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Abstract

Knock control represents one of the most critical aspects to reach optimal thermal efficiency in spark ignition engines,
and its research is crucially important because it determines thermal efficiency, engine durability, and power density, as
well as noise and emission performance. In this paper, a spark advance control based on a map learning technique is
combined with a knock estimator to maximize the engine efficiency while keeping the knock probability below a desired
limit. The proposed controller is experimentally validated on a production spark ignition gasoline engine test bench,
and compared with a conventional spark advance controller in both, steady and transient conditions. From experimental
results, a benefit in terms of thermal efficiency, control stability and engine security are achieved. The results show that
the proposed method is capable of regulating the knock probability to a target percentage with low spark advance and
thermal efficiency dispersion than the conventional controller.
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1. Introduction

Spark ignition engines are a widespread technology in
the field of road transport, particularly in the segment of
passenger cars [1]. Considering that road transport ac-
counts for the largest proportion of energy consumption
in the transport sector (73 % in 2017 according to Euro-
pean Environment Agency), the need of improving engine
efficiency becomes evident. Methods to improve thermal
efficiency include increasing compression ratios, reducing
thermal losses or turbocharging, but all of them have the
avoidance of abnormal combustion such as knock as a ma-
jor challenge due to the associated increase in the com-
bustion chamber temperature [2]. Knock is an abnormal
combustion that occurs when a portion of the fuel-air mix-
ture is auto ignited [3]. This rapid combustion produces
shock waves which are propagated across the cylinder and
heavily excite the cylinder resonant modes [4]. Knock is an
undesirable phenomenon that reduces the engine efficiency,
produces vibration noise, and heavy knock might cause
damage to the engine [5]. Ignition timing is one of the most
important parameters to optimize combustion in spark ig-
nitionengines, because affects the combustion phase which
is related with engine performance, emissions and fuel ef-
ficiency [6]. The spark advance (SA) is usually controlled
to maximize efficiency. However, for medium and heavy
load, the maximum of efficiency cannot be reached due to
knock phenomenon [3].

In simpler SI engine control units (ECUs), SA is usu-
ally open-loop controlled by look up tables previously cal-
ibrated [7]. The problem of this method is that there is

no feedback signal, and knock onset is affected by engine
operating condition, fuel quality, and other factors, so a
closed-loop knock control is usually required [8]. Due to
its simplicity, vibration measurement is widely used in in-
dustry as closed-loop signal for knock detection. How-
ever, the quality of knock detection is often affected by
noise and vibrations [3]. Cylinder pressure is directly af-
fected by knock and provide reliable information, for that
reason, in-cylinder pressure sensors are more accurate for
knock detection and largely employed in laboratory tests
[9]. One of the most common reference metrics for knock
detection based on in-cylinder pressure is MAPO (Maxi-
mum Amplitude of Pressure Oscillations), which computes
the maximum absolute value of the filtered pressure signal
[10].

Regarding SA close-loop control strategies, they can be
divided into two groups: stochastic and model-based con-
trols [11]. Stochastic methods maintain the knock proba-
bility under a desired threshold by varying the SA while
model-based methods aim to predict the timing at which
knock occurs. The most widely used stochastic method
referred to in literature as conventional strategy [12], con-
sists of advancing the spark angle by an amount Kadv to
improve engine efficiency, while retarding a higher amount
Kret when a knocking cycle is detected in order to avoid
engine damage as:

SAiconv =

{
SAi−1conv −Kret if knock
SAi−1conv +Kadv otherwise

(1)

where i denotes the cycle number, and Kadv, Kret are
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controller gains. Kret is much larger than Kadv so the
spark slowly advances during non knocking periods, but
it is rapidly retarded if a knock event occurs. These two
gains are related by the knock probability, as follows:

Kret =
1− pth
pth

Kadv (2)

The relation between Kadv and Kret defines the percent-
age of knocking cycles while the value of Kadv character-
izes the time response of the controller: on the one hand,
high values might allow the controller to reach the optimal
value faster when it is far from it, but on the other hand
the variation of the SA will be higher and hence, higher
knock intensities are also expected. Due to its easy imple-
mentation and tuning, the conventional knock controller
is widely used in industrial applications, but the contin-
uous evolution of the spark timing and overreactions to
the knock event needed to preserve the knock probabil-
ity result in a high variance in the spark timing [13] and
therefore combustion phasing and associated performance.

