj), 0 < α ≤ 1,

(7.14)

where in the last step we have substituted the value of
∫ tj+1
tj

(tn − s)α−1 ds, which
is well-defined since the resulting exponent is α > 0.

7.4 Error analysis

To study the m.s. convergence of the random numerical scheme given by equation
(7.14), we introduce the sequence of errors en defined as e0 = 0 and en = Xn−X(tn),
n = 1, ...,M . We will prove that for each t = tn fixed, the limh→0 ‖en‖2 = 0, which
means that the scheme given by equation (7.14) is m.s. convergent for every t := tn

in [a, b]. Now, consider the last expression of X(tn) in equation (7.12) and the first
expression of Xn in equation (7.14). By subtracting X(tn) from Xn, we find

en = 1
Γ(α)

n−1∑
j=0

∫ tj+1

tj

[f(Xj , tj)− f(X(s), s)] (tn − s)α−1 ds.

Hence, applying [109, page 102] one gets

‖en‖2 ≤
1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

‖f(Xj , tj)− f(X(s), s)‖2 (tn − s)α−1 ds. (7.15)

To accomplish our task, we will find out a bound of ‖f(Xj , tj)− f(X(s), s)‖2 by
using the hypotheses N1 and N2 on f . Indeed,

‖f(Xj , tj)− f(X(s), s)‖2 ≤ ‖f(Xj , tj)− f(X(tj), tj)‖2
+ ‖f(X(tj), tj)− f(X(s), tj)‖2
+ ‖f(X(s), tj)− f(X(s), s)‖2
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≤ κ‖ej‖2 + κ‖X(tj)−X(s)‖+W (S, h).

The fundamental theorem of m.s. calculus [109, page 104] together with property
(3) in [109, page 102], imply ‖X(tj)−X(s)‖ =

∥∥∥∫ tjs X ′(r)dr
∥∥∥ ≤ hmaxr∈[a,b]X

′(r).
Notice that here we have applied that f(X(t), t) is m.s. continuous, hence X ′(t) is
m.s. continuous, so m.s. integrable. Therefore,

‖f(Xj , tj)− f(X(s), s)‖2 ≤ κ‖ej‖2 + γ(h), (7.16)

where γ(h) := κhmaxr∈[a,b]X
′(r) +W (S, h). Observe that limh→0 γ(h) = 0, since

by hypothesis N2, limh→0W (S, h) = 0. Next, using the inequalities (7.15) and
(7.16) we find

‖en‖2 ≤
1

Γ(α)

n−1∑
j=0

∫ tj+1

tj

(κ‖ej‖2 + γ(h)) (tn − s)α−1 ds

= κ

Γ(α)

n−1∑
j=0
‖ej‖2

∫ tj+1

tj

(tn − s)α−1 ds

+ γ(h)
Γ(α)

n−1∑
j=0

∫ tj+1

tj

(tn − s)α−1 ds. (7.17)

Observe that
∫ tj+1
tj

(tn − s)α−1 ds = hα

α [(n− j)α − (n− (j + 1))α] and (n− j)α −
(n− (j + 1))α ≤ 1, j = 0, 1, . . . , n− 1, and so

∫ tj+1
tj

(tn − s)α−1 ds ≤ hα

α . We will
use the last inequality and the equality, respectively, on the right-hand side of the
last expression in the inequality (7.17). Indeed,

‖en‖2 ≤
κhα

αΓ(α)

n−1∑
j=0
‖ej‖2 + γ(h)hα

αΓ(α)

n−1∑
j=0

[(n− j)α − (n− (j + 1))α] . (7.18)

Taking into account the value of the following finite telescopic sum

n−1∑
j=0

[(n− j)α − (n− (j + 1))α] = nα
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and (tn − t0)α = (nh)α, from (7.18) it follows that

‖en‖2 ≤
κhα

αΓ(α)

n−1∑
j=0
‖ej‖2 + γ(h)

αΓ(α)(tn − t0)α.

Defining A(h) := κhα

αΓ(α) and B(h) := γ(h)
αΓ(α)(tn − t0)α, the above inequality reads

‖en‖2 ≤ A(h)
n−1∑
j=0
‖ej‖2 +B(h), n = 1, 2, . . . (7.19)

In the following deduction, the inequality given by (7.19) will be repeatedly used.
Indeed,

‖e1‖2 ≤ A(h)‖e0‖2 +B(h),
‖e2‖2 ≤ A(h)‖e0‖2 +B(h) +A(h)‖e1‖2

≤ (1 +A(h))(A(h)‖e0‖2 +B(h)).

Let k be an integer such that 2 ≤ k < M . Suppose that

‖ej‖2 ≤ (1 +A(h))j−1(A(h)‖e0‖2 +B(h)) (7.20)

holds for all integer j such that 1 ≤ j ≤ k. We will show that the inequality in
(7.20) fulfils for j = k + 1, that is

‖ek+1‖2 ≤ (1 +A(h))k(A(h)‖e0‖2 +B(h)).

By using the inequality given by (7.19) and the induction hypothesis given by
(7.20), one gets

‖ek+1‖2 ≤ A(h)‖e0‖2 +B(h) +A(h)
k∑
j=1
‖ej‖2

≤ (A(h)‖e0‖2 +B(h)) +A(h)
k∑
j=1

(1 +A(h))j−1(A(h)‖e0‖2 +B(h))
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= (A(h)‖e0‖2 +B(h))

1 +A(h)
k∑
j=1

(1 +A(h))j−1

 .
Since (1 +A(h))k = 1 +A(h)

∑k
j=1(1 +A(h))j−1,

‖ek+1‖2 ≤ (A(h)‖e0‖2 +B(h))(1 +A(h))k.

Then, it follows that

‖en‖2 ≤ (1 +A(h))n−1(A(h)‖e0‖2 +B(h)), (7.21)

for all integer n such that 1 ≤ n ≤ M . As limh→0A(h) = limh→0B(h) = 0, it
follows from the inequality (7.21) that limh→0 ‖en‖2 = 0. This means that the
scheme given by (7.14) is m.s. convergent at the fixed number t = tn. In this case
we say that the scheme is m.s. convergent in the fixed station sense. The next
result summarizes our findings.

Theorem 7.2 With the previous notation, if the function f on the right-hand
side of the random fractional IVP (7.1) satisfies conditions N1 and N2, then the
random fractional forward Euler-like scheme given by (7.14) is m.s. convergent to
the solution of (7.1), for every t = tn := a+ nh ∈ [a, b].

7.5 Statistical moments of the numerical approximations

So far we have established sufficient conditions in order to guarantee the m.s.
convergence of the random fractional numerical scheme (7.14). In practice, apart
from constructing approximations of RFDEs it is also important to provide reliable
information related to the main statistical properties of such approximations. In
particular, a main goal is the computation of the mean and the variance of the
approximations to the solution SP. This section is addressed to accomplish this
target in the context of problem IVP (7.1).
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Taking the expectation operator, E [·], in expression (7.14) and using its linearity,
we deduce that the mean of the Xn is given by

E [Xn] = E [X0] + C(α)
n−1∑
j=0

anj(α)E [f(Xj , tj)] , (7.22)

where C(α) = hα

Γ(α+1) and anj(α) = (n− j)α − (n− (j + 1))α.

Similarly, taking the covariance operator, Cov [·, ·], and using that it is bilinear,
one gets that the covariance of Xn and Xm is given by

Cov [Xn, Xm] = Cov

X0 + C(α)
n−1∑
j=0

anj(α)f(Xj , tj),

X0 + C(α)
m−1∑
i=0

ami(α)f(Xi, ti)
]

= V[X0] + C(α)
m−1∑
i=0

ami(α)Cov [X0, f(Xi, ti)]

+ C(α)
n−1∑
j=0

anj(α)Cov [f(Xj , tj), X0]

+ (C(α))2
n−1∑
j=0

m−1∑
i=0

anj(α)ami(α)Cov [f(Xj , tj), f(Xi, ti)] .

(7.23)

Letting m = n in (7.23), we obtain the variance of Xn,

V [Xn] = V[X0] + 2C(α)
n−1∑
j=0

anj(α)Cov [X0, f(Xj , tj)]

+ (C(α))2
n−1∑
j=0

n−1∑
i=0

anj(α)ani(α)Cov [f(Xj , tj), f(Xi, ti)] ,
(7.24)

where

Cov [X0, f(Xj , tj)] = E [X0f(Xj , tj)]− E [X0]E [f(Xj , tj)] , (7.25)
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and

Cov [f(Xj , tj), f(Xi, ti)] = E [f(Xj , tj)f(Xi, ti)]− E [f(Xj , tj)]E [f(Xi, ti)] .
(7.26)

7.6 Numerical examples

The aim of this section is to present some examples in order to illustrate the
random fractional forward Euler-like method developed in the previous sections.
To check its accuracy, the first example have been chosen so that the exact values
for the mean and the variance can be determined, and then we can compare them
against the ones provide by approximations obtained via the random fractional
numerical scheme. Additionally, a similar comparative analysis is performed for
the 1-PDF, which is calculated in two ways, namely, via the Random Variable
Transformation technique, Theorem 4.1, which is exact, and by the approximate
method exhibited in Section 6.4, which takes advantage of the PME. To analyse
the accuracy of the approximations for the mean and the variance, we will use of
the absolute error (AE) for the mean and for the variance,

AE(Mean)(t, n) = |E[Xn]− E[X(tn)]| ,
AE(Variance)(t, n) = |V[Xn]− V[X(tn)]| ,

(7.27)

where E[X(tn)] and V[X(tn)] are the exact mean and variance of the solution at
time tn, respectively, and E[Xn] and V[Xn] denote their corresponding approxi-
mations given by (7.22) and (7.24)–(7.26), respectively. As we will see later, we
have chosen the absolute error as error measure since in our examples the mean
values of the solutions and their variances are close to zero.

Example 7.1 Let us consider the following random fractional IVP{ (
CDα

0+X
)

(t) = −X(t) +At2 +X0 + 2A
Γ(3−α) t

2−α, t ∈ [0, 0.5], 0 < α ≤ 1,
X (0) = X0,

(7.28)
where A and X0 are independent second-order RVs. According to the IVP (7.1),
f(X, t) = −X+At2 +X0 + 2A

Γ(3−α) t
2−α and is straightforward to check that f(X, t)
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verifies N1 and N2. Thus, the numerical scheme (7.14) is given by

Xn =X0 + hα

Γ(α+ 1)

n−1∑
j=0

((n− j)α − (n− j − 1)α)

·
(
−Xj +At2j +X0 + 2A

Γ(3− α) t
2−α
j

)
.

(7.29)

To calculate approximations of the mean, we apply expression (7.22), taking into
account that

E [f(Xj , tj)] = −E [Xj ] + t2jE [A] + E [X0] +
2t2−αj

Γ(3− α)E [A] , (7.30)

while to determine approximations of the variance, we use expression (7.24)–(7.26),
taking into account that

Cov [X0, f(Xj , tj)] =− Cov [X0, Xj ] + V [X0] ,

Cov [f(Xj , tj), f(Xi, ti)] =V[X0] + V [A]
(
t2j t

2
i +

2t2j t2−αi

Γ(3− α)

+
2t2−αj t2i
Γ(3− α) + 4

t2−αj t2−αi

Γ(3− α)2

)

+ Cov[Xj , A]
(
−t2i − 2 t2−αi

Γ(3− α)

)

+ Cov[Xi, A]
(
−t2j − 2

t2−αj

Γ(3− α)

)
+ Cov[Xj , Xi] + Cov[Xj , X0] + Cov[Xi, X0].

(7.31)

At this point it is interesting to point out that, using repeatedly the recurrence (7.29)
any RV Xi and Xj, 1 ≤ i, j ≤ n − 1, in the expression (7.31) can be expressed
polynomially (observe the polynomial form of f(X, t)) in terms of the data X0 and
A. As a consequence, the variance of approximation Xn, given by (7.24)–(7.26),
can be expressed via covariances whose arguments will depend polynomially of
X0 and A. In this manner these covariances can be approximated using direct
integration for moderate values of n, and Monte Carlo simulations for large values
of n.
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t = 0.1 t = 0.2 t = 0.3 t = 0.4
M = 100 4.77208e-03 1.95806e-02 4.44101e-02 7.92553e-02
M = 200 4.88730e-03 1.97919e-02 4.47069e-02 7.96296e-02
M = 400 4.94406e-03 1.98965e-02 4.48540e-02 7.98154e-02
M = 800 4.97217e-03 1.99484e-02 4.49272e-02 7.99079e-02
M = 1600 4.98613e-03 1.99743e-02 4.49637e-02 7.99540e-02
M = 3200 4.99308e-03 1.99871e-02 4.49818e-02 7.99770e-02

Table 7.1: Approximations of the mean calculated by expressions (7.22) and (7.30) for
different values of n and different time instants t. Example 7.1.

It is easy to check that the solution SP to the random fractional IVP (7.28) is
given by

X(t) = At2 +X0. (7.32)

Consequently, since A and X0 are independent, the mean and the variance of X(t)
is given by

E[X] = t2E[A] + E[X0],
V[X] = t4V[A] + V[X0].

To carry out computations, let us consider that A has a beta distribution A ∼
Be(80; 80) and X0 has a Gaussian distribution with zero mean and standard
deviation 0.1, X0 ∼ N(0; 0.12). In this example, we will take as fractional order
α = 0.7 ∈ (0, 1]. Tables 7.1 and 7.2 collect the values of the approximations
for the mean and for the variance, respectively, of the solution computed via
(7.22) and (7.30) for the mean, and via (7.24) and (7.31) for the variance, at
the final times instants t = 0.1, 0.2, 0.3, 0.4 and different nodes of discretization
M = 100, 200, 400, 800, 1600, 3200. So, for t fixed, the step size h = t/M decreases
as M increases. In Tables 7.3 and 7.4, we show the absolute errors, defined in
(7.27), for the approximations of the mean and the variance, respectively. From the
figures collected in these tables, we can observe that for t fixed, the errors decrease
as M increases as expected.

