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Abstract 

This paper considers a real-world automobile second-tier supplier that manufactures decorative 

surface finishings of injected parts provided by several suppliers, and which devises its master 

production schedule by a manual spreadsheet-based procedure. The imprecise production time in 

this manufacturer’s production process is incorporated into a deterministic mathematical 

programming model to address this problem by two robust optimization approaches. The 

proposed model and the corresponding robust solution methodology improve production plans by 

optimizing the production, inventory and backlogging costs, and demonstrate the their feasibility 

for a realistic master production schedule problem that outperforms the heuristic decision-making 

procedure currently being applied in the firm under study.  

Keywords: robust optimization, master production schedule, uncertainty, automotive industry 

 

1 Introduction 

Production planning consists of a process followed to not only acquire resources and raw 

materials, but to also plan production activities, required to transform raw materials into finished 

products to meet customer demand as efficiently as possible. Hence the goal of production 

planning is to make planning decisions by optimizing the trade-off between economic objectives 

and the service level or customer satisfaction (Pochet and Wolsey 2006). 

According to Mula et al. (2006a) and Díaz-Madroñero et al. (2014b), five production planning 

areas can be considered: hierarchical production planning (HPP); aggregate production planning 

(APP); material requirement planning and manufacturing resources planning (MRP), especially 

the theory presented in Grubbstrom and Tang (2000) and its dynamics, as also presented in  

Grubbström et al. (2010), where robust perturbations can be evaluated; supply chain planning 

(SCP), as in Kovačić and Bogataj (2013), which also includes reverse principles, where the 

robustness of intensity and timing can be studied; master production schedule (MPS). The MPS 
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is a mono-level lot-sizing problem used to establish an optimal production plan that provides 

release dates and amounts of finished products to be manufactured by minimizing production, 

inventory holding and overtime costs, and by meeting customer demand without backlogs and 

stockouts (Kimms 1998).  

All the factors and parameters involved in MPS calculations can be affected by their inherent 

uncertainty, especially in current industrial environments with short product life-cycle products 

that focus on consumer preferences (Weng and Parlar 2005; Aytac and Wu 2013), and with 

complex manufacturing processes (Nannapaneni and Mahadevan 2014). In these situations, if the 

uncertainty associated with input data is not contemplated, infeasible or economically unviable 

production plans may be obtained. Thus according to Mula et al. (2006a), there are many research 

works and applications that aim to formalize uncertainty in manufacturing systems. Indeed the 

literature contains several surveys about modeling uncertain production problems, such as Mula 

et al. (2006a), Ko et al. (2010), Dolgui et al. (2013), Aloulou et al. (2014), to which readers are 

referred. 

Different methods have been used by researchers to consider uncertainty in production planning 

problems, which have highlighted stochastic programming, fuzzy mathematical programming, 

stochastic dynamic programming and robust optimization, according to Sahinidis (2004). An 

MPS model can be developed to operate in an uncertain environment where statistical data are 

either not that reliable or not even available. In these contexts, modeling variations in uncertain 

input parameters with probability distributions may not be the best option and, therefore, 

stochastic approaches have to be avoided (Mula et al. 2008; Díaz-Madroñero et al. 2014a). When 

sufficient data are unavailable, robust optimization approaches can be a good alternative as 

opposed to stochastic programming scenario-based ones because the problem size of the 

counterpart robust optimization model does not increase, but provides a way to incorporate 

different attitudes to risk, depending on the considered robust approach (Gabrel et al. 2014; 

Gorissen et al. 2015).  

The MPS problem tackled by this study is used in a real-world automotive second-tier supplier as 

a manual process that is supported by using a spreadsheet, and based on planners’ personal 

judgment and experience. Manual procedures consider a short or myopic time perspective when 

planning instead of an entire view of the whole horizon planning at any time, which could generate 

suboptimal plans (Díaz-Madroñero et al. 2014c). In order to provide MPS problems with optimal 

results, a deterministic mathematical programming model, based on the previous material 

requirement model by Mula et al. (2006b), is presented. The uncertainty conditions related to the 

manufacturing process time for each finished product are incorporated into the proposed model 

by two different robust optimization approaches proposed by Soyster (1973) and Bertsimas and 



Sim (2004). Other approaches in the robust optimization context are addressed in Werner (2008), 

Kuchta (2011), Kara et al. (2017), and De La Vega et al. (2017). 

To illustrate the validity of this proposal, deterministic and robust optimization models are applied 

to the real-world automotive second-tier supplier under study and the obtained results are 

compared with the currently applied manual procedure. The main contributions of this proposal 

are summarized as so: (i) provide a new robust optimization model for MPS under process time 

uncertainty that contemplates the backorders, overtime and idle times of productive resources; 

(ii) present a real world case study from the surface finishings of injected parts for MPS under 

process uncertainties; (iii) demonstrate the usefulness and profitability of robust optimization 

models compared to the heuristic and spreadsheet-based procedures that are frequently carried 

out in industrial companies. 

The rest of the paper is arranged as follows: Section 2 presents a literature review about MPS 

under uncertainty conditions. Section 3 describes the industrial problem and the current planning 

procedure. Section 4 proposes the mathematical programming model for the MPS problem 

described in the previous section. Section 5 describes the solution methodology based on robust 

optimization approaches. Section 6 evaluates the behavior of the proposed robust optimization 

model in a real-world second-tier automobile supplier. Finally, Section 7 provides conclusions 

and directions for further research. 

 

2 Literature review 

MPS is a production area that has attracted researchers for decades, especially for its close 

interaction with MRP systems (Conlon 1976). The need to obtain optimal economically 

competitive plans has resulted in different approaches to develop MPS optimization models (Lee 

and Moore 1974; González and Reeves 1983; Chu 1995). However, the uncertainty associated 

with the input of the parameters that are derived for internal and external industrial factors, and 

the growing dynamism in the economic environment, mean that they need to be incorporated into 

existing mathematical programming models through other analytic approaches such as: stochastic 

programming (Vargas and Metters 2011; Körpeolu et al. 2011; Englberger et al. 2016; Lage 

Junior and Godinho Filho 2017); fuzzy mathematical programming (Lehtimaki 1987; Supriyanto 

and Noche 2011; As’ad et al. 2015); robust optimization (Ng and Fowler 2007; Gharakhani et al. 