Other stochastic methods, instead of only modify the
spark timing when the difference between the observed
and desired knock frequency exceeds a defined threshold.
Many authors in recent years have published different stochas-
tic control strategies, a stochastic algorithm based on cu-
mulative summation (CumSum) combines fast corrective
action with tight regulatory control about the knock limit
was presented in [14]. Additional improvements of this
method are presented in [15], where a threshold optimiza-
tion technique is applied to optimize the feedback signal for
the CumSum knock controller. Further work, use the like-
lihood ratio of observed events to scale the advance and
retard gains [16]. Recently, a new dual-threshold knock
controller was presented in [17] where the binary knocking
and no-knocking classification used by most knock-event-
based controllers was extended to a ternary knocking/not-
knocking/indeterminate classification using two knock thresh-
olds, this reduced the chance of misclassifying knocking
cycles as non-knocking. Reducing the misclassification
of knocking events allows to increase the controller gain,
which leads to faster response [18]. A further method is
presented in [19], where a beta distribution based stochas-
tic knock control is proposed, knock probability estimation
is performed by a Bayes rule and beta distribution and
likelihood ratio test is used for control decision. Stochas-
tic methods shows good results [20], but have a delayed
response in transient operation, since the statistical knock
properties must be estimated in real time [21].

Model-based methodologies aim to predict the timing
of the knock occurrence. Some methods use physical mod-
els such as auto ignition prediction by using the Arrhe-
nius equation, for example Livengood-Wu integral method
presented in [22]. Other methods are map-based mod-
els, that have the advantage of being easily calibrated,
but the main problem by using this look-up tables is that

variables change during operation and there is a risk of
exploring dangerous knocking conditions [23]. To avoid
this, different on-board map learning techniques for knock
control were published in recent years. For example an
extremum seeking and a 2D feed forward map learning al-
gorithm is presented in [24]. In order to control the SA
with constrained knock probability other method is shown
in [25], where a knock probability constrained SA con-
trol framework based on the on-board map adaptation of
knock event distribution is presented. In this approach,
two maps, efficiency map and knock probability map, are
updated in real time according to the measured signals,
knock event signal, crank angle position where the 50% of
the heat is released (CA50), intake manifold pressure and
efficiency. The problem with these control strategies is
that need a previous calibration in order to obtain initial
knock probability maps and tend to control knock with
a probability thresholds around 1%. This is a problem
in transient conditions since a large number of cycles is
necessary to obtain a 1 % of knock probability with high
enough resolution. As demonstrated in [26], working at
high knock rates allows to shorten the time required to
identify the stochastic properties of knock and, therefore,
update the knock models, and the performance of the con-
trollers is very dependent on the thresholds that define the
knock-event feedback signal.

In order to cope with the high variance associated to
stochastic methods and the large number of cycles required
by map-based adaptive methods, this article presents a
fuzzy logic map based knock controller for SI engines, ap-
plying a detection method able to discern low intensity
knocking cycles and to update a knock event probability
map. The map is learned with the intake manifold pres-
sure and spark advance as inputs, and the spark advance is
restricted by the probability threshold that is subsequently
tracked by a hypothesis test based feedback controller. If
the model probability differs greatly from the real knock
probability, a conventional knock controller is used; how-
ever, if the model probability is similar to the real one, the
SA value obtained from the established probability limit
is used to control. If the engine system behavior changes,
for example, due to aging effects or varying external gas
re circulation (EGR), the maps can be updated using the
on-board learning algorithm. This method allows to avoid
dangerous work areas operating with the optimum SA of
the engine possible, but also to adapt to the aging of the
engine and unfamiliar situation. In particular, due to the
use of a learning algorithm, one of the most remarkable
advantages of this method is that a previous calibration
of the model is not necessary. Experimental validations
have been carried out on a four cylinder gasoline SI engine
which is equipped with in-cylinder pressure sensors.

This article is organized as follows: first, the on-board
map learning based combustion control scheme is presented,
where the map learning knock event algorithm is intro-
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duced and the control decision layer is described. Then,
the experimental set-up and validation test are presented,
next section shows the experimental validation and discus-
sion for steady and transient operation conditions. Finally,
details on the high sensitivity knock detection algorithm
are provided as an appendix.