So far, we have computed approximations for the main statistical moments, namely
the mean and the variance, of the solution X(t) via the random numerical scheme,
and they have been compared with their exact values. On the one hand, using the
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t = 0.1 t = 0.2 t = 0.3 t = 0.4
M = 100 1.00323e-02 1.00596e-02 1.00990e-02 1.01698e-02
M = 200 1.00197e-02 1.00364e-02 1.00633e-02 1.01186e-02
M = 400 1.00074e-02 1.00161e-02 1.00373e-02 1.00897e-02
M = 800 1.00670e-02 1.01184e-02 1.01790e-02 1.02686e-02
M = 1600 9.96446e-03 9.94269e-03 9.93635e-03 9.96339e-03
M = 3200 9.99630e-03 9.99561e-03 1.00056e-02 1.00436e-02

Table 7.2: Approximations of the variance calculated by expressions (7.24) and (7.31) for
different values of n and different time instants t. Example 7.1.

t = 0.1 t = 0.2 t = 0.3 t = 0.4
M = 100 2.27923e-04 4.19409e-04 5.89888e-04 7.44651e-04
M = 200 1.12701e-04 2.08060e-04 2.93103e-04 3.70370e-04
M = 400 5.59350e-05 1.03507e-04 1.45974e-04 1.84577e-04
M = 800 2.78325e-05 5.15880e-05 7.28065e-05 9.20999e-05
M = 1600 1.38729e-05 2.57419e-05 3.63469e-05 4.59913e-05
M = 3200 6.92263e-06 1.28546e-05 1.81559e-05 2.29775e-05

Table 7.3: Absolute errors for the approximations of the mean collected in Table 7.1. Example
7.1.

t = 0.1 t = 0.2 t = 0.3 t = 0.4
M = 100 3.16109e-05 5.48771e-05 8.13128e-05 1.21075e-04
M = 200 1.89957e-05 3.16587e-05 4.56261e-05 6.98054e-05
M = 400 6.65378e-06 1.13590e-05 1.96601e-05 4.09081e-05
M = 800 6.62481e-05 1.13694e-04 1.61319e-04 2.19851e-04
M = 1600 3.62636e-05 6.20514e-05 8.12956e-05 8.53784e-05
M = 3200 4.41900e-06 9.12639e-06 1.20779e-05 5.20279e-06

Table 7.4: Absolute errors for the approximations of the variance collected in Table 7.2.
Example 7.1.
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λ0 λ1 λ2
t = 0.1 -2.38238e+00 -4.99982e-01 4.99982e+01
t = 0.2 -2.36349e+00 -1.99934e+00 4.99835e+01
t = 0.3 -2.28182e+00 -4.49353e+00 4.99281e+01
t = 0.4 -2.06287e+00 -7.96575e+00 4.97859e+01

Table 7.5: Values of parameters λ0, λ1 and λ2 that, according to (6.22), determine the
approximate 1-PDF using PME to the random fractional IVP (7.1) at different time instants
t = 0.1, 0.2, 0.3, 0.4. Example 7.1.

Figure 7.1: Approximate 1-PDF for the random fractional IVP (7.1) obtained via the
combination of the PME and the random numerical scheme. Example 7.1.

PME described in Section 6.4 together with these approximations for the mean and
for the variance, we can approximate the 1-PDF of X(t) according to (6.22) where
the parameters λi, i = 0, 1, 2 solve (6.24). In Figure 7.1, we show the approximation
of 1-PDF at the time interval [0, 0.4]. The values of λ0, λ1 and λ2, corresponding
to the time instants t = 0.1, 0.2, 0.3, 0.4 are collected in Table 7.5.

On the other hand, as the solution SP of the random fractional IVP (7.28) is given
by (7.32), its 1-PDF can be exactly calculated by applying the Random Variable
Transformation technique Theorem 4.1. To this end, let us fix t and define the
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Error Norm
t = 0.1 1.47402e-05
t = 0.2 5.89410e-05
t = 0.3 1.32434e-04
t = 0.4 2.34549e-04

Table 7.6: Values of the error (via the 2-norm) between the exact 1-PDF, given in (7.33),
and its approximations obtained via PME at different times t = 0.1, 0.2, 0.3, 0.4. Example 7.1.

injective mapping r : R2 −→ R2 whose components are

Y1 = r1(X0, A) = At2 +X0, Y2 = r2(X0, A) = A.

Its inverse mapping, s : R2 −→ R2, is given by

X0 = s1(Y1, Y2) = Y1 − Y2t
2, A = s2(Y1, Y2) = Y2.

The Jacobian of this transformation is 1. Therefore, taking into account that X0

and A are independent RVs, the joint PDF of the random vector Y = (Y1, Y2) is
given by

fY(y1, y2) =

 1√
2π0.12

e
− 1

2

(
y1−y2t2

0.1

)2
 (y2)79(1− y2)79

Be(80, 80) ,

where Be(β1, β2) denotes the deterministic beta special function of parameters
β1, β2 > 0. Since the solution X(t) is the first component of vector Y, to obtain
the 1-PDF of X(t) we marginalize fY(y1, y2) with respect to Y2. This yields

fX(t)(x) = 1
0.1
√

2πBe(80, 80)

∫ 1

0
a79(1− a)79e

− 1
2

(
x−at2

0.1

)2

da. (7.33)

Figure 7.2 shows a graphical comparison between the exact 1-PDF, fX(t)(x), and its
approximation at the times t = 0.1, 0.2, 0.3, 0.4. We can observe that approximations
are very good. As a measure of the accuracy of these approximations, in Table 7.6
we show values of the 2-norm of the difference between fX(t)(x) and approximations
fXn(x) at the above-mentioned time instants. We observe that these figures increase
at time increases as expected.
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Figure 7.2: Graphical comparison between the exact 1-PDF given in (7.33) and its approxi-
mations obtained via PME at different times t = 0.1, 0.2, 0.3, 0.4. Example 7.1.
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Example 7.2 Let us consider the following random fractional IVP{ (
CDα

0+X
)

(t) = λX(t) +A t ∈ [0, 1], 0 < α ≤ 1,
X (0) = X0,

(7.34)

where λ ∈ R and X0 and A are independent second-order RVs. It is easy to prove
that f(X, t) = λX + A fulfils hypotheses N1 and N2. In Section 2.4 (see also
[25]), the solution of this particular IVP is obtained using a generalized version
of the Frobenius method. This approach leads to the following generalized power
series

X(t) = X0

∞∑
m=0

λm

Γ(αm+ 1) t
αm +A

∞∑
m=1

λm−1

Γ(αm+ 1) t
αm,

consequently its mean and its second order moment are given by ([25, Eq. 21, 23])

E [X(t)] = E [X0]
∞∑
m=0

λm

Γ(αm+ 1) t
αm + E [A]

∞∑
m=1

λm−1

Γ(αm+ 1) t
αm,

E
[
X(t)2] = E[X2

0 ]
∞∑
m=0

λ2m

Γ(αm+ 1)2 t
2αm

+ 2E[X2
0 ]
∞∑
m=0

m−1∑
n=0

λm+n

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n)

+ E[A2]
∞∑
m=1

λ2(m−1)

Γ(αm+ 1)2 t
2αm

+ 2E[A2]
∞∑
m=2

m−1∑
n=1

λm+n−2

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n)

+ 2E [X0]E [A]
∞∑
m=0

m−1∑
n=1

λm+n−1

Γ(αm+ 1)Γ(αn+ 1) t
α(m+n).

Taking into account that V[X(t)] = E[X(t)2] − E[X(t)]2, the variance is easily
obtained from the two previous expressions.
On the other hand, the numerical scheme (7.14) is given by the following expression

Xn = X0 + hα

Γ(α+ 1)

n−1∑
j=0

[(n− j)α − (n− (j + 1))α] (λXj +A) .
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t = 0.2 t = 0.4 t = 0.6 t = 0.8
M = 100 8.79545e-01 1.19617e+00 1.53429e+00 1.90780e+00
M = 200 8.79084e-01 1.19710e+00 1.53707e+00 1.91297e+00
M = 400 8.73584e-01 1.19045e+00 1.52909e+00 1.90346e+00
M = 800 8.85815e-01 1.20441e+00 1.54454e+00 1.92030e+00
M = 1600 8.73489e-01 1.18991e+00 1.52785e+00 1.90127e+00
M = 3200 8.76741e-01 1.19452e+00 1.53416e+00 1.90966e+00

Table 7.7: Approximations for the mean calculated by expressions (7.22) and (7.35) for
different values of n at different time instants. Example 7.2.

To compute the approximations for the mean and for the variance of the numerical
solution given by expressions (7.22) and (7.24)–(7.26), respectively, we need the
following expressions

E [f(Xj , tj)] = λE[Xj ] + E[A], (7.35)

and
Cov [X0, f(Xj , tj)] =λCov[X0, Xj ],

Cov [f(Xj , tj), f(Xi, ti)] =λ2Cov[Xj , Xi] + λCov[Xj , A]
+ λCov[Xi, A] + Var[A],

(7.36)

where in the second identity we have used that Cov[X0, A] = 0, since X0 and
A are assumed to be independent. To carry out the numerical example, let us
consider that A ∼ Ga(1, 1/2), X0 ∼ Exp(2), α = 0.7 and λ = 0.75. In Tables
7.7 and 7.8, the values of the approximations for the mean and for the variance,
respectively, for different t = 0.2, 0.4, 0.6, 0.8 and for different nodes of discretization
n = 100, 200, 400, 800, 1600, 3200 are shown. In Tables 7.9 and 7.10, we collect the
values of the absolute errors for the mean and for the variance, respectively. The
values collected in these tables show strong agreement between both approaches,
validating the approximations obtained by the numerical scheme.

Once reliable approximations for the mean and for the variance have been com-
puted, we can take advantage for the PME explained in Section 6.4, to compute
approximations of the 1-PDF of the solution for the IVP (7.34). The values of
λ0, λ1 and λ2 for t = 0.2, 0.4, 0.6, 0.8, are collected in Table 7.11. In Figure 7.3,
we have plotted the approximate 1-PDF on the interval 0 ≤ t ≤ 0.8.
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t = 0.2 t = 0.4 t = 0.6 t = 0.8
M = 100 4.73540e-01 7.32315e-01 1.07587e+00 1.53917e+00
M = 200 4.83486e-01 7.48728e-01 1.10215e+00 1.58059e+00
M = 400 4.58941e-01 7.13128e-01 1.05240e+00 1.51228e+00
M = 800 4.76056e-01 7.39889e-01 1.09176e+00 1.56789e+00
M = 1600 4.60671e-01 7.19230e-01 1.06591e+00 1.53717e+00
M = 3200 4.77874e-01 7.42555e-01 1.09631e+00 1.57625e+00

Table 7.8: Approximations for the variance calculated by expressions (7.24) and (7.36) for
different values of n at different time instants. Example 7.2.

t = 0.2 t = 0.4 t = 0.6 t = 0.8
M = 100 3.86683e-03 4.05048e-03 4.38730e-03 4.79608e-03
M = 200 3.40606e-03 4.97333e-03 7.16724e-03 9.97200e-03
M = 400 2.09392e-03 1.67543e-03 8.12368e-04 4.57895e-04
M = 800 1.01376e-02 1.22837e-02 1.46425e-02 1.72940e-02
M = 1600 2.18919e-03 2.21026e-03 2.05022e-03 1.73005e-03
M = 3200 1.06352e-03 2.39790e-03 4.25688e-03 6.65941e-03

Table 7.9: Absolute errors for the mean. Example 7.2.

t = 0.2 t = 0.4 t = 0.6 t = 0.8
M = 100 1.00640e-02 1.36111e-02 1.77728e-02 2.26666e-02
M = 200 2.00101e-02 3.00239e-02 4.40562e-02 6.40841e-02
M = 400 4.53483e-03 5.57630e-03 5.69099e-03 4.21865e-03
M = 800 1.25798e-02 2.11850e-02 3.36613e-02 5.13880e-02
M = 1600 2.80493e-03 5.26002e-04 7.81413e-03 2.06665e-02
M = 3200 1.43977e-02 2.38508e-02 3.82108e-02 5.97441e-02

Table 7.10: Absolute error for the variance. Example 7.2.

λ0 λ1 λ2
t = 0.2 3.61678e-01 -1.88937e+00 1.07880e+00
t = 0.4 7.42481e-01 -1.65871e+00 6.95697e-01
t = 0.6 1.05322e+00 -1.44590e+00 4.72548e-01
t = 0.8 1.32114e+00 -1.25486e+00 3.29706e-01

Table 7.11: Values of the parameters λ0, λ1 and λ2 to construct the approximate 1-PDF
using PME for the IVP (7.34) at different t = 0.2, 0.4, 0.6, 0.8.
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Figure 7.3: Approximate 1-PDF for the IVP (7.34) using PME combined wit the ap-
proximations of the mean and the variance obtained via the random fractional numerical
scheme.

7.7 Conclusions

In this chapter we have studied the fractional forward Euler-like numerical method
to RFDEs. The study has been conducted by means of the so-called m.s. calculus.
We have given mild sufficient condition in order to guarantee the m.s. convergence.
This type of stochastic convergence guarantees the mean and the variance of
the approximations will converge to the corresponding exact values. This results
very useful since these probabilistic moments are not known in practice. This
key probabilistic information has been utilized to go further and to calculate
reliable approximations of the first probability density function of the solution SP
of RFDEs by applying the Principle of Maximum Entropy (PME). Our numerical
examples show very satisfactory results. This chapter provides a new approach
to approximate the density of RFDEs via the combination of numerical schemes
and PME. We plan to extend our ideas to other types of deterministic numerical
schemes for fractional differential equations like for example [76, 77, 86] that can
be formulated taking into account randomness.
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Chapter published

The results of this chapter have been published in [26]. With regard to this
paper, the PhD candidate has contributed by working in its complete development
with more emphasis on the computational implementation of the fractional Euler
method, constructing approximations of the 1-PDF using PME, preparing the
numerical examples and participating in the writing of the paper.
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Chapter 8
Studying the evolution over the next few

years of the meningococcal genogroup W in
Spain using a competition Lotka Volterra

model

So far, fractional calculus has been extended to the random framework from a
theoretical point of view. In order to illustrate its applicability in mathematical

modelling, this chapter is devoted to combine a discrete
Susceptible-Carrier-Susceptible epidemiological model with a fractional

Lotka-Volterra model to describe the outbreaks of meningococcus W-315 infections
in Spain. To do it, data retrieved from carriers of different meningococcus

genogroups in Spain and their corresponding error of measurement will be taken
into account. The so called Probabilistic Fitting, which is a computational

technique to treat the randomness in the data, is applied to get reliable predictions.
Probability distributions of the model parameters and the 95% confidence intervals
of the outputs of the models are obtained to predict the evolution of the carriers of

Meningococcus W-135 over the next few years.
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8.1 Introduction

Meningococcal disease is caused by the bacterium Neisseria meningitidis, also
called meningococcus. About 10% of people have this type of bacteria in the
back of their nose and throat with no signs or symptoms of the disease, being
called carriers. But sometimes Neisseria meningitidis bacteria can invade the body
causing certain illnesses, which are known as meningococcal diseases [70].

The disease, Meningitis, is an infection of the brain and spinal cord and can even
infect the blood. Nowadays, the main cause of Meningitis is the bacterium Neisseria
meningitidis. This bacterium is transmitted exclusively among humans, mainly
during adolescence. An individual may get infected by contact with a carrier
individual, that is, healthy carriers transmit the bacteria. It is treated with specific
antibiotics, however, even properly treated, there is up to 10% of mortality and
10% of survivors have sequels [32, 48].

On the one hand, there are 12 types or genogroups of Meningococcus based on
the capsular polysaccharides: A, B, C, H, I, K, L, X, Y, Z, E and W, but 90% of
all infections are caused by types A, B, C, Y and W, being A, B and C the most
common (W-cases are only the 4% in US). On the other hand, the type A has
been the most prevalent in Africa and Asia, but is rare in North America and
Europe.