2010; Li et al. 2011; Alem and Morabito 2012; Kawas et al. 2013; Rahmani et al. 2013; Tavakkoli-

Moghaddam et al. 2014; Li and Li 2015; Sakhaii et al. 2015; Haojie et al. 2017).  



The scope of this section is the MPS problem based on robust optimization programming 

approaches. Ben-Tal and Nemirovski (1998) and Bertsimas and Sim (2004) are the most popular 

robust optimization methods in the MPS area, but other popular robust optimization approaches, 

such as those proposed by Soyster (1973) or Mulvey et al. (1995), have been successfully applied 

to other production planning models. (Gharakhani et al. 2010; Li et al. 2011; Alem and Morabito 

2012; Tavakkoli-Moghaddam et al. 2014; Sakhaii et al. 2015; Haojie et al. 2017) opt for the 

(Bertsimas and Sim 2004) approach, while Ng and Fowler (2007), Kawas et al. (2013), Rahmani 

et al. (2013) and Li and Li (2015) consider other approaches like those indicated in Table 1. 

According to Childerhouse and Towill (2002), Wang and Shu (2005) and Peidro et al. (2009), 

sources of uncertainty can be divided into three groups: supply, process and demand. Uncertainty 

in supply is caused by variability in lead times or the quality of items provided by suppliers. 

Uncertainty in demand corresponds to variability of customer orders due to inexact forecasts or 

their changing preferences. Process uncertainty is the result of poorly reliable manufacturing 

processes because of, for example, machine breakdowns or uncontrollable setup times 

Gharakhani et al. (2010), Kawas et al. (2013), Tavakkoli-Moghaddam et al. (2014) and Sakhaii 

et al. (2015) contemplate the uncertainty inherent to the manufacturing process in isolation. 

However, other authors like Alem and Morabito (2012) and Rahmani et al. (2013) add demand 

levels to the considered uncertain parameters, while Ng and Fowler (2007) also include supply 

uncertainty. Finally, demand uncertainty is considered separately in the proposals by Li et al. 

(2011), Li and Li (2015) and Haojie et al. (2017), as shown in Table 2. 

Another dimension considered in this review is the structure of the objective function, which 

depends on the extension of the production planning problem addressed by each contribution. In 

this context, the most frequent component is minimization of production costs, including setup 

costs, inventory holding costs and stockout costs (see Table 2). Other costs included in the 

objective functions of the reviewed studies are labor and hiring/firing costs, supply costs, and 

other costs related to capacity expansion, failing inspections or breakdowns. Finally, robust 

optimization MPS models are frequently validated with random generated instances to carry out 

computational experiments, and only Ng and Fowler (2007), Li et al. (2011), Alem and Morabito 

(2012) and Rahmani et al. (2013) present real applications in the electronics and semiconductors, 

refineries, furniture and household appliances industrial sectors. 

After a review process, the following issues are highlighted for the robust optimization MPS 

problem: (1) although stockouts costs are considered by several authors, the possibility of 

delaying customer orders and considering backorders is not addressed; (2) apart from labor costs, 

the overtime and idle time of productive resources, and production machines, are not frequently 

found in the reviewed models; (3) the shortage of validated robust optimization MPS in different 



real-world industrial sectors. These aspects are taken into account to address the robust 

optimization MPS problem in this work. 

Table 1. The main characteristics of the reviewed articles 

 Robust optimization 
approach 

Uncertainty 
source 

Objective function  
members 

Industrial 
sector 

application 

Ng and Fowler 
(2007) Atamturk and Zhang (2007) 

Demand 
Process 
Supply 

Inventory holding 
costs 

Stockout costs 

Electronics and 
semiconductors 

Gharakhani et al. 
(2010) Bertsimas and Sim (2004) Process Capacity expansion 

costs 

Random 
generated 
instances 

Li et al. (2011) 
Ben-Tal and Nemirovski 

(1998) 
Bertsimas and Sim (2004) 

Demand 
Total profit 

Production costs 
Non quality costs 

Refinery 

Alem and Morabito 
(2012) Bertsimas and Sim (2004) Demand 

Process 

Production costs 
Setup costs 

Stockout costs 
Furniture 

Kawas et al. (2013) Ben-Tal and Nemirovski 
(1998) Process 

Total profit 
Failing inspections 

costs 

Random 
generated 
instances 

Rahmani et al. 
(2013) 

Mulvey et al. (1995) 
Yu and Li (2000) 

Demand 
Process 

Production costs 
Supply costs 
Labor costs 

Inventory holding 
costs 

Hiring/firing costs 
Stockout costs 

Household 
appliances 

Tavakkoli-
Moghaddam et al. 
(2014) 

Bertsimas and Sim (2004) Process 

Production costs 
Supply costs 

Inventory holding 
costs 

Stockout costs 

Random 
generated 
instances 

Li and Li (2015) Li et al. (2012) Demand 
Total profit 

Production costs 
Labor costs 

Random 
generated 
instances 

Sakhaii et al. (2015) Bertsimas and Sim (2004) Process 

Production costs 
Labor costs 

Hiring/firing costs 
Stockout costs 

Breakdown costs 

Random 
generated 
instances 

Haojie et al. (2017) Bertsimas and Sim (2004) Demand 

Production costs 
Setup costs 

Inventory holding 
costs 

Random 
generated 
instances 

 

3 Problem description 

The case study presented herein corresponds to a company from the automobile sector. It produces 

the decorative surface finishings of the injected parts provided by several suppliers. It is a 



capacitated process with only one available resource. The process also includes a production 

sequence in produces a limited number of batches. Each item has a different lot size depending 

on the volume of the part. Each batch performs the following cyclic process: 

1. Injection parts (raw material) are placed inside the machine in specific batches per item 

2. Raw material is processed inside the resource (machine) 

3. Processed parts leave the machine and are checked 

4. The parts that pass quality controls are packed (faulty parts are classified as scrap and are 

placed inside containers to be disposed of later). 