2. Fuzzy logic map-based knock controller

This paper proposes an SA control constraining knock
probability based on a map learning algorithm combined
with a conventional controller for SA control. The struc-
ture of the control algorithm is shown in Figure 1.
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Kevent (0,1)
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Combustion 
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Figure 1: Fuzzy logic map-based knock controller proposed.

The proposed control framework has two main com-
ponents, the learning map layer and the control decision
layer. The learning map layer consists of two probability
distribution maps, a and b, where the inputs are the in-
take manifold pressure (Pintake) and the SA. The output
of the learning map layer is the expected knock probability
at each operating condition, which is updated in real time
according to the measured input signals. The model can
be used to estimate the optimal SA (SAmod) for a given
knock probability threshold (pth).

To be able to evaluate if the model is working cor-
rectly, a control decision layer is added, which consist of a
hypothesis test and a decision block. The hypothesis test
evaluates the probability of the most recent series of knock
events, compared with the probability obtained through
the model (pk−map). A subsequent decision block deter-
mines the SA controller output: as long as the probability
of the model approaches the real one, the controller will
work with the model output (SAmod), but if there is a
mismatch between the expected and the observed proba-
bility, a conventional controller is used SAconv. In between
a combination of both, the model and a conventional con-
troller, is used. In next sections, the learning algorithm
and the hypothesis test controller are introduced in detail.

2.1. Learning map layer

On the basis that knock events are binomially dis-
tributed regardless of the probability density function of
knock intensities [27], the binomial signal is obtained by
comparing knock intensity metric Ir value calculated from
in-cylinder pressure with a threshold value Ith. The meth-
ods for Ir and Ith calculation were presented in [28] and
[29] respectively, while are briefly described in the ap-
pendix section at the end of the document. In the present
work, the knock probability distribution is learned in the
perspective of Bayesian learning as is shown in [25], where
the conjugate prior to binomial distribution adopts beta
distribution, Beta(p | a, b), where a and b are the two pa-
rameters of the distribution. The parameter a represents
knocking cycles and b no-knocking cycles, the probability
that a certain cycles is a knocking cycle (Pr{knock = 1})
is denoted by p which can be considered as a stochastic
variable.

The Bayesian learning process is applied to learn the
knock event distribution, figure 2 (left plot) shows the cal-
culation process, where the cross represents a knocking
cycle and filled circles represents no-knocking. Consider a
given time step (k) in the engine operating sequence and
a receding window of 10 cycles. Point k, at the left side
plot of figure 2 shows this situation when 3 cycles of the
receding window have shown knock and 7 of them do not,
so ak = 3 and bk = 7. In the right plot the corresponding
beta distribution can be observed. Consider then that cy-
cle k+ 1 shows knock, then a and b parameters are shifted
to ak+1 = 4 and bk+1 = 7, which leads to a modification
in the beta distribution as shown in the right plot. If cycle
k + 2 is a no-knocking cycle, then parameter ak+2 = ak+1

and bk+2 = 8. In the right plot the corresponding beta
distribution can be observed. The Bayesian learning pro-
cess is applied to learn the distribution of the knock event
map.
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Figure 2: Left plot: a and b parameters evolution during learning
process. Right plot: Beta distribution for left plot cases.

The mean and variance of the stochastic variable p can
be calculated as:
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E[p] =
a

a+ b

V ar[p] =
ab

(a+ b)2(a+ b+ 1)

(3)

At a constant speed, the engine operating range is dis-
cretized into two dimensional (2D) grids: pressure of the
intake manifold (x1) and spark advance (x2), as it is shown
in figure 3 left plot black points. The blue point in figure
3 left plot represents an operating condition [x1,op, x2,op],
the engine not always operates precisely on the grid points
so the data of the adjacent grids must be updated follow-
ing some method.