In Spain the major concern in the last decades has been the infection by the
genogroups C and B. In particular, Neisseria meningitidis genogroup C (MenC)
was the leading cause of meningococcal disease in Spain in the late 1990s. Men C
mainly impacted on the infants and toddlers populations but also on adolescents
and young adults, which also acted as carriers of the disease and spreader the disease
among other age groups. After controlling MenC by vaccination campaigns and
recent revisions and booster doses, we can fairly say that MenC disease prevalence
has greatly decreased in Spain [72]. On the other hand, Public Health responsibles
and Meningitis experts are now concerned about the fact that the ecological niche
left by the waning genogroup could be occupied by another genogroup such as B
or the even more lethal, W-135.
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The genogroup W-135 origin has been traced back to Africa where it has competed
with genogroup A and other in the so-called sub-Saharan Africa Meningitis belt.
Since the early 2000s, the W-135 it is known to be associated with outbreaks of
the Meningitis disease after the annual Hajj pilgrimage to Mecca [4]. The disease
appeared also in Europe in 2000 and as early as April 2000 four children with
W-135 Meningitis were treated in London. The situation became severe in Chile
in 2012 when 133 cases of Invasive Meningococcal Disease were reported and the
58% of the cases the genogroup W-135 were identified. As a consequence, the
fatality ratio peaked in Chile up to a 27%, being the largest in the last twenty
years [114]. Isolated clinical cases have also been reported in Spain since 2005, but
no widespread epidemic by W-135 has occurred.

We must take into account that Neisseria meningitidis bacteria are spread through
the exchange of respiratory and throat secretions like spit (e.g., living in close quar-
ters, kissing, sharing drinks, etc). Fortunately, these bacteria are not as contagious
as what causes the common cold or the flu. Besides, the bacteria are not spread by
casual contact or by simply breathing the air where a person with meningococcal
disease has been. Sometimes Neisseria meningitidis bacteria spreads to people
who have had close or lengthy contact with a patient with meningococcal disease.
People in the same household, room-mates, or anyone with direct contact with a
patient’s oral secretions, meaning saliva or spit, such as a boyfriend or girlfriend,
would be considered at increased risk of getting the infection [70].

Meningococcus is a part of the common flora in the nasopharynx of up to 5−15% of
adults and the genogroups are in competition by this ecosystem with humans. Thus,
changes in health habits or prophylactic measures may change the distribution of
the genogroups in this ecosystem. The study of the replacement of a genogroup
by another as the most prevalent in the population is a fundamental problem in
epidemiology. This is even more evident in the modern era of antibiotic resistant
strains and vaccines selectively addressing a given genogroup and allowing other
to proliferate.

For these reasons, in this chapter we will study a Lotka-Volterra competition model
coupled to a susceptible-carrier-susceptible (SCS) model for the transmission of the
meningococcal bacteria. Standard Lotka-Volterra model simulates a predator-prey
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ecological system in which, the predator and prey populations interact and regulate
each other. A different version of the model with a logistic term for the evolution of
the free population of each genogroup is used for the interaction of different colonies,
strains or genogroups competing for the same resources (or hosts, in the case of
bacteria). Instead of the original model based upon ordinary differential equations,
we propose also a generalization involving fractional derivatives. Fractional calculus
is a tool to describe some physical systems exhibiting hysteresis and viscoelastic
properties but also other behaviour such as subdiffusion [105, 125, 124]. The order
of the fractional derivative is a parameter that could help us to estimate the effect
of genetic changes in the strains and recombination which enhance the adaptation
to the host of the dominant genogroups.

From the epidemiological and clinical point of view, there have been some recent
interest in the W-135 specially after the outbreak in Chile [114], the subsequent
outbreaks associated with the Hajj’s pilgrims [4] and the vaccination against W-135
carried out in UK as a prevention after the initial cases of disease in which this
strain was isolated [85]. Some models for the propagation of meningococcal C and
B diseases [112, 39], and also for the relation among prevalence of the infection and
invasive disease [64] have also been studied recently. Pérez-Breva et al. [102] have
also analysed an agent-based model for the duration of immunity after vaccination
of selected population age groups and the consequences of improved vaccination
strategies against meningococcal C disease. Anyway, in the western countries,
most of the cases are produced by groups B and C. Genogroups Y and W are less
frequent although there are differences in their incidence in some countries. The
genogroup W-135 is associated to cases and outbreaks after travelling to Mecca
[4].

The increasing number of cases in countries such as Chile and UK and the high
risk of mortality associated with this strain implies that the statistical modelling
of this pandemic is a hot topic in epidemiology. For these reasons we will estimate
the probability for an outbreak of meningococcal W-135 disease [44] in Spain
using a probabilistic fitting technique for the genogroup competition SCS model
discussed above. Our approach allows us to predict the maximum increase of the
number of carriers expected from the seroepidemiological studies of 2011 and 2012
at the Reference Laboratory for Meningococci of the Carlos III Institute of Health
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in Spain [72]. A different, but still unsolved question, is the relationship among
the number of carriers and the clinical cases of invasive meningococcal disease.
According to the experts this connection is still uncertain but it is considered that
even a 4% or 5% of the total population being carriers of the W-135 genogroup
could be alarming or, at least, highly worrying. The probabilistic fitting technique
would allow us to show that, from the 2011 and 2012 seroepidemiological results
the maximum number of carriers of W-135 in Spain would remain below 3% in
the next three years (excluding increasing immigration of infected individuals).
Consequently, an outbreak of meningococcal W disease is unlikely in the near
future.

The chapter is organized as follows: In Section 8.2 we describe the Lotka-Volterra
competition model for the genogroups coupled to the SCS model for the hu-
man hosts as well as the data provided by the Spanish Reference Laboratory
for Meningococci at the Carlos III Institute of Health. The probabilistic fitting
technique for obtaining the statistical distribution of the model parameters in
order to perform probabilistic predictions for the future is described in Section
8.3. The results and the evolution of the estimated number of carriers in the next
decade is shown in Section 8.4. The chapter ends with some conclusions drawn in
Section 8.5.

8.2 Lotka-Volterra competition model and SCS epidemilogical trans-
mission

In this section we will introduce the competition model for the meningococcal
genogroups as well as the susceptible-carrier-susceptible (SCS) model. These
equations describe the complex ecosystem composed by all the meningococci
genogroups and the human hosts. Firstly, we will give a summary of the data
obtained in the seroepidemiological study for all meningococcal genogroups and,
in particular, the W-135 strain.
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8.2.1 Data

In this study, we use data provided by the Reference Laboratory for Meningococci
of the Spanish Institute of Health Carlos III, collected in Tables 8.1 and 8.2, for
December, 2011 and December, 2012. These are currently the only available data.

t1 = 2011 t2 = 2012
Sample size 3000 500

Susceptible population 2626 (87.53%) 409 (81.8%)
Carrier population 374 (12.47%) 91 (18.2%)

Table 8.1: Sample size, number and percentage of susceptible carriers of any meningococcus
in Spain in Dec 2011 and Dec 2012.

Dates Genotype W Other genotypes
t1 = 2011 4.3% 95.7%
t2 = 2012 5.5% 94.5%

Table 8.2: Percentage of carriers of the genotype Men W-135 in Spain in Dec 2011 and Dec
2012 among the carriers.

8.2.2 Susceptible-Carrier-Susceptible (SCS) model

Firstly, we state an epidemiological model in order to describe the transmission
dynamics of all the meningococci. This is a classical SIS type-model where the
“infected” people is called “carrier” in this case. Carriers are people who carry
meningococci bacteria and can transmit it to other people. Only when meningococci
invades the host, they get infected. As we indicated, the meningococci spreads
through the exchange of respiratory and throat secretions. The carriers clear the
bacteria after some months becoming susceptible again. The above transmission
dynamics of meningococci can be modelled by the following system of non-linear
difference equations {

St+1 = St − βStCt + γCt,

Ct+1 = Ct + βStCt − γCt,
(8.1)

where St and Ct are the percentage of susceptible and carriers in the month t,
respectively, β is the transmission rate of meningococci and 1/γ is the average
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time in moths a carrier individual clears the bacteria. A diagram of the model can
be seen in Figure 8.1.

! "

! !!

! !

Figure 8.1: Diagram of Susceptible-Carrier-Susceptible (SCS) model in Eq. (8.1).

Taking into account that St and Ct are percentages and St + Ct = 1 we can write
the above system (8.1) with only the following equation

Ct+1 = (1 + β − γ)Ct − βC2
t , (8.2)

which is a non-linear difference equation for the percentage of carriers, Ct, at
month t.

8.2.3 Lotka-Volterra’s competition model

The above model will give us the percentage of carriers in every time instant
(in months). But meningococci are in competition in their ecosystem. Therefore,
in order to understand the competition dynamics of the meningococcus W-135
with respect to the others, we introduce the following Lotka-Volterra’s continuous
competition model of two speciesX

′
1(t) = r1X1(t)(K1 −X1(t))− α1,2X1(t)X2(t),

X ′2(t) = r2X2(t)(K2 −X2(t))− α2,1X2(t)X1(t),
(8.3)

where i = 1 corresponds to W-135 genogroup and i = 2 corresponds to non-W-135
genogroup, and, for i, j = 1, 2, we have:

• Xi(t) is the total amount of the genotype i meningoccocus bacteria at the
time instant t,

• ri > 0 is the growth rate of the genotype i meningoccocus bacteria,
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• Ki > 0 is the carrying capacity of the genotype i meningoccocus bacteria,

• αi,j > 0 is the effect of the genotype j bacteria on the growth of the genotype
i bacteria.

Notice that in our model we assign a label to the genogroup W-135 in which we
are mostly interested, i = 1, but the collective composed by the other genogroups
is treated as a single group with i = 2.

Taking into account that data collected in Table 8.2 are in percentages and, in
order to combine the results of this model with those of the SCS model, we need
scale the model (8.3). To this end, firstly, we introduce the following change of
variables,

xi(t) = Xi(t)
Ki

, i = 1, 2, (8.4)

which represents the percentage of ecosystem occupied by the i-th-genogroup. It
is easy to check that 0 ≤ xi(t) ≤ 1 and x1(t) + x2(t) = 1.

Introducing the change of variable in Eq. (8.4) into Eq. (8.3), this latter system
can be written asx

′
1(t) = r1x1(t)K1(1− x1(t))− α1,2K2x1(t)x2(t),

x′2(t) = r2x2(t)K2(1− x2(t))− α2,1K1x1(t)x2(t).
(8.5)

Finally, if we define Hi = riKi > 0, i = 1, 2,M1 = α1,2K2 > 0 andM2 = α2,1K1 >

0, we have {
x′1(t) = H1x1(t)(1− x1(t))−M1x1(t)x2(t),
x′2(t) = H2x2(t)(1− x2(t))−M2x1(t)x2(t),

(8.6)

where Hi and Mi, i = 1, 2, are the new parameters of the system. As in the
SCS model, taking into account that x1(t) + x2(t) = 1, we only consider the first
equation of (8.6), related with the dynamics of the meningococcus W-135,

x′1(t) = H1x1(t)(1− x1(t))−M1x1(t)(1− x1(t)),
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that can be simplified as

x′1(t) = N1x1(t)(1− x1(t)), (8.7)

where N1 = H1 −M1. So, the competition dynamics is basically governed by
the Ricatti equation (8.7) in which the parameter N1 is given by the difference
among the reproductive factor for the W-135 genogroup, H1, and the competition
parameter with the other genogroups, M1.

The fractional Lotka-Volterra model

As we have mentioned in the introduction, the competition dynamics may reinforce
certain genogroups by DNA recombination or mutations and this would depend on
the other genogroups coexisting with them as well as the time this coexistence lasts
and their populations. In this spirit, we will extend the original Lotka-Volterra
model to a generalized one in which ordinary derivatives are replaced by fractional
derivatives. It is well-known that fractional differential equations may account for
these memory effects as they are usually applied to visco-elastic materials and
sub-diffusive processes [105, 125].

So, we replace the first derivative of model (8.7) by a fractional Caputo derivative
of order α (0 < α < 1) [10]. This way, the model will be given by the following
expression:

CDαx1(t) = N1x1(t)(1− x1(t)), (8.8)

where CDα
0 f denotes the fractional Caputo derivative of order α of the function

f : [0,∞ [ → R, described (2.16). Discretizing Eq. (8.8), we obtain the following
expression,

(∆α
∗x1) (t) = N1x1(t+ α− 1)(1− x1(t+ α− 1)) , (8.9)

where t ∈ N1−α := {1− α, 2− α, . . .}, and ∆∗α is the Caputo-like delta difference
operator which, according to Atici and Eloe [10], represents the Caputo derivative
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in discrete time. This difference is defined by the following expression

(∆α
∗x1) (t) = 1

Γ(1− α)

t−n+α∑
s=0

Γ(t− s)
Γ(t− s+ 1)(∆x1)(s), (8.10)

where (∆x1) (t) is the discretization of the first derivative of x1(s) in discrete time,
i.e.,

(∆x1)(s) = x1(s)− x1(s− 1) . (8.11)

Moreover, by [57, Lemma 2.4], the difference system (8.9) can be rewritten as

x1(t) = x1(0) + 1
Γ(α)

t−α∑
s=1−α

Γ(t− s)
Γ(t− s− α+ 1)N1x1(s+ α− 1)(1− x1(s+ α− 1))

= x1(0) + 1
Γ(α)

t∑
s=1

Γ(t− k + α)
Γ(t− k + 1)N1x1(k − 1)(1− x1(k − 1)),

(8.12)
where t is a positive integer. Denoting x1(t) = xt, the fractional Lotka-Volterra
model in discrete time is formulated as

xt = x0 + 1
Γ(α)

t∑
s=1

Γ(t− k + α)
Γ(t− k + 1)N1xk−1(1− xk−1), (8.13)

where N1 and α are the model parameters to be determined and t is the time
in months. Notice that our competition-epidemiological model involves now four
parameters: the infection rate, β; the recovery rate, γ; the balance among the
W-135 genogroup reproduction and its competition parameter, N1; and also the
fractional index, α, for the Caputo derivative in Eq. (8.13). In the next section we
will show how to obtain probabilistic estimations of these four parameters from
the data collected in Tables 8.1 and 8.2. From these fitting we will be able to
predict reliable bounds on the evolution of W-135 prevalence with 95% confidence
and, consequently, to quantify the risk of outbreaks in the near future.
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8.3 Probabilistic Fitting

This technique, introduced in [44], consists of using information from surveys to
assign probability distributions to the data. Then, we sample data values from
these probability distributions and we fit the model to these sampled data. Thus,
we find model parameters that fit not only the data but also the uncertainty
contained into the intrinsic survey error. Hence, these fitted model parameters will
allow the model to capture the data uncertainty (with 95% confidence intervals).

To conduct our study, probabilistic fitting technique is applied in models (8.2)
and (8.13). To assingn reliable probabilistic distributions to the input data,. the
following remarks will be required.

Remark 8.1 (A key property of the binomial distribution) Let X be a
binomial RV of parameters n and p, X ∼ Bi(n; p). Then, it results as the sum
of n independent and identically distributed (iid) Bernoulli RVs of parameter p,
Xi ∼ Ber(p), i.e.,

X =
n∑
i=1

Xi, Xi =
{

0 with probability 1− p,
1 with probability p,

1 ≤ i ≤ n.

Observe that Yi = 1−Xi ∼ Ber(1− p), 1 ≤ i ≤ n. Therefore,

Y =
n∑
i=1

Yi = n−
n∑
i=1

Xi = n−X ∼ Bi(n; 1− p).

Remark 8.2 (A key property of the beta distribution) Let X be a beta
distribution of parameters β1 > 0 and β2 > 0, X ∼ Be(β1;β2). Then, its PDF is
given by

fX(x) = Γ(β1 + β2)
Γ(β1 + β2)x

β1−1(1− x)β2−1, 0 < x < 1.