 

It must be taken into account that as this process is capacitated and cyclical, the machine must not 

stop at any time during the production process; therefore, batches must be periodically placed 

inside. Those batch numbers that can be produced depend on the production time, as determined 

by installation (machine), start and shutdown. 

This manufacturing process can become unstable as production times for certain references 

prolong. Specifically, up to five references of a particular surface finishing type usually show 

increases in their manufacturing time of up to 10%. Concerning this finish type, the main problem 

is achieving a given color within accepted tolerances (measured by a colorimeter). Given the 

novelty and technical complexity of this technology, it is normal to deviate the required color in 

the different chemical process stages. To this end, several measurements are made during the 

process to ensure that the parameters established in each stage are achieved, and different 

chemical solutions are added to carry out the process until its nominal values. However, these 

addictions can increase the required manufacturing time. 

In this complex environment, production planning is calculated according to customer demand 

and to the available stock of raw materials. Production planning also depends on several 

constraints, such as the production capacity of the available productive resources and the size of 

the production batches for each reference.  

Thus we state the robust MPS problem in the second-tier automobile supplier to be as follows: 

With: 

• Product data, such as production time, production scrap percentage, production lot size, 

etc. 

• Production capacity of available resources 



• Initial inventory levels 

• Demand over the entire planning horizon 

 

To determine: 

• The amount of each product to be produce per period 

• The inventory level of each product per period 

• The backorders of each product per period 

• The utilization of productive resources, including extra and idle times 

 

The main goal to meet is to: 

• Minimize the total costs, including production costs, extra and idle time costs and 

inventory costs, while meeting customer demand by minimizing backorder costs. 

 

Moreover, the following assumptions are made: 

• Demand levels are considered firm over the whole planning horizon because short-term 

demand data do not usually vary 

• Uncertainty is present in the manufacturing process as it can present instability, which 

can affect the production time of the finished products. 

 

3.1 Heuristic procedure for production planning 

The current decision-making process is a heuristic procedure based on the use of a spreadsheet 

(Figure 2). 

 

Figure 1. Spreadsheet for the heuristic production planning procedure 

Item Pcs / Batch Batches in sequence Consumption (pcs) Balance Raw Material Stocks
Item 1 100 1 0 780 780                                       
Item 2 72 3 1196 247 1.443                                    
Item 3 72 2 798 430 1.228                                    
Item 4 72 4 1595 1262 2.857                                    
Item 5 196 1 1086 -518 568                                       
Item 6 60 5 1662 -323 1.339                                    
Item 7 60 5 1662 -177 1.485                                    
Item 8 430 1 2382 -1076 1.306                                    
Item 9 72 2 798 270 1.068                                    
Item 10 96 1 532 -528 4                                           
Item 11 96 1 532 -340 192                                       
Item 12 144 1 798 -438 360                                       



The spreadsheet fields are defined as follows: 

− The first column corresponds to Item ID, which is the unique identifier of each 
manufactured product.  

− The second column indicates the number of parts per batch (lot size).  

− The Batches in sequence column shows the number of batches for each item to be 
produced in the manufacturing sequence. 

− The Consumption (pcs) column is the number of raw material parts to be consumed 
during a certain production time period. This production time is usually set for 1 
production day. 

− The Balance column shows the raw material stock estimated for each item at the end of 
the production period. 

− The Raw Material Stocks column points out the current feedstock level (in parts) for each 
item. 

 
Depending on the information on the demand levels, the amounts of available stock and a 

production lot size of each reference, the production plan is determined according to the 

mechanism indicated in Figure 2. 

 

Figure 2. Current heuristic procedure for production planning 

The current planning process is based on the following heuristics: 



The first step is to import the current production sequence (Item ID & Batches in sequence) from 

the process machine, as well as the raw material stocks (Raw Material Stocks) of each item. All 

this information is obtained from the database of the implemented ERP and is loaded to the 

spreadsheet by a database query. After updating these data, the Consumption Column is 

automatically calculated, depending on Item ID and the number of Batches in the sequence. 

From this point, two possibilities exist: 

1. In the sequence, it is not necessary to manufacture item i as its demand is covered. If this 

condition is fulfilled, a new required item j is searched for. At this point, once again two 

options are available: 

a. An item j needs to be produced. The production of item i is stopped and a 

production order of item j is trigged. If there is not enough raw material to 

produce item j (Consumption > Raw Material Stocks, so Balance < 0), the raw 

material is requested from the supplier. 

b. No item j needs to be produced. This would end the production process. 

2. In the sequence, it is necessary to keep producing item i in as its demand is not yet 

covered. In this case, once again there are two options: 

a. There is enough raw material for item i to continue being produced (Consumption 

< Raw Material Stocks, so Balance > 0). So item i remains in the production 

sequence. 

b. There is not enough raw material stock to keep producing item i (Consumption 

> Raw Material Stocks, so Balance < 0). So a purchase order to request raw 

material is sent to the supplier to continue producing that item. 

 
This kind of spreadsheet-based procedure can often lead to suboptimal results and serious errors, 

which may involve substantial costs (Caulkins et al. 2007; Powell et al. 2008; Dzuranin and Slater 

2014). 

 

4 Model formulation 

In this section, a mathematical programming model for the MPS is proposed to improve the results 

obtained by the manual procedure described in the previous section. First, a deterministic model 

is presented, based on Mula et al. (2006b), which does not consider any uncertain parameter, but 

contemplates relative production performance. Then this model is reformulated with two robust 



optimization approaches to protect against manufacturing process fluctuations. The notation 

defines the sets of indices, parameters and decision variables for the proposed model (Table 2). 