There are many adaptation methods that can be found
in the literature on map lookup table estimation, for exam-
ple, Bilinear interpolation, Kalman filter [30], Gaussian fil-
ter [31], among others. These last two algorithms update a
wider area or even the complete map. In the present work,
knock probability map is update by a Gaussian function,
as:

φ =
1√

2πσx1

e
− 1

2

(x1−x1,op)
2

σ2x1 +
1√

2πσx2

e
− 1

2

(x2−x2,op)
2

σ2x2 (4)

where φ is the weight for each grid point (X : [x1,op, x2,op]),
and σx1

and σx2
are parameters that determine the smooth-

ness of map. This effect is shown in figure 3 (left plot),
while the red surface represents the map for σx1,x2 = 2
and in blue for σx1,x2 = 1.
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Figure 3: Proposed probability map learning algorithm for spark
advance control.

The two parameters a and b of beta distribution are
updated cycle-by-cycle as:

ai+1 = ai + φ if knock

bi+1 = bi + φ otherwise
(5)

As parameters a and b grow, the difference between the
anterior and posterior distributions decreases, so it is nec-
essary to normalize these parameters as follows [25]:

a+ b = N (6)

where N is the normalization size, if N is small, the effect
of new data on learning is fast. Otherwise, the effect of
new data is slow. In this study a value of 200 is used as
normalization size.

Then, once the parameters a and b have been obtained,
the knock probability on a grid point and its variation can
be calculated by equation (4). To avoid the model over
estimates the probability at points near to the operating
one, the σ value in each of the axes should not be very
high, for this work the value is σx1,x2 = ([2, 1]).

Another aspect to take into account is the fact that
the probability at the same operation point for increasing
values of SA is never decreasing [32] since increasing SA
cannot lead to lower knock probabilities. This is taken
into account to obtain the limit value of SA for the corre-
sponding point of operation, but not to update a and b.

2.2. Control decision layer

As shown in the figure 1, the decision layer is com-
posed of a hypothesis test, which compare the real knock
probability with the model knock probability, and a de-
cision block, which determines the SA used as controller
output, based on the combination of the model SA and
conventional SA controllers previously explained.

2.2.1. Hypothesis test

The statistical controller based on hypothesis tests is
used to evaluate how the probability of the model adjusts
to real knock probability. As the knock process can be as-
sumed as a binomial distribution, for a given knock prob-
ability (pk), the probability of observing k knock events in
n cycles can be calculated as [33]:

P kn =

(
a
b

)
pkk(1− pk)(n−k) (7)

The likelihood Lh ratio is widely used in knock control [33,
34], to evaluate the ratio between the expected knock prob-
ability (p0), in the case at hand obtained from the knock
probability learning algorithm, and the observed knock
probability (pobs) obtained from the knock rate (pobs =
k/n), which maximizes the Likelihood. Lh can be ex-
pressed as:

Lh =
L(p0 | Nk)

L(pobs | Nk)
=

pk0(1− p0)(n−k)

pkobs(1− pobs)(n−k)
(8)

where Nk is the observed knock event sequence, k is the
number of knock events in Nk, n is the number of engine
cycles. In figure 4 a plot of the likelihood ratio as function
of the cycle number is shown for a knock rate p0 = 0.1.
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Figure 4: Likelihood ratio for different number of knock events (p0 =
0.1).

As expected, the likelihood ratio peaks when the ob-
servations match the assumed knock rate p0, i.e, at n = 50
for one knock and five knock events k = 5. A likelihood
ratio of 1, indicates that p0 perfectly match the knock rate
pobs, while likelihood ratios near zero suggest a mismatch.

To be able to calculated the knock probability for the
most recent series of knock events, Last In First Out (LIFO)
buffers were used to store the knock event data in a fixed
size array. For this controller, two buffers were employed,
one of 100 cycles representative of the operation point, and
an emergency buffer of 5 cycles in order to detect consec-
utive knocking cycles. The probability of each buffer can
be calculated as:

pbuffer =

∑Nbuffer
j=1 kj

Nbuffer
(9)

where kj is the boolean knock signal, 1 for knocking cycles
and 0 for a no-knocking cycle, and Nbuffer is the length
of the buffer.

Accordingly, the likelihood ratio defined in (8) is com-
puted for both buffers as:

Lh =
pkk−map(1− pk−map)(n−k)

pkbuffer(1− pbuffer)(n−k)
(10)

where pk−map represents the probability obtain in the map
and pbuffer is the estimate real probability over the buffers.