Let us consider the RV Y = 1 −X. Applying the RV transformation technique
[99, Chapter 5], we can derive the PDF of Y , fY (y). Observe that the mapping
r : [0, 1]→ [0, 1] defined by y = r(x) = 1−x is bijective, its inverse is s(y) = 1− y
and its Jacobian is non-zero, ds(y)

dy = −1 6= 0. Then, according to the so-called
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Fundamental Theorem [99, page 93] one gets,

fY (y) = fX(s(y))
∣∣∣∣ds(y)

dy

∣∣∣∣ = Γ(β1 + β2)
Γ(β1)Γ(β2)(1− y)β1−1yβ2−1, 0 < y < 1.

As a consequence, we have proved that if X ∼ Be(β1;β2), then 1−X ∼ (β2;β1).

8.3.1 Data 95% confidence intervals (95% CI)

Data in Table 8.1 correspond to the mean percentage of carriers in Dec 2011 and
Dec 2012. Also, the sample sizes are 3000 and 500, respectively.

Assuming that the surveys are independent, for each one of the two available
surveys, let us denote by Xj = (Xj

1 , X
j
2), 0 ≤ Xj

i ≤ nj , i, j = 1, 2, a random
vector whose entries are Xj

1 = # Carriers, Xj
2 = # Susceptible, and n1 = 3000

and n2 = 500 being the sample sizes of the surveys corresponding to December
2011 (j = 1) and December 2012 (j=2), respectively.

For the sake of clarity, let us fix j = 1 and let us consider the random vector X1, but
the same findings to be presented in the following, apply to the random vector X2

(j = 2). Initially, it is natural to assume that the RV X1
1 has a binomial distribution

of parameters n1 = 3000 and p1, X1
1 ∼ Bi(3000; p1). As a consequence, by Remark

8.1. X1
2 = n − X1

1 ∼ Bi(3000, 1 − p1). However, as the available information
from the data surveys is limited to December 2011 (j = 1) and December 2012
(j = 2) only, we are going to consider that the parameter p1 is a RV rather than
a deterministic value. Furthermore, since p1 ∈ (0, 1) we will assume that p1 has
a beta distribution of parameters β1

1 and β1
2 , p1 ∼ Be(β1

1 ;β1
2). At this time, it

is worth pointing out that beta distribution is a two parametric probabilistic
distribution whose domain is just the interval (0, 1), then allowing for enough
flexibility to describe, from a probabilistic standpoint, the parameter p1. This
approach leads us to assume that X1

1 has a beta-binomial distribution

X1
1 ∼ Bi(3000; p1), p1 ∼ Be(β1

1 ;β1
2),
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whose probability mass function is given by

P[X1
1 = k] =

(
3000
k

)
B(k + β1

1 ; 3000− k + β1
2)

B(β1
1 ;β1

2) , k = 0, 1, . . . , 3000, (8.14)

and B(a; b) is the standard beta function defined by B(a; b) :=
∫ 1
0 t

a−1(1− t)b−1dt.

As a consequence of the results collected in Remark 8.2 for the second component
of the random vector X1 one gets

X1
2 = 3000−X1

1 ∼ Bi(3000, 1− p1), 1− p1 ∼ Be(β1
2 ;β1

1),

or equivalently, with p1 ∼ Be(β1
1 ;β1

2). Hence, the probability mass function of X1
2

is given by

P[X1
2 = k] =

(
3000
k

)
B(k + β1

2 ; 3000− k + β1
1)

B(β1
1 ;β1

2) , k = 0, 1, . . . , 3000, (8.15)

where the symmetry property of the beta function B(β1
2 ;β1

1) = B(β1
1 ;β1

2) has been
used to express the denominator of (8.15).

An analogous development follows for the random vector X2 = (X2
1 , X

2
2 ),

X2
1 ∼ Bi(500; p2), X2

2 ∼ Bi(500; 1− p2), p2 ∼ Be(β2
1 ;β2

2),

P[X2
1 = k] =

(
500
k

)
B(k + β2

1 ; 500− k + β2
2)

B(β2
1 ;β2

2) , k = 0, 1, . . . , 500, (8.16)

P[X2
2 = k] =

(
500
k

)
B(k + β2

2 ; 500− k + β2
1)

B(β2
1 ;β2

2) , k = 0, 1, . . . , 500. (8.17)

In order to estimate the parameters {β1
1 , β

1
2} of the RV p1 ∼ Be(β1

1 ;β1
2) (and

hence of X1
1 and X1

2 ), firstly we observe, from Table 8.1 that in December of 2011
(j = 1), the number of carriers was 374 out of 3000 individuals. Hence a reasonable
punctual estimation of p1 is 374

3000 . To provide estimates (β̂1
1 , β̂

1
2) of (β1

1 , β
1
2), we

will consider the synthetic sample { 372
3000 ,

373
3000 ,

374
3000 ,

375
3000 ,

376
3000} centred at 374

3000 and
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then we apply the maximum likehood estimation (MLE) technique. This turns out

β̂1
1 = 6.122 · 104 β̂1

2 = 4.2984 · 105. (8.18)

These estimates satisfy the following desirable property

E[p1] = β1
1

β1
1 + β1

2
= 6.122 · 104

6.122 · 104 + 4.2984 · 105 = 374
3000 .

Following the analogous strategy, we have constructed the estimates (β̂2
1 , β̂

2
2) for

the parameters (β2
1 , β

2
2) of the RV p2 ∼ Be(β2

1 ;β2
2) and hence of (X2

1 and X2
2 ).

Now, we have considered the sample { 89
500 ,

90
500 ,

91
500 ,

92
500 ,

93
500} centred at 91

500 . This
figure comes from Table 1, since in December 2012 (j=2), the number of sample
data being carrier was 91 out of 500 individuals.In this case, the application of
MLE method turns out the estimates

β̂2
1 = 3.387 · 103 β̂2

2 = 1.5221 · 104. (8.19)

This estimates also satisfies E[p2] = β̂2
1/(β̂2

1 + β̂2
2) = 91

500 .

Now we compute the percentiles 2.5 and 97.5 in order to determine 95% CI
(confidence intervals) of each random vector X1 = (X1

1 , X
1
2 ) and X2 = (X2

1 , X
2
2 ).

These intervals are computed using the probability mass functions given by (8.14)–
(8.17) and the estimates (8.18)–(8.19). The 95% CI are collected in Table 8.3.

Dates Carriers (Xj
1) Susceptible (Xj

2)
t1 = 2011 (j = 1) [11.30%, 13.67%] [86.33%, 88.73%]
t2 = 2012 (j = 2) [14.8%, 21.60%] [78.20%, 85.20%]

Table 8.3: 95% CI of the data surveys using the probability mass function of Beta-Binomial
distributions given by (8.14)–(8.17).

We apply the same method explained above but considering Y j1 = # Carriers of
Meningococcus W , Y j2 = # Carriers of non-Meningococcus W and n1 = 3000 and
n2 = 500. Therefore, we assume that

Y j1 ∼ Bi(nj ; pj), pj ∼ Be(γj1; γj2), j = 1, 2,
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and consequently,

Y j2 ∼ Bi(nj ; 1− pj), 1− pj ∼ Be(γj2; γj1) j = 1, 2.

Thus, their probability mass functions are given by

P[Y j1 = k] =
(
nj
k

)
B(k + γj1;nj − k + γj2)

B(γj1; γj2)
, k = 0, 1, . . . , nj , j = 1, 2, (8.20)

P[Y j2 = k] =
(
nj
k

)
B(k + γj2;nj − k + γj1)

B(γj1; γj2)
, k = 0, 1, . . . , nj , j = 1, 2. (8.21)

The parameters γji , 1 ≤ i, j ≤ 2, are estimated using the MLE technique and we
have obtained

γ1
1 = 121.9, γ1

2 = 2727.7; γ2
1 = 11.1872, γ2

2 = 192.4464.

In Table 8.4, we show the 95% CI for each the RVs {Y 1
1 , Y

2
1 , Y

1
2 , Y

2
2 } computing the

percentiles 2.5 and 97.5 of each random vector Y1 = (Y 1
1 , Y

1
2 ) and Y2 = (Y 2

1 , Y
2
2 ).

Dates Genotype W (Y j1 ) Genotype non-W (Y j2 )
t1 = 2011 (j = 1) [3.52%, 4.97%] [95.03%, 96.43%]
t2 = 2012 (j = 2) [3.8%, 7.7%] [92.30%, 96.2%]

Table 8.4: 95% CI of the data surveys using the probability mass function of Beta-Binomial
distributions given by (8.20)–(8.21).

8.3.2 Probabilistic estimation

Let M1(t;β, γ) and M2(t;α,N1) denote short representations of model (8.2) and
(8.13), respectively, where {β, γ}, and {α,N1} are the models parameters of M1

and M2, respectively, and t is the time in months.

Also, we have the data (95% CI) collected in Tables 8.3 and 8.4 obtained by
sampling the probability mass functions given by (8.14)–(8.17) and (8.20)–(8.21),
respectively, and calculating the percentiles 2.5 and 97.5.
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For the probability distributions given in Eq. (8.14)–(8.17), we take a sample d∗tij ,
i, j = 1, 2 and we search for the values of the model parameters β∗, γ∗ such that∥∥∥∥∥

[
M1(t1;β∗, γ∗)
M1(t2;β∗, γ∗)

]
−
[
d∗t11, d

∗
t12

d∗t21, d
∗
t22

]∥∥∥∥∥
2

(8.22)

is as minimum as possible, being ‖ · ‖2 the 2−norm [116].

This procedure is a classic optimization problem that has been carried out through
the Particle Swarm Optimization (PSO) algorithm [80], with the difference that
we will not fit the data itself, but samples taken from the data’s probability
distributions. We shall perform the fitting N times (N being a large number),
storing both the parameter values β∗, γ∗ as well as the calculated errors e∗,
ordered from smallest to largest values. The result of this procedure is a list of
model parameters fitted to a sample of the data with their corresponding errors,
represented in Table 8.5.

Error Parameters Model
e∗1 β1, γ1 M1(t;β1, γ1)
e∗2 β2, γ2 M1(t;β2, γ2)
...

...
...

e∗N βN , γN M1(t;βN , γN )

Table 8.5: Model fitting to N samples of the data’s probability distributions.

The value N should be a large number in order to capture as more data uncertainty
as possible during the sampling process and this uncertainty could be fitted by
the model. In this case, N = 10 000.

Now, we take M1(t;β1, γ1) and M1(t;β2, γ2) in Table 8.5 and calculate the outputs
for times t1 = 0 (Dec 2011) and t2 = 11 (Dec 2012), the time instants (months)
where data are available. For each time instant, we shall calculate percentiles 2.5
and 97.5 for carriers. Hence, we will name m2 the sum of:

• the 2−norm of the difference between the percentiles 2.5 from the model
output and from the data percentiles 2.5 in Table 8.3, and
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• the 2−norm of the difference between the percentiles 97.5 from the model
output and from the data percentiles 97.5 in Table 8.3.

We will repeat the above process with the outputs from M1(t;β1, γ1), M1(t;β2, γ2)
and M1(t;β3, γ3), obtaining m3, the measure between the confidence intervals
from the outputs and the data. The same for m4 and so on, until M1(t;β1, γ1),
M1(t;β2, γ2), . . ., M1(t;βN , γN ), obtaining mN as the measure between the confi-
dence intervals from the outputs and the data.

Taking mk = min{m1, . . . ,mN}, we ensure that the 95% CI bands of the outputs
from M1(t;β1, γ1), M1(t;β2, γ2), . . . ,M1(t;βk, γk) is the closest to the 95% confi-
dence intervals from the data, with which our model will capture the maximum
possible uncertainty of the data from the output of the models M1(t;β1, γ1),
M1(t;β2, γ2), . . . , M1(t;βk, γk).

This procedure should be repeated for model M2(t;α,N1) by sampling the proba-
bility mass functions given by Eq. (8.20)–(8.21).

8.4 Results

For the SCS model M1(t;β, γ), we obtain mk = 5211. With the outputs of
M1(t;β1, γ1), . . ., M1(t;β5211, γ5211) for t = 0, 1, . . . , 119 (from Dec 2011 until Dec
2020), we can predict, probabilistically, the transmission dynamics of the carriers.
Then, for each time instant t we take the model output and we calculate the 95%
CI and the mean of the expectation. The results are shown in Figure 8.2.

The probabilistic fitting technique allows us to estimate the density functions for
model parameters applying the so-called kernel technique to the 5211 samples of
parameters β, γ obtained [84, Chapter 8]. These density functions can be seen in
Figure 8.3.

Now, let us observe Figure 8.3. This plot gives us an idea about the time an
individual needs to clear meningococcus bacteria looking at parameter γ. The 95%
confidence interval of γ is [0.1007, 0.7895], and taking into account that 1/γ is the
average time to clear the meningococcus, we have that the estimated time needed
to clear any meningococcus bacterium is [1/0.7895, 1/0.1007] = [1.26662, 9.93049]
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Figure 8.2: 95% CI of the solution SP of the percentage of carriers given by model (8.2).
The gray lines represents the percentiles 2.5 and 97.5 and the red one, the mean, for each
month, t, from Dec 2011 until Dec 2021.

months with 95% CI. These figures are in accordance with the ones in the extant
literature [112].

We can perform similar calculations for the Lotka-Volterra model M2(t;α,N1). In
this case, we have obtained mk = 651 with N = 10 000.

Notice that the order of the fractional derivative, α is far from 1 (that corresponds
to the classical derivative) as we can see in Figure 8.5. Specifically, the mean of
the PDF of α shown in this plot is 0.371326. Its 95% CI is [0.004352, 0.7383]. This
supports the idea of the necessity of using fractional derivatives against classical
derivatives in order to explain properly the competitiveness dynamics among the
different genogroups of meningococci.

Finally, the product of both solution SPs, Ct and xt, of models (8.2) and (8.13),
respectively, will give us the percentage of Men W-135 carriers among all the
population. In a personal communication, Dr. Julio Vázquez, from the Neisserias
Reference Laboratory for Meningococcus of the Spanish Institute of Health Carlos
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Figure 8.3: Probability density functions for the parameters β (blue line) and γ (red line)
of model (8.2). Notice that there are non-zero probabilities for negative values of these
parameters, although in any reasonable epidemiological model they are considered positive.
This feature is a consequence of the kernel technique and these negative unrealistic values
can be overlooked.
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Figure 8.4: Confidence intervals of the solution SP for the percentage of meningococcus
W-135 computed by the numerical scheme given in Eq. (8.13). The gray lines represents the
percentiles 2.5 and 97.5 and the red line, the mean, for each time, t, from Dec 2011 until Dec
2020.

III, told us that a percentage of 4%− 5% or greater of carriers of Men W-135 in
Spain would begin to be concerning.

Finally, taking into account the probabilistic information obtained previously for
all time instants t, we are able to calculate the probability that the percentage of
carriers of Men W-135 be greater than 5%. In Table 8.6 we can see the obtained
results. In Figure 8.6 a graph with the evolution of the probabilities of having 5%
of carriers of Men W-135 or more from Dec 2011 until Dec 2021. As we can see,
the probability of having worrying percentages of carriers of Men W-135 is very
low and, then, an outbreak is not expected.