Table 2. Notation 

Sets of indices 
I: Set of products (i =1, 2,…,I). 
R: Set of productive resources (r =1, 2,…,R). 
T: Set of planning periods (t =1, 2…T). 
Parameters 
dit: Demand of product i during time period t (units).  
INVTOi: Initial inventory amount of product i (units). 
SRi: Scheduled receptions of product i during time period t (units) 
arir: Required time of resource r to produce one unit of product i (hours)  
βi: Manufacturing performance of product i in the available production resources (%) 
loti: Production lot size for product i (units) 
capr: Production capacity of resource r (hours) 
B0i: Initial backorders of product i (units) 
cpi: Variable cost of the normal production of one unit of product i (euros) 
cii: Inventory cost of one unit of product i (euros) 
cbi: Backorder cost of one unit of product i (euros) 
cidtr: Idle time hour cost of resource r (euros) 
covtr: Overtime hour cost of resource r (euros) 
Decision variables 
Pit: Quantity of product i to be produced during time period t (units) 
INVTit: Amount of the inventory of i at the end of time period t (units) 
Kit: Number of lots to produce of products i during time period t. 
Bit: Backorder amount of product i at the end of time period t (units) 
TIDrt: Idle time of resource r during time period t (hours) 
TOVrt: Overtime of resource r during time period t (hours) 
Objective function 
z: Total costs (euros). 

 

 

The formulation of the deterministic model for the MPS is as follows: 

Minimize total costs: 

𝑀𝑀𝑀𝑀𝑀𝑀 𝑧𝑧 = ��(𝑐𝑐𝑐𝑐𝑖𝑖

𝑇𝑇

𝑡𝑡=1

𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑖𝑖

𝐼𝐼

𝑖𝑖=1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖) + ��(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟

𝑇𝑇

𝑡𝑡=1

𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟) 
𝑅𝑅

𝑟𝑟=1

 



 (1) 

Subject to: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖,𝑡𝑡−1+𝐵𝐵𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖  ∀𝑖𝑖,∀𝑡𝑡 (2) 

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟   𝐼𝐼
𝑖𝑖=1  ∀𝑟𝑟,∀𝑡𝑡 (3) 

 

𝑃𝑃𝑖𝑖𝑖𝑖 = 𝐾𝐾𝑖𝑖𝑖𝑖 ∙  𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 ∀𝑖𝑖,∀𝑡𝑡 (4) 

  

𝐵𝐵𝑖𝑖𝑖𝑖 = 0 ∀𝑖𝑖,∀𝑡𝑡 = 𝑇𝑇 (5) 

 

𝑃𝑃𝑖𝑖𝑖𝑖 ,𝐾𝐾𝑖𝑖𝑖𝑖 , 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑖𝑖𝑖𝑖 ,𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟,𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 ≥ 0 ∀𝑖𝑖,∀𝑡𝑡,∀𝑟𝑟 (6) 

𝐾𝐾𝑖𝑖𝑖𝑖∈Ζ ∀𝑖𝑖,∀𝑡𝑡 (7

)  

 

Constraint (1) corresponds to the objective function, which aims to minimize the total costs 

computed over the planning horizon, including the production, inventory, backorder, idle time 

and overtime costs. Constraint (2) determines the inventory balance equation. Constraint (3) 

establishes the available capacity for normal and overtime production. Constraint (4) ensures that 

the amount of each item to be produced is an integer multiple of each product lot size. Constraint 

(5) ensures that the backorders at the end of the planning horizon are null. Constraint (6) and 

Constraint (7) determine the non negativity and integer conditions for the decision variables, 

respectively. In this MPS problem, the arir values can vary depending on several factors, such as 

the operating conditions of the production resources, workers’ training, etc. We consider that the 

other parameters are crisp because the related information over the planning horizon is well-

known. Indeed the production system can be affected by the variability of this processing time 

and, therefore, infeasible production plans can be obtained. In this production environment, the 

proposed deterministic model has to be transformed with robust optimization approaches to obtain 

production plans that are protected against uncertain processing times. 

  

5 Solution methodology 

In order to reach a robust solution for the considered MPS problem, the deterministic model 

presented in Constraints (1) to (7) is transformed by adopting the robust optimization approaches 

by Soyster (1973) and by Bertsimas and Sim (2004). 



For illustration purposes, a nominal linear programming model that includes the uncertain 

parameters that belong to matrix A is considered as follows: 

Maximize  𝑐𝑐𝑥𝑥 (8) 

subject to: 

Ax ≤ b (9) 

𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢                                                                                                                                                    (10) 

According to Bertsimas and Sim (2004) and to Ben-Tal and Nemirovski (2000), if a particular 

row i of matrix A is considered, Ji represents the set of coefficients in row i subject to uncertainty. 

Each entry aij, j ∈ Ji is modeled as a symmetric and bounded random variable 𝑎𝑎�𝑖𝑖𝑖𝑖, j ∈ Ji  that takes 

the values in �𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑎𝑎�𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑎𝑎�𝑖𝑖𝑖𝑖�. 

 

5.1 The Soyster (1973) robust optimization approach 

One of the seminal contributions in robust optimization was presented by Soyster (1973), who 

proposed a linear optimization model to construct a feasible solution for all the data that belong 

to a convex set. According to the Soyster (1973) approach, the robust formulation of model (8)-

(10) corresponds to: 

Maximize  𝑐𝑐𝑥𝑥 (11) 

subject to: 

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 + ∑ 𝑎𝑎�𝑖𝑖𝑖𝑖𝑦𝑦𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖𝑗𝑗∈𝐽𝐽𝑖𝑖𝑗𝑗  ∀𝑖𝑖                                                                     (12)  

𝑥𝑥 ≥ 0                                                                                                                                                            (13)  

where 𝑎𝑎�𝑖𝑖,𝑗𝑗 = �𝐴𝐴𝑖𝑖,𝑗𝑗�,𝐴𝐴𝑗𝑗 ∈ 𝐾𝐾𝑗𝑗. Therefore, matrix 𝐴̃𝐴 is composed of the most extreme values of each 

parameter subject to uncertainty. This approach ensures that model solutions are always feasible 

for any uncertain parameter variation within the set limits. 

To apply the Soyster (1973) robust approach in the deterministic model, the following changes in 

production capacity restriction are made: 

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 + ∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝐼𝐼
𝑖𝑖=1 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 +  𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟  𝐼𝐼

𝑖𝑖=1  ∀𝑟𝑟,∀𝑡𝑡 (14) 

 



since 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 is the maximum variation of the time required by the resource for each product, and 

Py is the auxiliary integer variable proposed and implemented by Soyster (1973). 

Finally, the non negativity constraint is added to the newly defined variables. 

As we can see, this is the deterministic model application for the worst case.  