2.2.2. Decision block

In this block a combination between the SA of the
model and a conventional controller is performed: if the
probability of the maps pk−map match with the probability
of the buffer pbuffer, the SA of the controller it will be the
one obtain in the maps, otherwise, the SA it will be con-
trolled by a conventional controller. Transition between
model and conventional SA is managed as follows:

SAic = (1− αc)SAconv + αcSAmod (11)

where αc will be 0 when the model mismatch with
the estimated knock probability and 1 when the model

matches.

From the hypothesis test two likelihood ratios are ob-
tained, one from the 100 cycles buffer LhL and the other
one from the short buffer LhS , which will be used to de-
termine αc as is shown in figure 5.
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Figure 5: Alpha controller for different likelihood ratio values.

The value αc set in the controller will be the product
between αL and αS . Note that a value of LhL or LhS of
0.3 leads to an alpha value of 0 which means a complete
use of the conventional controller, while a  LhL above 0.7
means the a complete use of the model.

3. Experimental set-up

A four-stroke SI engine was used to validate the pro-
posed knock controller. The specifications of the engine
are shown in Table 1.

Table 1: Engine specifications

Displaced volume 1300 cc
Stroke 81.2 mm
Bore 72 mm

Compression ratio 10.6:1
Combustion SI

The engine was coupled with a dynamometer, and in-
cylinder, intake manifold and exhaust manifold pressure
sensors were installed. The control system of the engine
includes an electronic control unit (ECU), which has been
bypassed with an ETAS ES910 system for modifying the
standard calibration. A prototyping system from National
Instruments TM was used for acquisition, control, and di-
agnosis purposes.

The system consists of:

� A PXI 6123 and PXI-6251 acquisition modules were
used to acquire information from sensors with high
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sampling rate and 16 bit resolution, e.g. in-cylinder
pressure sensor.

� A NI-9759 module was used with a PXI 7813R for
programming in FPGA the full-pass control.

� A CAN interface module, PXI-8513, was used to
communicate with the ES910 system.

� A PXI 8110 controller was used to compute the con-
trol strategy and to process, store and analyze all
the information from the previous modules.

The variable geometry turbine (VGT) position was di-
rectly controlled with the FPGA by full-pass while the
throttle valve position, the VVT, the spark advance, and
the injected fuel were controlled through ECU by-pass. An
optical encoder was used to provide the crank angle refer-
ence for the in-cylinder pressure collection with a sampling
accuracy of 0.2 crank angle degree.

During the experiments, the engine was tested at sev-
eral operating conditions by keeping the speed constant,
and two kind of tests for validation proposes were per-
formed:

� Steady test: 7 steady points were analyzed at 2000
RPM, 90000, 95000 , 100000, 105000, 110000, 115000
and 120000 Pa of intake pressure.

� Transient tests: The controller was also validated
with step throttle angle command. In figure 6 the
throttle angle command and the corresponding man-
ifold pressure are shown.
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Figure 6: Experimental tests: Transient operation conditions.

The controller performance is compared with a conven-
tional SA controller in both, steady and transient test.

4. Validation results and discussion

4.1. Learning
The SA output controller is defined by equation (11) ,

during the learning process αc = 0, so the controller will

be totally conventional. When the knock probability map
is updated, the value of αc is defined as function of the
likelihood ratio from equation (10).

Different variables are plotted during the learning pro-
cess in figure 7, in the top plot, the SA controller output is
shown, in the central plot the probability of the map evo-
lution and the probability threshold are plotted, and in the
bottom plot the value of αc is shown. The knock proba-
bility threshold set in both controllers is 10% according to
knock definition described in [29], which is equivalent to a
2 % of MAPO threshold at 40000 Pa.
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Figure 7: Spark advance controller output during learning process.
Top plot: Spark advance output controller. Middle plot: knock
probability evolution of the model. Bottom plot: Likelihood ratio
(100 cycles buffer) and alpha controller value.

Note that while the map is being updated, the model
knock probability at the operation point is reaching the
control value set pth. Once the probability map is updated,
and the model sufficiently describes the knock probability
function, the SA output controller responds to a combina-
tion between the one obtained on the map and the con-
ventional controller according αc value.

As can be seen in figure 7 bottom plot, the number of
cycles required to filled the model is 1200 at 2000 RPM,
which represents around 80 seconds.