Date Probability W-135 ≥ 5%
December 2017 2× 10−4

December 2018 0.0014
December 2019 0.0015
December 2020 0.0018

Table 8.6: Probability that the percentage of carriers of Men W-135 be greater than 5%.

180



8.4 Results

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 8.5: PDFs for the parameters of the Lotka-Volterra model. The red line corresponds
to the parameter N1 and the blue line to the fractional derivative order, α. The short piece
of negative values of the α parameter that appears in the plot, is a feature of the application
of the so-called kernel technique used to construct the PDFs. This piece must been neglected
since 0 < α < 1.
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Figure 8.6: Probability of having 5% of carriers of Men W-135 or more in Spain. Prediction
from Dec 2011 until Dec 2021.
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8.5 Conclusions

In this chapter we have proposed a probabilistic model for the complex ecosystem
composed by several meningococcal genogroups and the human hosts carriers. The
competition among the different genogroups has been discussed in the framework
of a Lotka-Volterra model with fractional derivatives. The Lotka-Volterra system is
a well-known tool for simulating different population of the same species competing
for the same resources and it has been applied in ecology and evolutionary models.
Our model is generalized taking advantage of fractional calculus in order to consider
the effects of the memory of this competition in the form of genetic changes of the
strains.

The interaction with the human hosts is described in terms of a discrete susceptible-
infectious-susceptible model in which the infectious are called carriers. This SCS
model involves two parameters corresponding to the average time of recovery
from the carrier state, 1/γ, and the infective rate, β. We must also notice that
meningococcal disease is very difficult to analyse through seroepidemiological
studies because of the low carriage at a given time and the continuous mutation
and recombination of DNA in the strains. For that reason, only a few mathematical
models have been considered and, in particular, very little is known about the
epidemiology of the W-135 genogroup which has caused recent outbreaks in Chile
and the United Kingdom. Immigration from Africa is thought to be the main
cause of the emergence of these strains in America and Europe where they were
almost non-existent or very rare even a decade ago. This is a reason of major
concern for Public Health policies because of the high mortality rate for cases of
invasive W-135 meningococcal disease.

In Spain there have been two seroepidemiological studies in 2011 and 2012 in which
the W-135 genogroup was found in a small percentage of individuals. By fitting
the results using a probabilistic approach, we have been able to determine the
probability densities for the parameters of the Lotka-Volterra and SCS model. On
the other hand, the prediction for the increase of W-135 in the near future shows
that the probability for the carrier population to surpass the critical threshold of
5% is below a 0.3% and so we can fairly say that an outbreak of W-135 in Spain,
under the present population and immigration conditions, is negligible. On the
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other hand, our model does not take into account an increase of W-135 carrier
proportion in Africa, UK or South America and the corresponding risk of further
contact of Spanish population with some of these carriers who could arrive to
Spain.

Finally, we want to point out that, the effects of outbreaks in other countries in
the present globalized world which takes into account immigration rates and the
possibility of increased arrival of W-135 carriers as well as their contact with the
native population is a problem that should be addressed in a future extended
model to be discussed elsewhere.

Chapter published

The results of this chapter have been published in [2]. With regard to this paper,
the PhD candidate has contributed by working in its complete development with
more emphasis on the inclusion fractional operators in the model, the developement
and implementation of the random computational approach and participating in
the writing of the paper.
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Chapter 9
Modeling breast tumor growth by a

randomized logistic model: A computational
approach to treat uncertainties via probability

densities

In Chapter 8, a computational approach to describe probabilistically the outbreaks
of meningococcus W-315 infections in Spain has been developed. A confidence

interval representing the carriers of meningococcus W-315 has been obtained by
combining a SCS model with a fractional Lotka-Volterra model. Nevertheless,

more statistical information is occasionally required to quantify the uncertainty of
a biological process. The computation of fractional derivatives requires high

computational cost and this sometimes limits the development of new
computational techniques to quantify exhaustively the uncertainty. In this chapter,

we set random fractional calculus to focus on describing a
theoretical-computational approach in order to seek suitable random inputs (initial
condition and coefficients) of the randomized discrete Pielou logistic model. In this

way, we will search suitable probability density functions for random inputs so
that they fit the ones assigned to breast tumour volume data at different time
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instants. The approach seems to be flexible enough to be adapted to random
fractional models in future works.

9.1 Introduction

Breast cancer is one of the most common malignant diseases in the female pop-
ulation, around 1/8 of women are affected by this illness. It is the second most
commonly diagnosed cancer in women worldwide, [50, 68]. Over the last decades,
this type of cancer is increasing due to several reasons: the enlargement of the life
expectancy and, consequently, the increase of DNA mutations, and the current
unhealthy lifestyle (physical inactivity, obesity, living in polluted areas, etc.). The
breast cancer is the first cause of death by malignant tumours in the female
population aged between 40 and 59. Nevertheless, in the recent years, the survival
of this malignancy has been increased because of new therapies and the early
prevention and prediction [12].

A key point in the early prevention of breast cancer is the capacity of measure the
volume of tumours and predict their growth over the time. To quantify the volume
of tumours, doctors use approximate measurement techniques based on medical
images via electronic devices, [17, 74]. These measurements involve intrinsic errors
in the real volume dimension that must be taken into account. As it shall be
seen later, errors can be modelled by applying the principle of maximum entropy
(PME) described in Section 6.4, that allows us to allocate reliable uncertainties to
sampled tumour volume data [91].

To study and predict the growth of volume tumours cancer several non-linear
mathematical models, based on difference and differential equations, have been
successfully proposed. In [29], the authors develop a non-linear system of difference
equations to study the short term dynamics of the bladder cancer and the immune
response of patients. In [90] a numerical scheme for solving time-fractional cancer
invasion system with non-local diffusion has been recently proposed. In this chapter,
authors propose an optimal control strategy to enhance the power of NK-cells
and Effector T-cells in order to more quickly eradicate the cancer. In [38], authors
perform a numerical analysis to understand the dynamics of cancer invasion using
a time-fractional system. In [16], the classical Gomperzian growth is applied to

186



9.1 Introduction

study the breast tumour volume before applying suitable therapies. In [11], the
logistic model is parametrized to predict the treatment response and changes in
breast cancer cellularity during neoadjuvant chemotherapy. Cancer development
is a process where normal somatic cells acquire mutations, in [54], a system of
nonlinear differential equations to study the dynamics of these cells mutations is
proposed. Recently, the dynamics of a cell line (MCF-7) in human breast cancer
has been described using the same type of mathematical formulation, [68].

As it has been previously pointed out, tumour volume data involves uncertainties,
then it is natural to consider random models to study the evolution over time. In
this chapter, we consider a randomized logistic-type model to study the growth of
breast tumour volume. The initial condition and coefficients are considered RVs
whose probability distributions must be consistently set from sampled information.
Despite the simple formulation of the logistic model, it has demonstrated to be
very effective to describe the dynamics of biological growth processes like tumours
[12].

Indeed, in dealing with practical applications of random models to describe breast
tumours volume using real data, a main challenge is allocating appropriate prob-
ability distributions for model parameters so that the output model, which is a
SP, satisfactorily captures data uncertainties. In this chapter we face this key
challenge by developing a computational technique to quantify uncertainties and
then performing more realistic predictions to modelling breast tumours volume by
means of a random logistic equation using real data. Assuming randomness to each
model parameter (initial condition and coefficients), this computational technique
is based on seeking the best PDF of model parameters so that the PDF of the
solution SP of the random logistic model matches the PDF assigned, via PME,
to sampled data of breast tumor volume at each time instant. In this manner,
through the PDF, we perform a more complete probabilistic description of the
breast tumour volume dynamics than constructing predictions based only on the
expectation and confidence intervals.

At this point, it is important to emphasize that when applying random models to
describe real problems, the allocation of appropriate probability distributions to
model parameters is often done using heuristic arguments based on positiveness,
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boundedness and/or meta-information [34, 33]. This limits the choice of distribu-
tions to particular families. For instance, for positive and bounded parameters, the
Beta distribution may be an appropriate candidate; for positive and unbounded
parameters, the Gamma distribution might be suitable; etc. In contrast, the PME
method allows us to give more flexibility when assigning probability distributions
to each model parameters, since a parametric family of distributions are seeking
for.

Our analysis will be presented in the following steps. In Section 9.2, the randomized
discrete logistic model is presented together with the expression of the PDF of its
solution SP. In Section 9.3 we will apply the PME, described in Section 6.4, to
assign an explicit PDF to each sampled data. In Section 9.4 we will again utilize
the PME to represent the PDF of each model input via closed expressions, which
depend on certain parameters to be determined later. In Section 9.5 we design
a computational procedure to determine the aforementioned parameters so that
the density of the model solution be as close as possible to the density previously
allocated to sampled data. In Section 9.6 we will apply the computational approach,
introduced in the previous section, to first obtain the densities of model inputs
and, secondly of the model output. Finally, conclusions are drawn in Section 9.7.

9.2 A randomized discrete logistic model

The logistic model has been extensively applied to describe the dynamics of growth
processes in different scientific areas, as pharmacology [55], epidemiology [18] or
ecology [107]. In this chapter we are interested in its application in medicine to
model tumor growth [11, 113].

In this chapter we consider the following discrete dynamical system, usually referred
to as the Pielou model [103, 108],

Xn+1 = AXn

1 +BXn
, n = 0, 1, 2, . . . , (9.1)

188



9.2 A randomized discrete logistic model

for a given initial condition X0. As it can be seen in [103], this discrete model
comes from the classical Verhulst continuous logistic equation [118]

V ′(t) = aV (t)
(

1− V (t)
b

)
, (9.2)

being a > 0 the growth rate and b > 0 the carrying capacity. According to [103,
pages 19 – 22], models (9.1) and (9.2) are related via the following relationship of
their respective parameters,

A = ea, B = ea − 1
b

. (9.3)

Since a > 0 and b > 0, then A > 1 and B > 0.

As it has been pointed out in the foregoing section, uncertainty quantification
is a main goal in modelling breast tumours growth from real data. This aim us
at treating the parameters A, B and X0 in model (9.1) as RVs belonging to a
complete probability space (Ω,F ,P). As a consequence, model parameters depend
on outcomes ω ∈ Ω, i.e., A = A(ω), B = B(ω) and X0 = X0(ω), and then the
solution is a SP, Xn = Xn(ω). As usual, hereinafter the ω-notation will be hidden.

The properties random quantities are often described via statistical moments.
However, it is more desirable to do it through probability distributions. Specifically,
fixed t, from the so called first PDF, fY (y, t) := fY (y), of a SP, say Y (t), one can
calculate one-dimensional statistical moments of arbitrary order and the probability
that the process lies in a specific interval of interest equations (4.1) and (4.2),
respectively.

By applying the random transformation technique [109], recently some of the
authors have obtained an explicit expression of the first PDF, fXn , to the solution
of the randomized Pielou model (9.1), [43]. Specifically, by assuming that A, B
and X0 are absolutely continuous RVs with a joint PDF, fX0,A,B, they obtained

fXn(x) =
∫
D(A,B)

fX0,A,B

(
x(a− 1)

an(a− 1)− bx(an − 1) , a, b
)

·
∣∣∣∣∣ (a− 1)2an

(an(a− 1)− bx(an − 1))2

∣∣∣∣∣ dadb,
(9.4)
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where D(A,B) denotes the domain of random vector (A,B), [43]. In the particular
case thatA,B andX0 are independent, then fX0,A,B(x0, a, b) = fX0(x0)fA(a)fB(b)
(being fX0 , fA and fB the PDF ofX0,A and B, respectively) and, as a consequence,
the PDF of the solution can be represented as

fXn(x) =
∫
D(A,B)

fX0

(
x(a− 1)

an(a− 1)− bx(an − 1)

)
fA(a)fB(b)

·
(

(a− 1)2an

(an(a− 1)− bx(an − 1))2

)
dadb.

(9.5)

Computing this double integral in an exact way, i.e. using primitives, is not always
possible. Nevertheless, using numerical quadrature rules we can approximate it.
This fact mainly depends upon the mathematical expression of the densities fX0 , fA
and fB. To overcome this drawback, we will consider the following representation
of fXn in terms of the expectation operator, E[·],

fXn(x) = E
[
fX0

(
x(A− 1)

An(A− 1)−Bx(An − 1)

) ∣∣∣∣∣ (A− 1)2An

(An(A− 1)−Bx(An − 1))2

∣∣∣∣∣
]
.

(9.6)

At this point, it is important to underline that we can weak the condition that
input parameters A and B are absolutely continuous RVs but just having proba-
bility distributions. Then, the density fXn can be computed using Monte Carlo
simulations. However, notice that to follow this strategy, we need to assign reliable
distributions to RVs A, B and X0. This key point will be addressed using the
PME described in Section 6.4

9.3 Data and their uncertainty

As it has been previously indicated, in this section we will apply the PME, described
in Section 6.4, to assign probability distributions to each sampled data. To this
end, we are going to use the following information. First, the figures tabulated in
the second column of Table 9.1, that correspond to the sampled data of the breast
tumour volume measured in mm3, at different days, ñ, [123, Figure 1]. They have
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been obtained using xenograft technique, which consists of inserting cell tissue
from one species to another, in our case, breast tumoral tissue from human species
to a rodent species, [123, page 2]. These values have been collected by measurement
electronic devices, hence involving uncertainties. This fact aims us at treating these
quantities as RVs rather than deterministic values. The figures m̃1,ñ are taken as
representing the mean and, according to [37], we assign a variance of 5% at each
value, i.e. σ̃2

ñ = 0.05 m̃1,ñ (see third column, σ̃2
ñ, Table 9.1). As a consequence, the

second moment can be straightforwardly computed, m̃2,ñ = m̃2
1,ñ + σ̃2

ñ, see last
column of Table 9.1.

Days Mean (m̃1,ñ) Variance (σ̃2
ñ) 2nd moment (m̃2,ñ)

ñ = 0 45.74 2.287 2094.4
ñ = 16 194.257 9.7129 37745.49
ñ = 30 675.14 38.2570 455852.27
ñ = 33 936.53 46.8256 877135.26
ñ = 43 1941.7 97.0850 3770295.97
ñ = 48 2558.6 127.930 6546561.89

Table 9.1: Volume of breast tumor cells using xenograft technique at different days, [123]
(m̃1,ñ) together with the assigned variance (σ̃2

ñ) and second moment (m̃2,ñ).

Since we have information of the two first moments, we allocate the PDF of each
the corresponding volume of breast tumour cell using expression (6.22), i.e.

f̃ñ(x) = 1D(ñ)e−1−λñ0−λ
ñ
1 x−λ

ñ
2 x

2
, (9.7)

where D(ñ) denotes the domain of the RV inferred by the information collected
in Table 9.1 and λñk , k = 0, 1, 2, are determined solving the following system of
non-linear equations for each ñ ∈ {0, 16, 30, 33, 43, 48}, see Section 6.4,∫ ∞

0
e−1−λñ0−λ

ñ
1 x−λ

ñ
2 x

2
dx = 1,∫ ∞

0
xe−1−λñ0−λ

ñ
1 x−λ

ñ
2 x

2
dx = µ̃ñ,∫ ∞

0
x2e−1−λñ0−λ

ñ
1 x−λ

ñ
2 x

2
dx = µ̃2

ñ + σ̃2
ñ.