 

5.2 The Bertsimas and Sim (2004) robust optimization approach 

The Bertsimas and Sim (2004) approach allows the solution to remain close to the optimum, with 

no excess of conservatism presented by the first robust programming approaches being reaching. 

First, data model U is defined, which contains the elements subject to variability. 

Since Ji is the set of coefficients of 𝑎𝑎𝑖𝑖,𝑗𝑗, with  𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖, parameters that are subject to uncertainty, 

which implies that 𝑎𝑎�𝑖𝑖,𝑗𝑗 takes values according to a symmetric distribution with a mean equal to 

the nominal value of 𝑎𝑎𝑖𝑖,𝑗𝑗  within the interval [𝑎𝑎𝑖𝑖,𝑗𝑗  − 𝑎𝑎�𝑖𝑖,𝑗𝑗, 𝑎𝑎𝑖𝑖,𝑗𝑗 + 𝑎𝑎�𝑖𝑖,𝑗𝑗]. 

For each constraint I, a parameter Γ𝑖𝑖, which is not necessarily integer, is introduced that can take 

the values within the interval [0, ⌊𝐽𝐽𝑖𝑖⌋]. Parameter  Γ𝑖𝑖 adjusts the level of protection to be assumed 

for the model’s i-th restriction, where the highest parameter  Γ𝑖𝑖 value is the level of protection 

that is taken in relation to this restriction (Bertsimas and Sim, 2004). It should be noted that it is 

unlikely that all coefficients 𝑎𝑎𝑖𝑖,𝑗𝑗 with 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖 vary, so only one number ⌊ Γ𝑖𝑖⌋ (the largest integer 

less than or equal to  Γ𝑖𝑖) of the parameters is allowed to vary at the same time. Therefore, the 

proposed model is as follows: 

Maximize  𝑐𝑐𝑇𝑇𝑥𝑥 (15) 

subject to: 

∑ 𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗 + max
{𝑆𝑆𝑖𝑖∪{𝑡𝑡𝑖𝑖}|𝑆𝑆𝑖𝑖⊆𝐽𝐽𝑖𝑖,|𝑆𝑆𝑖𝑖|=⌊Γ𝑖𝑖⌋,𝑡𝑡𝑖𝑖∈𝐽𝐽𝑖𝑖\𝑆𝑆𝑖𝑖}

�∑ 𝑎𝑎�𝑖𝑖,𝑗𝑗𝑦𝑦𝑗𝑗𝑗𝑗∈𝑆𝑆𝑖𝑖 + (Γ𝑖𝑖 − ⌊Γ𝑖𝑖⌋)𝑎𝑎�𝑖𝑖,𝑡𝑡𝑖𝑖𝑦𝑦𝑡𝑡�𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖    ∀𝑖𝑖 (16) 

−𝑦𝑦𝑖𝑖 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑦𝑦𝑖𝑖       ∀𝑗𝑗 (17) 

𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢 (18) 

𝑦𝑦 ≥ 0 (19) 

Here we observe that if Γ𝑖𝑖 is the chosen integer, the ith restriction is protected by 𝛽𝛽𝑖𝑖(𝑥𝑥,Γ𝑖𝑖) =

𝑚𝑚𝑚𝑚𝑚𝑚{𝑆𝑆𝑖𝑖|𝑆𝑆𝑖𝑖⊆𝐽𝐽𝑖𝑖| ,|𝑆𝑆𝑖𝑖|=  Γ𝑖𝑖}�∑ 𝑎𝑎�𝑖𝑖,𝑗𝑗𝑗𝑗∈𝑆𝑆𝑖𝑖 �𝑥𝑥𝑗𝑗��. For the value of parameter Γ𝑖𝑖 = 0,  𝛽𝛽𝑖𝑖(𝑥𝑥, 0) = 0 is 

obtained, which implies that the constraints coincide with the constraints of the nominal problem. 

When the value of parameter Γ𝑖𝑖 = |𝐽𝐽𝑖𝑖|, the same result is obtained as in the Soyster (1973) 

approach (the worst case). Therefore by varying Γ𝑖𝑖 ∈ [0, |𝐽𝐽𝑖𝑖|], the level of model robustness can 



be adjusted against the level of the solution’s conservatism. 

The previous model is non linear, but one advantage of this modeling approach is the possibility 

of transforming this model into a linear model with the following definition: 

given vector x *, the protection function of the i-th restriction is: 

𝛽𝛽𝑖𝑖(𝑥𝑥∗,Γ𝑖𝑖) = max
{𝑆𝑆𝑖𝑖∪{𝑡𝑡𝑖𝑖}|𝑆𝑆𝑖𝑖⊆𝐽𝐽𝑖𝑖,|𝑆𝑆𝑖𝑖|+⌊Γ𝑖𝑖⌋,𝑡𝑡𝑖𝑖∈𝐽𝐽𝑖𝑖\𝑆𝑆𝑖𝑖}

�∑ 𝑎𝑎�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑗𝑗∗�𝑗𝑗∈𝑆𝑆𝑖𝑖 + (Γ𝑖𝑖 − ⌊Γ𝑖𝑖⌋)𝑎𝑎�𝑖𝑖,𝑡𝑡𝑖𝑖�𝑥𝑥𝑗𝑗
∗��     (20) 

whose value equals the objective function of the following linear programming problem: 

𝛽𝛽𝑖𝑖(𝑥𝑥∗,Γ𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑎𝑎�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑗𝑗∗�𝑗𝑗∈𝐽𝐽𝑖𝑖 𝑧𝑧𝑖𝑖,𝑗𝑗   (21) 

subject to: 

∑ 𝑧𝑧𝑖𝑖,𝑗𝑗 ≤Γ𝑖𝑖𝑗𝑗∈𝐽𝐽𝑖𝑖    (22) 

0 ≤ 𝑧𝑧𝑖𝑖,𝑗𝑗 ≤ 1     ∀𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖      (23) 

and it has as a dual formulation: 

𝑚𝑚𝑚𝑚𝑚𝑚∑ 𝑝𝑝𝑖𝑖,𝑗𝑗 +𝑗𝑗∈𝐽𝐽𝑖𝑖 𝑧𝑧𝑖𝑖Γ𝑖𝑖       (24) 

subject to: 