4.2. Steady state results

In order to compare the performance of the controller
in steady conditions, 300 cycles of two different operation
points are analyzed once the maps are updated. Figure
9 shows the response of the controller proposed and con-
ventional SA controller for 2000 RPM at 105000 Pa and
90000 Pa of intake manifold pressure with a Kret of 0.5
crank angle degree (CAD) for the conventional controller.
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Figure 8: Control performance at different intake pressure. Left plot:
105000 Pa. Right plot 95000 Pa. Top plot: Spark advance command.
Middle plot αc value. Bottom plot MAPO value.

Note that in left plot of figure 8 around cycle 140, the
SA out of the controller proposed is delayed 0.5 CAD, this
is because consecutive knock cycles have been observed
making αc bellow one.

For each test the mean SA (SA), its standard devia-
tion, the mean indicated mean effective pressure (IMEP ),
its standard deviation, maximum MAPO ( ˆMAPO), and
knock probability for MAPO (pk−M ) and the low knock-
ing cycles indicator (pk−I) over 300 cycles were calculated.
All the values are shown in Table 2.

Table 2: Control performance at different intake pressure: 105000
Pa and 95000 Pa

Conventional Fuzzy logic
Pint[Pa] 105000 95000 105000 95000
Kret[deg] 0.5 0.5 0.5 0.5
σSA 0.34 0.31 0.1 0.006

SA[deg] 13.77 10.86 13.86 11.07
σIMEP 0.13 0.12 0.12 0.09

IMEP [Pa] 9180000 1040000 940000 1066000
ˆMAPO[Pa] 120000 96000 86000 70000

pk−M [%] 3.98 2.72 1.99 1.7
pk−I [%] 10.6 10.4 10.1 9.97

Analyzing table 2, when comparing both controllers at
the same intake pressure, for 105000 Pa a similar average
value of SA is found, which is consistent with the fact that
the final knocking events are quite similar. However, the
variability of the SA is more than the double for the con-
ventional knock controller. That higher variability makes
the knock controller modify the SA to more advanced val-
ues leading to dangerous knocking events. In 95000 Pa
case, the average value of SA for the controller proposed
is higher than for a conventional controller, and the vari-
ability of the SA is more than three times larger what is

reflected in the IMEP standard deviation.

A summary of seven points steady test performed is
shown in figure 9, where empty circles represents test per-
formed with a conventional knock controller and filled cir-
cles with the proposed controller, while the color repre-
sents the operating point. Both controllers were set at
10% knock probability threshold, based on knock detec-
tion presented in [29], and Kret of 0.5 CAD. The maxi-
mum MAPO over 500 cycles is represented in function of
the thermal efficiency ηth computed as:

ηth =

∮
p dV

mfqLHV
(12)

mf represents the fuel amount injected in the cylinder dur-
ing one combustion cycle, qLHV is the lower heating power
of the fuel (45 MJ/kg for gasoline), p is the in-cylinder
pressure, dV is the rate of cylinder volume change.
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Figure 9: MAPO comparison for 7 operating points at steady state
condition.

As can be seen in figure 9, while comparing the same
color dots, the proposed controller shows an improvement
in steady state due to a higher average of ηth and a lower
maximum MAPO, thus allowing to obtain higher efficiency
avoiding high knocking cycles.

4.3. Transient state results

The controller was also validated in transient opera-
tion condition, as is shown in figure 6. Test 1 results are
plotted in figure 10, in the first plot starting from above,
the SA controller output is shown with a knock probabil-
ity threshold of 10% for both controllers, in the second
plot the IMEP evolution is plotted, and in the third plot
MAPO is shown.
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Figure 10: Control performance of Test 1. Top plot: Spark advance.
Middle plot: IMEP. Bottom plot: MAPO

As can be seen in figure 10 for the conventional con-
troller for the first throttle step, around cycle 100, several
cycles with MAPO above 100000 Pa can be found, and
this is because the controller delays the spark more pro-
gressively. While in the second throttle step, around cycle
500, the spark takes longer to reach the optimum point,
which suggests a loss of performance at that point. Tradi-
tional knock controller is generally applied with a lookup
table, which would avoid this problem, but these open loop
tables are off line pre calibrated for a given boundary con-
dition, which can be modified through the real operation
condition.