(9.8)
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The results are shown in Table 9.2. They have obtained by fsolve function in
MATLAB, [71].

Days λñ0 λñ1 λñ2
ñ = 0 74.5841 -3.2063 3.50e-02
ñ = 16 21.7070 -0.1882 4.8407e-04
ñ = 30 10.5921 -0.0133 8.6701e-06
ñ = 33 11.8918 -0.0145 8.0943e-06
ñ = 43 9.5029 -0.0034 9.3958e-07
ñ = 48 8.8842 -0.0015 3.1900e-07

Table 9.2: Values of λñ
0 , λ

ñ
1 and λñ

2 obtained solving the system of nonlinear equations given
in (9.8) the different values of ñ.

In Fig 9.1, we show a graphical representation of each PDF given by equation
(9.7) with the values collected in Table 9.2. We can observe the PDFs built via the
PME provide higher variability as n̂ increases in full agreement with the variance
σ̃2
ñ given in Table 9.1.
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Figure 9.1: PDF of each sampled data using the PME at the days ñ ∈ {0, 16, 30, 33, 43, 48}.
The red points represent the values m̃1,ñ given in Table 9.1.
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9.4 Statistical distribution of the model parameters

Once probability distributions to sampled data have been assigned, as it has been
indicated in the Introduction section, the following step will consist of establishing
probability distributions for model parameters A, B and X0. To achieve this goal,
the PME will be applied again.

For consistency with the distributions assigned in Section 9.3 for the first sampled
data, corresponding to ñ = 0, we take

fX0(x0) = e−1−λ0
0−λ

0
1x0−λ0

2x
2
0 , (9.9)

where λ2
0 = 74.5841, λ0

1 = −3.2063 and λ0
2 = 3.50e− 02, see first row in Table 9.2.

Using PME, we propose the following parametric PDFs for the rest of RVs A and
B

fA(a) = e−1−λA0 −λ
A
1 a−λ

A
2 a

2
, a ∈ [a1, a2], (9.10)

fB(b) = e−1−λB0 −λ
B
1 b−λ

B
2 b

2
, b ∈ [b1, b2], (9.11)

respectively. According to (9.3), we derive that a1 = 1 and b1 = 0, hence a2 > 1
and b2 > 0.

The values of parameters
{
λA0 , λ

A
1 , λ

A
2
}
and

{
λB0 , λ

B
1 , λ

B
2
}
must be chosen so that

fA and fB integrate the unit. Therefore, after calculating the integral and isolating
λA0 and λB0 one gets, respectively,

λA0 = −1 + (λA1 )2

4λA2
+ log

 √π
2
√
λA2

Erf

λA1 + 2a2λ
A
2

2
√
λA2

− Erf

λA1 + 2a1λ
A
2

2
√
λA2

 ,
(9.12)
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λB0 = −1 + (λB1 )2

4λB2
+ log

 √π
2
√
λB2

Erf

λB1 + 2b2λB2
2
√
λB2

− Erf

λB1 + 2b1λB2
2
√
λB2

 ,
(9.13)

provided λA2 > 0 and λB2 > 0. Here, Erf(x) = 2√
π

∫ x
0 e
−t2dt stands for the error

function.

According to expression (9.6), to compute the PDF of the solution SP Xn, it
is necessary to sampling RVs A and B. This will be done via the inverse of
the distribution functions of A and B using the so called inverse transformation
method, [51, Chapter 2]. According to this technique, we first need to calculate
the distribution functions of A and B,

FA(a) =
∫ a

1
fA(s)ds

= 1

2
√
λA2

e
−1−λA0 +

(λA1 )2

4λA2
√
π

−Erf
λA1 + 2λA2

2
√
λA2

+ Erf

λA1 + 2aλA2
2
√
λA2


(9.14)

and

FB(b) =
∫ b

0
fB(s)ds

= 1

2
√
λB2

e
−1−λB0 +

(λB1 )2

4λB2
√
π

−Erf
 λB1

2
√
λB2

+ Erf

λB1 + 2bλB2
2
√
λB2

 ,
(9.15)

where 1 ≤ a ≤ a2 and 0 ≤ b ≤ b2, respectively. Denoting uA := FA(a) ∈ (0, 1) and
uB := FB(b) ∈ (0, 1) in (9.14) and (9.15), respectively, and isolating a and b in
each expression, one gets
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a = 1
2λA2

−λA1 + 2
√
λA2 InvErf


2e

1+λA0 −
(λA1 )2

4λA2
√
π uA

√
λA2 + πErf

(
λA1 +2λA2
2
√
λA2

)
π


 ,

(9.16)
and

b = 1
2λB2

−λB1 + 2
√
λB2 InvErf


2e

1+λB0 −
(λB1 )2

4λB2
√
π uB

√
λB2 + πErf

(
λB1

2
√
λB2

)
π


 ,

(9.17)
respectively. Here InvErf(·) denotes the inverse function of Erf(·). Sampling many
times uA and uB uniformly in the unit interval (0, 1), i.e. uA, uB ∼ U(0, 1), and
substituting these sampled values in expressions (9.16) and (9.17), we obtain
simulations of RVs A and B, respectively.

9.5 Procedure design

In the previous section, we have taken advantage of PME to assign reliable PDFs
to model inputs A and B (see expressions (9.10) and (9.11), respectively). Taking
into account the relations (9.12) and (9.13), these PDFs, fA and fB, depend on
parameters

{
λA1 , λ

A
2 , a2

}
and

{
λB1 , λ

B
2 , b2

}
, respectively. In this section, we design

a computational procedure to determine these parameters so that the PDF, fXn ,
which according to (9.6) depends on A and B, matches, as much as possible, the
PDFs constructed via PME in Section 9.3 of sampled data at the time instants
ñ ∈ {0, 16, 30, 33, 43, 48}.

To seek the parameters λA1 , λA2 , a2, λB1 , λB2 and b2, an optimization algorithm will
be applied. This technique consists of comparing, over various iterations, sets of
admissible parameters (λA1 , λA2 , a2, λ

B
1 , λ

B
2 , b2) until an optimum or a satisfactory

set is found [121].
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To compare sets of admissible parameters, a suitable criterion, which is en-
closed in a fitness function, is required. In our case, given a set of parame-
ters (λA1 , λA2 , a2, λ

B
1 , λ

B
2 , b2), we have chosen the sum of certain local errors, Eñ,

ñ ∈ {0, 16, 30, 33, 43, 48}, which are defined in terms of the absolute differences
between the PDF, fXñ , given in (9.6) and the PDF, f̃ñ, assigned to sampled data
given in equation (9.7) and Table 9.2.

Down below, we shall describe through several steps the construction of the fitness
function, FF (s), for a given set of parameters s = (λA1 , λA2 , a2, λ

B
1 , λ

B
2 , b2).

Step 1: Compute the values of λA0 and λB0 defined by equations (9.12) and (9.13),
respectively.

Step 2: Obtain M = 10000 samples of uA, uB ∼ U(0, 1) and substitute them
in equations (9.16) and (9.17) to sampling values a and b of RVs A and B,
respectively.

Step 3: Define the mesh of N + 1 nodes over the interval [0, H],

x̂ := {xi} :=
{
iH

N

}N
i=0

,

being H < +∞ an upper bound of the RV defined by equation (9.7) at
ñ = 48. In our application we will take N = 500 and H = 8000 (see panel
corresponding ñ = 48 in Figure 9.1).

Step 4: Fix ñ ∈ {0, 16, 30, 33, 43, 48} and xi defined in Step 3. Substitute the M
simulations (a, b) of the random vector (A,B) generated in Step 2 in the
expectation argument of (9.6), i.e., in the expression

fX0

(
xi(a− 1)

añ(a− 1)− bxi(añ − 1)

) ∣∣∣∣∣ (a− 1)2añ

(añ(a− 1)− bxi(añ − 1))2

∣∣∣∣∣ , (9.18)

Thus, for each ñ, M curves, along the mesh x̂, are generated.

Step 5: For each day ñ, compute the average of the M curves generated in Step
4. Then, according to (9.6) an approximation of the PDF fXñ evaluated in
x̂ is obtained.
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Step 6: For each day ñ, evaluate in the mesh x̂ the PDF, f̃ñ, of sampled data
defined by equation (9.7) and Table 9.2.

Step 7: For each day ñ ∈ {0, 16, 30, 33, 43, 48}, compute the error

Eñ =
∑N
i=0

∣∣∣fXñ(xi)− f̃ñ(xi)
∣∣∣∑N

i=0 f̃ñ(xi)
.

Step 8: The output of the fitness function, named fitness, is given by

E = E0 + E16 + E30 + E33 + E43 + E48.

It is important to remark that E0 = 0, since by construction we have taken
fX0 = f̃0, see Section 9.3.

Using an optimization algorithm, we can find the vector s =
(
λA1 , λ

A
2 , a2, λ

B
1 , λ

B
2 , b2

)
that minimizes the fitness E, i.e. a set of parameters such that fXñ and f̃ñ, are
close at the time instants ñ ∈ {0, 16, 30, 33, 43, 48}.

The optimization algorithm used in this chapter to minimize FF is a bioinspired
algorithm named Particle Swarm Optimization (PSO). These kind of algorithms
are inspired by biological behaviour of certain species. In this case, PSO represents
the movement of a swarm of birds exploring new areas to find food. In each
iteration all the birds of the swarm, change their position according to balance of
its particular best position and the global best position of the swarm, [80].

9.6 Results

This section is aimed at seeking the values λA1 , λA2 , a2, λ
B
1 , λ

B
2 and b2 that minimize

the fitness function, FF , described in the foregoing section through Steps 1− 8.
Minimizing FF , we guarantee that the PDF of the randomized discrete logistic
model (9.6), at the time instants ñ ∈ {0, 16, 30, 33, 43, 48}, approximates with the
PDF of sampled data described in (9.7) and Table 9.2.
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As it has been explained in Section 9.5, PSO algorithm is applied to find out the
best set of parameters s = (λA1 , λA2 , a2, λ

B
1 , λ

B
2 b2) that minimizes FF . We consider

a swarm made up of 200 particles (birds), and during 90 iterations, the particles
change their positions. In other words, our optimization algorithm requires 90
iterations.

Using the MATLAB function particleswarm with 200 elements and 90 iterations, we
proceed to find out the best set of parameters that minimizes FF . This procedure
requires about 3 hours to reach a suitable solution with an Intel Core i7 7700HQ
and 16Gb of RAM. The best set of parameters and their respective fitness are
collected in Table 9.3. Notice that the values of λA2 and λB2 are positive as required
in (9.12) and (9.13).

Notice that the upper bound, b2, of the domain of the RV B is close to zero,
b2 = 9.365588 · 10−6. This numerical result is in full agreement with expression
(9.3) that relates the parameter B, appearing in the discrete logistic model (9.1),
and the parameters a and b involved in the formulation of continuous logistic
model (9.2). On the one hand, the numerator of B in expression (9.3), ea − 1,
is small since the RV A = ea takes values similar to 1. On the other hand, the
denominator of B in (9.3) is given by the parameter b of the logistic model (9.2),
defining the carrying capacity, i.e. the maximum volume the tumor can reach.
From Table 9.1, we can see that the maximum sampled volume is 2558.6 mm3,
and according to the trend of sampled data, it is expected the carrying capacity,
b, will be greater than 2558.6 mm3. As a consequence, RV B takes values close to
zero.

Parameters Values
λA1 -2038.1233
λA2 919.6327
a2 1.11057
λB1 90.5919
λB2 196.5526
b2 9.365588e-06

Fitness 1.582584

Table 9.3: Values of parameters λA
1 , λ

A
2 , a2, λ

B
1 , λ

B
2 , b2 that minimize the fitness function

FF using Particle Swarm Optimization algorithm.
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Figure 9.2: PDFs of random model parameters A and B of the randomized discrete logistic
model described by equations (9.10) and (9.11), respectively.

A graphical representation of the PDFs of RVs A and B described by expressions
(9.10) and (9.11), respectively, are plotted in Figure 9.2.

To better compare the obtained results, in Figure 9.3 we show, at the days
ñ ∈ {0, 16, 30, 33, 43, 48}, the PDF of the randomized discrete logistic model
described in equation (9.6) (blue lines) and the PDF of sampled data described
in expression (9.7) and Table 9.2 (red dashed lines). We can observe that there
is a good agreement between both PDFs at every value of ñ. This confirms the
goodness of the fitting procedure.

In Figure 9.4, we have plotted the PDF of the randomized discrete logistic model
given by equation (9.6) for n ∈ {0, 1, . . . 50}. The red points represent the sampled
data (given in column m̃1,ñ of Table 9.1) and green points are the means or
expectations obtained via the PDFs (blue curves).
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Figure 9.3: Comparison between the PDF of each sampled data (red dashed lines) and the
PDF of the fitting randomized logistic model (blue lines) at the days ñ ∈ {0, 16, 30, 33, 43, 48}.
In the horizontal axis of each panel, the red point represents the sampled data (it corresponds
to column m̃1,ñ in Table 9.1) and the blue point represents the mean or expectation obtained
via the PDF (blue curves).
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Figure 9.4: Representation of the PDF, fXn , of the random discrete logistic model (9.6)
for different days n = 0, 1, . . . , 50. Red points represent the sampled values of tumor volume
described in the column m̃1,ñ of Table 9.1 and green points represent the mean of the
distribution defined by the blue curves.
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9.7 Conclusions

In this chapter a probabilistic logistic-type model to describe the growth of breast
tumour volume has been presented. A key aspect to treat model uncertainties has
been the allocation of reliable distributions to model parameters. To handle this
important issue, we have devised a computational method which takes advantage
of the principle of maximum entropy. A relevant aspect of our approach is that we
fit the model to real data taking into account the probabilistic information via
the PDFs assigned and computed to sampled data and output model. This is a
distinctive feature of our study with respect to alternative methods that perform
the fitting by means of punctual statistics like the expectation. In this manner,
uncertainty quantification analysis in the stochastic model is more informative.
The uncertainty quantification technique proposed in this chapter may be applied
to other models containing fractional derivatives where randomness in data and in
model parameters play a key role [78, 61].

Chapter published

The results of this chapter have been published in [28]. With regard to this
paper, the PhD candidate has contributed by working in its complete development
with more emphasis on the development and implementation of the random
computational procedure, the application to model breast tumour growth and
participating in the writing of the paper.
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Chapter 10
A random computational procedure to

recommend insulin and carbohydrates intakes
to diabetic patients

In the two previous chapters, different problems based on biological dynamics have
been dealt with uncertainty. This PhD dissertation finishes with a final chapter

dedicated to study an interest healthcare problem: modelling the glucose level of a
diabetic patient. The aim of this chapter is making a recommendation about the
insulin and the food intakes a diabetic patient needs to administrate in order to

guarantee that its blood glucose level belongs to a healthy range. To do that a
computational technique based on a mathematical model is proposed. The model is
calibrated with glucose data one hour considering the uncertainty due to errors in
the measurement of glucose. Once the model has been calibrated, proposing several
combinations of insulin administration and carbohydrate ingestion, we carry out

simulations with the model in order to determine which of these combinations
allows the patient to remain within safe glucose levels (range levels) during the

following four hours. We test our proposal using data from real patients, in three
different scenarios corresponding to situations where the patient presents high,

medium and low glucose levels, respectively.
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10.1 Introduction

Diabetes Mellitus encloses a set of metabolic disorders that affect to the level of
glucose in the blood. Generally speaking, diabetes appears when the pancreas is
unable to produce enough insulin (type 1 ) or when there is a defect in the action
of the insulin (type 2 ) [8]. Type 1 diabetes encloses two different subtypes: subtype
1a and subtype 1b. Their difference is related with the performance of the immune
system. In diabetes of subtype 1a, the immune system damages the tissue of beta
type cells, the ones responsible to produce insulin. In subtype 1b diabetes, there
is not evidence that the immune system damages the beta cell types and there are
periods of time where it is necessary a replacement of insulin and other periods
where it is not necessary. Type 1a diabetes is commonly referred to as type 1
diabetes.