𝑧𝑧𝑖𝑖+p𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎�𝑖𝑖,𝑗𝑗�𝑥𝑥𝑗𝑗∗�            ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖   (25) 

p𝑖𝑖𝑖𝑖 ≥ 0                              ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖   (26) 

𝑧𝑧𝑖𝑖 ≥ 0                                ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖  (27) 

If the dual problem is replaced in the initially expressed expression, an equivalent linear-type 

problem a is obtained: 

Maximize  𝑐𝑐𝑥𝑥 (28) 

subject to: 

∑ 𝑎𝑎𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑧𝑧𝑖𝑖Γ𝑖𝑖 + ∑ 𝑝𝑝𝑖𝑖,𝑗𝑗 ≤ 𝑏𝑏𝑖𝑖𝑗𝑗∈𝐽𝐽𝑖𝑖𝑗𝑗   ∀𝑖𝑖 (29) 

𝑧𝑧𝑖𝑖 + 𝑝𝑝𝑖𝑖,𝑗𝑗 ≥ 𝑎𝑎�𝑖𝑖,𝑗𝑗𝑦𝑦𝑗𝑗    ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖   (30) 

−𝑦𝑦𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑦𝑦𝑗𝑗     ∀𝑗𝑗 (31) 

𝑙𝑙𝑗𝑗 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗   ∀𝑗𝑗   (32) 

𝑝𝑝𝑖𝑖,𝑗𝑗 ≥ 0  ∀𝑖𝑖, 𝑗𝑗 ∈ 𝐽𝐽𝑖𝑖    (33) 

𝑦𝑦𝑗𝑗 ≥ 0  ∀𝑗𝑗   (34) 

𝑧𝑧𝑖𝑖 ≥ 0    ∀𝑖𝑖  (35) 

 



To apply the Bertsimas and Sim (2004) robust approach in the deterministic model, the following 

changes in the production capacity restrictions are made: 

∑ 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟+ 𝑍𝑍𝑟𝑟𝑟𝑟𝜔𝜔𝑟𝑟𝑟𝑟 + ∑ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼
𝑖𝑖=1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟   𝐼𝐼

𝑖𝑖=1  ∀𝑟𝑟,∀𝑡𝑡 (36) 

 

since 𝑍𝑍𝑟𝑟𝑟𝑟  and 𝑃𝑃𝑃𝑃𝑖𝑖𝑟𝑟𝑟𝑟 are the integral auxiliary variables implemented by Bertsimas and Sim (2004). 

The control parameter is also added, which allows model robustness to be regulated. This 

parameter determines the number of products whose processing time is affected by uncertainty. 

Moreover, the following restrictions are added: 

𝑍𝑍𝑟𝑟𝑟𝑟 + 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 ∙ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ∀𝑖𝑖,∀𝑟𝑟,∀𝑡𝑡 (37) 

 

by adding the non negativity restrictions to the new variables introduced into the previous 

expressions. 

After implementing these restrictions into the deterministic model, the robust model is obtained 

by the approach of Bertsimas and Sim (2004), with protection against uncertainty in the process 

regulated with the parameter; i.e., the degree of protection against uncertainty can be chosen by 

selecting the number of products that can change the time of their process. This is an advantage 

over the Soyster (1973) model because it is not that conservative, and all the references presenting 

variations in the manufacturing process time at the same time is not likely, which allows the model 

to be more flexible and cuts the robustness cost. 

 

6 Application to an automobile second-tier supplier 

The proposed models are implemented with the Maximal Software's MPL (mathematical 

programming language) modeling tool, installed in a PC with an Intel Core i5 2.80 GHz processor 

and 6 GB of RAM. The employed resolution algorithm (solver) is Gurobi (6.5.1). The input 

parameters are included in Microsoft Access data tables, along with the output data, which are 

also exported to these data tables.  

The time to run the studied models was 6 periods per week, with 84 different references that 

correspond to approximately 80% of the volume of production in the case study.  

In Annex 1, Table A.1 presents the basic data about each item, such as manufacturing 

performance (βi), production time (αrir), production lot size (loti), unitary production costs (cpi), 

inventory holding costs (cii) and backorder costs (cbi). Table A.2 lists the demand levels for each 

product per time period (dit). 



To solve the model with the robust approach of Bertsimas and Sim (2004), the conservatism level 

is adjusted by control parameter ω. Thus it is possible to confirm that if uncertainty affects the 84 

references (ω = 84), the results agree with those of the Soyster (1973) model. However, if we 

define ω = 0, the obtained results are the same as those obtained by the deterministic model. To 

compare the results between the different approaches, robustness control parameter (ω) is selected 

from 5 to equal 25, although the probability of more than five references being affected by the 

uncertainty of the process is very low. 

As shown in Table 3, all the proposed models improve the heuristic procedure currently used for 

production planning. On the one hand, production costs are higher than in the proposed models, 

and the backorder costs are also much higher. This occurs because some products are 

manufactured above the demands levels, while the service level in other items is not completely 

satisfactory due to product backorders. It is important to highlight that production costs are equal 

for all the ω variations because the maximum quantity is produced to satisfy demand. On the other 

hand, the inventory costs in the heuristic procedure are higher than in the proposed models, which 

is mainly due to the overproduction of references in relation to demand.  

The overtime cost is significantly higher in the most pessimistic models, i.e., Soyster (1973) and 

Bertsimas and Sim (2004) with (ω =84), but they are the approaches that can only ensure a 100% 

service level when the manufacturing times prolong for all the references due fluctuations in the 

production process. In this context, the deterministic model and the equivalent Bertsimas and Sim 

(2004) (for ω =84) approach present the best results, without taking into account the uncertainty 

in the process. However, when fluctuations in manufacturing times take place, if planning is 

performed with these models, backordered demand appears because of the shortage of available 

production time to cover the prolonged processing times. In these cases, the associated backorder 

costs are considerably higher than the cost of producing in extra time. Therefore, backorder costs 

are similar for all the models, regardless of them being deterministic or robust. 

Regarding the calculation times to devise production planning, we point out the significant 

savings in the CPU time used by the mathematical programming models compared to the amount 

of time employed for the heuristic procedure. In this case, the spreadsheet is only a help tool for 

planners, who determine which references must be produced and their corresponding amounts by 

doing the necessary calculations themselves. 