Test 2 results are summarized in table 3, where it shows
the mean SA, mean IMEP, maximum MAPO, percentage
of cycles with MAPO over 40000 Pa (pk−M ), percentage
of low knocking cycles (pk−I), and the thermal efficiency
for both controllers.

Table 3: Control performance: Test 1 & 2.

Conventional Fuzzy logic
Test 1 2 1 2

SA 10.6 9.9 10.95 10.53
IMEP 1080000 1110000 1118000 1140000

ˆMAPO 172000 14000 86000 90000
pk−M [%] 6 4 2.4 2
pk−I [%] 17.8 15.6 10.3 10.2
ηth[%] 38.98 38.7 40.69 40.4

As can be seen in the table 3, the proposed controller
reaches a higher average IMEP value with a MAPO max
value lower than the conventional controller, this is re-
flected in an improvement of almost 2 % of the thermal
efficiency for both transient tests.

Comparing with recent adaptive strategies for knock
control [16], the main contribution of the proposed method
is that the use of an indicator able to detect low-knocking

cycles provides more information about the knock nature
and also allows to use higher knocking rates, then reduc-
ing the number of cycles needed to estimate a given knock
probability. Compared to recent methods of model-based
controller such as [25], this method does not require a pre-
vious calibration of the maps, being able to adapt to the
operating and contour conditions in a more realistic way,
and being able to adapt the model 10 times faster.

5. Conclusions

This article presents a knock probability constrained
spark advance control based on the on-board map adapta-
tion of knock event distribution, applying a low-knocking
cycles detection method to update the model. The pro-
posed control framework is experimentally validated in
both steady and transient state experiments, and com-
pared with a conventional controller. The following con-
clusions can be drawn from this study:

� The proposed controller achieved an improvement
between 5-7% of the thermal efficiency in steady
state conditions, and maintain MAPO at safe levels
of operation, compared with a conventional knock
controller.

� This method allows an on-board calibration no need
for prior system calibration, which is a great advan-
tage for different boundary operating conditions.

� Controlling the ignition timing with the method pre-
sented offers less spark advance variability, making
it more stable.

� Applying a low-knocking cycles allows updating the
model faster, obtaining more information about the
system to be controlled, and quickly adapt the model
to changes in the operation.

6. Appendix: Knock detection method

Working at high knock rates allows to shorten the time
required to identify the stochastic properties of knock and,
therefore, to update the detonation models. Hence, a low-
knocking cycle detection method is used in this work.

A knock indicator which take into account the intensity
of the oscillations of the in cylinder and its angular evo-
lution is used. The minimum oscillation required for the
end gas auto ignition detection is based on the constant
volume combustion of the fuel mass that is not burnt by
the SI flame development.
The resonance indicator presented in [28] is used.

Ir(θ) =

θ=θ2∑
θ=θ1

w(θ − θ1)php(θ)e
−2π

∑ψ=θ
ψ=0

B
√
γ(ψ)p(ψ)V (ψ)

πD
√
m

T (θ)

(13)
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where θ1 and θ2 define the interval where the resonance
analysis is performed, w is a window function of θ1 − θ2
length, and T (θ) is the instantaneous sampling rate, which
is constant only in time-based acquisition or if the instan-
taneous engine speed fluctuations are negligible, B is the
Bessel constant, D is the bore of the cylinder, V the cham-
ber volume, m the trapped mass and p the in-cylinder
pressure.

The minimum oscillation required for the end-gas to
auto ignite is calculated as [29]:

Irmin = G
(γ − 1)

V
mfqLHV (1−MFB) (14)

where G is the transference constant of excitation of the
resonance modes due to the rise of pressure because of the
auto ignition, MFB the mass fraction burn, mf the fuel
mass, where qLHV is the lower heating value of the fuel
(45 MJ/kg for gasoline).

If the maximum resonance indicator Ir is greater than
the expected resonance at the angle where the indicator is
maximum knock is detected:

ifmax(Ir) >= Irmin(θIrmax)knock (15)

In [29] was demonstrated that a 10 % of this definition
it is equivalent to a 2 % according to MAPO definition
with a threshold at 40000 Pa.
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