In any case, the glucose the body obtains from food is not properly transformed
and there is an increasing of blood’s glucose level. People suffering this kind of
disorders are more likely to have cardiovascular-related illnesses among other
diseases [14]. Hence, it is crucial to maintain the glucose in appropriate levels in
order to avoid serious health problems. Habitually, it is said that it is convenient
to maintain the glucose in the range between 70 and 180 mg/dL, and to measure
the quality of the management of the disease we usually speak of time in range.
The higher the time in range, the better the control [19].

Several electronic devices are available nowadays to measure glucose levels over
time. These devices are known as Continuous Glucose Monitoring Systems or
CGMS [56]. With them, it is possible to monitor not only the evolution of the
patient’s glucose levels over the time, but also the actual values in the interstitial
phase. Nevertheless, these devices return measurements with an intrinsic error
of at least 5% that must be considered when the goal is to provide a reliable
management of the patient’s glucose level, reducing the possibility of suffering
hyperglycemia or hypoglycemia episodes.

CGMS data analysis allow physicians to provide appropriate recommendations,
specially related to adjust the protocol for injecting the insulin’s doses, to do some
exercise or to make changes in diet [40]. These recommendations can be more
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precise if we could predict the levels of glucose over appropriate future periods
of time, and assist the medical specialist to maintain the patient’s glucose levels
within healthy ranges. This paper is focused on providing technical tools to improve
the accuracy of the recommendations of the physician to diabetic patients.

During the last two decades several kind of models to study the dynamics of
glucose have been proposed. Many recent contributions provide simulation models
for enhancing the quality of live of the patients and the health care systems [98].

In [5] the authors propose a complex model to study the regulation of mechanism
of glucose by pancreas’s hormones in the human body. They enclose the thirteen
models that mathematically clarify the mechanism of components of the blood
glucose levels regulation in the human body in three main subsystems: glucose
subsystem, glucagon subsystem and insulin subsystem.

The physiological parameters involved in the endogenous glucose production are
constantly being researched and modeled by mathematical equations. In [111],
the authors describe a system of partial differential equations to describe de
endogenous glucose production dynamics.

The main disadvantage of the above two models is the complexity of the equations
involved in their description. Implementing and executing problems described
by complex equations may need a high computational cost in calibration and
simulation, what may take longer time than the prediction time.

On the other hand, minimal models are parsimonious descriptions, which allow
the measure of the processes involved in the metabolism of glucose [120]. The
advantage is that they use a reduced number of parameters and the equations
are computationally easy to implement and simulate. Here, we use the minimal
model presented in [1] which is an adaptation of the model by Prud’homme and
Bock [106, 15]. This model has been developed with the main aim at achieving
control of postprandial levels of glucose. We select this model because it uses
therapeutic parameters that are usually present in the daily clinical practice.
However, the model is non-linear and contains several unknown parameters related
to the absorption of the insulin and its sensitivity, the production of the endogenous

207



Chapter 10. A random computational procedure to recommend insulin and carbohydrates
intakes to diabetic patients

glucose, the bioavailability of the meal and the effectiveness at zero insulin. The
values of the parameters of the model can be identified for each patient [1].

In this paper, we propose a computational procedure, for selecting the appropriate
combination of insulin doses-food intakes-times in different situations of the daily
life of a diabetic patient taking into account the inherent uncertainty of the data.

Thus, the novelty of this procedure is twofold: on the one hand, we use a minimal
model taking into account the measurement error in the CGMS, and on the other
hand, it is a tool that may help the physician to provide proper recommendations.

The proposed computational procedure is divided into two parts:

1. Calibration: using the model presented in [1], we solve the inverse problem
of determining the model parameter values in such a way the output of the
model captures the data (patient’s glucose levels) and the possible measure
errors of the electronic device (uncertainty).

2. Recommendation: considering the healthy glucose range (70− 180 mg/dL)
and all possible scenarios for administering insulin and eating carbohydrates,
we perform model simulations for each scenario over four hours. Then, we
analyse the results to select the best recommendation for the patient, i.e, the
one with the higher time in range.

We apply this technique to two patients in three situations that cover most of the
scenarios a diabetic patient may have, with high, medium and low glucose levels.

To the best of our knowledge, this is a new way of using minimal models in the
prediction of the glucose levels of a patient.

The paper is organized as follows. In Section 10.2 we present the model describing
the dynamics of the glucose in a patient. It is a discrete version of the one presented
in [15] where the measure units have been changed to mg/dL. Section 10.3 deals
with data and their uncertainty treatment to estimate the measurement errors.
In Section 10.4 we show the model calibration, the design of scenarios about the
administration of insulin and the consumption of carbohydrates, as well as the
performance of the model simulations in each proposed scenario. Results and their
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analysis are presented in Sections 10.5 and 10.6, respectively. Finally, in Section
10.7 we present our conclusion.

10.2 Model description

This section introduces the mathematical model describing the dynamics of the
glucose of diabetic patient. Starting from the Bergman minimal model (BMM) [13],
in [106, 15] the authors extended the BMM through two modifications. First, they
substituted the insulin action and insulin absorption models [94] by a second order
insulin action model. Second, they added the second order linear carbohydrates
sub-model from [67]. As a result, the minimal model (MM), which discretization is
described in [1], can be written as the following system of five difference equations:

Gt+1 = Gt −XtGt − Sg0Gt + Uendo + C
Ut
W
, (10.1)

At+1 = At + Vt, (10.2)
Vt+1 = Vt − 2agVt − a2

gAt +Kga
2
gCht, (10.3)

Xt+1 = Xt − axXt + axX
1
t , (10.4)

X1
t+1 = X1

t − axX1
t +Kxax

It
W
, (10.5)

where

• Gt is the glucose level of the patient at time t,

• At is the gut glucose absorption at time t,

• Vt is the variation rate of the gut glucose absorption at time t,

• Xt is the insulin action at time t, and

• X1
t represents the intermediate insulin action at time t.

The model parameters are related with the daily clinics of the patient and his/her
specific biology. The model parameters and constants are [1],
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• Cht are the level of ingested carbohydrates at time t,

• It are the level of insulin at time t,

• C = 50/9, 1

• W is the weight of the patient,

• Sg0 is the glucose effectiveness at zero insulin,

• Uendo is the insulin independent endogenous glucose production,

• ag is the inverse of the meal time constant,

• Kg is the unit-less bioavalibility of the meal of interest,

• ax is the inverse of the insulin absorption/action time constant, and

• Kx is the insulin sensitivity.

In Table 10.1 we show the units of the model variables, parameters and data of
the patient.

Variables Data of the patient Parameters
At g/min Cht g/min ag 1/min
Vt g/min2 It mU/min Kg unit-less
Gt mg/dL C mg ×Kg/(dL× g) Sg0 1/min
Xt 1/min W Kg Uendo mg/dL
X1
t 1/min ax 1/min

Kx kg/mU

Table 10.1: Units of the model variables, data of the patient and parameters.

1In the original Minimal Model [106, 15], C = 50/9, the constant which converts grams of glucose
into mmol. Details can be seen in the Appendix of [1].

210



10.3 Data and their uncertainty

10.3 Data and their uncertainty

Once we have introduced the model, we consider the levels of glucose of a specific
patient given by gt for the time instants t = 1, 2, . . . n. These glucose levels have
been measured with an electronic device with, at least, 5% of measurement error
described in the technical specifications. As we mentioned before, we want to
obtain the set of parameter values that allow the model to capture the uncertainty
due to errors in the measurement of the glucose. For this purpose, let us assume
that each measured glucose level is represented by a random variable instead of a
nominal value.

The errors in the measures taken by electronic devices are typically modelled using
Gaussian Random Variables N(µ, σ) where µ is the mean and σ the standard
deviation [104]. In our case, assuming a measurement error of 5%, for each time
instant t we take gt, the glucose level at time t, as the mean. Also, we take
0.05× gt as the standard deviation. Thus, N(gt, 0.05gt), t = 1, 2, . . . n model the
error measures of CGMS.

The 95% confidence interval (CI95%) of N(gt, 0.05gt), t = 1, 2, . . . n is given by
percentiles 2.5 and 97.5, that is, Lt = 0.902gt and Ut = 1.098gt, respectively. Thus,
the CI95% of the data is [Lt, Ut] = [0.902gt, 1.098gt], t = 1, 2, . . . n.

The CI95% calculated above will allow us to look for the sets of model parameter
values that best capture the data uncertainty.

10.4 Procedure design

As indicated above, our goal is to determine, knowing data of the levels of glucose
of a patient in the last hour, when and how much insulin should be administered,
and when and how much carbohydrates should be eaten to maximize the time in
range of a patient. These crucial questions must be answered taking into account
the uncertainty of the measured glucose levels to avoid possible critical situations
for the patient.

Thus, let us assume that we have, measured via an electronic device, the levels
of interstitial glucose of the patient in the last hour every five minutes, that is,
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gti , and their CI95% [Lti , Uti ], ti = 5× i, i = 1, 2, . . . 12. We propose a procedure
consisting of two parts:

• The calibration of the model of the equations (10.2)-(10.5) capturing the
data and their uncertainty.

• The calculation of the amount of insulin and carbohydrates the patient should
have and when, to preserve his/her glucose within healthy levels, as much as
possible, over the next 4 hours.

10.4.1 Model calibration capturing the data uncertainty

The objective is to obtain a combination of different sets of parameters of the
model (10.2)-(10.5) that best capture the data and their uncertainty. Without loss
of generality we have predefined the amount of selected sets of parameters as k.

The model calibration is described in two steps.

• Step 1: Generation of a high number, M , of model outputs.

• Step 2: Selection of the k sets of parameters from those M , in such a way
the data uncertainty will be captured.

Step 1

The generation of the M model outputs should be guided in such a way we can
find model outputs close to the data. To do so, we use the optimization algorithm
random PSO (rPSO) described in [80] to obtain good model outputs, and we
store all the particles with their corresponding fitness. rPSO is a variation of the
PSO algorithm version proposed by Khemka and Jacob where the velocities of
the particles are considered pseudo random values. A particle Pj , is defined by a
combination of the values of the set of parameters listed in Table 10.1:

Pj =
(
agj ,Kgj , Sg0j , Uendoj , axj ,Kxj

)
(10.6)
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denoting as GPjti the level of glucose returned by the model (model output) with
the model parameters Pj , at time instant ti. Then, we define the following fitness
function f as the sum of the errors of the 12 measures of glucose levels in the last
hour, time instants ti = 5× i, i = 1, . . . , 12, that is

f(Pj) =
12∑
i=1

τ(GPjti ), (10.7)

where

τ(GPjti ) =
{

0, if Lti ≤ G
Pj
ti ≤ Uti ,

min
{
|GPjti − Lti |, |G

Pj
ti − Uti |

}
, otherwise.

(10.8)

That is, the function τ returns zero if the model levels of glucose lie inside the
data CI95%, see Figure 10.1(a). Otherwise, τ returns the minimum distance of
the model level of glucose, GPjti to the CI95%, see Figure 10.1(b).

(a) (b)

Figure 10.1: According to the expression (10.8), we have: (a) τ is zero if the level of glucose
returned by the model, red dot, lie inside the CI95%, blue dots. (b) τ is the minimum distance
from the level of glucose returned by the model, red dot, and the CI95%, blue dots, if they
are not inside CI95%. In this case, the distance between the red dot to the Perc 2.5 blue dot.
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We run rPSO 30 times with 700 model evaluations each run. All the evaluations
performed during the 30 runs are stored, thus, we have a large enough number of
evaluations to work with, M = 30× 700 = 21000. For the shake of computational
efficiency, we store the model parameter values Pj , the model output corresponding
to Pj in the time instants ti = 5× i, i = 1, 2, . . . 12, and the fitness values f(Pj).

Step 2

In order to select the appropriate k model outputs that best capture the data
uncertainty, we propose a specific algorithm. This algorithm is inspired in the
regular Particle Swarm Optimization (PSO) algorithm where a proper fitness
function is introduced. Let us denote Θ(j) the vector made up of the 12 model
outputs obtained running the model with the parameters Pj , with j = 1, . . . ,M
and 2 ≤ k ≤M , that is,

Index Parameters Output

1 P1 Θ(1) = (GP1
t1 , G

P1
t2 , . . . , G

P1
t12),

2 P2 Θ(2) = (GP2
t1 , G

P2
t2 , . . . , G

P2
t12),

...
...

...
M PM Θ(M) = (GPMt1 , GPMt2 , . . . , GPMt12 ).

(10.9)

Now, in the selection algorithm, a particle Eh is

Eh = {Ih1 , . . . , Ihk} (10.10)

where Eh is a subset of k indexes of {1, . . . ,M}. We evaluate each Eh using the
fitness function FE . FE takes the model outputs corresponding to the indexes in
Eh, calculates the mean and the CI95% in each time instant and compares with
the mean and the CI95% of the data (see Figure 10.2). The function FE is defined
following the next steps.
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t1 t2 t3 t 4 t 12

Figure 10.2: Fitness function FE measures the difference between the model output mean
and CI95% (red dashed line and red shadowed band) and the data mean and CI95% (blue
dashed line and blue shadowed band). The selection algorithm find sets of model parameter
values in such a way that the red and the blue bands are as much similar as possible.

Step 1. Select the model output vectors Θ(Ih1), . . . ,Θ(Ihk) and calculate the
means mh = (mt1 , . . . ,mt12), the percentiles 2.5, qh = (qt1 , . . . , qt12), and the
percentiles 97.5, Qh = (Qt1 , . . . , Qt12).

Step 2. Calculate the error

FE(Eh) =||mh − (gt1 , . . . , gt12)||2 + ||qh − (Lt1 , . . . , Lt12)||2+
||QH − (Ut1 , . . . , Ut12)||2,

(10.11)

where the 2-norm || · ||2 of a vector is given by [116]

||(x1, . . . , xn)||2 =
√
x2

1 + · · ·+ x2
n,

and gti , Lti , Uti for i = 1, 2, . . . 12, are the data and the percentiles 2.5 and 97.5,
respectively, calculated in Section 10.3.

Note that the fitness function FE measures if a set of model outputs captures or
not accurately the data uncertainty by comparing means and CI95%. The selection
algorithm search k model outputs to minimize the FE function, and it is given by:

1. Initialization.
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• Initialize H index subsets (particles), E1, . . . , EH , with k indexes from
the set {1, . . . ,M} chosen randomly without repetition (Eq. 10.10).

• Evaluate the fitness of all the particles, FE(E1), . . . , FE(EP ).