Therefore, even though the robustness cost seems high, it is worth assuming it by determining an 

appropriate robustness control parameter. This case study considers that the probability of more 

than five references and their manufacturing times being affected by process instability or 

machine breakdowns is very low. Thus adjusting a robustness level (ω) to between 1 and 5 is 

considered appropriate as the total obtained costs are not excessively high.  



 

7 Conclusions 

This paper proposes a robust optimization model to deal with the MPS problem for an automotive 

second-tier supplier. This model considers uncertainty related to manufacturing times. In order to 

solve the proposed model with a robust paradigm, the Soyster (1973) and Bertsimas and Sim 

(2004) approaches were considered. These robust solution methods were tested in a real 

automotive supply chain and were compared to a deterministic approach. All these mathematical 

programming approaches proved efficient as they obtained better results for the total generated 

costs and calculation times than those that the heuristic procedure obtained, which is currently 

applied in the firm under study. 

The robust modeling approach by Bertsimas and Sim (2004) incorporates the possibility of 

dealing with process uncertainty which, by means of a control parameter, allows the protection 

against uncertainty to be adjusted by controlling the costs associated with the price of robustness, 

without reaching the excess conservatism of the robust Soyster approach (1973). Thus further 

research proposals include: (i) comparing the performance of alternative approaches to model 

uncertainty, such as fuzzy mathematical programming, fuzzy stochastic programming or fuzzy 

robust programming in the addressed industrial problem; (ii) including the modeling of uncertain 

parameters related to other external sources, such as demand and supply; (iii) extending the 

present MPS to other planning areas, such as MRP or inbound and outbound logistics.  



Table 3. Results for the different solution procedures 

 
Current 
heuristic 

procedure 

Deterministic 
model 

Bertsimas & 
Sim (2004) 
approach 

(ω=0) 

Bertsimas & 
Sim (2004) 
approach 

(ω=5) 

Bertsimas & 
Sim (2004) 
approach 

(ω=10) 

Bertsimas & 
Sim (2004) 
approach 

(ω=25) 

Bertsimas & 
Sim (2004) 
approach 

(ω=84) 

Soyster (1973) 
approach 

Total costs 
(euros) 8009131.14 1151130.38 1151130.38 1183832.50 1208101.97 1249811.09 1285020.38 1285020.38 

 Production costs 
(euros) 1077362.35 1070643.74 1070643.74 1070643.74 1070643.74 1070643.74 1070643.74 1070643.74 

 Inventory costs 
(euros) 2368.79 846.64 846.64 888.76 1018.23 927.35 846.64 846,64 

 Backorder costs 
(euros) 6877800.00 740.00 740.00 740.00 740.00 740.00 740.00 740,00 

 Idle hour costs 
(euros) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 

 Overtime hour costs 
(euros) 51600.00 78900.00 78900.00 111560.00 135700.00 177500.00 212790.00 212790.00 

Inventory 
(units) 13809 0 0 0 0 0 0 0 

Backlog 
(units) 0 0 0 0 0 0 0 0 

Processing time  
(seconds) 162000.00 18.47 12.34 18.83 21.40 24.12 23.14 18.20 
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Annex 1 
Table A.1. Basic item data 

i βi 
(%) 

αrir  
(hours) 

loti  

(units) 
cpi  

(euros) 
cii  

(euros) 
cbi  

(euros) 

1 90 0.0100 100 0.80 0.04 50 
2 90 0.0100 100 0.80 0.04 50 
3 90 0.0139 72 1.11 0.06 50 
4 90 0.0139 72 1.11 0.06 50 
5 90 0.0139 72 1.11 0.06 50 
6 90 0.0052 192 0.42 0.02 50 
7 90 0.0167 60 1.33 0.07 50 
8 90 0.0167 60 1.33 0.07 50 
9 90 0.0023 430 0.19 0.01 50 
10 90 0.0023 430 0.19 0.01 50 
11 90 0.0023 430 0.19 0.01 50 
12 90 0.0139 72 1.11 0.06 50 
13 90 0.0104 96 0.83 0.04 50 
14 90 0.0104 96 0.83 0.04 50 
15 88 0.0069 144 0.56 0.03 50 
16 88 0.0069 144 0.56 0.03 50 
17 90 0.0179 56 1.43 0.07 50 
18 90 0.0179 56 1.43 0.07 50 
19 90 0.0096 104 0.77 0.04 50 
20 88 0.0208 48 1.67 0.08 50 
21 88 0.0208 48 1.67 0.08 50 
22 84 0.0079 126 0.63 0.03 50 
23 90 0.0208 48 1.67 0.08 50 
24 90 0.0208 48 1.67 0.08 50 
25 88 0.0278 36 2.22 0.11 50 
26 88 0.0278 36 2.22 0.11 50 
27 90 0.0833 12 6.67 0.17 50 
28 90 0.0139 72 1.11 0.06 50 
29 90 0.0139 72 1.11 0.06 50 
30 90 0.0104 96 0.83 0.04 50 
31 90 0.0079 126 0.63 0.03 50 
32 90 0.0208 48 1.67 0.08 50 
33 90 0.0208 48 1.67 0.08 50 
34 90 0.0089 112 0.71 0.04 50 
35 90 0.0238 42 1.90 0.10 50 
36 90 0.0238 42 1.90 0.10 50 
37 90 0.0056 180 0.44 0.02 50 
38 90 0.0056 180 0.44 0.02 50 
39 90 0.0139 72 1.11 0.06 50 
40 90 0.0333 30 2.67 0.13 50 
41 90 0.0139 72 1.11 0.06 50 



i βi 
(%) 

αrir  
(hours) 

loti  

(units) 
cpi  

(euros) 
cii  

(euros) 
cbi  

(euros) 

42 90 0.0714 14 5.71 0.29 50 
43 90 0.0417 24 3.33 0.17 50 
44 90 0.0083 120 0.67 0.03 50 
45 90 0.0035 288 0.28 0.01 50 
46 90 0.0100 100 0.80 0.04 50 
47 90 0.0417 24 3.33 0.17 50 
48 90 0.0091 110 0.73 0.04 50 
49 90 0.0208 48 1.67 0.08 50 
50 90 0.0028 360 0.22 0.01 50 
51 90 0.0028 360 0.22 0.01 50 
52 90 0.0125 80 1.00 0.05 50 
53 90 0.0333 30 2.67 0.13 50 
54 90 0.0333 30 2.67 0.13 50 
55 90 0.0333 30 2.67 0.13 50 
56 88 0.0556 18 4.44 0.22 50 
57 88 0.0556 18 4.44 0.22 50 
58 90 0.0076 132 0.61 0.03 50 
59 90 0.0076 132 0.61 0.03 50 
60 90 0.0278 36 2.22 0.11 50 
61 90 0.0062 162 0.49 0.02 50 
62 90 0.0062 162 0.49 0.02 50 
63 90 0.0139 72 1.11 0.06 50 
64 90 0.0040 252 0.32 0.02 50 
65 90 0.0040 252 0.32 0.02 50 
66 90 0.0125 80 1.00 0.05 50 
67 90 0.0250 40 2.00 0.10 50 
68 90 0.0833 12 6.67 0.33 50 
69 90 0.0125 80 1.00 0.05 50 
70 90 0.0833 12 6.67 0.33 50 
71 90 0.0417 24 3.33 0.17 50 
72 90 0.0139 72 1.11 0.06 50 
73 90 0.0278 36 2.22 0.11 50 
74 90 0.0500 20 4.00 0.20 50 
75 90 0.0139 72 1.11 0.06 50 
76 90 0.0093 108 0.74 0.04 50 
77 90 0.0093 108 0.74 0.04 50 
78 90 0.0278 36 2.22 0.11 50 
79 90 0.0250 40 2.00 0.10 50 
80 90 0.0250 40 2.00 0.10 50 
81 90 0.0156 64 1.25 0.06 50 
82 90 0.0156 64 1.25 0.06 50 
83 90 0.0104 96 0.83 0.04 50 
84 90 0.0104 96 0.83 0.04 50 

 

 



Table A.2. Item demand per period 

 
dit 

i t=1 t=2 t=3 t=4 t=5 t=6 

1 1300 1300 1300 1300 1300 1300 

2 1600 1600 1600 1600 1600 1600 

3 3600 3600 3600 3600 3600 3600 

4 6000 6000 6000 6000 6000 7000 

5 6000 6000 6000 6000 6000 7000 

6 300 0 300 0 300 300 

7 4500 4500 4500 4500 4500 4500 

8 4500 4500 4500 4500 4500 4500 

9 4500 4500 4500 4500 4500 4500 

10 4500 4500 4500 4500 4500 4500 

11 772 772 0 772 0 0 

12 1417 1215 1215 1215 1215 2154 

13 1013 1215 810 1013 1013 1724 

14 1013 810 810 1013 1215 1939 

15 1620 1417 1215 1822 1100 1508 

16 1417 1620 1013 1822 1215 1293 

17 622 420 203 608 1085 0 

18 507 405 405 608 405 0 

19 0 590 398 398 398 0 

20 1898 1544 1367 1735 1876 2972 

21 1594 1544 1367 1735 1876 2972 

22 1234 1234 1080 1234 1388 2134 

23 103 0 102 102 155 108 

24 0 50 102 102 155 108 

25 1700 1700 1700 1700 1700 1700 

26 1700 1700 1700 1700 1700 1700 

27 1700 1700 1700 1700 1700 1700 

28 400 400 400 400 400 400 

29 400 400 400 400 400 400 

30 200 200 200 200 200 200 

31 300 300 300 300 300 300 

32 500 500 500 500 500 500 

33 500 500 500 500 500 500 

34 120 0 0 100 0 0 

35 1200 1200 1200 1200 1200 1200 

36 1200 1200 1200 1200 1200 1200 



 
dit 

i t=1 t=2 t=3 t=4 t=5 t=6 

37 1200 1200 1200 1200 1200 1200 

38 1200 1200 1200 1200 1200 1200 

39 1500 1500 1500 1500 1500 1500 

40 0 0 0 400 0 0 

41 300 0 300 300 300 0 

42 400 400 400 400 500 500 

43 1500 1500 1500 1500 1500 1500 

44 1500 1500 1500 1500 1500 1500 

45 1000 1000 1000 1000 1000 1000 

46 200 0 200 200 0 200 

47 100 100 150 150 150 150 

48 0 100 150 150 150 150 

49 100 100 150 150 150 150 

50 4500 4500 4500 4500 4500 4500 

51 4500 4500 4500 4500 4500 4500 

52 600 600 600 600 600 600 

53 593 608 528 579 564 553 

54 427 499 514 499 369 431 

55 1605 1485 2025 2025 2155 2539 

56 1350 1350 1350 1350 1350 1350 

57 1350 1350 1350 1350 1350 1350 

58 1200 1200 1200 1200 1200 1200 

59 1200 1200 1200 1200 1200 1200 

60 1300 1300 1300 1300 1300 1300 

61 1200 1200 1200 1200 1200 1200 

62 1200 1200 1200 1200 1200 1200 

63 600 600 600 600 600 600 

64 250 250 250 250 350 300 

65 250 250 250 250 350 300 

66 800 800 800 800 800 800 

67 2500 2500 2800 2800 2800 2800 

68 0 400 400 0 0 0 

69 1500 1500 1500 1500 1500 1500 

70 1200 1200 1200 1200 1200 1200 

71 0 0 0 0 0 180 

72 1300 1300 1300 1300 1300 1300 

73 600 600 600 600 600 600 

74 500 500 500 500 500 500 



 
dit 

i t=1 t=2 t=3 t=4 t=5 t=6 

75 400 400 400 400 400 400 

76 420 420 420 420 420 420 

77 420 420 420 420 420 420 

78 1500 1200 1200 800 800 500 

79 1500 1500 1500 1500 1000 750 

80 1500 1500 1500 1500 1000 750 

81 3300 3300 3300 3300 3300 3300 

82 3300 3300 3300 3300 3300 3300 

83 3300 3300 3300 3300 3300 3300 

84 3300 3300 3300 3300 3300 3300 

 

 