• Define the individual subsets (particles) having the best fitnesses as
Ebesti = Ei, i = 1, . . . ,H and the global subset (particle) with best
fitness Ebestglobal as the Ebesti with minimum fitness.

2. For i = 1 to H, extract randomly without repetition k indexes from the
union of the current particle Ei, its individual best Ebesti and the global best
Ebestglobal, and denote it as the new Ei.

3. Evaluate the fitness of all the new particles FE(E1), . . . , F (EH).

4. Update the individual particle with best fitness Ebesti , i = 1, . . . ,H and the
global best particle with fitness Ebestglobal.

5. Go to Step 2.

The Ebestglobal returned in the last iteration of the algorithm will correspond to the k
indexes {j1, . . . , jk} which 95% confidence interval of the model output vectors
Θ(j1), . . . ,Θ(jk) capture the best the data uncertainty.

Here, there are some values that should be set to run the above algorithm, k, H
andM . In our case,M can be up to 21000, however, this figure is too high because
the selection algorithm may take long time to find accurate solutions. Therefore, it
is recommended to take much less outputs under the condition that these outputs
“cover" the data uncertainty. To select the model outputs, we set a threshold so
that about 3000 model outputs with error less than the threshold are chosen. This
way, the performance of the algorithm is significantly improved.

On the other hand, the number of particles in the rPSO algorithm H has to be
also tuned. To perform the selection we used 30, 40, 50 and 60 particles. The best
results have been obtained with H = 30. In addition, we have to set k, i.e., the
number of model outputs that are going to capture the data uncertainty. This
number must be high enough to capture the data uncertainty accurately with a
certain stability (that is, if we increase the value of k, the selected model outputs
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capture the data uncertainty with similar accuracy) and low enough to permit
further complex calculations in affordable times. We performed tests with k = 100
and k = 300 obtaining similar results. Hence, we take k = 100 and seek for the
100 model outputs that best capture the data uncertainty.

10.4.2 Determining the best insulin-carbohydrates dosage to maintain healthy
glucose levels

Once Ebestglobal have been found, we know the k = 100 model outputs Θ(j1), . . . ,Θ(jk),
that best capture the data uncertainty. The model parameter values corresponding
to these model outputs are Pj1 , . . . , Pjk , following the notation mentioned before.

Now, we set the healthy upper and lower bounds of glucose for diabetic patients,
U = 160 mg/dL and L = 90 mg/dL. Furthermore, we define 693 (m, s, c) scenarios,
corresponding to values of (minute, insulin dose, carbohydrates intake). That is

• over the next m minutes, m ∈ {5, 10, 15}, administer

• s mU of insulin, s ∈ {0, 10000, 20000, 30000, · · · , 190000, 200000} and, after
15 minutes, eat

• c grams of carbohydrates, c ∈ {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}.

For a given scenario (m, s, c), we take the k model parameter values Pji , i = 1, . . . k,
and run the model to obtain the model output (glucose levels) of the patient over
the next 4 hours (240 minutes), considering that carbohydrates are taken 15
minutes after insulin doses. Thus, for each time instant, we have k glucose values
and we compute their percentiles 2.5 and 97.5 denoted as λ = (λ1, . . . , λ240) and
υ = (υ1, . . . , υ240), respectively. Similarly to expressions (10.7)-(10.8), we define
the error function

g(λ, υ) =
240∑
i=1

σ(λi) + σ(υi), (10.12)

where
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σ(x) =
{

0, if L = 90 ≤ x ≤ U = 160,
min {|L− x|, |U− x|} otherwise,

(10.13)

and, the error of the simulation is calculated. We repeat the procedure for all the
693 scenarios and among them, we select the scenario with minimum g(λ, υ). That
is, the one which deviation from the healthy levels of glucose U and L is as small
as possible, or equivalently, the time in range is maximum.

10.5 Results

The designed procedure, in the first step, attempts to explain the situation of
the patient using a dynamic mathematical model. Then, in the second step we
simulate scenarios, using the parameters that depict the current situation, in order
to find which one is the best to be recommended to the patient.

To test the procedure, we are going to experiment with data from two real patients,
namely Patient 1 and Patient 2, with high, medium and low levels of glucose. The
weight of both patients is W = 70 kg. In each of the 6 situations, we calibrate
the model regarding the data uncertainty, we perform simulations considering the
693 scenarios, calculate the 95% confidence interval and select the one with the
maximum time in range minimizing the error function (10.12)-(10.13).

This procedure has been been implemented in Python 3 software and executed
in a computer with a Intel Core i7 7700HQ and 16 Gb of RAM. The calibration
with uncertainty (Step 1, Section 10.4.1) takes an average of 160 seconds and Step
2 (Section 10.4.1) needs an average of 70 seconds to be executed. The selection of
the best strategy explained in Section 10.4.2 takes an average of 155 seconds.

Graphical results can be seen in Figure 10.3, for Patient 1, and Figure 10.4 for
Patient 2. In each graphic of both figures, we can see: on the left of the vertical grey
dashed line, the result of the model calibration with the data and their uncertainty;
on the right the prediction of the maximum time in range scenario for the patient.
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In both columns of the Figures 10.3 and 10.4, we represent the same. The difference
is that on the left column we show all the trajectories and on the right only the
95% confidence interval (band).

The bounds U = 160 mg/dL and L = 90 mg/dL are represented in the graphics
by the dashed red horizontal lines.

In Table 10.2, we can see the best recommendation (m, s, c) for each patient in
each situation.

Patient Minute Quantity Quantity
Scenario insulin (m) insulin (s) carbohydrates (c)

Patient 1 / high level 5 50000 mU 0 gr
Patient 1 / medium level 15 0 mU 5 gr

Patient 1 / low level 15 0 mU 10 gr
Patient 2 / high level 5 80000 mU 0 gr

Patient 2 / medium level 10 90000 mU 0 gr
Patient 2 / low level 15 0 mU 15 gr

Table 10.2: Minute when the insulin should be administered, which quantity and, after 15
minutes, the amount of carbohydrates the patient should eat for his/her best recommendation.

Furthermore, in Tables 10.3 and 10.4 we can see the obtained model parameter
values for each patient in each situation. It is noteworthy that the values of
ax = 0.04 and ag = 0.03 given in [15] for a linearisation of the minimal model
(therapy parameter-based model), lie inside the obtained CI95% and close to the
obtained means in all the experiment situations.
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k = 100 trajectories 95% confidence interval
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Figure 10.3: Patient 1. Three situations: (a) and (b) high levels of glucose; (c) and (d)
medium levels of glucose; (e) and (f) low levels of glucose. On the left of the vertical grey
line, the calibration with uncertainty. On the right of the grey vertical line, the prediction for
the best scenario. The horizontal red dashed lines correspond to the healthy levels of glucose
U = 160 and L = 90. On the left column, the k = 100 selected model outputs in the calibration
procedure and the k = 100 simulations over the next 4 hours for the maximum time in range
scenario. On the right column, the same but only the mean and the 95% confidence intervals.
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k = 100 trajectories 95% confidence interval
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Figure 10.4: The same as Figure 10.3 but for Patient 2.
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Patient 1-HL ag Kg Sg0 Uendo ax Kx

Mean 0.0872 570.4638 0.1904 64.479 0.0145 0.4217
2.5 Percentile 0.0142 0.0 0.0 32.7249 0.0 0.01
97.5 Percentile 0.1407 1421.9153 0.4525 87.0179 0.0286 0.9336
Patient 1-LL ag Kg Sg0 Uendo ax Kx

Mean 0.074 274.6364 0.189 39.2978 0.0168 0.324
2.5 Percentile 0.0642 0.0 0.0086 26.0809 0.0 0.01
97.5 Percentile 0.0851 1016.648 0.4394 53.4756 0.0267 0.7757
Patient 1-IL ag Kg Sg0 Uendo ax Kx

Mean 0.0731 682.3165 0.4499 60.8165 0.0153 0.3905
2.5 Percentile 0.0217 0.0 0.0882 25.344 0.0004 0.01
97.5 Percentile 0.1392 1337.3788 0.7627 82.8101 0.028 0.8771

Table 10.3: Patient 1. Mean and CI95% of the model parameter values in the situations
HL (high level of glucose), LL (low level of glucose), IL (levels of glucose inside the
healthy range).

Patient 2-HL ag Kg Sg0 Uendo ax Kx

Mean 0.0715 771.7842 0.1526 69.8948 0.0117 0.494
2.5 Percentile 0.0076 0.0 0.0 33.8751 0.0 0.01
97.5 Percentile 0.1351 1394.3786 0.4867 87.9031 0.0267 0.9074
Patient 2-LL ag Kg Sg0 Uendo ax Kx

Mean 0.0915 816.4032 0.6083 49.5728 0.0152 0.4911
2.5 Percentile 0.0205 0.0 0.3322 33.4541 0.0 0.0168
97.5 Percentile 0.1414 1454.1741 0.762 64.1808 0.0285 0.9392
Patient 2-IL ag Kg Sg0 Uendo ax Kx

Mean 0.0421 692.7575 0.2968 56.2248 0.0111 0.4074
2.5 Percentile 0.0 0.0 0.0 28.5421 0.0 0.01
97.5 Percentile 0.0994 1450.6895 0.6757 86.5477 0.0284 0.9334

Table 10.4: Patient 2. Mean and CI95% of the model parameter values in the situations
HL (high level of glucose), LL (low level of glucose), IL (levels of glucose inside the
healthy range).
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10.6 Analysis

The calibrations are fairly well except, maybe, in the low case of the Patient
1 (Figure 10.3(e) and (f)) where the data uncertainty in the left part is not
properly captured. However, most of predictions should be considered as reliable.
Nevertheless, the 95% confidence intervals are not completely confined in the
bounds U = 160 mg/dL and L = 90 mg/dL and there may be potential serious
issues.

To estimate the probability to reach these potential concerning issues, for each
time instant we take the values of the k = 100 trajectories and determine the
probability to be above 180 mg/dL, to be between 70 mg/dL and 180 mg/dL, and
to be below 70 mg/dL. These new upper and lower bounds are less conservatives
than the old ones and their differences may be considered as an usual safety band
in order to provide extra patient’s protection.

In Figure 10.5 we can see the probability to be inside the band 70 mg/dL −
180 mg/dL or above or below, in each minute over the following 4 hours, in all the
6 studied experiments. We expect this figure jointly with the information in Table
10.2 may be helpful to give accurate recommendations to the diabetic patients. For
instance, for the Patient 2 Figure 10.5(d), it would be interesting a reevaluation
after 3 hours and a half because the probability of being in safe levels of glucose is
decreasing. Or in Figure 10.5(f), the patient should be reevaluated very soon in
order to try to keep his/her levels of glucose within appropriate ranges. On the
other hand, the predictions for the Patient 1 are fairly stable and safe over the
time in the three scenarios.
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Patient 1 Patient 2

50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

(a) (b)

50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

(c) (d)

50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

90

100

(e) (f)

Figure 10.5: Probability to remain within the healthy levels of glucose [70 mg/dL,
180 mg/dL] over the time, in the 6 studied cases. Green lines show the probability to
be inside the healthy levels of glucose [70, 180]; blue lines stand for the probability to reach
levels of glucose greater than 180; red lines show the probability to reach lower levels of
glucose than 70.
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10.7 Conclusion

In this paper we propose a computational procedure to help the diabetic patients
and physicians to explain the current levels of glucose and make the appropriate
decisions about the doses of insulin to be administered and carbohydrates to be
eaten in the proper time instants to maximize the time in range over the next four
hours. The major interest of this procedure lies on the fact that to the best of our
knowledge, it is only that provide recommendations taking into account the data
uncertainty.

The proposed procedure, in the first step, determines the model parameter values
that allow the model to describe the levels of glucose and the measure errors
(uncertainty) in the last hour.

With the obtained model parameters values and the model, we simulate possible
scenarios of insulin administration and carbohydrates consumption in order to
find which one is the best to be recommended to the patient.

This procedure has been used in two real patients in three different situations:
when the patient has high, medium and low levels of glucose currently.

Experimental results for the two patients are representative of the most common
situations that a patient can face, according to physician indications. The results
seem to be very promising and allow us to provide, for every patient in every
situation, the probability to overpass the safe levels of glucose, moving to concerning
situations.

The presented computational procedure can be adapted easily to particular sit-
uations of the patient only having his/her levels of glucose in the last hour. For
instance, if it would be preferable to eat twice over the next 4 hours, or the patient
is going to do some exercise. This would require to design new situations to
simulate. Also, the procedure may re-evaluate the patient’s situation regularly,
updating the predictions and the actions to be done.

225



Chapter 10. A random computational procedure to recommend insulin and carbohydrates
intakes to diabetic patients

This procedure could be deployed in the cloud in such a way that the patients,
with an app installed in his/her smartphone, could get the best recommendations
in order to keep the glucose in the safe levels as much time as possible.

Chapter contribution

With regard to this chapter, the PhD candidate has contributed by working in its
complete development with more emphasis on the development and implementation
of the random technique to recommend insulin and carbohydrates intakes to a
diabetic patient.
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Chapter 11
General Conclusions

Applying the techniques described along this dissertation, in models formulated by
classical or fractional difference or differential equations, more exhaustive descrip-
tions of a real phenomena can be achieved. We not only obtain a deterministic
description of the process, but also we can describe the intrinsic randomness of
the phenomena.

In this dissertation uncertainty quantification techniques have been developed in
two mathematical areas. The similarity of these two fields are the applicability in
the modelling processes. On the one hand, it is well known the use of fractional
differential equations in the modelling of real phenomena. In this dissertation,
fractional differential equations are studied considering uncertainties in their for-
mulation. On the other hand, computational techniques to quantify the uncertainty
support us in the modelling processes. Here, computational methods to study the
randomness have been developed and validate in biological dynamic problems.

In Chapters 2, 3, 4, 5 and 6 fractional calculus have been extended in a random
framework, concretely the in mean square sense. Initial value problems have been
proposed. They have been solved applying a generalized version of the Frobenius
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method obtaining a random generalized power series solution. Mild conditions to
guarantee the convergence in mean square sense have been established. Expressions
for the main statistical moments and for the first probability density function have
been also developed.

Nevertheless, despite the above mentioned chapters the exact solution has been
obtained, it is not always possible. In this dissertation one chapter has been devoted
(Chapter 7) to develop a numerical method in order to approximate the solution
stochastic process from a random fractional initial value problem.

Throughout this thesis, the utility of fractional calculus in mathematical modelling
has been pointed out frequently. Chapter 8 has been devoted to illustrate the
capability of this mathematical tool to model the outbreaks of meningococcus
W-135 in Spain. To do it, a computational method to quantify the uncertainty of
meningococcus carriers among the Spanish population has been developed and
applied to a fractional Lotka-Volterra model. A confidence interval that describes
the percentage of carriers of meningococcus W over the next few years has been
obtained.

Finally, the last two Chapters (Chapter 9 and 10) have been devoted to develop
computational strategies to quantify the uncertainty in mathematical models. In
particular, Chapter 9 has been devoted to establish a computational approach to
obtain the first probability density function of the randomized logistic model that
describes the growth of breast tumour. The objective of Chapter 10 has been to
determine a recommendation of insulin shoots and carbohydrates intakes for a
diabetic patient in order to maintain their glucose level in healthy ranges taking
into account the uncertainty given by real data.
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